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ABSTRACT

Large Vision–Language Models (VLMs) enable strong multimodal reasoning but
incur heavy inference costs from redundant visual tokens. Token pruning allevi-
ates this issue, yet existing approaches face limitations. Attention-based methods
rely on raw attention scores, which are often unstable across layers and heads and
can lead to redundant selections. Diversity-based methods improve robustness by
selecting tokens far apart in feature space but risk dropping regions needed for
accurate prediction. We propose ZOO-Prune, a training-free framework built on
a simple intuition: tokens with higher sensitivity are more likely to influence the
model’s output, and they should also capture complementary visual cues rather
than overlapping information. To achieve this, we estimate token sensitivity using
zeroth-order perturbations at the projection layer, a shallow and computationally
light component of the model. This approach measures how small random per-
turbations affect the projection outputs, allowing us to approximate each token’s
influence through lightweight forward passes without backpropagation. Extensive
experiments across multiple VLMs and benchmarks show that ZOO-Prune con-
sistently outperforms prior methods, pruning up to 94.4% of tokens while main-
taining accuracy and significantly improving efficiency, achieving up to 2.30×
faster end-to-end inference over the baseline.

1 INTRODUCTION

Large Vision–Language Models (VLMs) (Bai et al., 2023; Liu et al., 2024b; Zhu et al., 2025) achieve
strong multimodal understanding but at a substantial computational cost. A major contributor to this
cost is the large number of visual tokens produced by modern vision backbones. For example, the
vision encoder in LLaVA-1.5 (Liu et al., 2024a) generates up to 576 tokens for a single image,
whereas the text side often contains only a few tokens, such as “Describe this image in a short
sentence”. This imbalance leads to high inference latency and memory overhead (Chen et al., 2024a;
Alvar et al., 2025). To address this issue, token pruning has emerged as a practical solution that
selectively removes less informative visual tokens at inference time. Prior work has shown that
aggressive token reduction can yield large speedups with only modest drops in accuracy (Zhang
et al., 2025; Yang et al., 2025).

Recent research on VLM token pruning has increasingly focused on training-free schemes. Unlike
methods that require calibration data or fine-tuning (Hudson & Manning, 2019; Li et al., 2025; Lin
et al., 2025), training-free approaches prune tokens directly at inference. These methods can be
broadly categorized into two groups. (1) Attention-based approaches score tokens using attention
magnitudes; however, attention often concentrates on background regions (Darcet et al., 2023) and
tends to retain redundant tokens with overlapping content (Yang et al., 2025; Shang et al., 2024).
For example, in an image of a laptop on a desk (Fig. 1), attention-based pruning may preserve
many redundant tokens with overlapping content from the background, while ignoring tokens near
the monitor that are critical for answering a question about objects on the monitor. (2) Diversity-
based approaches (Alvar et al., 2025) select tokens by maximizing feature diversity, measuring pair-
wise distances between token embeddings. However, because these methods prioritize diversity
uniformly across all tokens without explicitly considering task-relevant cues, they may discard to-
kens from visually salient regions. In the same laptop example, diversity-based pruning may select
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Figure 1: Illustration of training-free VLM token pruning methods. (a) Attention-based methods
select tokens using attention scores, but often retain redundant tokens. (b) Diversity-based methods
select tokens with different features to maximize coverage but may lose tokens located in seman-
tically relevant regions (e.g., around the monitor, highlighted in yellow). (c) Our method employs
zeroth-order gradient estimation to quantify token sensitivity and integrates these scores into a di-
versity objective. (d) Accuracy comparison with LLaVA-NeXT-7B across 9 benchmarks, showing
that ours outperforms both VisionZip (attention-based) and DivPrune (diversity-based) methods.

feature-diverse tokens, but not necessarily those near the monitor, which are crucial for reasoning
about nearby objects.

Given these limitations, selecting a smaller subset of tokens while preserving visual information
without degrading task performance remains a challenging problem. To tackle this, we investigate
a novel metric for scoring each token, explicitly considering token sensitivity. Directly computing
token sensitivities via gradients is costly, especially for VLM, motivating the use of zeroth-order
gradient estimation (Nesterov & Spokoiny, 2017). This method quantifies how perturbations in in-
put tokens influence model outputs using only forward passes, avoiding backpropagation. However,
a naive application of zeroth-order estimation would require additional forward passes through the
vision encoder, incurring substantial computational overhead. We therefore empirically examined
whether sensitivity rankings obtained at a lightweight intermediate stage could serve as a reliable
proxy for those derived from the full vision encoder. Intuitively, the projection layer is a natural
choice since tokens here already capture high-level semantics from the vision encoder and are di-
rectly aligned with the language model. Our analysis revealed strong alignment between rankings
computed from the vision encoder and those from the projection layer (Section 3.2).

Motivated by this finding, we propose a training-free VLM token pruning method named ZOO-
Prune (ZerOth-Order gradient estimation for token pruning). Our method measures each token’s
influence by injecting Gaussian noise at a lightweight projection layer and estimating the resulting
gradient norms, which we define as sensitivity. To reduce redundancy while retaining informa-
tive tokens, we introduce Sensitivity-Aware Diversity Selection, which prioritizes tokens with high
sensitivity and ensures sufficient feature diversity, inspired by (Alvar et al., 2025). By jointly consid-
ering sensitivity and diversity, ZOO-Prune produces pruned token subsets that preserve task-relevant
information and enable effective compression even under aggressive pruning regimes (Fig. 1).

Our main contributions are as follows:
• We propose ZOO-Prune, a training-free pruning framework that unifies sensitivity and di-

versity, ensuring that pruned tokens are not only highly informative but also complemen-
tary, overcoming the limitations of importance-only or diversity-only methods.

• We introduce a zeroth-order sensitivity estimator at the projection layer, which provides
stable token importance rankings with lightweight forward computations, eliminating the
need for backpropagation or costly full-encoder passes.

