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ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities through
wide-scale pre-training on a wide range of domains. However, they often suf-
fer from catastrophic forgetting when learning sequential tasks. In this paper,
we propose a novel parameter-efficient approach for continual learning in LLMs,
which empirically explores the role of different effective layerwise ranks, lever-
aging lower ranks to mitigate catastrophic forgetting of previous tasks and higher
ranks to enhance generalization on new tasks. By employing a subspace similar-
ity metric that evaluates the orthogonality of low-rank subspaces between tasks,
we gradually increase the rank of layerwise matrices for each new task, mini-
mizing interference with previously learned tasks while enhancing generalization.
Experimental results on standard continual learning benchmarks and challenging
math benchmarks demonstrate that our method outperforms existing state-of-the-
art approaches, effectively mitigating forgetting, improving task performance, and
maintaining strong generalization to unseen tasks in a memory-efficient manner.

1 INTRODUCTION

As Large Language Models (LLMs) (Raffel et al., 2020; Chowdhery et al., 2023; Achiam et al.,
2023; Touvron et al., 2023) continue to scale, adapting pre-trained foundation models to numerous
downstream tasks become common practice, but fully fine-tuning these models is impractical given
the large model sizes. Consequently, low-rank adaptation methods like LoRA Hu et al. (2021)
and its multiple variants (Zhang et al., 2023b; Liu et al., 2024) have emerged to enable parameter-
efficient fine-tuning for LLMs.

While pre-trained LLMs have achieved great success on fine-tuning on static tasks, continual learn-
ing (CL), the process of learning multiple sequential tasks, remains a significant challenge Wu et al.
(2021; 2024). Two key obstacles are (i) catastrophic forgetting, where a model’s performance on
earlier tasks degrades when trained on new tasks (McCloskey & Cohen, 1989; Ratcliff, 1990), and
(ii) generalization ability, where the previously learned model improves new tasks. Within the realm
of LLMs, CL goes beyond enhancing linguistic and reasoning abilities, involving complex pro-
cesses such as continual pretraining Jin et al. (2021), continual instruction Zhang et al. (2023c), and
continual alignment Zhang et al. (2023a).

Although existing LoRA-based parameter-efficient tuning (PET) methods for CL have mitigated
the forgetting issue, such as O-LoRA Wang et al. (2023) that incrementally learns new tasks in or-
thogonal subspaces, most approaches apply the same rank across all layers in the model. However,
the effectiveness of heterogeneous nature of different layers in overparameterized models has been
extensively studied as highlighted in Zhang et al. (2022). Moreover, in the context of pre-training
and adaptation for LLMs, AdaRank Dong (2024) introduces a simple model disagreement-based
technique for determining layerwise ranks for low-rank adaptation induced by random module per-
turbations. Additionally, both AdaLoRA Zhang et al. (2023b) and SoRA Ding et al. (2023) exploit
the relationship between the rank and the singular value decomposition of the weight update ma-
trices to dynamically adjust layerwise ranks during adaptation. Specifically, AdaLoRA achieves
this by pruning the singular values associated with less significant updates, while SoRA employs a
learnable gating mechanism that gradually reduces the rank as training progresses. These findings
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strongly suggest that using different ranks for different layers is more effective, as enforcing the
same rank across all layers may lead to overfitting certain features and diminished generalizability.

(a) Each task testing accuracy after training task
T2 (where T1: dbpedia, T2: amazon).

(b) Each task testing accuracy after training task
T2 (where T1: amazon, T2: dbpedia).

Figure 1: Comparison of each task accu-
racy changes after training task T2 in two
different task orders. Although ranks 4
and 8 achieve similar average accuracy,
rank 8 causes greater accuracy loss on
T1 after training T2 while rank 4 fails to
match the performance of rank 8 on both
T1 and T2.

Several studies have shown that LoRA forgets less than common
regularization techniques like weight decay and dropout (Biderman
et al., 2024; Hyder et al., 2022), and LoRA helps maintain the di-
versity of generations. The results in Biderman et al. (2024) show
that LoRA forgets less than full fine-tuning. However, the low-rank
update mechanism limits the ability of LLMs to learn and retain
new knowledge as effectively as full fine-tuning (Hu et al., 2021;
Xia et al., 2024; Hao et al., 2024; Zhao et al., 2024), especially in
challenging tasks like mathematical reasoning. COLA addresses this
by employing an iterative low-rank residual learning process to ap-
proximate the optimal weight updates for task adaptation Xia et al.
(2024), somewhat increasing the ranks of LoRAs by extending the
chain length. FLORA achieves high-rank updates by resampling the
projection matrices to mitigate the low-rank limitation of LoRA Hao
et al. (2024). While rank dynamics have been explored in the con-
text of static fine-tuning tasks, to our knowledge, no study in CL for
LLMs has thoroughly examined these rank patterns.

To examine the impact of layerwise ranks in incremental learning of
LoRA between tasks for CL, we conduct an experiment using a fixed
uniform rank across all layers, testing two different rank settings and
freezing previously learned incremental LoRAs without regulariza-
tion when training new tasks. The results, shown in Fig. 1 using
pre-trained T5-large model Raffel et al. (2020) with fixed-rank in-
cremental LoRAs for DBpedia and Amazon Reviews Zhang et al.
(2015), indicate that while similar average accuracy across tasks can be achieved with both low and
high ranks in certain cases, higher ranks for the second task tend to cause greater accuracy loss on the
first task, and lower ranks for both tasks cannot achieve the same good performance on the current
task as higher ranks. Importantly, this does not imply a straightforward linear relationship between
rank size and reduced forgetting. Instead, it reveals a trade-off between low ranks and high ranks to
balance forgetting mitigation and generalization. These observations highlight the need for an ideal
approach in CL for LLMs within the PET framework, one that utilizes the role of the layerwise tanks
to balance catastrophic forgetting and generalization across a continual stream of tasks. Inspired by
this, we aim to address the following fundamental question:

How can we design an adaptive parameter-efficient CL algorithm that leverages the
forgetting-mitigation nature of low ranks and the generalization strengths of high ranks to

optimize the trade-off?

