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Abstract

Bivariate structural causal models (SCM) are
often used to infer causal direction by examin-
ing their goodness-of-fit under restricted model
classes. In this paper, we describe a parametriza-
tion of bivariate SCMs in terms of a causal ve-
locity by viewing the cause variable as time in a
dynamical system. The velocity implicitly defines
counterfactual curves via the solution of initial
value problems where the observation specifies
the initial condition. Using tools from measure
transport, we obtain a unique correspondence be-
tween SCMs and the score function of the gener-
ated distribution via its causal velocity. Based on
this, we derive an objective function that directly
regresses the velocity against the score function,
the latter of which can be estimated nonparamet-
rically from observational data. We use this to
develop a method for bivariate causal discovery
that extends beyond known model classes such
as additive or location-scale noise, and that re-
quires no assumptions on the noise distributions.
When the score is estimated well, the objective is
also useful for detecting model non–identifiability
and misspecification. We present positive results
in simulation and benchmark experiments where
many existing methods fail, and perform ablation
studies to examine the method’s sensitivity to ac-
curate score estimation.

1. Introduction
Distinguishing cause from effect from purely observational
data is a challenging task. It is generally impossible to
distinguish a causal direction X → Y from an anti-causal
direction Y → X without intervention, as the correspond-
ing causal graphs are Markov equivalent. To make causal
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discovery possible, one common approach is to make func-
tional assumptions, for example, non-linear additive noise
(Hoyer et al., 2008) or location-scale noise (Xu et al., 2022;
Strobl & Lasko, 2023; Immer et al., 2023) on the underlying
causal process, and decide on the causal direction based on
model fit and/or complexity in both candidate directions.

Likelihood-based approaches seem natural here, as they can
be used both for model estimation and evaluation. However,
they require the full specification of both the mechanism and
the noise distribution. This is undesirable due to the risks
of model misspecification, particularly with respect to the
noise distribution, which is not directly involved in causality,
but can still lead to incorrect causal inference (Schultheiss
& Bühlmann, 2023). To avoid that risk, the most promi-
nent example of a functional method is to fit an additive
noise model (ANM) using nonparametric regression, which
avoids needing to model the noise distribution. Instead of
a likelihood-based measure, an independence score (e.g.,
HSIC, Gretton et al., 2005) between the estimated residuals
and cause variable can be used to determine goodness-of-fit
(Mooij et al., 2009; Peters et al., 2014). This approach has
been extended to location-scale models (LSNM) by Strobl &
Lasko (2023); Immer et al. (2023). Separately, Rolland et al.
(2022); Montagna et al. (2023b) derived other goodness-of-
fit criteria for ANMs that avoid structural model estimation
altogether. Instead, those methods extract the signal directly
from estimates of the score function ∇ log p(x, y) under the
assumption of Gaussian noise. Subsequent work used score
estimation in conjunction with explicit model estimation in
the case of non-Gaussian noise (Montagna et al., 2023a).
However, we are unaware of any work on functional causal
discovery methods beyond the ANM and LSNM classes,
which may still be misspecified in many settings.

In this work, we develop a new framework that treats bi-
variate causal models as dynamical systems, and we use it
to devise a new estimation procedure based on the score
function of the data, applying it to causal discovery. Specifi-
cally, we parametrize a causal model via its causal velocity,
which describes infinitesimal counterfactuals and can be
directly recovered from the score in a simulation-free way
analogous to the recent literature on flow-based generative
modeling (Lipman et al., 2023; Albergo & Vanden-Eijnden,
2023). Assuming that the marginal and joint score functions
can be estimated accurately, our proposed method combines
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v(y, x) = y0(x) = (d/dx0)fx0(f�1
x (y))|x0=x

Figure 1. Given a SCM X → Y and an observation (x, y), the
causal curve represents the implied counterfactual outcomes had x
been x′ (top). The derivative of the causal curve, which we call the
causal velocity function v(y, x), generates all the causal curves
and hence characterizes the counterfactuals of the SCM (bottom).
In this paper, we show how the velocity can be estimated directly
from data using the score function, without the need to evaluate
the mechanism itself nor specify the underlying distributions.

the advantages of various state-of-the-art methods in that it
is agnostic to the noise distribution and avoids explicit esti-
mation of the functional model, even for non-Gaussian and
non-additive cases. Beyond this, the velocity parametriza-
tion allows us to specify model classes that extend beyond
ANM and LSNM in terms of dependence on the noise, but
are still restrictive enough to be useful for causal discovery.

Contributions We present a new perspective on invertible
SCMs as dynamical systems through their implied velocity
functions. In particular, counterfactual prediction becomes
the solution to an initial value problem in which the factual
observation is the initial condition. This allows us to specify
novel causal models. It also allows us to use established
ideas from measure transport to connect the causal velocity
to the score functions of the data distribution. We use this
to devise a novel simulation and likelihood-free estimation
procedure for bivariate SCMs and a related goodness-of-fit
criterion for bivariate causal discovery.

To support the methodological contributions, we also ex-
amine the causal direction identifiability problem from the
dynamical perspective, where we obtain a general result
that specializes to those existing in the literature. We also
establish statistical consistency of our estimation procedure,
and show that the rate of convergence is dictated by the rate
at which the score estimators converge. We show through
synthetic and benchmark experiments that the added model
flexibility is beneficial in situations where ANM and LSNM
models can fail, but simple parametric velocity families

recover the correct causal direction.1

The appealing properties of our method depend on an accu-
rate estimate of the score function at the data. The nonpara-
metric score estimators that we use have known consistency
properties and convergence rates (Zhou et al., 2020), which
justifies the method asymptotically. However, some distri-
butions, including those seen in common benchmarks, may
not have favourable finite-sample behaviour even in the low-
dimensional regime. We describe and probe failure modes
of our method by way of poor score estimation.

Outline In Section 2 we cover the necessary background
on bivariate causal discovery and on dynamical systems.
Section 3 describes our framework of viewing SCMs as
dynamical systems and the velocity parametrization. In Sec-
tion 4, we use the continuity equation to derive an identity
that we use to recover the causal velocity from the score
function. Section 5 applies this to causal discovery and
discusses consistency and identifiability. Finally, Section 6
and 7 describe related work and experimental evaluations.

2. Background
2.1. Structural Causal Models

A structural causal model (SCM) for X causing Y is typi-
cally defined as the tuple (f, PX , Pϵy ),

Y = f(X, ϵy), X⊥⊥ϵy , (1)

with X ∼ PX and ϵy ∼ Pϵy . Throughout, we will assume
that fx( • ) := f(x, • ) is bijective for each x, and denote
f−1
x ( • ) as its inverse. The pair (fx, Pϵy ) represents the

conditional distribution of Y |X = x, and PX completes the
specification of the joint distribution. The representation of
a conditional distribution as a function of the conditioning
variable and independent noise is always possible (Kallen-
berg, 2021, Lem. 4.22), and it can be chosen to be bijective
in the noise if, for each x, the conditional distribution of
Y |X = x is atomless.

Bijectivity enables identification of counterfactuals. In
particular, let (x, y(x)) = (x, fx(ϵy)) denote a realiza-
tion of the SCM. Assuming no hidden variables, the coun-
terfactual realization “had x been x′” is computed by
the abduction-action-prediction procedure (Pearl, 2009) as
(x′, fx′ ◦ f−1

x (y(x))) = (x′, fx′(x′, ϵy)) := (x′, y(x′)).
Without bijectivity, the conditional distribution of ϵy|x, y(x)
must be estimated. A bijective SCM point-identifies the
counterfactual directly as a deterministic transformation:

y(x) 7→ y(x′) = fx′ ◦ f−1
x (y(x)). (2)

Nasr-Esfahany et al. (2023) established the identifiability
in various settings of bijective SCMs, with y(x′) given by

1Code supporting our experiments can be found on Github at
https://github.com/xijohnny/causal-velocity.
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Table 1. Summary of existing and novel SCMs and their velocities. The velocity perspective allows for specification of novel model
classes and can also be used as an alternative means of estimating existing model classes.

Model SCM
f(X, ϵy)

Counterfactual
fx′(f−1

x (y))
Velocity

(d/dx′)fx′(f−1
x (y))|x′=x

Parameters

ANM m(X) + ϵy y +m(x′)−m(x) ṁ(x) ṁ : R → R
PNL g(m(X) + ϵy) g(g−1(y +m(x′)−m(x)) ġ(g−1(y))ṁ(x) ṁ, ġ : R → R

LSNM m(X) + eh(X)ϵy m(x′) + eh(x
′)−h(x)(y −m(x)) ṁ(x) + ḣ(x)(y −m(x)) ṁ, ḣ : R → R

Basis ϵy + ∫xx0
a⊤Φ(y(u), u)du y + ∫x′

x a⊤Φ(y(u), u)du a⊤Φ(y, x) a ∈ RK

Black box ϵy + ∫xx0
v(y(u), u)du y + ∫x′

x v(y(u), u)du v(y, x) v : R2 → R

(2). Applying this transformation for all possible x′ yields a
curve of counterfactual outcomes; see Figure 1.

2.2. Functional Bivariate Causal Discovery

Causal discovery aims to determine, from pairs of observed
data (X,Y ), whether X or Y is the cause. This problem is
underdetermined when using observational data, due to the
universality of the SCM representation of conditional distri-
butions. One common approach, based on the argument that
the data-generating process in the causal direction is simpler
(Mooij et al., 2016), is to restrict the model class. It is hoped
that in doing so, the model will fit the causal direction but
exclude the anti-causal direction (Goudet et al., 2019).

Because the distribution of the noise variables is not related
to causality per se, most attention is paid to restricting the
mechanism. A well-established framework that does not re-
quire constraining or modelling the noise distribution is the
regression and subsequent independence test (RESIT) ap-
proach (Peters et al., 2014), which quantifies the goodness-
of-fit of a causal model by the independence of the cause
variable to the residuals obtained from the model fit. Origi-
nally proposed for nonparametric regression in ANMs, the
RESIT approach has also been extended to LSNMs (Immer
et al., 2023; Strobl & Lasko, 2023), PNL models by post-
processing model estimates with non-linear ICA (Zhang &
Hyvärinen, 2009), and rank-based approaches (Keropyan
et al., 2023). A key takeaway from this literature is that
we should aim for methods that allow for flexible—though
not unboundedly so—model classes that can be estimated
without specifying the noise distribution.

2.3. Flows and Differential Equations

The subsequent sections will expose connections between
SCMs and dynamical systems generated by differential
equations, so we briefly review some relevant results about
the latter here. Our exposition largely follows Arnold (1998,
Appendix B) and Santambrogio (2015, Ch. 4.1.2). Consider
the ordinary differential equation (ODE) in Rd,

dy(t)

dt
= v(y(t), t) , y(t) ∈ Rd, t ∈ R . (3)

Under regularity conditions, ODEs are known to be in cor-
respondence with two-parameter flows, defined as follows.
Definition 2.1. A two-parameter flow (or flow) φs,t on Rd

is a continuous mapping

(s, t, y) 7→ φs,t(y), s, t, y ∈ R× R× Rd,

that satisfies the flow properties

1. φt,t(y) = id(y) = y, for all t ∈ R, y ∈ Rd.