• We demonstrate through extensive experiments on multiple VLMs and benchmarks that
ZOO-Prune delivers superior accuracy–efficiency trade-offs, retaining up to 94.4% fewer
tokens while maintaining accuracy and significantly reducing inference cost, achieving up
to 2.30× faster end-to-end inference over the baseline.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Large Multimodal Models (LMMs), particularly Vision-Language Models (VLMs) (Liu et al., 2023;
Dai et al., 2023; Chen et al., 2024b; Liu et al., 2024b; Bai et al., 2023), have demonstrated remark-
able capabilities in multimodal reasoning and dialogue. Pioneering architectures like LLaVA (Liu
et al., 2023) established a successful paradigm by aligning a pre-trained vision encoder (e.g., CLIP
ViT (Radford et al., 2021)) with an instruction-tuned LLM through a simple projection layer. This
design, further refined in subsequent works such as LLaVA family (Liu et al., 2024a;b), InternVL
series (Chen et al., 2024b; Wang et al., 2024; Zhu et al., 2025; Wang et al., 2025), and Qwen-VL (Bai
et al., 2023), enables strong visual understanding but introduces a significant computational chal-
lenge. These models typically encode a single image into hundreds of visual tokens, leading to
substantial inference overhead. The computational burden is exacerbated when handling higher res-
olutions; for instance, LLaVA (Liu et al., 2023; 2024a;b) typically encodes 336×336 images into
576 tokens, and up to 2880 tokens at 672×672 resolution. The inherent redundancy within these
extensive visual token sequences has motivated research into visual token pruning as a key approach
for efficient VLMs inference.

2.2 VISUAL TOKEN PRUNING FOR VLMS

Visual token pruning methods are proposed to reduce the inference complexity of large VLMs by
removing redundant visual representations. Existing pruning methods can be broadly divided into
two categories: those that require fine-tuning or calibration, and those that are entirely training-free.
The first category relies on additional data or adaptation to guide token reduction. CrossGET (Shi
et al., 2024) and MADTP (Cao et al., 2024) introduce modality-specific tokens to align cross-modal
features and drive token selection, while DeCo (Yao et al., 2024) employs adaptive pooling to decou-
ple token compression from semantic abstraction at the patch level. VTW (Lin et al., 2025) removes
all vision tokens after a specific layer, identified using a small calibration set and a KL-divergence
criterion. FitPrune (Ye et al., 2025) reduces visual tokens in the multi-head attention of each layer
via binary search, guided by attention statistics collected from inference or calibration examples.
While effective, these methods require calibration data and model-specific adaptation, limiting their
flexibility across architectures and deployment scenarios.

Training-free pruning avoids retraining and offers plug-and-play acceleration. Attention-based
methods estimate token importance directly from attention magnitudes. FastV (Chen et al., 2024a),
LLaVA-PruMerge (Shang et al., 2024), and VisionZip (Yang et al., 2025) remove or merge tokens
based on early attention maps, while SparseVLM (Zhang et al., 2025) leverages question-driven
cross-attention to induce dynamic sparsity. However, attention scores are often unstable and may
retain semantically redundant tokens (Alvar et al., 2025; Lin et al., 2025), which limits performance
under aggressive pruning. Another direction emphasizes feature diversity. DivPrune (Alvar et al.,
2025) formulates token selection as a max-min diversity problem solved via greedy farthest-point
sampling, reducing redundancy and preserving robustness at high pruning ratios. Yet by treating all
tokens equally, it can overlook semantically critical regions and drop task-relevant information. To
overcome these limitations, we propose a zeroth-order sensitivity estimator that quantifies each to-
ken’s effect on the output without backpropagation. We further combine this signal with a diversity-
based selection strategy, ensuring that pruning retains the most influential tokens while still covering
complementary visual content, which leads to a stronger balance between efficiency and accuracy.

3 METHODOLOGY

3.1 BACKGROUND: ZEROTH-ORDER GRADIENT ESTIMATION

Zeroth-order (ZO) optimization provides a gradient-free alternative to first-order methods by using
only forward queries of a function. It is particularly useful when exact gradient computation is in-
feasible, such as in black-box optimization (Sawada et al., 2025), adversarial attacks (Chen et al.,
2017), or efficient fine-tuning of large models (Park et al., 2025; Zhang et al., 2024b). By rely-
ing solely on forward evaluations, ZO methods circumvent the need for backpropagation, thereby
reducing memory costs and enabling applications to complex or non-differentiable modules.
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A widely used estimator is the randomized gradient estimator (RGE) (Duchi et al., 2015; Nesterov
& Spokoiny, 2017), which approximates gradients by finite differences along random directions.
Given a function f : Rd1 → Rd2 , the central-difference RGE with m queries is

∇̂f(x) =
1

m

m∑
j=1

f(x+ huj)− f(x− huj)

2h
uj , uj ∼ N (0, Id), (1)

where h >0 is a small step size.

3.2 OBSERVATION: PROJECTOR AS A PROXY FOR END-TO-END VISION SENSITIVITY

MMMU POPE

Ra
nk

 fr
om

 V
is

io
n 

En
co

de
r

Rank from Projection Layer

Ra
nk

 fr
om

 V
is

io
n 

En
co

de
r

Rank from Projection Layer

Figure 2: Kernel density estimate (KDE) of Spearman
rank correlations between token-importance rankings
from the Vision encoder and the Projection layer on
the MMMU and POPE datasets. Each dataset shows
Spearman correlation of 0.55 and 0.49, respectively.
Detailed setting is described in Appendix A.

Original zeroth-order methods aim to re-
construct the full gradient vector, but in
our setting, we only require a relative
ranking of token importance. A naive ap-
proach would apply RGE directly to the
vision encoder, incurring substantial com-
putational overhead due to additional end-
to-end forward passes. For instance, sup-
pose an image is tokenized into n =
500 visual tokens with m = 64 random
perturbation directions per token. Since
RGE requires two forward passes per di-
rection, the total cost scales as 2nm for-
ward passes, amounting to ∼ 6.4 ×
106 GFLOPs, which is clearly prohibitive.

To reduce this cost, we empirically evalu-
ated whether sensitivity rankings obtained
at a lightweight intermediate stage (i.e.,
projection layer) could serve as a reliable proxy for those derived from the full vision encoder. In
Fig. 2, we rank token sensitivities based on RGE and visualize the Spearman rank correlations across
two datasets. Our analysis shows a strong alignment between token importance rankings computed
from the vision encoder outputs and those obtained from the projection layer. Beyond empirical ev-
idence, the projection layer can be seen as a modality-aligning bottleneck. It consolidates high-level
semantic information from the vision encoder and maps it into the language embedding space, nat-
urally emphasizing tokens that are important for downstream predictions. Since token pruning only
requires relative importance rather than exact gradients, this layer provides a compact, semantically
meaningful proxy that preserves token sensitivity rankings.