To answer this question, we propose a novel adaptive algorithm dubbed as CP-Rank (Cautious
Passive Low-Rank), that gradually increases the rank of layerwise weight matrices during train-
ing among layers. This is accomplished by empirically examining how layerwise ranks affect both
forgetting and generalization, with rank adjustments guided by a between-task low-rank subspace
similarity metric. Specifically, CP-Rank focuses on the subsequent tasks after the first task. For
each task after the first task, CP-Rank starts by setting the incremental LoRA rank to 1, aiming to
minimize interference with previously learned tasks from the beginning of new task training. It then
applies SVD decomposition to compute the left singular layerwise matrices of LoRAs from both the
current and previous tasks, thus calculating the subspace similarity between their low-rank matrices.
With this dynamic similarity during training, CP-Rank evaluates the orthogonality of the subspaces
and decides whether to cautiously increase the rank for the current task by allocating additional
low-rank parameters, or whether to passively maintain the current rank, balancing learning of new
information with retention of previously acquired knowledge. It is important to note that CP-Rank
freezes all previously learned incremental LoRAs during the training of each new task. Our exper-
imental results demonstrate that CP-Rank outperforms state-of-the-art methods on standard contin-
ual learning benchmarks and excels in more challenging math tasks, such as GSM8K Cobbe et al.
(2021) and MATH Hendrycks et al. (2021). Furthermore, our analysis explores the impact of various
hyperparameters and evaluates different rank update rules, highlighting CP-Rank’s effectiveness in
robustness to task orders, mitigating forgetting, and enhancing generalization.
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■ Summary of Contributions. This paper makes three key contributions: (1) A novel parameter-
efficient continual learning method for LLMs that effectively balances forgetting and generalization
through cautious passive low-rank updates; (2) Through comprehensive evaluations, our method
demonstrates superior performance over existing state-of-the-art approaches both on standard con-
tinual learning benchmarks and math datasets; and (3) We provide an in-depth analysis that deepens
our understanding of the dynamics of gradually increasing rank within continual learning for LLMs,
pinpointing critical factors that drive its effectiveness.

2 CAUTIOUS PASSIVE LOW-RANK CONTINUAL LEARNER

In this section, we propose a parameter-efficient continual learning approach that cautiously in-
creases the rank and passively maintains the rank during training, leveraging low ranks to reduce
forgetting and high ranks to improve generalization.
■ Problem Setting. In the continual learning scenario, we have a sequence of tasks T =
{T1, T2, . . . , TN} over time. Each task Tk is associated with a data distribution Dk and contains
a separate target dataset Sk = {(xk,i, yk,i)}nk

i=1 where xk,i ∈ Xk and yk,i ∈ Yk. The goal of
continual learning is to find a set of parameters θ ∈ Θ that can effectively solve all tasks up to the
current task Tk, while minimizing catastrophic forgetting of previously learned tasks. In continual
learning of LLMs, we are given a pre-trained model W0 and would like to continually fine-tune a
sequence of tasks, utilizing the incremental low-rank matrix parameters BkAk to finetune task Tk
where Bk ∈ Rd1×r,Ak ∈ Rr×d2 and the rank r ≪ min (d1, d2). The continual learning model
parameters after fine-tuning on task Tk is θk = W0 +

∑k
s=1 BsAs. Our continual learning goal is

to optimize the following objective across all tasks:

max
θ

∑N

k=1

∑
(x,y)∈Sk

log pθ(y|x), (1)

where θ = W0+
∑N

k=1 BkAk. It is important to note that in our scenario, the model does not have
access to data from previous tasks when learning a new task, while the model predicts sample labels
without knowledge of the corresponding task ID.
■ Forgetting Error Bound in Low-Rank CL. The forgetting error in CL, which measures the
degradation in performance on previously learned tasks after learning a new task is formulated as:

F(θ1, . . . ,θN ) =
∑N−1

t=1
Lt(θT )− Lt(θt) (2)

where θt = W0 +
∑t

k=1 BkAk, Lt(·) is the generalization error on task Tt, and Lt(θT )−Lt(θt)
is the performance degradation (forgetting) on tasks Tt between the model after training on task Tt
and the model after training on the final task TN . The generalization error, which assesses the model
capability to effectively learn a new task while preserving the knowledge acquired from previous
tasks is defined as:

I(θ1, . . . ,θN ) =
∑N

t=1
Lt(θt)− Lt(θ

∗
t ) (3)

where Lt(θt)−Lt(θ
∗
t ) measures the generalization gap between the CL model θt and the optimally

fine-tuned model θ∗
t = W0 +B∗

tA
∗
t on task Tt. The generalization of final model on all tasks can

be decomposed into forgetting-generalization errors as follows:∑N

t=1
Lt(θN )− Lt(θ

∗
t ) = F(θ1, . . . ,θN ) + I(θ1, . . . ,θN ) (4)

To provide intuition about the proposed algorithm, we start by examining the forgetting error in a
simple linear regression setting with N = 2 and n1 = n2 = n (for detailed derivation, please see
Appendix A.5). While a larger rank is preferable to entail a better generalization on a new task, the
effect of rank on forgetting highly depends on similarity between tasks which can be bounded by:

E[F(θ1,θ2)] ≲ O(tr((B1A1)(B2A2)
⊤) + additional terms. (5)

This finding motivates us to find an effective subspace similarity between tasks during training to
control and optimize the forgetting and generalization trade-off.
■ Between-Task Different-Rank Layerwise Subspace Similarity Measure. To measure the low-
rank subspace similarity between different tasks, we utilize a reverse metric Hu et al. (2021) of
the standard Projection Metric of Grassmann Distance that measures the distance between sub-
spaces Hamm & Lee (2008). For any two tasks, we define the low-rank subspace at layer l of task
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Algorithm 1: Cautious Passive Low-Rank Continual Learning for Task Ti, i ∈ [2,N ]

Require: Starting rank r0i = 1, interval k ∈ Z+, total updating steps T
1 Initialize A0

i ∈ Rr0i×d2 using random Gaussian initialization and B0
i ∈ Rd1×r0i as zero

initialization
2 t← 1
3 while t < T do
4 if t ≡ 0 mod k then
5 Obtain At

i and Bt
i from Algorithm 2

6 end
7 Train low-rank network and obtain At+1

i and Bt+1
i

8 t← t+ 1
9 end

Ti as Bl
iA

l
i, where Bl

i ∈ Rd1×ri and Al
i ∈ Rri×d2 . Similarly, the low-rank subspace at layer l of

task Tj is defined as Bl
jA

l
j , where Bl

j ∈ Rd1×rj and Al
j ∈ Rrj×d2 . We first perform SVD decom-

position on the low-rank subspaces of tasks Ti and Tj to obtain their respective top ri and top rj left
singular vectors: U l

i ∈ Rd1×ri and U l
j ∈ Rd1×rj . Then we let the singular values of (U l

i )
⊤U l

j to
be σ1,σ2, . . . ,σp, where p = min{ri, rj}. The Grassmann Distance standard projection metric is
defined as:

d(U l
i ,U

l
j) =

√√√√p−
p∑

s=1

σ2
s ∈ [0,

√
p] (6)

Following LoRA Hu et al. (2022) and the Grassmann Distance, we define our task subspace simi-
larity metric as:

ϕ(U l
i ,U

l
j) =

∑p
i=s σ

2
s

p
=

1

p

(
1− d(U l

i ,U
l
j)

2

)
(7)

This similarity metric satisfies the following conditions: when U l
i and U l

j share the same column
span, considered as overlapping, then ϕ(U l

i ,U
l
j) = 1. If they are completely orthogonal, then

ϕ(U l
i ,U

l
j) = 0. Otherwise, ϕ(U l

i ,U
l
j) ∈ (0, 1). We use this metric to determine whether the low-

rank subspaces of two tasks are orthogonal. If ϕ(U l
i ,U

l
j) < ϵ, we consider the low-rank subspaces

of task Ti and task Tj are orthogonal, meaning increasing the rank in the current subspace is “safe”
for both tasks, as it would not interfere with the learned low-rank subspaces of previous tasks. Con-
versely, if ϕ(U l

i ,U
l
j) > ϵ, the subspaces are not orthogonal, and we maintain the current rank for

the new task to reduce the risk of forgetting prior tasks. Moreover, Eq. 7 uses the singular values
captured by two different task subspaces, which matches our findings in Eq. 5.
■ Cautious Passive Low-Rank Continual Learning. We now turn to providing the detailed algo-
rithm. For simplicity, we use B and A to represent the layer-wise weight matrices Bl and Al at
layer l.
For task T1. In our method, we focus primarily on the subsequent tasks after the first task, as the
subspace similarity metric is designed to evaluate low-rank weight subspaces between tasks. Since
the first task has no previous tasks to compare against, we use a fixed low rank B1A1 for learning.
For task Ti, i ∈ [2,N ]. When training task Ti, we freeze the low-rank matrices of all previous tasks
{Tm}i−1

m=1. For task Ti, CP-Rank initializes the low-rank matrices BiAi with a rank of 1, minimiz-
ing the impact on previously learned tasks, as done in other incremental low-rank methods Zhao
et al. (2023). Next, we perform SVD on the low-rank matrix BiAi to obtain the top ri left singular
vectors Ui. Similarly, we compute the top rm left singular matrices {Um}i−1

m=1 for the previous
tasks {Tm}i−1

m=1 low-rank matrices {BmAm}i−1
m=1. Using these matrices, we calculate the subspace

similarity ϕ(Ui,Um) between the subspaces of the current task Ti and each previous task Tm to
obtain the average subspace similarity. Based on this average subspace similarity, if it’s below the
orthogonality threshold, indicating that Ui is sufficiently orthogonal to the previous ones, CP-Rank
cautiously increases the rank of Bi and Ai to improve generalization without negatively impacting
earlier tasks. Otherwise, the rank passively remains unchanged to avoid interference with previous
tasks. The complete algorithm is outlined in Algorithms 1 and 2.
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Algorithm 2: Cautious Passive Low Rank Update
1 for m ≤ i− 1 do
2 Compute left singular matrix: Um ← SVD(BmAm) of task Tm
3 Select top rm left singular vectors of Um

4 end
5 Compute and obtain top ri left singular vectors from task Ti: U t

i ← SVD(Bt
iA

t
i)