2. φs,t ◦ φt,u = φs,u for all s, t, u ∈ R.

We note that φ−1
s,t = φt,s. The ODE (3) is said to generate

the flow φs,t if

φs,t(y) = y +

∫ t

s

v(φs,u(y), u) du , t ∈ R . (4)

If φs,t is differentiable in t and satisfies

d

dt
φs,t(y) = v(φs,t(y), t) and φs,s(y) = y , (5)

then φs,t is said to be a (classical) solution of (3). Con-
versely, a flow can be used to define an ODE. If t 7→ φs,t(y)
is differentiable in t at t = s for all y, then

v(y, s) :=
d

dt
φs,t(y)

∣∣
t=s

(6)

yields an ODE to which φs,t is a solution, and v is known
as the velocity. Under regularity conditions (Appendix A.1),
velocities and flows are in one-to-one correspondence.

Now suppose that an initial condition for the ODE (3) is
chosen randomly as Y (s) ∼ ps, where ps is the density
of a probability distribution on Rd. Letting Y (s) evolve
according to the ODE yields Y (t) = φs,t(Y (s)). View-
ing the flow as a measure transport, the density of Y (t) is
pt = (φs,t)∗ps. It can be shown that the family of densities
(pt)t∈R solves the PDE (known as the continuity equation)

∂tpt +∇y · (ptvt) = 0 , (7)

with vt := v( • , t) and ∂t = ∂/∂t. It turns out that the solu-
tion is unique up to (Lebesgue) almost everywhere equiv-
alence. (See Appendix A.1 for a formal statement.) Note
that if pt is strictly positive then (7) is equivalent to

∂t log pt = −∇ · vt − vt · ∇y log pt . (8)
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3. SCMs as Dynamical Systems
Generally, flows describe the time evolution of dynamical
systems: the usual statement of Definition 2.1 yields the
evolution of y between time points, and causality is associ-
ated with the forward flow of time. Here, we take a different
perspective, viewing counterfactual transformation as a flow
in which the role of time is played by a cause variable x.
Whilst a similar connection has been made in previous work
(Dance & Bloem-Reddy, 2024), by specializing to the bi-
variate real valued case and viewing the cause explicitly as
time, we are able to make a direct connection to ODEs. This
enables us to derive a novel velocity-based parametrization
of SCMs and simulation-free learning procedure. For the
remainder of the paper, we work in the setting of X ∈ R
and Y ∈ R.

Definition 3.1. Let X cause Y , with bijective SCM (1).
The flow generated by the SCM, or SCM flow, is defined as

(x, x′, y) 7→ fx′(f−1
x (y)) =: φx,x′(y) . (9)

It is easy to see that Equation (9) satisfies the axioms of a
flow Definition 2.1. In particular, for an observation (x, y),
the causal curve (Figure 1) is the function of x′ defined by

x′ 7→ y(x′) = φx,x′(y) . (10)

Causal curves represent the counterfactual outcomes under
the SCM from a factual observation (x, y). Generally, each
observation specifies a different causal curve. Based on
the dynamical systems perspective reviewed in Section 2.3,
(x, y) can be viewed as initial conditions.

In analogy to (6), if (x, x′, y) 7→ φx,x′(y) is continuous
and x 7→ fx(ϵy) is differentiable for all ϵy then the causal
velocity of the SCM flow is (see Figure 1, bottom)

v(y, x) =
d

dx′ fx′(f−1
x (y))

∣∣
x′=x

. (11)

This holds for all (x, y) in the support of PX,Y . The
resulting v describes the local behaviour of the flow at
(x, y): v(y, x) is the effect of an infinitesimal intervention
x′ = x+ δ as δ → 0, which, based on the algebraic proper-
ties of the flow, generates the counterfactual curves. Thus,
we see that the mechanism of a bijective SCM uniquely
determines a flow and its associated velocity.

Conversely, the causal mechanism of a bijective SCM can
be parametrized by a velocity v via its corresponding flow
from an arbitrary x0 ∈ R acting as the noise state,

φx0,x(y) = y +

∫ x

x0

v(φx0,u(y), u) du . (12)

To complete the specification of the SCM, it remains to spec-
ify the conditional distribution p(y | x0) at some arbitrary

point x0, which plays the role of the noise distribution as
follows

f(X, ϵy) = φx0,X(ϵy) , ϵy ∼ p(y|x0) .

Under regularity conditions, the SCM is unique and holds
over all of R2. Technically, an SCM in the sense of Section 2
also requires PX to fully specify the joint distribution but
it plays no role in the causal mechanism or counterfactuals.
The following theorem formalizes the relationship between
bijective SCMs and dynamical systems. See Appendix A.1
for technical details on the regularity conditions.

Theorem 3.2. Let X cause Y , with X,Y ∈ R. Under
regularity conditions, a bijective SCM uniquely determines a
velocity-density pair (v, p(y|x0)). Conversely, (v, p(y|x0))
determines a SCM uniquely up to changes in PX .

The above equivalence shows that we can view bijective
SCMs in terms of their underlying velocity functions with-
out loss of generality. See Table 1 for the velocity functions
associated with familiar classes of SCMs.

3.1. Velocity Parametrization of SCMs

The dynamical perspective allows a causal model to be
specified by the velocity and its implied counterfactuals
instead of in terms of first (ANM) or second (LSNM) condi-
tional moments, which can be more interpretable. Viewing
p(y | x0) as sampling individual baseline measurements
from some population, we see that ANMs indicate that the
relative effect of an intervention is the same for all individu-
als, regardless of their measurement value y. This manifests
graphically as parallel curves (Figure 2). LSNMs relax this,
but implies that the difference between individual trajecto-
ries are proportional. Distributionally, ANMs and LSNMs
imply that x controls at most the second moment of p(y | x).
In particular, if p(y | x0) were Gaussian for any x0, then it is
also Gaussian for all x. On the other hand, the velocity func-
tion ey

−2

implies a more complicated mechanism that can
model insensitivity in the tails of y, no matter the value of x.
Distributionally, this also modifies higher order moments of
the conditional distribution; see the rightmost panel of Fig-
ure 2.In practice, the velocity model can be specified in an
interpretable way via domain knowledge of the underlying
process, or with basis functions or neural networks for more
flexible models. The velocity parametrization automatically
specify bijective SCMs, and as such their counterfactuals
are identifiable (Nasr-Esfahany et al., 2023).

4. Score Functions and SCM Flows
In the previous sections, we established an equivalence be-
tween SCMs and an associated pair (v, p(y|x0)). Here, we
show that when a joint distribution is generated by an SCM,
the velocity leaves an explicit signature on the derivative of
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v(y, x) = ey�2

Figure 2. Distributions of causal curves obtained by sampling 100 initial conditions from p(y | x = x0) = N (0, 1). Note here the ANM
and LSNM cross-sections p(y | x) are necessarily Gaussian also, no matter how flexible the underlying function classes are. On the
other hand, the exponential velocity yields non-Gaussian conditionals at any x ̸= 0, exhibiting right and left skew as x < 0 and x > 0,
respectively.

the log-density, i.e., the score function. We leverage this
observation to derive a goodness-of-fit criterion based on
the score, which can then be used for model-fitting and
checking directly at the level of the causal velocity. Re-
markably, this allows us to check whether data can possibly
be generated from an SCM with causal velocity v without
ever having to evaluate the mechanism, nor making any
assumptions about the underlying distributions beyond dif-
ferentiable score functions.

Let v be the velocity of a SCM that generates the conditional
density p(y|x), and assume that the joint distribution has full
support, with differentiable marginal and joint log-densities.
Let sx(y|x) := ∂x log p(y|x) and sy(y|x) := ∂y log p(y|x)
denote the partial derivatives of the log conditional density,
and similarly sx(x, y) and sx(x) the partial derivatives of
the log joint and marginal densities, respectively. Viewing
the cause variable x as time, the log version of the continuity
equation (8) yields

sx(y|x) = −∂yv(y, x)− v(y, x)sy(y|x) . (13)

By known results (see Appendix A.1), every solution p(y|x)
arises from some initial condition density p(y|x0) trans-
ported by the SCM flow, for fixed but arbitrary x0 ∈ R.
Moreover, that solution is unique. Therefore, (13) can be
used to characterize when a conditional density p(y|x) could
possibly have been generated by a SCM with velocity v.
For practical purposes, (13) can also be stated in terms of
marginal and joint scores, which can be estimated from data.

Theorem 4.1. Let X cause Y , with X,Y ∈ R. Assume that
PX,Y has full support, with differentiable joint, conditional,
and marginal log densities. Then

sx(x, y) = −∂yv(y, x)− v(y, x)sy(x, y) + sx(x) (14)

for all (x, y) ∈ R2 if and only if PX,Y can be represented
by a SCM with velocity v and marginal density p(x).
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True Mechanism

Figure 3. If the model is well-specified and the true score is given,
velocity functions as obtained by minimizing Equation (15) (up to
Monte Carlo approximation error) can be integrated numerically
(left) to recover the true mechanism (right).

Observe that (14) is entirely in terms of observable scores,
and thus is agnostic to the unobserved noise distribution
Pϵy . Indeed, SCMs with the same mechanism but different
noise distributions will still satisfy (14) with their respec-
tive scores. This makes it an especially suitable objective
for functional causal discovery, which asks whether distri-
butions can be generated by a restricted mechanism class,
while leaving the noise distributions unspecified.

5. Velocity-Based Causal Discovery
For methods that resolve the direction of causality by fitting
a model to the data in both candidate directions, some re-
striction to model complexity must be made. As discussed
in Section 2.2, many existing methods assume some variant
of ANM in order to avoid making specific distributional as-
sumptions about the unobserved noise. Our velocity-based
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method, described in this section, also makes no assump-
tions on the noise distribution by capturing its influence via
score estimation, and allows all modeling and complexity
control to be imposed via the parametrization of the velocity.
As established in previous sections, this allows the model to
be substantially more flexible than ANMs or LSNMs.

We define a goodness-of-fit (GoF) statistic of a velocity
function v as,

L(v) := E[(sx(X)− ∂yv(Y,X)− sv(X,Y ))
2
], (15)

which is derived from (14) and uses the notation

sv(x, y) := sx(x, y) + v(y, x)sy(x, y) . (16)

This notation reflects the fact that sv is the directional deriva-
tive of log p(x, y) along the causal curve, i.e., in the direc-
tion ∂x(x, y(x)) = (1, v(y(x), x)) (see Appendix A.2).

We propose to minimize the GoF directly (15), which is
zero if and only if (14) holds PX,Y -almost everywhere,
to estimate the velocity given the scores. See Figure 3
for an example; when the true score is given, minimizing
(15) recovers the true mechanism accurately. In practice,
the score function is unknown and a two-step approach is
required. First, we estimate the score nonparametrically
(Zhou et al., 2020); second, we estimate the velocity by
minimizing (15), (17) where the scores are replaced by
estimators and the expectation is estimated empirically (18).