Motivated by this finding, we compute token sensitivities at the projection layer, which contains
only a few layers and therefore introduces negligible additional cost during inference. By relying
solely on forward queries, this approach avoids the expensive backpropagation required by first-
order methods, making zeroth-order sensitivity estimation a practical and efficient tool for token-
level analysis in large-scale VLMs.

3.3 ZOO-PRUNE: ZEROTH-ORDER GRADIENT ESTIMATION FOR TOKEN PRUNING

Fig. 3 illustrates the overall ZOO-Prune framework. Given the outputs of the vision encoder, our
method first computes token-level sensitivity using zeroth-order gradient estimation and then uses
these scores in a diversity-aware selection procedure to produce a subset of tokens that is passed to
the LLM. Mathematically, let X ∈ RNv×dv denote Nv vision tokens with dv dimension, and

Z = M(X) ∈ RNv×dl

the projected embeddings through the multimodal projection layer M : Rdv → Rdl . We sample m
random perturbation directions {uj}mj=1, where uj ∼ N (0, Idv

) normalized to unit norm. For each
token i, we measure the symmetric finite-difference response:

δi,j =
M(xi + huj)−M(xi − huj)

2h
, (2)

4
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Figure 3: Overview of ZOO-Prune. Given visual tokens from the vision encoder, we estimate
token sensitivity via zeroth-order gradient approximation at the projection layer by adding Gaussian
perturbations (i.e., xi±huj). The resulting sensitivity scores are integrated with a diversity objective
to form a hybrid score, guiding the selection. The selected subset is then passed to the LLM together
with the text input, enabling efficient multimodal reasoning with reduced computation.

where xi ∈ Rdv is the i-th vision token. We then define the token sensitivity of token i as the average
response magnitude:

S(i) =
1

m

m∑
j=1

∥δi,j∥2. (3)

This metric estimates the approximated mean sensitivity of each token shown in Proposition 3.1.

Proposition 3.1 (Approximated Mean Sensitivity). Let M : Rn → Rm be differentiable at x ∈ Rn

with Jacobian J(x) = ∇M(x). Let u ∼ N (0, In) be an isotropic Gaussian perturbation and h > 0

a small step size. Define the finite-difference sensitivity S(x) = Eu

[∥∥∥M(x+hu)−M(x−hu)
2h

∥∥∥
2

]
. Then,

for sufficiently small h,
S(x) = Eu

[
∥J(x)u∥2

]
+O(h2).

The detailed proof is provided in Appendix B. The proposition shows that, unlike traditional RGE,
which estimates gradient direction, our sensitivity metric captures the magnitude of local response.
Specifically, Eu[∥J(x)u∥2] quantifies how much the output changes on average under random per-
turbations, providing a scalar measure of token influence.

Sensitivity-aware diversity selection. While sensitivity captures the most informative tokens, it
does not by itself enforce coverage over diverse visual content. To reduce redundancy, we integrate
a diversity criterion inspired by DivPrune (Alvar et al., 2025). Let Zi denote the vision feature of
token i, and P the set of already selected tokens. We define

Div(i,P) = 1−max
j∈P

cos(Zi, Zj), (4)

where cos(·, ·) is cosine similarity. The final selection score is defined as

Score(i) = Ŝ(i) ·Div(i,P), (5)

where Ŝ(i) is the normalized sensitivity score. The multiplicative design avoids introducing addi-
tional hyperparameters for weighting the two criteria. Compared to DivPrune, our diversity selection
method introduces two key modifications: (1) For the first token, DivPrune selects the one that is
maximally distant from all others, whereas ours prioritizes the token with the highest sensitivity.
(2) For subsequent selections, DivPrune considers only diversity, while our method combines sen-
sitivity and diversity via the hybrid score above. This procedure yields a token subset that is both
sensitivity-driven and diversity-driven. The overall process is described in Algorithm 1.

5
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Algorithm 1 ZOO-Prune: ZerOth-Order Sensitivity-Aware Token Pruning

1: Input: Vision tokens X ∈ RNv×dv , projection M , number of tokens to select k, step size h, number of
perturbations m

2: Output: Selected token indices P
3: % —— [ZOO-based Sensitivity Estimation] ———-
4: Sample m random perturbations U ∈ Rm×dv , uj ∼ N (0, I), normalized to ∥uj∥2 = 1
5: Expand X along perturbations: X+ = X + hU, X− = X − hU
6: Project perturbed features: Z+ = M(X+), Z− = M(X−)

7: Compute finite-difference responses: ∆ = Z+−Z−

2h

8: Sensitivity: S(i) = 1
m

∑m
j=1 ∥∆i,j∥2

9: % —— [Sensitivity-Aware Diversity Selection ] ——
10: Normalize sensitivities: Ŝ(i) = S(i)−minj S(j)

maxj S(j)−minj S(j)

11: Initialize P ← ∅
12: while |P| < k do
13: Compute diversity: Div(i,P) = 1−maxj∈P cos(Zi, Zj) (set to 1 if P is empty)
14: Fusion score: Score(i) = Ŝ(i) ·Div(i,P)
15: Select i⋆ = argmaxi Score(i)
16: P ← P ∪ {i⋆}
17: end while
18: return P

Table 1: Performance Comparison on LLaVA-1.5-7B.