6 Compute task subspace similarity ϕ(U t
i ,Um), where m = 1, . . . , i− 1

7 if 1
i−1

∑i−1
m=1 ϕ(U

t
i ,Um) < ϵ then

8 rti = rti + 1

9 Initialize additional parameters: At
i ← [At

i,A
∗],Bt

i ← [Bt
i ,B

∗], where A∗ ∈ R1×d2 and
B∗ ∈ Rd1×1 are randomly initialized with small values

10 end
11 else
12 At

i ← At
i,B

t
i ← Bt

i
13 end

■ Rank Bonus Chance via Orthogonal Subspace Projection. CP-Rank leverages the task sub-
space similarity metric to distinguish the low-rank subspaces of the new task Ti into two cate-
gories: (i) in the orthogonal region ORi, where the subspaces are orthogonal to the previous tasks
{Tm}i−1

m=1, (ii) in the non-orthogonal region OR⊥
i , where the subspaces are not orthogonal to the

prior tasks {Tm}i−1
m=1. For the low-rank layerwise matrices Bl

iA
l
i in ORi, CP-Rank safely increases

the rank of them to enhance generalization. However, for those low-rank layerwise matrices Bl
iA

l
i

in OR⊥
i , CP-Rank halts rank growth of them, as these subspaces may interfere with the subspaces

of previously learned tasks in an intriguing manner. Thus, to reduce the interference of the low-rank
subspaces in OR⊥

i , we apply orthogonal gradient projection for the low-rank matrix update instead
of SGD update. By progressively using orthogonal updates, more low-rank subspaces would shift in
ORi for task Ti, allowing them to obtain the bonus chance to increase their ranks and thus improve
generalization. We utilize the low-rank structure of LoRA parameters, which suggests that they en-
capsulate critical update directions rather than merely acting as numerical adjustments Wang et al.
(2023), meaning that the gradient subspaces of previous tasks are effectively captured by LoRA pa-
rameters, thus reducing computation and memory. Instead of directly ensuring the orthogonality of
Al

i as in Wang et al. (2023), we consider Bl
iA

l
i due to additional random parameters for Bl

i during
training and enforce the orthogonality through the left singular matrices of task Ti and previous tasks
{Tm}i−1

m=1 during the training of task Ti:∑
(x,y)∈Ti

log pθ(y|x) + λ1

∑L

l=1

∑i−1

m=1

∑
j,k
∥[(U l

i )
⊤U l

m]j,k∥2 (8)

where [U l
i ,U

l
m]j,k denotes the element at j-th row and k-th column of (U l

i )
⊤U l

m. Here we use top
rli singular vectors of U l

i and top rlm singular vectors of U l
m to achieve the orthogonality.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experiments utilize the encoder-decoder architecture of the T5-large and T5-base models Raffel
et al. (2020), in line with previous work in continual learning (CL) for NLP. All experiments are
conducted on NVIDIA A6000 GPUs, leveraging the DeepSpeed repository.

3.1.1 DATASETS

■ Standard CL benchmark. We evaluate our approach on a standard CL benchmark designed
specifically for language models, comprising five text classification datasets: AG News, Amazon
Reviews, Yelp Reviews, DBpedia, and Yahoo Answers, as introduced by Zhang et al. (2015). We
follow the CL setup for the T5 model outlined in LFPT5 Qin & Joty (2021), experimenting with
three different task orders within this benchmark.
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■ Large number of tasks. To further assess the effectiveness of our method, we evaluate it on ex-
tended task sequences using a comprehensive CL benchmark that involves 15 datasets, as described
in Razdaibiedina et al. (2023). This benchmark combines tasks from three distinct sources: five
from the standard CL benchmark, four from the GLUE benchmark (MNLI, QQP, RTE, SST-2), five
from the SuperGLUE benchmark (WiC, CB, COPA, MultiRC, BoolQ), and the IMDB movie re-
views dataset. For each task, we train on 1000 randomly selected samples and validate using 500
samples per class, adhering to the methodology of Razdaibiedina et al. (2023).
■ Math benchmarks. We test the performance of our method on challenging math benchmarks,
specifically GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021). GSM8K includes a
collection of 8.5K graduate-school math word problems and the solutions of these problems per-
form a sequence of elementary calculations using basic arithmetic operations and natural language.
MATH consists of problems from mathematics competitions, covering a range of difficulty levels
in areas such as Algebra, Counting & Probability, Geometry, Intermediate Algebra, Number The-
ory, Prealgebra, and Precalculus, with solutions written in LaTeX and natural language. For both
GSM8K and MATH benchmarks, we train on 7500 examples, testing GSM8K on 1000 examples
and MATH on 5000 examples.

3.1.2 METRICS

We define the testing accuracy on task Ti after training on task Tj as ai,j . The primary evaluation
metric is Average Accuracy (AA), which is computed as the mean accuracy across all tasks after
completing the training on the final task: 1

T

∑T
i=1 ai,T .

3.1.3 BASELINES

We compare our method against various baseline approaches:

• SeqFT de Masson D’Autume et al. (2019): train all model parameters on a sequence of tasks
(without adding any regularization or replaying samples from the previous tasks).

• SeqLoRA: fixed-size LoRA parameters are trained on a sequence of tasks (without adding any
regularization or replaying samples from the previous tasks).

• IncLoRA: incremental learning of new LoRA parameters on a sequence of tasks (without adding
any regularization or replaying samples from the previous tasks).

• Replay: fine-tune the whole model with a memory buffer, and replay samples from old tasks
when learning new tasks to avoid forgetting.

• EWC Kirkpatrick et al. (2017): fine-tune the whole model with a regularization loss that prevents
updating parameters that could interfere with previously learned tasks.

• LwF Li & Hoiem (2017): constrains the shared representation layer to be similar to its original
state before learning the new task.

• L2P Wang et al. (2022): uses the input to dynamically select and update prompts from the prompt
pool in an instance-wise fashion.

• LPT5 Qin & Joty (2021): continuously train a soft prompt that simultaneously learns to solve the
tasks and generate training samples, which are subsequently used in experience replay.