For causal discovery, we also estimate the model in the
Y → X direction by minimizing

L̃(ṽ) := E[(sy(Y )− ∂xṽ(X,Y )− sṽ(X,Y ))
2
] . (17)

In principle, an estimated velocity could be integrated to
a base point in order to estimate the noise variables, i.e.,
ϵ̂y = φ̂X,x0(Y ), which could then be used as residuals
in independence tests for causal discovery (as in RESIT).
However, for the remainder of this paper, we will use the
more direct approach of using the value of the objective
itself to determine causal direction. The resulting two-step
method is as follows:

1. Estimate joint and marginal scores from data.

2. Estimate causal velocity in both directions by mini-
mizing (15), (17), with expectation taken over the data.
Choose as causal whichever direction has a lower value
of objectives (15), (17) evaluated on the data.

As might be expected, this method requires accurate esti-
mates of the scores. However, since (14) expresses a fixed
relationship between the scores and the velocity, an inaccu-
rate score estimate will produce an inaccurate velocity that
nonetheless could still yield a small value of (15), thereby
potentially introducing error into the subsequent causal dis-
covery. Figure 4 shows that when the true score is given
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GoF (Estimated Score)

Figure 4. If the ground truth score is known, the anticausal GoF is
orders of magnitude larger than the causal GoF. In this case, cause
can be distinguished from effect with certainty even with as few as
100 samples. Right: As the score estimate quality improves with
larger sample sizes, the causal GoF decreases (Theorem 5.1), and
the gap between the causal and anticausal GoF widens.

and the model is well-specified, (17) is orders of magni-
tude larger than (15), which identifies the causal direction
with certainty regardless of the sample size. In practice, the
causal discovery performance improves as the score estima-
tion improves in sample size (see Section 7.3 for a more
in-depth evaluation). In the following section, we show that
the empirical estimator of (15) converges at a rate controlled
by the rate at which the score estimator converges.

5.1. Consistency of Empirical GoF Estimation

Let (xi, yi)
n
i=1 denote the available data. The two-step pro-

cedure described above yields the following objective func-
tion for estimating the velocity

L̂n(v) =
1

n

n∑
i=1

((ŝx(xi)− ∂yv(yi, xi)− ŝv(xi, yi))
2
.

(18)

Recall that ŝv(xi, yi) = v(yi, xi)ŝy(xi, yi) + ŝx(xi, yi),
and here ŝx, ŝy are the score estimators, for which we use
either the Stein estimator (Li & Turner, 2018) or one based
on a kernel density estimator (Wibisono et al., 2024). These
estimators can both be viewed as doing regularized, vector-
valued reproducing kernel Hilbert space (RKHS) regression
on the true scores (Zhou et al., 2020). Based on this, the fol-
lowing result shows that our estimator for the loss function
converges at a rate no worse than the convergence rate of
the score function estimators. In the following theorem we
denote s

(x)
x,y := sx(x, y), s

(y)
x,y := sy(x, y) for convenience,

and similarly for the corresponding estimators.

Theorem 5.1. Let sx ∈ HX and s
(x)
x,y, s

(y)
x,y ∈ HX ,Y where

HX ,HX ,Y are RKHSs induced by bounded kernels kx <
B, kx,y = kx ⊗ ky < B. Additionally, let v ∈ C1

b (R2,R).
If the score estimators have bounded RKHS norm that con-
verges, such that each of ∥ŝx − sx∥HX , ∥ŝ(x)x,y − s

(x)
x,y∥HX ,Y ,
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∥ŝ(y)x,y − s
(y)
x,y∥HX ,Y is Op(n

− 1
α ) for some α > 0, then

L̂n(v)− L(v) = Op(n
− 1

β ), for β = max{α, 2}.

Zhou et al. (2020) showed that under smoothness assump-
tions on each of log p(x, y), kx, ky, then convergence at
rate α ∈ [3, 4] can be achieved. See Figure 4 (right) for
an empirical demonstration of the behaviour of L̂n(v) in a
well-specified model, and Section 7.3 for the implications
on causal discovery performance.

5.2. Identifiability

In the limit of infinite data, the causal direction of an ANM
is known to be identifiable under certain conditions, formu-
lated as the non-existence of a solution to a differential equa-
tion for log p(x) (Hoyer et al., 2008; Zhang & Hyvärinen,
2009). For fixed ANM parameters m, pϵ, the set of marginal
densities that satisfy the differential equation (and hence are
non-identifiable) is a three-dimensional space contained in
an infinite-dimensional space, and therefore it is believed
that ANMs can identify causal direction in “most cases”
(Peters et al., 2014). Identifiability in ANMs is the strongest
known result, as the characterization does not depend simul-
taneously on the parameters of both model directions, and
therefore holds uniformly over the model space.

As argued by Tagasovska et al. (2020); Xu et al. (2022);
Strobl & Lasko (2023); Immer et al. (2023) and others, ad-
ditive noise can be an overly restrictive assumption: even
basic heteroscedastic noise (i.e., a LSNM) can lead ANM-
based causal discovery procedures to mis-identify the cor-
rect causal direction. While LSNMs extend ANMs, even
that straightforward generalization significantly complicates
the identifiability analysis. In analogy to ANM identifiabil-
ity, Strobl & Lasko (2023); Immer et al. (2023) derived a par-
tial differential equation (PDE) whose solutions characterize
non-identifiability. In contrast to ANMs, the LSNM PDE
depends simultaneously on the parameters of both model di-
rections. Therefore, it is useful on a case-by-case basis, but
does not yield a characterization of non-identifiability uni-
formly over the model class. As we show in Appendix C, a
similar characterization for velocity models can be obtained
by analyzing the continuity equation (14) in both directions.

Proposition 5.2. Assume that the joint distribution of the
observed data can be expressed as a causal velocity model
in both directions,

Y d= φx0,X(ϵy) , X⊥⊥ϵy ,

X d= φ̃y0,Y (ϵx) , Y⊥⊥ϵx ,

with corresponding velocities v and ṽ, respectively. Then, as
long as π(x, y) = log p(x, y) and the required derivatives
exist, the velocities satisfy on the support of p(x, y),

∂2
yv + ∂y(v · π) = ∂2

xṽ + ∂x(ṽ · π) .

Expressions for the relevant partial derivatives of π in terms
of the forward model parameters φ, v are given in Ap-
pendix C. We show in Appendix C.1 how the known ANM
non-identifiability differential equation follows naturally
from this characterization. In Appendix C.2, we use it to
derive a criterion for non-identifiability that holds uniformly
over the class of LSNMs, albeit at a loss of interpretability.
Thus, we expect that a general analysis of identifiability—if
one is possible—may require new techniques.

6. Related Work
Score Matching ANMs A recent line of work also use sig-
natures in the score function for causal discovery in ANMs.
(Rolland et al., 2022; Montagna et al., 2023b) use properties
of Gaussian noise to derive conditions on the score that are
satisfied by non-cause variables. (Montagna et al., 2023a)
show that even under arbitrary distributions the score is a de-
terministic function of the noise variables, and fit the model
using nonparametric regression to evaluate this condition.
These methods are restricted to the ANM case, but are fo-
cused on sink node (non-cause) identification in multivariate
SCMs, while our focus is on more general model classes in
the bivariate setting. The continuity equation (13) simplifies
for ANMs, and we show how to recover the identities used
in this line of work in Appendix A.3.

Cocycles in Causal Modeling Connections between coun-
terfactual causal models and dynamical systems have been
previously established by Dance & Bloem-Reddy (2024) in
a more general setting, using a class of maps called cocycles.
A two-parameter flow is an example of a cocycle. Dance
& Bloem-Reddy (2024) focused on distribution-robust in-
ference with a known causal ordering with multiple cause
variables, rather than bivariate discovery. Furthermore, they
do not analyze the cocycle as a dynamical system nor make
any connection to the score function.

Continuous Normalizing Flows A popular class of
velocity-based probabilistic model are continuous normal-
izing flows (CNF) (Chen et al., 2018). There, instead of
conditioning, time is an auxiliary variable, and the genera-
tive model is for a marginal density φ0,1(y0), where y0 is
drawn from an arbitrary base distribution. Our learning ob-
jective (18), which targets conditional distributions instead,
is similar to recently proposed simulation-free objectives,
which attempt to target the velocity directly in CNFs, e.g.,
Flow Matching (Lipman et al., 2023). Normalizing flows
have been used for causal inference (Khemakhem et al.,
2021; Javaloy et al., 2024) with a known causal graph. The
causal auto-regressive flow model (Khemakhem et al., 2021)
when restricted to the bivariate case represents a flexible
LSNM, and was used for likelihood-based causal discovery.
Tu et al. (2022) propose to analyze the CNF velocity as an
alternative decision rule for causal discovery in ANMs.
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Table 2. Accuracy (and AUDRC) of velocity models for deter-
mining the correct causal direction, evaluated on a collection of
synthetic datasets (columns). Score is estimated using the Stein
method with the Gaussian kernel. The results shown for LOCI
(NN/Spline), IGCI, and CGCI represent the best performance over
different variants. The best performing velocity model, and, if ap-
plicable, the overall best model, are indicated in bold. KDE results
and a subsampled n = 1000 setting can be found in Appendix E.1.

Model Velocity Sigmoid ANM LSNM

B-LIN 91 (97) 87 (95) 66 (70) 66 (77)
B-QUAD 97 (98) 80 (94) 63 (70) 73 (79)
V-ANM 86 (97) 36 (41) 92 (95) 59 (67)
V-LSNM 89 (99) 81 (95) 86 (92) 82 (92)
V-NN 96 (99) 56 (69) 65 (72) 57 (64)

LOCI (HSIC) 40 (25) 70 (86) 97 (99) 83 (89)
LOCI (Lik) 43 (66) 43 (63) 49 (56) 40 (31)

CDS 56 (47) 12 (5) 92 (99) 59 (68)
IGCI 66 (77) 73 (83) 29 (21) 37 (31)
RECI 33 (26) 13 (4) 34 (36) 38 (55)
CGCI 52 (51) 41 (33) 85 (96) 76 (89)

7. Experiments
We evaluate our method empirically on new synthetic
datasets as well as on existing benchmarks from the lit-
erature (Mooij et al., 2016; Immer et al., 2023). We study
the relative performance of different velocity model classes,
including velocity-based parametrizations of known classes.
In Section 7.3, we show empirically that the performance of
our method hinges on the accuracy of the score estimators.
When the true score is given, our method achieves perfect
causal discovery with as few as n = 100 samples (Figure 4).

Velocity Estimation We use three novel parameterizations
of the velocity: a 2-layer MLP (V-NN), and linear/quadratic
basis families (B-LIN/B-QUAD). We also experiment by
fitting ANM and LSNMs via their velocity parameteriza-
tions (V-ANM and V-LSNM). See Table 1 and Appendix D
for details. Given an estimate of the score, we minimize
(18) using the Adam optimizer (Kingma & Ba, 2015) to
estimate the velocity. The term ∂yv(y, x) is obtained by au-
tomatic differentiation. The datasets we consider are small
(n < 105), and thus we take full batch gradient steps. To
mitigate potential non-identifiability and regularize estima-
tion, we penalize the complexity of the model via higher
order derivative terms dky(x)/dxk (Kelly et al., 2020) in
the case where both directions are specified to encourage
selecting the simpler model. In practice we use k = 2.