Method GQA
Acc. ↑

MMB
Acc. ↑

MME
P+C ↑

POPE
F1 ↑

SQA
Acc. ↑

VQAV 2

Acc. ↑
VQAText

Acc. ↑
MMMU
Acc. ↑

SEED
Acc. ↑

Avg.
↑

Total 576 Tokens

LLaVA-1.5-7B 61.90 64.70 1862.00 85.90 69.50 78.50 58.20 36.30 58.60 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens ↓ 66.7%

FastV (ECCV 2024) 52.70 61.20 1612.00 64.80 67.30 67.10 52.50 34.30 57.10 89.6%
SparseVLM (ICML 2025) 57.60 62.50 1721.00 83.60 69.10 75.60 56.10 33.80 55.80 95.5%
VisionZip (CVPR 2025) 59.30 63.00 1782.60 85.30 68.90 76.80 57.30 36.60 56.40 97.9%
DivPrune (CVPR 2025) 59.97 62.54 1762.23 87.00 68.91 76.87 56.97 35.44 58.71 98.0%
ZOO-Prune (Ours) 60.03 62.89 1781.66 87.24 69.16 77.34 57.30 36.11 58.80 98.6%

Retain 128 Tokens ↓ 77.8%

FastV (ECCV 2024) 49.60 56.10 1490.00 59.60 60.20 61.80 50.60 34.90 55.90 84.5%
SparseVLM (ICML 2025) 56.00 60.00 1696.00 80.50 67.10 73.80 54.90 33.80 53.40 93.0%
VisionZip (CVPR 2025) 57.60 62.00 1761.70 83.20 68.90 75.60 56.80 37.90 54.90 96.8%
DivPrune (CVPR 2025) 59.25 62.03 1718.22 86.72 68.96 75.96 56.06 35.56 56.98 96.9%
ZOO-Prune (Ours) 59.49 61.86 1751.60 87.13 68.91 76.57 57.87 35.67 57.53 97.8%

Retain 64 Tokens ↓ 88.9%

FastV (ECCV 2024) 46.10 48.00 1256.00 48.00 51.10 55.00 47.80 34.00 51.90 75.5%
SparseVLM (ICML 2025) 52.70 56.20 1505.00 75.10 62.20 68.20 51.80 32.70 51.10 87.0%
VisionZip (CVPR 2025) 55.10 60.10 1690.00 77.00 69.00 72.40 55.50 36.20 52.20 93.1%
DivPrune (CVPR 2025) 57.78 59.28 1674.40 85.56 68.17 74.11 54.69 35.56 55.13 94.8%
ZOO-Prune (Ours) 58.47 60.22 1675.59 85.86 68.27 75.02 55.35 35.44 55.84 95.5%

4 EXPERIMENTS

We evaluate ZOO-Prune on LLaVA-v1.5-7B/13B (Liu et al., 2024a), LLaVA-1.6-7B (Liu et al.,
2024b), and Qwen2.5-VL-7B (Bai et al., 2025). LLaVA-v1.5 employs a CLIP ViT-L (Radford
et al., 2021) with 576 tokens, LLaVA-NeXT scales to 2880 tokens for high-resolution inputs, and
Qwen2.5-VL adopts a dynamic-resolution ViT encoder. Following VisionZip (Yang et al., 2025), we
evaluate multiple pruning ratios and report performance relative to the unpruned baseline across nine
benchmarks. For LLaVA-NeXT, we applied a low-rank factorization (k = 128) to the MM-projector
layers to further boost efficiency, since this model processes a large number of visual tokens. All
experiments are training-free and calibration-free, run on 4×A6000 GPUs with m=64, h=0.01, and
evaluated using lmms-eval (Zhang et al., 2024a). More details in Appendix C.
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Table 2: Performance Comparison on LLaVA-1.5-13B.

Method GQA
Acc. ↑

MMB
Acc. ↑

MME
P+C ↑

POPE
F1 ↑

SQA
Acc. ↑

VQAV 2

Acc. ↑
VQAText

Acc. ↑
MMMU
Acc. ↑

SEED-I
Acc. ↑

Avg.
↑

Total 576 Tokens

LLaVA-1.5-13B 63.20 67.70 1818.00 85.90 72.80 80.00 61.30 36.40 66.90 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens ↓ 66.7%

VisionZip (CVPR 2025) 59.10 66.90 1754.00 85.10 73.50 78.10 59.50 36.40 65.20 97.9%
DivPrune (CVPR 2025) 59.42 66.58 1781.50 86.76 72.88 77.98 58.46 36.56 65.72 98.1%
ZOO-Prune (Ours) 59.95 66.67 1762.41 86.73 73.12 78.65 59.11 37.33 65.56 98.6%

Retain 128 Tokens ↓ 77.8%

VisionZip (CVPR 2025) 57.90 66.70 1743.00 85.20 74.00 76.80 58.70 36.10 63.80 97.0%
DivPrune (CVPR 2025) 58.89 66.07 1748.56 86.53 72.83 77.10 58.17 35.56 64.22 97.0%
ZOO-Prune (Ours) 58.89 67.01 1791.10 86.95 73.38 77.83 58.80 35.56 64.50 97.8%

Retain 64 Tokens ↓ 88.9%

VisionZip (CVPR 2025) 56.20 64.90 1676.00 76.00 74.40 73.70 57.40 36.40 60.40 93.7%
DivPrune (CVPR 2025) 57.66 64.60 1777.93 84.80 71.34 75.20 57.11 35.22 62.44 95.4%
ZOO-Prune (Ours) 58.58 64.78 1780.03 85.34 72.09 76.39 58.59 36.00 63.02 96.5%

Table 3: Performance Comparison on LLaVA-NeXT-7B.

Method GQA
Acc. ↑

MMB
Acc. ↑

MME
P+C ↑

POPE
F1 ↑

SQA
Acc. ↑

VQAV 2

Acc. ↑
VQAText

Acc. ↑
MMMU
Acc. ↑

SEED-I
Acc. ↑

Avg.
↑

Total 2880 Tokens

LLaVA-NeXT-7B 64.20 67.90 1842.00 86.40 70.20 80.10 61.30 35.10 70.20 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 640 Tokens ↓ 77.8%

SparseVLM (ICML 2025) 60.30 65.70 1772.00 – 67.70 77.10 57.80 34.60 – –
VisionZip (CVPR 2025) 61.30 66.30 1787.00 86.30 68.10 79.10 60.20 34.70 66.70 97.5%
DivPrune (CVPR 2025) 61.58 65.38 1773.04 85.51 67.82 78.94 55.41 36.89 67.56 97.1%
ZOO-Prune (Ours) 62.19 65.21 1816.45 86.75 68.02 79.64 57.98 36.89 67.95 98.3%

Retain 320 Tokens ↓ 88.9%

SparseVLM (ICML 2025) 57.70 64.30 1694.00 – 67.30 73.40 55.90 34.40 – –
VisionZip (CVPR 2025) 59.30 63.10 1702.00 82.10 67.30 76.20 58.90 35.30 63.40 94.5%
DivPrune (CVPR 2025) 59.63 63.66 1731.04 83.47 67.82 76.64 53.84 37.11 65.35 95.1%
ZOO-Prune (Ours) 60.97 64.86 1787.68 85.47 67.77 78.08 57.28 37.00 66.47 97.1%