• ProgPrompt Razdaibiedina et al. (2023): adopts task-specific soft prompts for each task, training
distinct models per task and using task IDs during inference.

• O-LoRA Wang et al. (2023): incrementally train new tasks in an orthogonal subspace while fixing
the LoRA matrices of previous tasks.

• PerTaskFT: train a separate model for each task individually.
• MTL: train a multi-task learning model on all tasks simultaneously, serving as the performance

upper bound for the benchmark.

3.2 MAIN RESULTS

Tab. 1 presents the performance comparisons of CP-Rank and baseline continual learning methods
across two CL benchmarks. In line with LFPT5, we report the average results from three random
runs, each with a different task order on the CL benchmark.
■ Results on Standard Continual Learning Benchmarks. Across three task orders of the stan-
dard CL benchmark, CP-Rank with orthogonal projection (‘CP-Rank w OP’ in Tab. 1) consistently
outperforms previous methods by a significant margin. Specifically, CP-Rank with orthogonal pro-
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jection shows performance improvements across all task orders compared to O-LoRA, the prior
state-of-the-art. Furthermore, CP-Rank without orthogonal projection (‘CP-Rank wo OP’ in Tab. 1)
exceeds other previous methods except O-LoRA. Our approach also achieves performance compara-
ble to multi-task learning (MTL) and surpasses PerTaskFT by a notable margin. This demonstrates
that CP-Rank with orthogonal projection not only effectively mitigates catastrophic forgetting but
also efficiently leverages prior task knowledge to enhance the learning of new tasks.
■ Results on Large Number of Tasks. In a more demanding benchmark featuring a large number
of tasks, CP-Rank with orthogonal projection surpasses the state-of-the-art, O-LoRA, in terms of
average performance across the three task orders. Notably, CP-Rank without orthogonal projection
also exceeds IncLoRA, as our method relies solely on increasing the training rank based on the
subspace similarity metric and updating interval, compared to IncLoRA. While ProgPrompt shows
strong performance in long task sequences, it has significant limitations. ProgPrompt is strictly tied
to the tasks it is trained on and depends heavily on task IDs during inference, which limits its gen-
eralization and adaptability for LLMs. In contrast, our method does not require task IDs during
testing, making it more generalizable. However, it is worth noting that nearly all existing continual
learning methods still fall considerably short of the performance levels achieved by PerTaskFT and
MTL, underscoring the challenges of continual learning with a large number of tasks.

Table 1: Comparison of testing performance on two standard CL benchmarks using the T5-large
model across different task orders. We report the average testing accuracy after training the final
task in each task order, averaged over three random runs.

Standard CL Benchmark Large Number of Tasks
Order 1 2 3 avg 4 5 6 avg
SeqFT 18.9 24.9 41.7 28.5 7.4 7.3 7.4 7.4

SeqLoRA 39.5 31.9 46.6 39.3 4.9 3.5 4.2 4.2
IncLoRA 63.4 62.2 65.1 63.6 63.0 57.9 60.4 60.5
Replay 50.3 52.0 56.6 53.0 54.5 54.3 53.5 54.1
EWC 46.3 45.3 52.1 47.9 44.9 44.0 45.4 44.8
LwF 52.7 52.9 48.4 51.3 49.7 42.8 46.9 46.5
L2P 59.0 60.5 59.9 59.8 57.7 53.6 56.6 56.0

LFPT5 66.6 71.2 76.2 71.3 69.8 67.2 69.2 68.7
CP-Rank(wo OP) 72.8 73.7 70.7 72.4 63.2 65.2 62.1 63.5

O-LoRA 74.9 75.3 75.9 75.4 70.5 65.5 70.5 68.8
CP-Rank(w OP) 77.3 77.1 76.0 76.8 69.9 69.2 71.5 70.2

ProgPrompt 76.1 76.0 76.3 76.1 78.7 78.8 77.8 78.4
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1

MTL 80.0 80.0 80.0 80.0 76.3 76.3 76.3 76.3

3.3 IMPACT ON THE FORGETTING PERFORMANCE ON MATH DATASETS

We investigate our method on two challenging math datasets, GSM8K and MATH. Each dataset is
evenly split into two subsets, creating a total of four tasks. We experiment with two distinct task
orders to assess the impact on forgetting: one where the model first trains on GSM8K followed
by MATH, and another where the task order is reversed, starting with MATH and then proceeding
to GSM8K. This setup allows us to evaluate how task sequence influences the model’s forgetting
performance, and our average testing accuracy is the exact prediction accuracy of the final answer
for each task, aligned with other works (Chung et al., 2024; Magister et al., 2023). Tab. 2 presents
the testing accuracy trends for each dataset after training on successive tasks. Across both task
orders, CP-Rank with orthogonal projection consistently outperforms O-LoRA in terms of final av-
erage testing accuracy. Moreover, CP-Rank demonstrates less forgetting on the first task and better
generalization on the second task compared to O-LoRA. This suggests that CP-Rank is more effec-
tive at mitigating forgetting, especially when switching between tasks in these math benchmarks.
Additionally, we need to note that fully fine-tuning MATH using the T5-large model achieves ap-
proximately 3.0%, while fully fine-tuning GSM8K using the T5-large model approaches 4.2%, as
also reported in the work Magister et al. (2023).
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Table 2: Comparison of testing accuracy changes on GSM8K and MATH datasets when using CP-
Rank and O-LoRA, with the T5-large model trained on sequential tasks from GSM8K and MATH.