Score Estimation For estimation of the score, we use the
Stein gradient estimator of Li & Turner (2018) (STEIN),
with the Gaussian kernel and bandwidth selected by the
median heuristic. We also consider the derivative of the log
of a standard kernel density estimator with empirical Bayes
smoothing (Wibisono et al., 2024) (KDE). For the KDE-
based estimator, we use the exponential (Laplace) kernel,

<latexit sha1_base64="xVonE/SP/iAsRfrgnro+DMzNNUk=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokUtRlsS5cVrAPaEOZTKft0EkmzNyIIWTjr7hxoYhbP8Odf+O0zUJbDwwczjmXO/f4keAaHOfbKqysrq1vFDdLW9s7u3v2/kFLy1hR1qRSSNXxiWaCh6wJHATrRIqRwBes7U/qU7/9wJTmMryHJGJeQEYhH3JKwEh9+6gH7BHSOok1EfiGaypNPMn6dtmpODPgZeLmpIxyNPr2V28gaRywEKggWnddJwIvJQo4FSwr9WLNIkInZMS6hoYkYNpLZwdk+NQoAzyUyrwQ8Ez9PZGSQOsk8E0yIDDWi95U/M/rxjC88lIeRjGwkM4XDWOBQeJpG3jAFaMgEkMIVdz8FdMxUYSC6axkSnAXT14mrfOKe1Gp3lXLteu8jiI6RifoDLnoEtXQLWqgJqIoQ8/oFb1ZT9aL9W59zKMFK585RH9gff4AU1mW5A==</latexit>

Causal Discovery
<latexit sha1_base64="IZuJMPRP95LUZrpM19tPus5GU7A=">AAACBHicbVDJSgNBEO2JW4zbqMdcGoPgKcxIUI9BCXgRIjELJCH0dCpJk56F7hoxDDl48Ve8eFDEqx/hzb+xsxw08UHB470qqup5kRQaHefbSq2srq1vpDczW9s7u3v2/kFNh7HiUOWhDFXDYxqkCKCKAiU0IgXM9yTUveHVxK/fg9IiDO5wFEHbZ/1A9ARnaKSOnW0hPGBS4aECWtIo/KlBbyqlccfOOXlnCrpM3DnJkTnKHfur1Q157EOAXDKtm64TYTthCgWXMM60Yg0R40PWh6ahAfNBt5PpE2N6bJQu7YXKVIB0qv6eSJiv9cj3TKe5caAXvYn4n9eMsXfRTkQQxQgBny3qxZJiSCeJ0K5QwFGODGFcCXMr5QOmGEeTW8aE4C6+vExqp3n3LF+4LeSKl/M40iRLjsgJcck5KZJrUiZVwskjeSav5M16sl6sd+tj1pqy5jOH5A+szx+mVpgZ</latexit>

Score Estimation MSE

Figure 5. Score estimation and causal discovery performance as
sample size increases in a well-specified ANM benchmark. Upper
and lower limits indicate 1st–3rd quartile over 100 datasets. The
larger error at n = 10000 is likely due to an increased chance of
encountering outliers; note the median continues to decrease.

which we found to result in the best performance.

Computation Experiments are written in JAX (Bradbury
et al., 2018) and carried out either on a M1 Mac or NVIDIA
V100 GPU. The most costly operation is the Stein score
estimation, which is O(n3) due to the inversion of an n×
n matrix (Li & Turner, 2018). Note this only has to be
performed once, prior to training the velocity model. With
n = 1000 and n = 5000, the median time is 0.02s and
0.3s respectively on GPU, and 0.9s and 15s on M1.

Evaluation Causal direction is determined by comparing
the empirical loss (18) in both directions and selecting the
smaller value. Either the squared or absolute values can be
used; here we use the squared value. We follow the literature
and report the raw causal discovery accuracy as well as the
associated area under the decision rate curve (AUDRC).

Other Methods We compare our method to LOCI, an
LSNM-based model which represents the state-of-the-art in
functional causal discovery based on the results reported by
Immer et al. (2023). It has two major variants, one based
on the Gaussian conditional likelihood (Lik) which makes
strong parametric assumptions on the conditional distribu-
tion, and one based on the RESIT approach (HSIC), which is
robust to the noise distribution and thus more comparable to
our method. We also compare our method to non-functional
methods that do not make parametric assumptions such as
CDCI (Duong & Nguyen, 2022) and other methods that are
implemented in the Causal Discovery Toolbox (Kalainathan
et al., 2020), which include CDS (Fonollosa, 2019), IGCI
(Daniušis et al., 2010), and RECI (Blöbaum et al., 2018).

7.1. Datasets

Synthetic We design two synthetic settings for which ex-
isting functional methods (e.g., LOCI) are misspecified and
are expected to fail. All benchmarks consist of 100 datasets
of size n = 5000 with randomly sampled mechanisms. The
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Table 3. Accuracy (and AUDRC) of velocity models on benchmark data. LOCI (NN/Spline), IGCI, and CGCI represent best results over
all variants. The best performing velocity model, and, if applicable, the overall best model, are indicated in bold. Additional comparisons
on these benchmarks can be found in Mooij et al. (2016); Immer et al. (2023).

Model SIM SIM-C SIM-G Tü Tü (cts.)
KDE STEIN KDE STEIN KDE STEIN KDE STEIN KDE STEIN

B-LIN 40 (39) 58 (62) 56 (50) 55 (54) 83 (93) 71 (85) 71 (76) 54 (59) 78 (81) 55 (68)
B-QUAD 39 (37) 60 (64) 43 (37) 62 (54) 94 (99) 71 (82) 52 (65) 56 (58) 58 (68) 61 (68)
V-ANM 36 (39) 63 (77) 52 (49) 76 (71) 58 (77) 77 (93) 68 (78) 60 (64) 74 (82) 69 (72)
V-LSNM 39 (39) 62 (67) 52 (49) 76 (71) 74 (92) 72 (88) 58 (70) 62 (65) 57 (73) 68 (73)
V-NN 37 (38) 57 (69) 48 (44) 60 (54) 84 (95) 68 (78) 58 (70) 59 (65) 65 (72) 64 (68)

LOCI (HSIC) 79 (89) 83 (93) 81 (91) 60 (56) 57 (58)
LOCI (Lik) 52 (68) 50 (63) 78 (89) 57 (66) 60 (66)

CDS 68 (85) 78 (89) 73 (82) 66 (62) 60 (55)
IGCI 37 (33) 42 (35) 86 (96) 60 (71) 53 (64)
RECI 45 (48) 56 (58) 42 (41) 72 (88) 71 (88)
CGCI 68 (84) 76 (91) 75 (88) 67 (64) 61 (57)

Velocity benchmark is generated by numerically integrating
periodic velocity functions with initial values given by the
noise variable, as in (12). The Sigmoid benchmark can be
seen as a variation on LSNMs with additional post-nonlinear
and affine transformations.

In all cases, noise variables are sampled as a randomly
sampled invertible transformation (i.e., a random CDF trans-
form) of Gaussian noise. As such, methods based on Gaus-
sianity are also expected to fail. To illustrate our method as
an alternative to HSIC in existing functional classes, we also
design synthetic ANM and LSNM benchmarks for which
V-ANM and V-LSNM are well-specified. Sample plots of
datasets are given in Appendix D.1.

Benchmark Data Following previous work (Blöbaum
et al., 2018; Tagasovska et al., 2020; Immer et al., 2023),
we also evaluate our method on the SIM-series of simulated
benchmarks and the Tübingen Cause-Effect pairs of Mooij
et al. (2016). Since our method requires the existence of log-
densities, we also test removing instances from the Tübingen
collection with integer-valued observations, which we refer
to as Tü (cts.) (details in Appendix D.4).

7.2. Results

The experiments show that our two-step method, in par-
ticular with B-LIN and B-QUAD velocity models which
represents novel model classes, are able to distinguish cause
from effect when existing methods fail (Table 2). For non-
Gaussian ANM and LSNM data, velocity parametrizations
achieve performance that is competitive with the HSIC vari-
ant of LOCI. As expected, the (Gaussian) likelihood vari-
ant of LOCI performs poorly in our non-Gaussian simu-
lations. Our method also achieves state-of-the-art perfor-
mance on certain benchmarks, in particular the Gaussian
SIM-G dataset which we suspect is due to the score being

well-estimated, and is competitive with other methods over-
all (Table 3). Notably, taking only the continuous subset of
the Tübingen dataset improves performance in our method
but not existing methods, which emphasizes the importance
of the log-density assumption. Interestingly, using the KDE
estimate improves causal discovery performance in cases
where the noise distributions are Gaussian (SIM-G), but also
on the real data benchmark (Tü).

7.3. Sample Size and Score Estimation

To study the effect of score estimation on velocity estima-
tion and downstream causal discovery, we also designed
synthetic ANM and LSNM datasets with Gaussian noise,
for which the true marginal cause and joint scores can be
obtained analytically. For the effect variable, we compute
the marginal density by Monte Carlo integration of the con-
ditional and differentiate to obtain the marginal score.

In Figure 4, we saw that using the ground truth scores as
an input to estimate the velocity determined the causal di-
rection with certainty, regardless of the sample size used in
minimizing (18). On the other hand, when the score is esti-
mated, causal discovery performance appears to improve as
sample sizes grows. Here, we provide additional evidence
that the improvement in causal discovery performance is
due to an improving score estimate. We use the ground truth
scores to evaluate the quality of our estimated scores by eval-
uating the mean squared estimation error. Figure 5 shows
that the score estimation largely improves in sample size,
and this corresponds to an improvement in both measures of
causal discovery performance. Note the figure shows estima-
tion of the marginal score of the effect variable—joint and
marginal cause score estimation follows similar patterns.
See Appendix E.3 for full tables of results. We believe
improvements to score estimation will directly benefit the
applicability of our methodology in future practice.
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A. Additional Details
A.1. Background on Flows

The key results we use from dynamical systems are as the following two theorems. We refer the reader to Arnold (1998);
Santambrogio (2015), and references therein, for more details.

Theorem A.1 (Arnold, 1998, Thm. B.3.1, B.3.5). Suppose that (t, y) 7→ v(y, t) is locally Lipschitz continuous in y, and
satisfies the local linear growth condition,

|v(y, t)| ≤ a(t)|y|+ b(t) ,

where a and b are non-negative locally integrable functions. Then the maximal solution to (3) generates a unique solution
flow φs,t as in Equations (4) and (5). If v( • , t) is k-times continuously differentiable in y for each t, then so is φs,t( • ).
Conversely, if a flow φs,t(y) is differentiable in t at t = s for every y, then the ODE defined by (6) both generates and is
solved by φs,t.

Flows generated by velocities also characterize the possible solutions to the continuity equation.

Theorem A.2 (Santambrogio, 2015, Thm. 4.4). Fix v and assume the conditions of Theorem A.1. Then for any ps, the
family of densities pt = (φs,t)∗ps uniquely solves the continuity equation (7) with initial condition density ps. Moreover,
every solution (pt)t∈R to (7) for fixed v is obtained from the corresponding flow of some initial condition density ps.