Retain 160 Tokens ↓ 94.4%

SparseVLM (ICML 2025) 51.20 63.10 1542.00 – 67.50 66.30 46.40 32.80 – –
VisionZip (CVPR 2025) 55.50 60.10 1630.00 74.80 68.30 71.40 56.20 36.10 58.30 90.4%
DivPrune (CVPR 2025) 57.79 62.29 1658.25 79.36 68.02 73.92 52.42 36.44 62.54 92.4%
ZOO-Prune (Ours) 59.93 64.18 1738.64 83.05 68.42 76.12 55.42 37.11 64.05 95.4%

4.1 COMPARISON ON DIVERSE TASKS

Results on LLaVA-1.5-7B and 13B. As shown in Tables 1 and 2, ZOO-Prune consistently outper-
forms the state-of-the-art training-free pruning methods, especially under aggressive compression.
On LLaVA-1.5-7B, it preserves 95.5% performance with only 64 tokens, surpassing DivPrune (Al-
var et al., 2025) (94.8%) and far exceeding attention-based methods such as FastV (Chen et al.,
2024a), which retains three times more tokens but drops to 89.6%. On LLaVA-1.5-13B, ZOO-Prune
achieves 96.5% with 64 tokens and outperforms DivPrune by 1.7%, confirming that combining sen-
sitivity and diversity effectively preserves reasoning under extreme pruning.
Results on LLaVA-NeXT-7B. We further evaluate ZOO-Prune on LLaVA-NeXT-7B, which pro-
cesses up to 2880 tokens. As reported in Table 3, ZOO-Prune maintains 98.3% performance when
pruning 77.8% of tokens, outperforming VisionZip (97.5%) and nearly matching the baseline. Even
with a 94.4% pruning (160 tokens), it can still maintain a 95.4% performance, demonstrating the
scalability of sensitivity-aware diversity selection under high-resolution compression.
Results on Qwen2.5-VL-7B. To validate the generalizability of ZOO-Prune, we evaluated it on
Qwen2.5-VL-7B, a distinct VLM variant beyond the LLaVA family with dynamic-resolution in-
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Figure 4: Hyperparameter sensitivity on POPE
with LLaVA-1.5-7B: (a) effect of step size h, (b)
effect of the number of perturbation directions m.

Table 4: Performance comparison on Qwen2.5-
VL-7B with a dynamic resolution setting.

Method GQA MMB MME POPE Avg.

Baseline (Full Tokens)

Qwen2.5-VL-7B 60.84 84.10 2310 86.3 100%

Retain 20% Tokens

VisionZip (CVPR 2025) 57.27 79.72 2221 83.89 95.6%
DivPrune (CVPR 2025) 60.05 79.55 2173 83.42 96.0%
ZOO-Prune (Ours) 58.81 80.60 2201 84.17 96.2%

Retain 10% Tokens

VisionZip (CVPR 2025) 54.09 76.03 1937 78.97 88.7%
DivPrune (CVPR 2025) 55.49 76.03 2054 79.05 90.5%
ZOO-Prune (Ours) 55.45 76.28 2018 80.99 90.8%

Table 5: Ablation on Token Selection Metrics with LLaVA-NeXT-7B.

Sensitivity Diversity Fusion GQA
Acc. ↑

MMB
Acc. ↑

MME
P+C ↑

POPE
F1 ↑

SQA
Acc. ↑

VQAV 2

Acc. ↑
VQAText

Acc. ↑
MMMU
Acc. ↑

SEED-I
Acc. ↑

Avg.
↑

Retain 640 Tokens ↓ 77.8%

✓ - 61.23 65.21 1818.62 86.54 68.07 78.47 54.12 35.78 66.29 96.7%
✓ - 61.58 65.38 1773.04 85.51 67.82 78.94 55.41 36.89 67.56 97.1%

✓ ✓ Sum 61.81 65.55 1794.17 86.34 68.27 79.38 57.99 37.22 67.29 98.1%
✓ ✓ Multiply 62.19 65.21 1816.45 86.75 68.02 79.64 57.98 36.89 67.95 98.3%

Retain 320 Tokens ↓ 88.9%

✓ - 59.22 64.69 1744.42 83.15 67.63 75.69 47.25 34.78 63.69 92.9%
✓ - 59.63 63.66 1731.04 83.47 67.82 76.64 53.84 37.11 65.35 95.1%

✓ ✓ Sum 60.47 64.43 1761.52 84.21 68.47 77.70 56.79 36.89 65.46 96.4%
✓ ✓ Multiply 60.97 64.86 1787.68 85.47 67.77 78.08 57.28 37.00 66.47 97.1%

Retain 160 Tokens↓ 94.4%

✓ - 57.23 61.86 1674.35 77.27 68.82 72.58 50.96 35.56 61.04 91.2%
✓ - 57.79 62.29 1658.25 79.36 68.02 73.92 52.42 36.44 62.54 92.4%

✓ ✓ Sum 59.48 63.49 1710.35 81.21 68.22 75.88 54.77 34.78 63.47 93.8%
✓ ✓ Multiply 59.93 64.18 1738.64 83.05 68.42 76.12 55.42 37.11 64.05 95.4%

puts. As shown in Table 4, ZOO-Prune continues to lead, achieving 96.2% performance with a 20%
token budget and 90.8% with only 10% of the tokens, consistently surpassing both VisionZip and
DivPrune. These results confirm that ZOO-Prune generalizes robustly across diverse VLM archi-
tectures, effectively preserving task performance even with long, variable-length token sequences.