T1: GSM8K→ T2: MATH→ T3: GSM8K→ T4: MATH
Method GSM8K MATH avg PerTaskFT MTL

O-LoRA 1.87→ 0.01→ 0.22→ 0.23 1.18→ 1.34→ 1.6 1.32 3.63 3.88
CP-Rank 1.87→ 0.08→ 0.76→ 1.1 1.58→ 2.32→ 2.38 2.23 3.63 3.88

T1: MATH→ T2: GSM8K→ T3: MATH→ T4: GSM8K
Method MATH GSM8K avg PerTaskFT MTL

O-LoRA 2.62→ 1.44→ 2.34→ 2.32 0.30→ 0.15→ 0.14 1.87 3.63 3.88
CP-Rank 2.62→ 2.54→ 2.62→ 2.48 1.21→ 1.14→ 0.38 2.04 3.63 3.88

3.4 DISCUSSIONS

■ What’s the resulting rank distribution across different layers? Fig. 2a and Fig. 2b show the
sum of the resulting rank of low-rank matrices trained on the last three tasks of Order 3 in the
standard CL benchmark since the rank for the first task in our setting is not affected by other tasks.
We find that the rank distribution in the v modules varies more than in the q modules of encoder
layers, while in the decoder layers, the q and v modules exhibit different patterns of variability.
Meanwhile, the rank distribution in the encoder layers is slightly more consistent compared to the
decoder layers. These findings suggest that different layers within the model fulfill distinct roles,
which our method effectively leverages to achieve better overall performance.

(a) Encoder Layer Final Rank

(b) Decoder Layer Final Rank

Figure 2: Comparison of the sum of the resulting ranks in different modules of encoder and decoder
layers in CP-Rank training last three tasks of order 3 on standard CL benchmark. Here the x-axis is
the layer index and the y-axis represents different modules (types) of low-rank weight matrices.

■ How do different fixed ranks perform in different settings? Tab. 3 presents the average testing
accuracy in different fixed rank settings compared with CP-Rank. CP-Rank with orthogonal projec-
tion, where we use rank 8 for the first task same as the setting in O-LoRA, consistently outperforms
these fixed rank settings. In both IncLoRA and O-LoRA settings, increasing the rank improves the
average accuracy of the model to a certain extent. Specifically, in O-LoRA, there is not a significant
difference in performance between r = 2 and r = 6, while in IncLoRA, there is an evident gap
between r = 2 and r = 8 but the difference between r = 8 and r = 16 is not significant. This
suggests that in IncLoRA, r = 2 is insufficient for effective learning and generalization without any
aid of CL techniques. Moreover, when comparing the rank usage across different settings, CP-Rank
achieves better results with an average rank usage that falls between r = 2 and r = 4, making it
more memory-efficient while still delivering superior performance.
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Table 3: Comparison of different rank patterns across methods using T5-large model on the standard
CL benchmark. The average rank refers to the sum of incremental LoRA ranks across all layers for
the last three tasks, with CP-Rank computing the sum of ranks across all layers to obtain the average.

Order

1 2 3 avg r(avg)/T
CP-Rank w OP 77.3 77.1 76.0 76.8 3
CP-Rank wo OP 72.8 73.7 70.7 72.4 4
IncLoRA (r = 2) 44.5 48.5 50.7 47.9 2
IncLoRA (r = 4) 50.4 44.0 56.7 50.4 4
IncLoRA (r = 8) 63.4 62.2 65.1 63.6 8
IncLoRA (r = 16) 62.5 62.4 67.5 64.1 16
O-LoRA (r = 2) 73.5 73.2 74.4 73.7 2
O-LoRA (r = 4) 75.7 75.6 75.4 75.6 4
O-LoRA (r = 8) 74.9 75.3 75.9 75.4 8
O-LoRA (r = 16) 75.2 74.9 76.9 75.7 16

Table 4: Comparison of CP-Rank performance
across three task orders of the standard CL
benchmark with varying fixed ranks for the first
task, using T5-large model.

Order

Rank 1 2 3 avg
r1 = 2 76.7 76.3 76.1 76.4
r1 = 4 76.9 76.4 76.1 76.5
r1 = 8 77.3 77.1 76.0 76.8
r1 = 16 77.2 76.7 76.3 76.7

■ How does the fixed rank of the first task af-
fect CP-Rank? Tab. 4 shows the performance of
CP-Rank with different fixed ranks of the first
task. We use CP-Rank with orthogonal projec-
tion to evaluate the standard CL benchmark. It
suggests that increasing the fixed rank for the first
task might slightly improve the final average ac-
curacy but differences between different ranks are
relatively modest, where there is not a significant
gap between r1 = 2 and r1 = 16. It indicates that
CP-Rank does not heavily depend on the specific
rank of the first task but maintain robust perfor-
mance across a variety of initial rank settings.

■ How does subspace similarity threshold ϵ affect the performance of CP-Rank? We evalu-
ate the performance for different values of ϵ (0.001, 0.005, 0.01, 0.05, 0.1, 0.5) as shown in Tab. 5.
The results indicate that accuracy remains very stable at ϵ = 0.001 for CP-Rank with orthogonal
projection, and at ϵ = 0.1 for CP-Rank without orthogonal projection. There is a slight downtrend
between 0.001 and 0.1 in CP-Rank with orthogonal projection, since with orthogonal projection,
more subspaces are orthogonal to the previously learned subspaces and a larger threshold would
make negative-affected subspaces increase in rank thus worsen the results. In CP-Rank without or-
thogonal projection, the accuracy at 0.5 is slightly better than 0.1, suggesting that more subspaces
are treated as orthogonal to generalize better via increasing rank.

Table 5: Comparison of CP-Rank Performance on different ϵ values across three task orders in
standard CL benchmark.