A.2. Density Along a Causal Curve

The continuity equation in (14) can be viewed as an Eulerian perspective on the problem, tracking velocity and density at
points (x, y). Alternatively, we may consider the Lagrangian perspective, viewing the problem along trajectories, which in
this case are causal curves. The result is the same, but we include the analysis here to shed additional light on the problem.

Let y(x) be a causal curve with velocity v. We evaluate the log joint density along the curve (x, y(x)):

log p(x,y(x)) = log p(x) (19)

+ log p(y(x0) | x0) + log

∣∣∣∣∂φx,x0
(y(x))

∂y(x)

∣∣∣∣ ,
where x0 is an arbitrary origin point. This follows from the usual change-of-variables formula that results from transporting
along the causal curve from (x, y(x)) to (x0, y(x0)). Compared to the usual SCM construction, log p(y(x0) | x0) is the
log-density of the noise, and φx,x0

represents the residual map. Notice this “noise” term does not depend on x. This is
because the noise realization is the same no matter where the counterfactual prediction is made.

Now, we take a (total) derivative in x, and use the instantaneous change-of-variables formula commonly used in the neural
ODEs literature (Chen et al., 2018; Hodgkinson et al., 2021) to obtain

d log p(x, y(x))

dx
=

d log p(x)

dx
− ∂v(y(x), x)

∂y(x)

= sx(x)−
∂v(y(x), x)

∂y(x)
. (20)

Notice the first term is precisely the marginal score sx(x). We can take the same total derivative using the chain rule as

d log p(x, y(x))

dx

=
∂ log p(x, y(x))

∂x
+

dy(x)

dx

∂ log p(x, y(x))

∂y(x)

=sx(x, y(x)) + v(y(x), x)sy(x, y(x)) (21)

In fact, this is a directional derivative of the joint log-density along the causal curve, i.e., in the direction ∂x(x, y(x)) =
(1, v(y(x), x)). Hence, denoting

sv(x, y(x)) := sx(x, y(x)) + v(y(x), x)sy(x, y(x)) , (22)

12
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and equating (20) and (21), we obtain an expression equivalent to (14),

sx(x)− ∂y(x)v(y(x), x) = sv(x, y(x)). (23)

This is a relation between the marginal and joint log-density functions that is satisfied when the conditional distribution
arises from an SCM with velocity v. It is intuitive that this is in terms of v and the score, which both characterize local
change.

A.3. Score-based ANM Methods

Rolland et al. (2022); Montagna et al. (2023a;b) also use the score function for functional causal discovery. There, the
focus is on finding leaf nodes in a multivariate causal graph, that is, non-cause nodes. This is equivalent to finding the
effect variable in the bivariate setting. Here, we show how the conditions derived there can be interpreted via the continuity
equation. Throughout, let y be the effect variable so that X → Y is the causal graph.

The continuity equation in our setting states (7)

sx(y|x) = −ṁ(x)sy(y|x) , (24)

where note for an ANM, v(y, x) = ṁ(x) and hence ∂yv(y, x) = 0. Recall that for an ANM we also have

p(y | x) = pϵ(y −m(x)), (25)

where pϵ is the density of the noise variable ϵy . Let sϵ = ∂ϵ log pϵ(ϵ), then the continuity equation becomes

−ṁ(x)sϵ(ϵ) = −ṁ(x)sy(y | x), (26)

where we wrote ϵ = y −m(x) on the LHS. Now, noting that sy(y | x) = sy(x, y), the y component of the joint score, we
have

sϵ(ϵ) = sy(x, y), (27)

which holds for all (x, y) where ṁ(x) ̸= 0 (thus, for all x if m is injective, corresponding to Condition (2d) in Appendix B.1).
The above expression is precisely the general one used by Montagna et al. (2023a) for general non-Gaussian noise. There,
they use score estimation to estimate sy(x, y), then fit a non-parametric regression model to estimate m and obtain the
residuals ϵ̂. Then, the equation above says that for the effect variable, it is possible to perfectly predict sy(x, y) from ϵ̂.

Under the Gaussian noise assumption ϵy ∼ N (0, σ2), Rolland et al. (2022); Montagna et al. (2023b) derive a more specific
equation that is easily derived independently of the continuity equation. Consider the y component of the joint score,

sy(x, y) = sy(y | x) = sϵ(y −m(x)). (28)

Under the Gaussian noise assumption, sϵ(ϵ) = −ϵ/σ2. Thus, we have

sy(x, y) =
m(x)− y

σ2
. (29)

This indicates that ∂ysy(x, y) = −σ−2, which is constant over (x, y). Rolland et al. (2022) hence devise an algorithm to
estimate the Hessian of the log-likelihood (i.e., Jacobian of the score) and select the node with minimum empirical variance
as the effect.

B. Proofs
B.1. Regularity Conditions of SCM-Velocity Correspondence

The correspondence in Theorem 3.2 between SCMs and velocity-initial condition density pairs (v, p(y|x0)) essentially
follows from the known results on dynamical systems reviewed in Appendix A.1. The only subtleties are under what
conditions the relationships hold over all of R2, rather than on a subset. We discuss them here before proving Theorem 3.2.

1. PX,Y has full support on R2 and is absolutely continuous with respect to Lebesgue measure.

13
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2. For any SCM mechanism f :

(a) For each x ∈ R, f(x, • ) is a bijection R → R.
(b) The mapping (x, x′, y) 7→ fx′(f−1

x (y)) is continuous for each x, x′, y ∈ R3.
(c) The mapping x′ 7→ fx′(f−1

x (y)) is differentiable at x′ = x for all x, y ∈ R2.
(d) There is a unique x0 ∈ R such that for all ϵy ∈ R, f(x0, ϵy) = ϵy .

3. For any velocity field v:

(a) For each x ∈ R, v( • , x) is locally Lipschitz continuous or k-times continuously differentiable.
(b) Satisfies

|v(y, x)| ≤ a(x)|y|+ b(x) ,

where a and b are non-negative locally integrable (integrable on every compact subset of R) functions.

Within the confines of standard practice, these assumptions are not restrictive. Assumption 2(d) may require some care, but
is easy to achieve in practice. For example, with LSNMs, it becomes

m(x0) + eh(x0)ϵy = ϵy ,

which requires each of m,h to have a unique zero at x0. Assuming that each of m,h have at least one zero, if they are
injective then the zero is unique.

In general, assuming that at least one such x0 exists, a sufficient condition for uniqueness is that x ̸= x′ implies that
f(x, ϵy) ̸= f(x′, ϵy) for some ϵy ∈ R.

Assumption 3(b) on the velocity ensures that a local solution to the ODE dy/dx = v(y, x) extends to a unique global
solution

φx0,x(y) = y +

∫ x

x0

v(φx0,u(y), u) du ,

whereas assumption 3(a) ensures that

d

dx
φx0,x(y) = v(φx0,x(y), x) , φx0,x0

(y) = y ,

holds for all x in the solution domain. See, for example, Arnold (1998, Appendix B) for details.

Proof of Theorem 3.2. First, assume that PX,Y has full support on R2 and is specified by a bijective SCM

Y = f(X, ϵy) , X⊥⊥ϵy

with noise density ϵy ∼ p0. Then

φx,x′(y) = fx′(f−1
x (y))

defines a continuous flow. Along with the assumed differentiability in 2(c), by (Arnold, 1998, Thm. B.3.5),

v(y, x) :=
d

dx′ fx′(f−1
x (y))

∣∣∣∣
x′=x

defines the velocity that generates the flow. As long as the mechanism is bijective on all of R for each x then this relationship
holds over all of R2. By the uniqueness of x0, p(y|x0) = p0(y) is uniquely specified by the SCM.

Conversely, fix a pair (v, p(y|x0)) such that p(y|x0) has full support on y ∈ R. As long as v is sufficiently regular so as to
yield a flow (x, y) 7→ φx0,x(y) over all of R2, then the flow is unique and therefore

f(X, ϵy) := φx0,X(ϵy) ,

with ϵy ∼ p(y|x0) uniquely specifies a bijective SCM, except for the marginal distribution PX . Assumption 3(b) above
guarantees the global uniqueness of the flow-based mechanism.
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B.2. Proof of Theorem 4.1

Proof of Theorem 4.1. By Theorem A.2, the continuity equation is uniquely solved by densities generated by the flow
associated with v and some initial condition density p(y|x0). Hence, if PX,Y can be represented by a SCM with velocity v
then its conditional p(y|x) will satisfy the continuity equation

∂xp(y|x) = −∂y(p(y|x) · v(y, x)) .

Since PX,Y (and hence PY |X ) is assumed to have full support, its density will be strictly positive and the continuity equation
can be written

∂xp(y|x)
p(y|x) = −∂yv(y, x)− v(y, x)

∂yp(y|x)
p(y|x)

∂x log p(y|x) = −∂yv(y, x)− v(y, x)∂y log p(y|x) .

Noting that ∂yp(y|x) = ∂yp(x, y) and adding ∂x log p(x) to both sides, we have

∂x log p(x, y) = −∂yv(y, x)− v(y, x)∂y log p(x, y) + ∂x log p(x) ,

which is (14).

Conversely, if PX,Y satisfies (14) then p(y|x) must satisfy the continuity equation and therefore the associated velocity can
be used to represent p(y|x) with the SCM constructed as in Theorem 3.2.

B.3. Proofs for Section 5.1

Theorem B.1. Let sx ∈ HX and s
(x)
x,y, s

(y)
x,y ∈ HX ,Y where HX ,HX ,Y are RKHSs induced by bounded kernels kx <

B, kx,y = kx ⊗ ky < B. Additionally, let v ∈ C1
b (R2,R). Then, if the score estimators have bounded norm and converge

in RKHS norm, such that each of ∥ŝx − sx∥HX
,
∥∥∥ŝ(x)x,y − s

(x)
x,y

∥∥∥
HX ,Y

,
∥∥∥ŝ(y)x,y − s

(y)
x,y

∥∥∥
HX ,Y

is Op(n
− 1

α ) for some α > 0, then

L̂n(v)− L(v) = Op(n
− 1

β ), for β = max{α, 2}.