4.2 ABLATION STUDIES AND ANALYSIS

Ablation Studies. We ablate four variants on LLaVA-NeXT-7B (Table 5): Sensitivity-only,
Diversity-only (DivPrune), and two Fusion strategies (sum, multiply). Sensitivity-only selects task-
critical tokens and excels on reasoning, but lags on TextVQA where context is vital. Diversity-only
offers broad coverage yet misses key cues. Combining both is consistently better: Fusion (Multiply)
delivers 98.3% at 22.2% tokens with no extra hyperparameters. These results show that sensitivity
and diversity are complementary and jointly essential for training-free token pruning.
Hyperparameter Analysis. We analyze the sensitivity of ZOO-Prune to its two hyperparameters
m (number of perturbations) and h (step size) on the POPE benchmark (Fig. 4). Performance is
consistently stable across a wide range: accuracy remains highly consistent as m varies from 16 to
160 and is similarly insensitive to h over [1e-4, 1]. We adopt m = 64 to reduce variance at negligible
cost, and fix h = 0.01 for all experiments, thereby eliminating the need for task-specific tuning.
Inference Efficiency. To assess efficiency, we measure end-to-end (E2E) latency and prefilling
time in Fig. 5. Prefilling, dominated by visual token processing, is the main stage accelerated by
pruning. All methods achieve notable gains, but ZOO-Prune consistently offers the best trade-
off. At the most aggressive setting (160 tokens, 94.4% pruning), it reduces E2E latency by 2.30×
and prefilling by 2.59×. All experiments are conducted on a single NVIDIA L40S GPU. Despite
a negligible overhead from sensitivity estimation, ZOO-Prune sustains markedly higher accuracy,
establishing it as a practical solution for efficient VLM deployment. Additional analysis of FLOPs
in Appendix D shows consistent trends with the latency and prefilling results.
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(a) Prefilling Time (ms) (b) E2E Latency (secs)
Figure 5: Inference efficiency on the ScienceQA benchmark relative to the LLaVA-NeXT-7B base-
line. The left panel reports prefilling time and the right panel shows end-to-end (E2E) latency.
Speedup factors over the baseline are annotated inside each bar.

Figure 6: Qualitative comparison of pruned token masks from DivPrune and ZOO-Prune on the
GQA benchmark under varying token budgets.

Visualization. Fig. 6 qualitatively compares ZOO-Prune with DivPrune under aggressive pruning
on GQA. Although DivPrune preserves feature diversity, it often drops critical tokens, for example,
omitting most dog tokens and predicting “bear,” or focusing on a window instead of the queried
object. In contrast, ZOO-Prune uses zeroth-order sensitivity to preserve key entities like the dog
and bench. By combining sensitivity and diversity, it maintains correct predictions even at a 64-
token budget, underscoring that sensitivity-aware diversity is essential for semantic integrity and
reliable reasoning under heavy compression. See Appendix E for more examples.

5 CONCLUSION

In this paper, we presented ZOO-Prune, a training-free and attention-free token pruning framework
for vision–language models that unifies zeroth-order sensitivity estimation with diversity-aware se-
lection. By leveraging lightweight projection-layer responses, our approach efficiently measures to-
ken importance without backpropagation or additional end-to-end passes, while Sensitivity-Aware
Diversity Selection ensures both informativeness and representational coverage. Extensive exper-
iments across multiple benchmarks show that ZOO-Prune achieves state-of-the-art performance
among training-free pruning methods, enabling substantial reductions in inference cost with minimal
loss in accuracy. We believe this work highlights the potential of gradient-free sensitivity analysis
for efficient multimodal learning and opens promising directions for scalable model compression.

Limitations and Future Work. While effective, ZOO-Prune currently relies on 32∼64 random
perturbations per token for zeroth-order sensitivity estimation, which may increase overhead for
very large token sets in future VLM architectures. It has also been validated primarily on existing
VLMs such as LLaVA-NeXT, and its generalization to other multimodal models or modalities (e.g.,
video, 3D) remains to be explored. A promising direction for future work is to investigate whether
reliable token sensitivities can be estimated using only ∼4 perturbations, potentially further reducing
computational cost.
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Reproducibility Statement. Our method is detailed in Section 3 and Algorithm 1, with theoret-
ical analysis in Appendix B.1. All experimental setup details, including models, benchmarks, and
hyperparameters, are provided in Appendix C. Our work, built upon the open-source lmms-eval
framework, will be released with full source code to ensure reproducibility.
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Appendix

This appendix supplements the main paper with the theoretical analysis of Proposition 3.1, ad-
ditional details on the experimental configuration and evaluation strategy, and further qualitative
results that illustrate the token preservation patterns across a range of scenarios. The contents are
organized as follows:

• Appendix A: Implementation details for KDE experiments in Section 3.2.
• Appendix B: Theoretical analysis of the proposed sensitivity estimator.
• Appendix C: Experimental setup, implementation details, and evaluation protocols.
• Appendix D: Further Inference Efficiency Analysis: FLOPs.
• Appendix E: Additional qualitative results, including both successful and failure cases.
• Appendix F: The Use of Large Language Models (LLMs).

A EXPERIMENTAL DETAILS FOR SPEARMAN CORRELATION ANALYSIS

For the correlation analysis in Fig. 2, we measured the agreement between token-importance rank-
ings derived from the vision encoder and the projection layer. Specifically, we selected 50 random
samples per dataset from MMMU and POPE. For each sample, token sensitivities were first com-
puted using RGE at both the vision encoder output and the projection layer. To ensure stable rank-
ing comparisons, we applied a threshold of 0.5 to filter out low-sensitivity tokens before computing
ranks. The Spearman’s rank correlation coefficient was then calculated for each sample, and the
distribution across 50 samples was visualized using a kernel density estimate (KDE) plot.

The resulting average Spearman correlations were 0.55 for MMMU and 0.49 for POPE, indicating a
consistent alignment between token rankings obtained at the projection layer and those from the full
vision encoder. This confirms that the projection layer can serve as a reliable proxy for token-level
importance estimation while significantly reducing computational overhead.

B THEORETICAL ANALYSIS

B.1 PROPOSITIONAL PROOF

Proposition B.1 (Approximated Mean Sensitivity). Let M : Rn → Rm be differentiable at x ∈ Rn

with Jacobian J(x) = ∇M(x). Let u ∼ N (0, In) be an isotropic Gaussian perturbation and h > 0

a small step size. Define the finite-difference sensitivity S(x) = Eu

[∥∥∥M(x+hu)−M(x−hu)
2h

∥∥∥
2

]
. Then,

for sufficiently small h,
S(x) = Eu

[
∥J(x)u∥2

]
+O(h2).

Proof. Since M is differentiable at x, we apply a first-order Taylor expansion around x for pertur-
bations hu:

M(x+ hu) = M(x) + hJ(x)u+O(h2), (6)

M(x− hu) = M(x)− hJ(x)u+O(h2). (7)
Subtracting and dividing by 2h gives the symmetric finite-difference approximation:

M(x+ hu)−M(x− hu)

2h
= J(x)u+O(h2).