Impact of threshold ϵ

CP-Rank w OP 0.001 0.005 0.01 0.05 0.1 CP-Rank wo OP 0.1 0.5

Order 1 77.3 78.3 75.0 76.8 75.7 Order 1 70.0 72.8
Order 2 77.1 77.3 76.3 75.4 76.7 Order 2 70.8 73.7
Order 3 77.1 76.7 76.2 74.3 73.6 Order 3 69.9 70.7

■ How does updating intervals k work for CP-Rank? Hyper-parameter k controls the frequency
of subspace similarity threshold ϵ. To analyze the effect of k, we vary k in 50, 60, 70, 80, 90 by
keeping other hyper-parameters the same. Fig. 3 shows that the accuracy at different k is stable in
CP-Rank with orthogonal projection, while the performance of CP-Rank without orthogonal projec-
tion performs a little stable from 50 to 80 but drops sharply at 90, since in this case, larger updating
intervals cannot grasp the rapid changes in subspaces and would miss critical changing points.
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■ How do different pre-trained models influence performances? We investigate the impact of
model scale on performance by comparing T5-base and T5-large models on standard CL bench-
mark. We evaluate both CP-Rank with orthogonal projection and O-LoRA across three task orders.
The results, shown in Tab. 6, present the performance differences between the two model sizes
and the methods employed. For T5-base model, CP-Rank with orthogonal projection consistently
outperforms O-LoRA. While for T5-large model, CP-Rank significantly surpasses O-LoRA’s out-
comes. Moreover, CP-Rank shows exceptional consistency across all task orders in T5-large model,
highlighting its robustness and effectiveness when the model size is scaled up.

Figure 3: Comparison of different updating in-
terval performances across three task orders in
the standard CL benchmark.

Table 6: Comparison of different models’ per-
formances across three task orders in standard
CL benchmark.

Order
T5-base 1 2 3 avg MTL
O-LoRA 72.9 72.3 72.6 72.6 78.3
CP-Rank 74.0 72.7 72.1 72.9 78.3
T5-large 1 2 3 avg MTL
O-LoRA 74.9 75.3 75.9 75.4 80.0
CP-Rank 77.3 77.1 76.0 76.8 80.0

■ What’s the difference between different increasing rules (2r v.s. r + 1)? To evaluate effec-
tiveness of our updating rule update(r) = r + 1, we compare it with another common updating
rule update(r) = 2r, as mentioned in the work Cosson et al. (2022), in some cases, r + 1 can
be advantageously replaced by 2r. Fig. 4 shows the performance of two different updating rules
with different updating intervals k and subspace similarity threshold ϵ. The changing patterns of
two updating rules are almost overlapped across different updating intervals. In different subspace
similarity thresholds, in the range from 0.001 to 0.01, updating rule r + 1 is less variable while 2r
drops sharply at 0.005. As the threshold increases, updating rule r + 1 experiences a performance
drop and becomes variable, but 2r remains stable at lower accuracy. These results suggest that r+1
performs better within a certain threshold range, which is why we chose it as our updating rule.

(a) Different updating intervals (b) Different ϵ values

Figure 4: Comparison of different increasing rules across three task orders in standard CL bench-
mark using T5-large model in terms of updating intervals and subspace similarity thresholds.

4 CONCLUSION

We propose a parameter-efficient continual learning method, CP-Rank, which gradually increases
the layerwise rank of incremental LoRAs for new tasks based on the between-task low-rank sub-
space similarity metric. CP-Rank not only accounts for the low-rank relationships between tasks’
incremental LoRAs but also adapts to the unique low-rank dynamics across different model lay-
ers. This approach effectively mitigates forgetting of previous tasks while enhancing generalization
on new tasks in a memory-efficient way. We perform extensive experiments on both natural lan-
guage processing and challenging math reasoning tasks, demonstrating that CP-Rank captures rank
patterns effectively in CL and consistently outperforms existing methods.
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A APPENDIX

A.1 ADDITIONAL RELATED WORKS

Continual Learning. Continual learning aims to develop algorithms that can continuously accumu-
late and refine knowledge, especially when handling dynamic data streams. The key challenge is
overcoming catastrophic forgetting, where a model’s performance on previously learned tasks sig-
nificantly declines after being trained on new tasks. To tackle this issue, existing approaches are
generally classified into three main categories: (i) Rehearsal-based methods, which use a memory
buffer to retain data samples from previous tasks, incorporating techniques such as experience re-
play Rolnick et al. (2019), or constrained optimization to allow the model to learn from current and
previous tasks simultaneously (Lopez-Paz & Ranzato, 2017; Han et al., 2020). (ii) Regularization-
based methods, which add extra terms to the loss function to penalize changes in important model pa-
rameters, limiting interference with previously learned tasks (Kirkpatrick et al., 2017; Li & Hoiem,
2017; Farajtabar et al., 2020; Smith et al., 2023). For example, EWC Kirkpatrick et al. (2017)
preserves knowledge of old tasks by slowing down learning on weights deemed important for those
tasks, while OGD Farajtabar et al. (2020) ensures that parameters move within the orthogonal space
defined by previous task gradients. (iii) Architecture-based methods, which aim to reduce task in-
terference by dynamically expanding the model’s capacity or creating separate components for each
task (Rusu et al., 2016; Yoon et al., 2017; Li et al., 2019; Rao et al., 2019; Razdaibiedina et al.,
2023). For instance, Progressive Prompts Razdaibiedina et al. (2023) improves forward transfer
and mitigates forgetting by learning a distinct prompt for each new task and sequentially appending
these task-specific prompts to previously learned ones.