Proof. For convenience in this proof, we will use the notation s1 := sx, s2 := −s
(x)
x,y, s3 := −s

(y)
x,y, h1 := −∂v

∂y , h2 = v,
and Z = (X,Y ) ∼ px,y. Note that by assumption, we have that s = (s1, s2, s3) ∈ H, where H = H1 ⊗H2 ⊗H3 is a
tensor product reproducing kernel Hilbert space with components H1 := HX , H2 = H3 := HX ,Y . Using this notation, we
can express Equation (15) and its estimator Equation (18) as

L(v) = Ef(s, Z) (30)

L̂n(v) =
1

n

n∑
i=1

f(ŝ, Zi) (31)

where f(s, Z) = (s1(Z) + h1(Z) + s2(Z) + h2(Z)s3(Z))
2 and Dn := {Zi}ni=1 = {Xi, Yi}ni=1

iid∼ pX,Y is an i.i.d.
dataset, and ŝ = (ŝ1, ŝ2, ŝ3) are the estimated scores using Dn. We can expand the deviation between the estimated and true
loss into two bounding terms

|L̂n(v)− L(v)| ≤
∣∣∣∣∣ 1n

n∑
i=1

f(ŝ, Zi)− EZf(ŝ, Z)

∣∣∣∣∣+ |EZf(ŝ, Z)− Ef(s, Z)| (32)

≤ sup
s∈B(H,M)

∣∣∣∣∣ 1n
n∑

i=1

f(s, Zi)− Ef(s, Z)

∣∣∣∣∣+ |EZf(ŝ, Z)− Ef(s, Z)| (33)

where for clarity B(H,M) = B(H1,M) ∪ B(H2,M) ∪ B(H3,M) ⊂ H, f(s, z) =

(s1(z) + h1(z) + s2(z) + h2(z)s3(z))
2, and Z is an iid copy.

To analyze the LHS term, we first show that the function class {f(s, ·) : s ∈ B(H,M) } is a separable and complete
Carathéodory family. This requires that (i) B(H,M) is a separable, complete metric space, and (ii) s 7→ f(s, z) is
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continuous for every z ∈ Z (Steinwart, 2008). (i) Follows immediately from the properties of RKHS’s and the fact that
B(H,M) is a closed ball in this space. (ii) Follows from the fact that s1, s2, s3, h1, h2 are all bounded and continuous
(note the boundedness of s1, s2, s3 follows from the boundedness of the kernels kx, ky). This property also means that
F := {f(s, ·) : s ∈ B(H,M)} ∈ L∞(Z) and sups∈B(H,M)∥f(s, ·)∥∞. As a result, by Proposition 7.10 in Steinwart
(2008) we have

E sup
s∈B(H,M)

∣∣∣∣∣Ef(s, Z)− 1

n

n∑
i=1

f(s, Zi)

∣∣∣∣∣ ≤ 2ERadDn
(F , n) (34)

Where RadDn(F , n) = Eσ sups∈B(H,M)

∣∣ 1
n

∑n
i=1 σif(s, Zi)

∣∣ is the empirical Rademacher average (i.e., {σi}ni=1
iid∼

Rad(1/2)). Now, note that we can expand f as

f(s, Z) = (s1(Z)2 + s2(Z)2 + h2(Z)2s3(Z)2 + 2s1(Z)s2(Z) + 2s1(Z)s3(Z)h2(Z) + 2s2(Z)s3(Z)h2(Z)

+ 2(s1(Z) + s2(Z) + s3(Z)h2(Z))h1(Z) + h1(Z)2) (35)

If we substitute in this definition of f into (34), we get the inequality.

RadDn
(F , n) ≤ RadDn

(BH2
1
, n) + RadDn

(BH2
2
, n) + RadDn

({h2} ⊗ BH2
3
, n) + 2RadDn

(BH1
⊗ BH2

, n)

+ 2RadDn(BH1 ⊗ BH3 ⊗ {h2}, n) + 2RadDn(BH2 ⊗ BH3 ⊗ {h2}, n) + 2RadDn(BH1 ⊗ {h1}, n)
+ 2RadDn(BH2 ⊗ {h1}, n) + 2RadDn(BH3 ⊗ {h1} ⊗ {h2}, n) + RadDn({h1} ⊗ {h1}, n) (36)

Where in the above we use the shorthand BH = B(H,M). The tensor product spaces with singletons satisfy the property
that if ϕ ∈ G ⊗ {h} where G is a space of functions and {h} is a singleton, then there is some g ∈ G such that
ϕ(z) = g(z)h(z), ∀z ∈ Z . Note that the above inequality follows from the fact that, for any two function classes G1,G2,
we have by the triangle inequality,

sup
(g1,g2)∈G1×G2

∣∣∣∣∣ 1n
n∑

i=1

σi(g1(Zi) + g2(Zi))

∣∣∣∣∣ ≤ sup
g1∈G1

∣∣∣∣∣ 1n
n∑

i=1

σig1(Zi)

∣∣∣∣∣+ sup
g2∈G2

∣∣∣∣∣ 1n
n∑

i=1

σig2(Zi)

∣∣∣∣∣ (37)

Now, note that every term in (36) is the Rademacher average of a closed ball in an RKHS of bounded functions. For the
terms involving tensor-product spaces without singletons like {h1} this is by true by definition (since we work with tensor
products of bounded RKHS’s). To briefly show that this holds for the terms involving tensor product spaces with singletons
(e.g. H1 ⊗ {h1}), note in general that if Hk is an RKHS with bounded kernel k, then so is Hk ⊗ {h1}, if h1 ∈ C0(Z,R),
because the evaluation functional δz : h ⊗ h1 7→ h(z)h1(z) remains continuous: δz(hh1) = ⟨h, k(z, ·)⟩Hk

h1(z) ≤
∥h1∥∞k(z, z)∥h∥Hk

≤ B̃∥h∥Hk
, B̃ > 0. Similarly, if ∥h∥Hk

≤ M , then ∥hh1∥Hk
≤ M also. This is because one can

simply choose the norm of Hk ⊗ {h1} as the norm of Hk, due to the boundedness of h1.

Now, by Lemma 22 in Bartlett & Mendelson (2002), we have RadDn(B(Hk,M), n) < C√
n

for some C > 0, where
B(Hk,M) = {h ∈ Hk : ∥h∥Hk

≤ M} and Hk is an RKHS with bounded kernel k. This means that

E sup
s∈B(H,M)

∣∣∣∣∣Ef(s, Z)− 1

n

n∑
i=1

f(s, Zi)

∣∣∣∣∣ ≤ 2ERadDn
(F , n) ≤ 2D/

√
n (38)

for an appropriate constant D > 0, which gives us the desired result for the first term of Equation (33).

Now for the second term. For this section, all expectations are taken over Z only (i.e. not ŝ). To start, we can expand out f .

Ef(s, Z) = E[s1(Z)2 + s2(Z)2 + h2(Z)2s3(Z)2 + 2s1(Z)s2(Z) + 2s1(Z)s3(Z)h2(Z) + 2s2(Z)s3(Z)h2(Z)

+ 2(s1(Z) + s2(Z) + s3(Z)h2(Z))h1(Z) + h1(Z)2] (39)

Taking differences with the same quantity at ŝ gives

Ef(s, Z)− Ef(ŝ, Z) = E(s1(Z)2 − ŝ1(Z)2 + E(s2(Z)2 − ŝ2(Z)2) + Eh2(Z)2(s3(Z)2 − ŝ3(Z)2) (40)
+2E[s1(Z)s2(Z)− ŝ1(Z)ŝ2(Z)] + 2E[(s1(Z)s3(Z)− ŝ1(Z)ŝ3(Z))h2(Z)] + 2E[(s2(Z)s3(Z)− ŝ2(Z)ŝ3(Z))h2(Z)]

+2E[(s1(Z)− ŝ1(Z))h1(Z)] + 2E[(s2(Z)− ŝ2(Z))h1(Z)] + 2E[(s3(Z)− ŝ3(Z))h1(Z)] (41)
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Since v ∈ C1(R2,R), we know h1 < A1, h2 < A2 are bounded, where A1, A2 > 0 are constants. Using Jensen’s inequality
we therefore have

|Ef(s, Z)− Ef(ŝ, Z)| ≤ E|s1(Z)2 − ŝ1(Z)2|+ E|s2(Z)2 − ŝ2(Z)2|+A1E|s3(Z)2 − ŝ3(Z)2|
+2E[s1(Z)s2(Z)− ŝ1(Z)ŝ2(Z)] + 2A2E[|s1(Z)s3(Z)− ŝ1(Z)ŝ3(Z)|] + 2A2E[(s2(Z)s3(Z)− ŝ2(Z)ŝ3(Z))]

+2A1E[(s1(Z)− ŝ1(Z)) + 2A1E[|s2(Z)− ŝ2(Z)] + 2A1E[(|s3(Z)− ŝ3(Z)|] (42)

Which can be simplified using a change of notation to

|Ef(s, Z)− Ef(ŝ, Z)| ≤ ∥s21 − ŝ21∥L1
+ ∥s22 − ŝ22∥L1

+ ∥s23 − ŝ23∥L1
(43)

+ 2∥s1s2 − ŝ1ŝ2∥L1
+ 2A2∥s1s3 − ŝ1ŝ3∥L1

+ 2A2∥s2s3 − ŝ2ŝ3∥L1

+ 2A1∥s1 − ŝ1∥L1
+ 2A1∥s2 − ŝ2∥L1

+ 2A1∥s3 − ŝ2∥L1
(44)

where we define s2i : z 7→ si(z)
2 and (sisj) : z 7→ si(z)sj(z). There are two kinds of summands above: (i) ∥si− ŝi∥L1

and
(ii) ∥sisj − ŝiŝj∥L1

for i, j ∈ {1, 2, 3}. All that remains is to bound each of these terms by sums of terms like ∥si − ŝi∥L2
.

This is immediate for (i) by the properties of Lp norms. To show (ii) we can simply use the triangle inequality and Cauchy
Schwartz:

∥sisj − ŝiŝj∥L1 = ∥si(sj − ŝj) + sj(ŝi − si)∥L1 (45)
≤ E|si(Z)||sj(Z)− ŝj(Z)|+ E|sj(Z)||(ŝi(Z)− si(Z))| (46)
≤ ∥si∥L2∥sj − ŝj∥L2 + ∥sj∥L2∥si − ŝi∥L2 (47)
≤ AS(∥sj − ŝj∥L2 + ∥si − ŝi∥L2) (48)

Now, note that for any bounded positive-definite kernel k : Z2 → R with associated RKHS Hk, if k < B we have
∥f∥L2

≤ ∥f∥Hk
, because |f(z)|2 = ⟨k(z, ·), f⟩2Hk

≤ |k(z, z)|∥f∥2Hk
≤ B . This means that

|Ef(s, Z)− Ef(ŝ, Z)| = O
(

3∑
i=1

∥si − ŝi∥Hi

)
= Op(n

− 1
α ). (49)

Where the last equality follows from the convergence assumption of the score estimators in the theorem. Combining this
result with the convergence result in Equation (38) for the first term of Equation (33) completes the proof.

C. Identifiability of Causal Direction with Bivariate Velocity Models
In order for the causal direction to be identifiable, it cannot be the case that p(x, y) can be expressed in terms of a SCM from
the same class in both causal directions. For the model in the Y → X direction, let ṽ(x, y) denote the velocity. Theorem 4.1
can be used to determine conditions under which the causal direction cannot be identified.