Taking the ℓ2-norm,∥∥∥∥M(x+ hu)−M(x− hu)

2h

∥∥∥∥
2

= ∥J(x)u+O(h2)∥2 = ∥J(x)u∥2 +O(h2).

Finally, taking expectation over isotropic Gaussian perturbations u ∼ N (0, In) yields

S(x) = Eu

[
∥J(x)u∥2

]
+O(h2).
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This proposition establishes that the finite-difference sensitivity S(x), computed using small
isotropic Gaussian perturbations, provides an accurate approximation of the mean local effect of
input changes on the output. Specifically, for sufficiently small step size h, the finite-difference
estimate is equivalent, up to an O(h2) error, to the expected ℓ2-norm of the Jacobian applied to ran-
dom Gaussian directions. Intuitively, this means that S(x) captures the average magnitude of output
variation induced by small, randomly oriented perturbations in the input space. By sampling u from
an isotropic Gaussian, all directions are treated equally, ensuring an unbiased and comprehensive
measure of token sensitivity without requiring backpropagation.

C EXPERIMENTAL SETUP

C.1 MODEL SETTINGS

We evaluate the effectiveness of ZOO-Prune on widely used VLMs, including LLaVA-v1.5-7B (Liu
et al., 2024a)1, LLaVA-v1.5-13B (Liu et al., 2024a)2, and LLaVA-1.6-7B (Liu et al., 2024b)3 (also
referred to as LLaVA-NeXT-7B), and Qwen2.5-VL-7B (Bai et al., 2025)4. All LLaVA models adopt
the CLIP (Radford et al., 2021) as the vision encoder and Vicuna (Chiang et al., 2023) as the base
language model.

LLaVA-v1.5 models process images at 336 × 336 resolution, yielding 576 visual tokens, while
LLaVA-NeXT-7B supports higher resolutions (up to 672 × 672), generating up to 2880 tokens and
achieving a 6.0% gain at the cost of 3.5× more computation. Qwen2.5-VL-7B, in contrast, utilizes a
dynamic-resolution ViT encoder with window attention and is built upon the Qwen2.5-7B language
model, supporting a variable number of visual tokens depending on input resolution. Across all
experiments, our pruning is applied in a fully training-free and calibration-free manner.

C.2 IMPLEMENTATION DETAILS

All experiments are conducted on 4×NVIDIA A6000 GPUs with a batch size of 1. ZOO-Prune
is entirely training-free and attention-free, requiring no manual specification of layers in either the
LMM or the vision encoder. Token selection is performed at the lightweight projection layer, which
enables seamless integration across different VLM architectures. Sensitivities are also computed at
this layer using simple perturbation-based operations, ensuring negligible computational overhead
during inference.

For pruning ratios, we adopt 66.7%/77.8%/88.9% for LLaVA-v1.5 and 77.8%/88.9%/94.4% for
LLaVA-NeXT-7B. In the latter case, we follow the implementation of VisionZip (Yang et al., 2025),
where the model dynamically samples up to five image patches, resulting in as many as 2880 vision
tokens. For example, with a pruning budget of 160 tokens, we retain 32 tokens per patch across
five patches (32 × 5 = 160). If fewer patches are sampled (e.g., four), the number of retained tokens
is adjusted proportionally (e.g., 128 tokens for 160/2880). We applied a low-rank factorization
(k = 128) to the MM-projector layers to further boost efficiency on LLaVA-Next, due to the large
number of visual tokens. For the dynamic-resolution Qwen2.5-VL-7B, we evaluate at 10% and 20%
token retention rates.

Finally, as validated in ablation, our method remains robust across different hyperparameter choices.
Unless otherwise noted, we fix the perturbation hyperparameters to m = 64 and h = 0.01 for all
experiments. Evaluation is performed using the lmms-eval5 framework under official protocols
and metrics.

C.3 EVALUATION PROTOCOL AND BENCHMARK DATASETS

We conduct a comprehensive evaluation of ZOO-Prune across nine widely adopted vision-
language benchmarks, spanning four core capabilities: Visual Question Answering, Advanced

1https://huggingface.co/liuhaotian/llava-v1.5-7B
2https://huggingface.co/liuhaotian/llava-v1.5-13B
3https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
4https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-AWQ
5https://github.com/EvolvingLMMs-Lab/lmms-eval
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Multimodal Reasoning, Object Hallucination Evaluation, and Comprehensive Multimodal Assess-
ment. All experiments strictly follow the official evaluation protocols, metrics, and data splits of
each benchmark to ensure fair and reproducible comparisons.

To facilitate a unified and interpretable comparison, we report both per-benchmark scores and a
normalized average performance (Avg.), computed as the mean relative score across benchmarks
with respect to the unpruned baseline. Depending on the benchmark, we report Accuracy (Acc), F1-
score (F1), or Perception+Cognition (P+C), summarized in Table A. All evaluations of ZOO-Prune
are performed under a single-model, zero-shot setting, without any task-specific fine-tuning.

Visual Question Answering (VQA). This category evaluates a model’s ability to ground language
understanding in visual content. Performance across all VQA benchmarks is measured by Accuracy
(Acc). We select four representative benchmarks covering diverse scenarios:

• VQAv2-Test-Dev (Goyal et al., 2017): General-purpose VQA with real-world images and
open-ended questions.

• GQA (Hudson & Manning, 2019): Focused on compositional reasoning over scene graphs
and structured images.

• ScienceQA (IMG) (Lu et al., 2022): Multimodal science questions requiring domain
knowledge and diagram interpretation.

• TextVQA (Singh et al., 2019): Requires OCR capabilities to reason over text embedded
within images.

Advanced Multimodal Reasoning. To probe deeper reasoning capacities beyond standard VQA,
we evaluate on three challenging benchmarks. Performance on these benchmarks is also measured
by Accuracy (Acc):

• MMBench (Liu et al., 2024c): Assesses perception and reasoning across 20 fine-grained
skill areas.

• MMMU (Yue et al., 2024): Requires expert-level multimodal reasoning across 30+
subjects grouped into six major disciplines (e.g., Art & Design, Science, Engineering,
Medicine), often involving complex diagrams and charts

• SeedBench (Li et al., 2023a): Designed for evaluating multimodal large language models
across diverse visually grounded question types, with an emphasis on perception, reason-
ing, and knowledge.

Object Hallucination Evaluation. To quantify the critical failure mode of object hallucination,
we adopt the POPE (Li et al., 2023b) benchmark, which measures factuality in object recognition
through binary existence questions. Performance is evaluated using the F1-score (F1) over object
existence predictions, balancing precision and recall to reflect grounding reliability.

Comprehensive Multimodal Assessment. For a holistic evaluation of both perceptual and cog-
nitive abilities across numerous sub-tasks (e.g., OCR, counting, attribute recognition), we employ
the MME (Zhang et al., 2021) benchmark. It reports separate scores for Perception and Cognition
tasks, summed to form the combined Perception and Cognition score (P+C).

Table A: Summary of primary evaluation metrics for each benchmark.

Benchmark Primary Metric

VQAv2, GQA, ScienceQA, TextVQA Accuracy (Acc.)
MMBench, MMMU, SeedBench Accuracy (Acc.)
POPE F1-score (F1)
MME Perception + Cognition (P+C)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

640 tokens 320 tokens 160 tokens0.0

2.5

5.0

7.5

10.0

TF
LO

Ps

11
.8

0

2.
6

1.
4

0.
82.

6

1.
4

0.
82.

7

1.
5

0.
9

LLaVA-NeXT-7B (baseline)
VisionZip
DivPrune
ZOO-Prune (ours)

Figure A: FLOPs analysis of different token pruning methods on LLaVA-NeXT-7B across varying
token retention rates. ZOO-Prune achieves similar FLOPs reduction to VisionZip and DivPrune
while introducing only marginal overhead from sensitivity estimation.

D FURTHER INFERENCE EFFICIENCY ANALYSIS

To further investigate the computational benefits of token pruning, we analyze the floating-point op-
erations (FLOPs) required by different methods. Figure A reports the TFLOPs measured on LLaVA-
NeXT-7B with varying token retention rates (640, 320, and 160). The baseline model without prun-
ing requires 11.8 TFLOPs, while all pruning methods substantially reduce the cost. Specifically,
VisionZip and DivPrune reduce the FLOPs to 2.61, 1.41, and 0.81 TFLOPs at 640, 320, and 160
tokens, respectively. Our ZOO-Prune achieves slightly higher FLOPs due to random perturbations
introduced during sensitivity estimation, with 2.74, 1.53, and 0.94 TFLOPs, respectively. Never-
theless, the overhead is negligible compared to the baseline, and ZOO-Prune achieves comparable
FLOPs reduction while consistently delivering stronger accuracy.

E MORE VISUALIZATION

E.1 MORE QUALITATIVE EXAMPLES

Figure B provides extensive qualitative evidence for our method’s effectiveness across diverse ex-
amples, showcasing how its unified selection mechanism jointly leverages sensitivity and diversity
to achieve precise token pruning. This mechanism is grounded in two concurrent principles. The
zeroth-order sensitivity component identifies tokens that are most influential for answering a given
question, ensuring the selection is rooted in semantic relevance. Simultaneously, the diversity crite-
rion acts as a spatial and feature-space regularizer, guaranteeing the final token set is representative
and non-redundant by preventing over-selection from visually similar regions, thereby preserving
both local detail and global coverage.

The power of this dual-criterion approach is first demonstrated on questions that require fine-grained
verification. For these tasks, such as confirming a person’s attributes or determining a relative spatial
position like the catcher’s position, sensitivity is crucial for isolating the exact visual evidence. At the
same time, diversity ensures that the context surrounding these key details is not entirely discarded,
supporting a more robust and well-grounded verification, with correct predictions maintained even
with a minimal number of retained tokens.

The method proves equally adept at handling open-ended identification tasks. Whether the challenge
is to identify an object based on its relationship to others, like the car and laptop, or to recognize
a subject in a scene, like the kite and deer, the fusion between the two criteria is vital. Sensitiv-
ity highlights the object of interest, while diversity provides a comprehensive, non-redundant set
of its features, enabling the correct prediction. Collectively, the examples presented affirm that
our sensitivity-aware diversity selection provides a principled way to maintain the visual context
required for a wide spectrum of reasoning tasks.
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Figure B: Success cases illustrate that ZOO-Prune preserves key visual cues across attributes, spatial
relations, and object identification, enabling accurate predictions even under aggressive pruning.
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Figure C: Failure cases of ZOO-Prune, where predictions remain close in meaning to the reference
answers yet are not exact matches. The examples illustrate typical situations where fine-grained
distinctions, such as age or gender terms, lead to mismatches despite overall semantic proximity.

E.2 FAILURE CASE EXAMPLES

Figure C illustrates representative failure cases that, while penalized by the exact-match metric,
simultaneously offer strong evidence for the effectiveness of our pruning strategy. The model’s pre-
dictions, such as “Baby” for “Boy” or “Woman” for “Lady,” are semantically correct and align with
human interpretation, yet are deemed incorrect due to word-level differences. This exposes a limi-
tation of evaluation protocols that reward surface-level string matching over semantic equivalence.
Crucially, these predictions do not signal a failure in comprehension. Instead, they show that our
sensitivity-aware pruning method successfully maintains the core semantics of the image even under
aggressive compression. The model’s ability to generate plausible, near-synonymous concepts with
only 64 tokens highlights the richness of the preserved representation and its support for high-level
reasoning about key attributes like age and gender.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the preparation of this manuscript, we utilized Large Language Models (LLMs), specif-
ically Google’s Gemini and OpenAI’s GPT-4, as writing assistance tools. Their primary role was
to enhance the clarity, precision, and overall readability of the text. This included refining sentence
structures, improving word choice, and ensuring grammatical correctness. In addition, the LLMs
were occasionally employed to suggest alternative phrasings and to harmonize stylistic consistency
across sections, thereby improving the presentation quality of the manuscript. All core research
ideas, problem formulations, methodologies, experimental designs, results, and conclusions were
entirely conceived, developed, and validated by the human authors. The LLMs were not involved
in the generation of research content, analysis, or interpretation of findings. Instead, they served
strictly as sophisticated language-polishing tools. The final version of the manuscript was carefully
reviewed, edited, and approved by the authors to guarantee that it faithfully represents the original
scientific contributions.
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