For convenience, let π denote log p, for example π(x, y) = log p(x, y), π(y|x) = log p(y|x), and so on. Starting with (14),
taking a partial derivative in y yields

∂y∂xπ(x, y) = −∂2
yv(y, x)− ∂yv(y, x)∂yπ(x, y)− v(y, x)∂2

yπ(x, y) . (50)

Similarly, in other model direction, (14) becomes ∂yπ(x, y) = −∂xṽ(x, y) − ṽ(x, y)∂xπ(x, y) + ∂yπ(y), so taking a
derivative with respect to x, we have

∂x∂yπ(x, y) = −∂2
xṽ(x, y)− ∂xṽ(x, y)∂xπ(x, y)− ṽ(x, y)∂2

xπ(x, y) . (51)

Equating them, we find that the direction is not identifiable if and only if

∂2
yv(y, x) + ∂yv(y, x)∂yπ(x, y) + v(y, x)∂2

yπ(x, y) = ∂2
xṽ(x, y) + ∂xṽ(x, y)∂xπ(x, y) + ṽ(x, y)∂2

xπ(x, y) . (52)

This proves Proposition 5.2.
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To use this, we write the various partial derivatives of π(x, y) in terms of the forward model. For a SCM with velocity v and
flow φ, so that the SCM is y = φx0,x(ϵy), the log joint density can be written

π(x, y) = π(x) + π0(φ
−1
x0,x(y)) + log |∂yφ−1

x0,x(y)| = π(x) + π0(φx,x0
(y)) + log |∂yφx,x0

(y)| ,
and therefore,

∂yπ(x, y) = π̇0(φx,x0
(y))∂yφx,x0

(y) + ∂y log |∂yφx,x0
(y)| (53)

∂xπ(x, y) = π̇(x) + π̇0(φx,x0
(y))∂xφx,x0

(y) + ∂x log |∂yφx,x0
(y)| (54)

= π̇(x)− π̇0(φx,x0
(y))v(y, x)∂yφx,x0

(y)− ∂yv(y, x) (55)

∂2
yπ(x, y) = π̈0(φx,x0(y))(∂yφx,x0(y))

2 + π̇0(φx,x0(y))∂
2
yφx,x0(y) + ∂2

y log |∂yφx,x0(y)| (56)

∂2
xπ(x, y) = π̈(x) + π̈0(φx,x0

(y))(∂xφx,x0
(y))2 + π̇0(φx,x0

(y))∂2
xφx,x0

(y)− ∂x∂yv(y, x) (57)
∂x∂yπ(x, y) = π̈0(φx,x0

(y))(∂yφx,x0
(y))(∂xφx,x0

(y)) + π̇0(φx,x0
(y))(∂x∂yφx,x0

(y)) + ∂y∂x log |∂yφx,x0
(y)| (58)

= −π̈0(φx,x0(y))v(y, x)(∂yφx,x0(y))
2 − π̇0(φx,x0(y))∂y(v(y, x)∂yφx,x0(y))− ∂2

yv(y, x) (59)

We have used the identities ∂xφx,x0
(y) = −v(y, x)∂yφx,x0

(y) and ∂x log |∂yφx,x0
(y)| = −∂yv(y, x) to simplify some of

the expressions. Substituting these into (52), if we view π0, v, φ, and π(x) as given (specified by nature), the result is a PDE
for the reverse model velocity, ṽ. Alternatively, as is common in the literature (Peters & Bühlmann, 2014), if we allow π(x)
to vary then we might manipulate some combination of Equations (14) and (50) to (52) to obtain a differential equation for
π(x) in terms of only the fixed forward model.

A more thorough general analysis of identifiability is beyond the scope of this work, though we analyze below the special
cases of ANMs and LSNMs. In doing so, we obtain a new characterization of non-identifiability that holds uniformly over
the model class. However, even in that somewhat simple extension of ANMs, the characterizing equation is much more
complicated and does not yield an easy interpretation.

C.1. Additive noise models

For ANMs, write the models as Y = m(X) + ϵy with ϵy ∼ p0, and X = m̃(Y ) + ϵx with ϵx ∼ p̃0. As shown in the main
text, v(y, x) = ṁ(x). Putting this into (52) yields

ṁ(x)∂2
yπ(x, y) = ˙̃m(y)∂2

xπ(x, y) .

Hence, the structural functions are mutually constrained, with ˙̃m(y) satisfying

˙̃m(y) = ṁ(x)
∂2
yπ(x, y)

∂2
xπ(x, y)

. (60)

We observe that in the special case of linear ANMs, ˙m(x) = a and ˙̃m(y) = b, so that (60) implies that each of ∂2
yπ(x, y) =

∂2
yπ(y|x) and ∂2

xπ(x, y) = ∂2
xπ(x|y) must be constant and therefore Gaussian, i.e., b/a = σ2

x/σ
2
y . We also see that if

π(x, y) is jointly Gaussian then the ANM is not identifiable if and only if ṁ(x)/ ˙̃m(y) is a constant, i.e., each of the model
directions is linear.

Continuing from (60) by taking another partial derivative in x, we find that

∂x
ṁ(x)∂2

yπ(x, y)

∂2
xπ(x, y)

= 0 .

Moreover,

π(x, y) = π(x) + π0(y −m(x)) ,

so that

∂yπ(x, y) = π̇0(y −m(x))

∂2
yπ(x, y) = π̈0(y −m(x))

∂xπ(x, y) = π̇(x)− π̇0(y −m(x))ṁ(x)

∂2
xπ(x, y) = π̈(x) + π̈0(y −m(x))(ṁ(x))2 − π̇0(y −m(x))m̈(x)
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Carrying out the algebra, we find

...
π (x) = π̈(x)G(x, y) +H(x, y) , (61)

where

G(x, y) =
m̈(x)

ṁ(x)
− ṁ(x)

...
π 0(y −m(x))

π̈0(y −m(x))

H(x, y) = −2π̈0(y −m(x))m̈(x)ṁ(x) + π̇0(y −m(x))
...
m(x)

+
π̇0(y −m(x))

...
π 0(y −m(x))m̈(x)ṁ(x)

π̈0(y −m(x))
− π̇0(y −m(x))(m̈(x))2

ṁ(x)
.

This is the same differential equation obtained by Hoyer et al. (2008) in their analysis of identifiability using ANM models.

Alternatively, Eq. (6) from (Hoyer et al., 2008), which also leads to the identifying differential equation (61), can be obtained
directly from the continuity equation (14) for the backward model Y → X . In that case, (51) yields

∂x∂yπ(x, y) = − ˙̃m(y)∂2
xπ(x, y).

Hence, solving for 1/ ˙̃m(y) and differentiating with respect to x,

∂x

(
∂x∂yπ(x, y)

∂2
xπ(x, y)

)
= 0 ,

which is Eq. (6) in (Hoyer et al., 2008), from which the rest of their identifiability results on ANMs follow.

C.2. Location-Scale Noise Models

For LSNMs with y = m(x) + eh(x)ϵy and x = m̃(y) + eh̃(y)ϵx, we have that v(y, x) = ṁ(x) + ḣ(x)(y −m(x)), and

similarly ṽ(x, y) = ˙̃m(y) +
˙̃
h(y)(x− m̃(y)). Therefore, (51) yields

−∂x∂yπ(x, y) =
˙̃
h(y)∂xπ(x, y) + ( ˙̃m(y) +

˙̃
h(y)(x− m̃(y)))∂2

xπ(x, y) .

Dividing by ∂2
xπ(x, y) and differentiating with respect to x,

−∂x

(
∂x∂yπ(x, y)

∂2
xπ(x, y)

)
=

˙̃
h(y)

(
1 + ∂x

(
∂xπ(x, y)

∂2
xπ(x, y)

))
.

Therefore,

∂x

[
∂x

(
∂x∂yπ(x, y)

∂2
xπ(x, y)

)/(
1 + ∂x

(
∂xπ(x, y)

∂2
xπ(x, y)

))]
= 0 .

Carrying out the differentiation and simplifying yields (suppressing the (x, y) arguments of π),

[3(∂3
xπ)

2 − 2(∂2
xπ)(∂

4
xπ)](∂x∂yπ) + [(∂xπ)(∂

4
xπ)− 3(∂2

xπ)(∂
3
xπ)](∂

2
x∂yπ) + [2(∂2

xπ)− (∂xπ)(∂
3
xπ)](∂

3
x∂yπ) = 0 .

Since by using the forward model we have

π(x, y) = π(x) + π0

(
e−h(x)(y −m(x))

)
− ḣ(x) ,

in principle this can be solved to characterize, for fixed π0, h,m the set of π(x) for which the causal direction is not
identifiable.

Alternatively, substituting

∂x∂yπ(x, y) = ḣ(x)∂yπ(x, y) + (ṁ(x) + ḣ(x)(y −m(x)))∂2
yπ(x, y)

yields a different but equivalent equation.
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Table 4. Parameter settings for synthetic benchmarks.
Benchmark θ fθ(x, ϵy) σθ σy

Velocity θ ∈ R6 ϵy +
x

∫
x0

θ⊤Φ(y(u), u)du,

Φ(y, u)⊤ =


1

sin(u)
sin(y)
cos(u)
cos(y)

sin(x+ y)



1 1

Sigmoid θa, θb, θc, θd: 2x64 MLP weights c(x) + e−d(x)2Φ−1(sigmoid(a(x) + e−b(x)2ϵy)) 0.2 3
ANM θm 3x64 MLP weights m(x) + ϵy 0.2 0.2
LSNM θm, θh 2x64 MLP weights m(x) + (e−h(x)2 + 0.2)ϵy 0.2 0.2

D. Experiment and Simulation Details
We describe extra details of the experiment and simulation here. All experiments are conducted using the JAX library
(Bradbury et al., 2018).

D.1. Synthetic Data Generation

All synthetic benchmarks can be described as generating from an SCM Y = fθ(X, ϵy). In each case 100 samples are drawn
from θ ∼ N (0, σ2

θ) to generate the 100 datasets. The noise distributions X, ϵy are generated as follows.

ξx, ξy ∼ N (0, I2), (62)
X = Tθt(ξx), ϵy = σyTθt , (ξy) (63)

where σy is a noise scaling parameter that represents the signal-to-noise ratio (larger σy indicates noisier data). See Table 4
for specifics in each benchmark. Tθt are randomly sampled (for each dataset in the benchmark) triangular monotonic
increasing (TMI) maps parametrized as follows:

Tθt(x) =

∫ x

0

softplus(fθt(x))dx, (64)

and θt ∼ N (0, 0.32) are 3x64 MLP parameters.

Analytic Score Calculation For Section 7.3, we additionally designed ANM and LSNM datasets with Gaussian noise
variables, X ∼ N (0, 1), ϵy ∼ N (0, σ2

y). Other settings are as in Table 4. The Gaussian noise variables allow for an analytic
score calculation of the marginal and joint score functions, as follows:

sx(x) = sgaussian(x) = −x. (65)

Denote the mechanism by fx(ϵy). We have

sx(x, y) = ∂x log p(x, y) = ∂x log p(x) + ∂x log p(y | x) (66)

= −x+ ∂x log pϵy (f
−1
x (y)) + ∂x(log ∂yf

−1
x (y)) (67)

= −x+ f−1
x (y)∂xf

−1
x (y) +

∂xyf
−1
x (y)

∂yf
−1
x (y)

, (68)

and

sy(x, y) = ∂y log p(x, y) = ∂y log p(x) + ∂y log p(y | x) (69)

= ∂y log pϵy (f
−1
x (y)) + ∂y(log ∂yf

−1
x (y)) (70)

= f−1
x (y)∂yf

−1
x (y) +

∂yyf
−1
x (y)

∂yf
−1
x (y)

, (71)
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<latexit sha1_base64="gv9tRMMvrsie/0NGJuGzylTDbmQ=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4KrtF1GPRiweVivYD2qVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npho7i5tb2zW9rbb+ooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjK4yv/VElWaRfDTjmPoCDyQLGcEmk24e7m57pbJbcadAi8TLSRly1Hulr24/Iomg0hCOte54bmz8FCvDCKeTYjfRNMZkhAe0Y6nEgmo/nd46QcdW6aMwUrakQVP190SKhdZjEdhOgc1Qz3uZ+J/XSUx44adMxomhkswWhQlHJkLZ46jPFCWGjy3BRDF7KyJDrDAxNp6iDcGbf3mRNKsV76xyel8t1y7zOApwCEdwAh6cQw2uoQ4NIDCEZ3iFN0c4L8678zFrXXLymQP4A+fzB383jeM=</latexit>

LSNM

Figure 6. Example datasets from each synthetic benchmark.
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where the derivatives are calculated with automatic differentiation. Finally, the marginal density y is given as

p(y) =

∫
x

p(y | x)p(x)dx, (72)

and the score is approximated by Monte carlo approximation of the integral and automatic differentiation of the log-density.

D.2. Velocity Parametrization and Training

We distinguish two types of models: those where the velocity function is a linear combination of basis functions, and those
where the velocity function are neural network based.

For the basis models, we use the Adam optimizer with a base learning rate of 0.1, scaled by a factor of
1/ log(# of parameters).

The basis functions we use are as follows:

Φlin(y, x) =
[
1 x y

]
, Φquad(y, x) =

[
1 x y x2 y2 xy

]
. (73)

For each of these, our experiments also include appending the following exponential terms:

Φexp(y, x) =
[
e−x2

e−y2

e−(x2+y2)
]
. (74)

The linear basis and quadratic basis models are hence parametrized by K = 3, 6 real-valued parameters, respectively. When
the exponential terms are added, the parameter count is increased further by 3.

All neural networks involved are 3 layer fully connected MLPs with a hidden size of 64, and tanh activation functions. For
the ANM, we directly parametrize the velocity (i.e., ṁ) as an MLP, while for the LSNM, we parametrize the functions m
and h, and evaluate their derivatives using automatic differentiation to obtain the LSNM velocity (see Table 1 for the specific
form).

D.3. Score Estimation

For the Stein score estimate, we use the suggested regularization parameter λ = 0.1 (Li & Turner, 2018). For the KDE, we
use a regularization parameter of ϵ = n−2 as suggested in (Wibisono et al., 2024). For the KDE estimator, we found that the
standard Silverman rule of thumb (Silverman, 2018) for obtaining the bandwidth works well, as the optimal bandwidths as
proposed in (Wibisono et al., 2024) include unknown constants.

D.4. Benchmarks

For the benchmarks in Table 3, we also remove the data points corresponding to the most extreme 5% of marginal values as
an automated procedure, following score estimation. We found that this improved causal discovery performance especially
for the real data in the Tübingen dataset. Furthermore, all other benchmarks have a sample size of n = 1000 besides the
Tübingen dataset. To minimize hyperparameter search, all datasets are sub-sampled, or re-sampled if necessary, to a uniform
size of n = 1000.

Continuous Tübingen In addition to the datasets with binary variables (pairs 47, 70, 107) and multivariate settings (“pairs”
52, 53, 54, 55, 71, and 105), which are filtered by default, we also identified 29 additional datasets with discrete variables that
we expected score estimation to fail on, for example, the cause variable in pair 5 is integer-valued (# of tree rings). The full
set of removed pairs are as follows: (5,6,7,8,9,10,11,13,14,15,16,26,27,28,29,32,33,34,35,36,37,47,70,85,94,95,99,105,107).

E. Additional Figures and Results
E.1. Synthetic Results

Here we present additional results on our synthetic dataset: Table 5 is the KDE counterpart to Table 2 in the main text, and
Table 6 contains results when subsampled to n = 1000.
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Table 5. KDE results on synthetic data (n = 5000).

Model Velocity Sigmoid ANM LSNM

B-LIN 68 (59) 30 (27) 45 (29) 40 (32)
B-QUAD 65 (61) 33 (29) 30 (19) 15 (5)
V-ANM 46 (33) 25 (15) 31(18) 39 (26)
V-LSNM 65 (78) 47 (54) 37 (33) 38 (38))
V-NN 69 (65) 56 (48) 30 (24) 36 (18)

Table 6. Results on synthetic data (subsampled to n = 1000).

Model Velocity Sigmoid ANM LSNM
KDE STEIN KDE STEIN KDE STEIN KDE STEIN

B-LIN 68 (59) 87 (96) 30 (27) 72 (88) 35 (22) 39 (30) 40 (32) 49 (60)
B-QUAD 65 (57) 88 (97) 25 (28) 67 (84) 30 (19) 49 (53) 15 (5) 51 (58)
V-ANM 46 (33) 81 (96) 25 (15) 40 (23) 31 (18) 77 (85) 39 (26) 52 (54)
V-LSNM 65 (78) 87 (96) 47 (54) 69 (86) 37 (32) 73 (82) 38 (38) 66 (64)
V-NN 69 (65) 90 (98) 56 (49) 58 (69) 30 (24) 58 (66) 36 (18) 48 (57)

LOCI (HSIC) 40 (30) 70 (83) 91 (98) 69 (86)
LOCI (Lik) 46 (66) 49 (61) 44 (52) 31 (31)

CDS 46 (42) 28 (13) 90 (98) 48 (48)
IGCI 66 (76) 53 (67) 34 (22) 32 (20)
RECI 36 (26) 18 (8) 36 (34) 43 (56)
CGCI 48 (42) 66 (71) 71 (88) 55 (69)

E.2. Additional Benchmarks

In Table 7, we present results on the benchmarks of Tagasovska et al. (2020). These are variants of ANM/LSNMs with
Gaussian noise variables; the methods that assume Gaussian noise perform well in these settings.

Table 7. Results on the benchmark data of Tagasovska et al. (2020).

Model AN AN-s LS LS-s MNU
KDE STEIN KDE STEIN KDE STEIN KDE STEIN KDE STEIN

B-LIN 76 (87) 14 (5) 97 (100) 17 (5) 63 (79) 19 (25) 84 (96) 52 (53) 68 (79) 52 (51)
B-QUAD 98 (100) 21 (8) 98 (100) 16 (4) 89 (99) 22 (25) 92 (99) 48 (53) 96 (100) 57 (71)
V-ANM 93 (99) 68 (85) 73 (91) 59 (67) 77 (93) 63 (71) 57 (75) 53 (72) 55 (59) 10 (2)
V-LSNM 93 (98) 44 (40) 89 (98) 31 (19) 90 (99) 69 (86) 81 (92) 62 (82) 61 (68) 41 (40)
V-NN 97 (100) 22 (6) 94 (100) 33 (17) 84 (97) 19 (20) 74 (92) 63 (79) 55 (53) 53 (64)

LOCI (HSIC) 100 (100) 100 (100) 95 (99) 89 (97) 100(100)
LOCI (Lik) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

CDS 99 (100) 92 (99) 77 (87) 6 (0) 66 (70)
IGCI 91 (98) 95 (100) 90 (98) 92 (98) 82 (93)
RECI 19 (6) 32 (18) 28 (14) 43 (43) 23 (7)
CGCI 100 (100) 95 (99) 100 (100) 85 (94) 95 (99)

E.3. Sample Size Experiments with Known Score

Here, we report full tables of results corresponding to Figure 4 and Figure 5 in the main text, which is Table 8. We
also repeated the same experiment for a well-specified LSNM, which is reported in Table 9. Finally, Figure 7 shows the
visual effects of increasing the sample size, see Figure 3 for its counterpart when using the ground truth score. Note score
estimation here refers to using the Stein score estimator with the Gaussian kernel.
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Table 8. Known score sample size experiment results for ANM data. For MSE/GoF, values shown following the convention computed
over the 100 datasets in the benchmark: Median (Q1, Q3).

n Success (AUDRC) MSE (Cause) MSE (Effect) MSE (Joint) GoF (Causal) GoF (Anticausal)

100 55 (58) 0.26 (0.17, 0.36) 0.36 (0.18, 0.39) 2.66 (1.46, 4.49) 0.39 (0.35, 0.46) 0.42 (0.36, 0.51)
500 61 (75) 0.08 (0.06, 0.12) 0.09 (0.06, 0.14) 2.27 (1.05, 4.10) 0.29 (0.24, 0.32) 0.31 (0.27, 0.36)

1000 74 (88) 0.06 (0.04, 0.08) 0.05 (0.04, 0.08) 2.17 (0.99, 4.26) 0.23 (0.19, 0.27) 0.26 (0.23, 0.30)
2500 83 (96) 0.03 (0.01, 0.04) 0.03 (0.02, 0.04) 2.07 (0.94, 4.20) 0.18 (0.15, 0.20) 0.22 (0.19, 0.28)
5000 86 (97) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 2.06 (0.92, 4.13) 0.14 (0.12, 0.16) 0.19 (0.16, 0.23)
10000 91 (96) 0.02 (0.01, 0.04) 0.02 (0.01, 0.05) 2.03 (0.90, 4.21) 0.12 (0.11, 0.14) 0.19 (0.16, 0.23)

Table 9. Sample size experiment results for LSNM data. For MSE/GoF, values shown following the convention computed over the 100
datasets in the benchmark: Median (Q1, Q3).

n Success (AUDRC) MSE (Cause) MSE (Effect) MSE (Joint) GoF (Causal) GoF (Anticausal)

100 59 (51) 0.25 (0.16, 0.43) 0.29 (0.16, 0.43) 1.28 (0.85, 1.92) 0.65 (0.46, 0.87) 0.67 (0.50, 0.83)
500 53 (65) 0.09 (0.05, 0.13) 0.09 (0.06, 0.14) 0.85 (0.65, 1.17) 0.31 (0.27, 0.37) 0.33 (0.28, 0.40)

1000 70 (78) 0.05 (0.03, 0.07) 0.05 (0.03, 0.08) 0.72 (0.59, 1.13) 0.25 (0.22, 0.29) 0.27 (0.24, 0.31)
2500 67 (81) 0.03 (0.02, 0.03) 0.03 (0.02, 0.04) 0.64 (0.49, 1.05) 0.20 (0.17, 0.22) 0.21 (0.18, 0.25)
5000 73 (87) 0.02 (0.01, 0.02) 0.02 (0.01, 0.03) 0.61 (0.47, 1.08) 0.16 (0.14, 0.18) 0.18 (0.16, 0.21)
10000 80 (91) 0.02 (0.01, 0.03) 0.02 (0.01, 0.04) 0.58 (0.45, 1.01) 0.14 (0.13, 0.17) 0.17 (0.14, 0.21)

Figure 7. The estimated causal curves better resemble the ground truth as the score estimation improves in a well-specified LSNM.
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