Parameter-efficient Tuning. Recent works on parameter efficient tuning (PET) He et al. (2021)
have demonstrated that training only a subset of model parameters can achieve performance com-
parable to full model fine-tuning, while significantly reducing computational and annotation costs
(Zaken et al., 2021; Lester et al., 2021; Houlsby et al., 2019; Hu et al., 2021; Zhang et al., 2023b).
For instance, BitFit Zaken et al. (2021) finds that shows that updating only the bias terms during
fine-tuning is highly effective. Prompt tuning Lester et al. (2021) leverages learnable ’soft prompts’
via back-propagation to condition frozen language models for specific tasks. LoRA Hu et al. (2021)
employs low-rank adapters to adapt models to new tasks with minimal additional parameters, and
AdaLoRA Zhang et al. (2023b) builds on LoRA by dynamically allocating the parameter budget
based on the importance of the weight matrices. While most PET methods focus on learning a single
task, some efforts have extended PET to continual learning. AdapterCLMadotto et al. (2020)intro-
duces a dedicated adapter block for each task, and LFPT5 Qin & Joty (2021) continuously trains a
large soft prompt across multiple tasks. ConPET Song et al. (2023) adapts existing continual learn-
ing strategies—originally developed for smaller models—to LLMs by integrating PET with a dy-
namic replay mechanism. O-LoRA Wang et al. (2023) incrementally learns new tasks in orthogonal
subspaces, keeping LoRA parameters from previous tasks fixed to mitigate catastrophic forgetting.
However, O-LoRA uses the fixed same rank for all incremental LoRAs without investigating the
rank patterns in CL.

A.2 IMPLEMENTATION DETAILS

All experiments with T5 models were conducted on a server equipped with four NVIDIA A6000
GPUs, using the DeepSpeed library for efficient implementation. Across all task sequences and
different task orders, we maintained a consistent experimental setup: the learning rate was set to 1e-
3, with a total batch size of 32, distributed as 8 per GPU to fully utilize the computational power of
the A6000 GPUs. We applied a dropout rate of 0.1, while no additional weight penalty (0.0 weight
decay) was imposed during training.

A.3 DATASETS

A.3.1 CONTINUAL LEARNING BENCHMARKS

Tab. 7 provides detailed information on the 15 datasets used in our continual learning (CL) experi-
ments, along with the evaluation metrics employed. The selected datasets include those from well-
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established benchmarks: the standard CL benchmark Zhang et al. (2015), GLUE Wang et al. (2018),
and SuperGLUE benchmarks Wang et al. (2019), as well as the IMDB movie reviews dataset.

Dataset name Category Task Domain Metric
1. Yelp CL Benchmark Sentiment Analysis Yelp Reviews Accuracy
2. Amazon CL Benchmark Sentiment Analysis Amazon Reviews Accuracy
3. DBpedia CL Benchmark Topic Classification Wikipedia Accuracy
4. Yahoo CL Benchmark Topic Classification Yahoo Q&A Accuracy
5. AG News CL Benchmark Topic Classification News Accuracy
6. MNLI GLUE NLI Various Accuracy
7. QQP GLUE Paragraph Detection QUora Accuracy
8. RTE GLUE NLI News, Wikipedia Accuracy
9. SST-2 GLUE Sentiment Analysis Movie Reviews Accuracy
10. WiC SuperGLUE Word Sense Disambiguation Lexical Databases Accuracy
11. CB SuperGLUE NLI Various Accuracy
12. COPA SuperGLUE QA Blogs,Encyclopedia Accuracy
13. BoolQA SuperGLUE Boolean QA Wikipedia Accuracy
14. MultiRC SuperGLUE QA Various Accuracy
15. IMDB SuperGLUE Sentiment Analysis Movie Reviews Accuracy

Table 7: The details of 15 datasets used in our CL experiments. NLI denotes natural language
inference, QA denotes questions and answers task. The first five tasks correspond to the standard
CL benchmark, all other tasks are used in long-sequence experiments

Order Model Task Sequence
1 T5-large,T5-base dbpedia→ amazon→ yahoo→ ag
2 T5-large,T5-base dbpedia→ amazon→ ag→ yahoo
3 T5-large,T5-base yahoo→ amazon→ ag→ dbpedia

4 T5-large mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→ imdb→
yelp→ amazon→ sst-2→ dbpedia→ ag→ multirc→ yahoo

5 T5-large multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte
→ imdb→ sst-2→ dbpedia→ ag→ yelp→ amazon→ yahoo

6 T5-large yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb→
sst-2→ dbpedia→ ag→ yahoo→ multirc→ boolqa→ wic

Table 8: Six different task sequence orders utilized in continual learning experiments. Orders 1-3
follow the standard continual learning benchmark as established by previous research, focusing on
a more traditional task sequence. Orders 4-6 customized for long-sequence experimentation, en-
compass 15 tasks each and are structured according to the methodologies outlined in Razdaibiedina
et al. (2023).

A.3.2 MATH BENCHMARKS

Tab. 10 and Tab. 11 shows the data structure of both GSM8K and MATH, and Tab. 12 provides the
task information and evaluation metric for math datasets.

A.4 RESULTING RANK DISTRIBUTIONS ACROSS DIFFERENT LAYERS

Fig. 5 and Fig. 6 show the sum of the final learned ranks of the last three tasks in order 1 and order
2 for the standard CL benchmark. We find that the rank distribution in the v modules varies more
than in the q modules of encoder layers, while in the decoder layers, the q and v modules exhibit
different patterns of variability. Meanwhile, the rank distribution in the encoder layers is slightly
more consistent compared to the decoder layers. These findings suggest that different layers within
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Task Prompts
NLI What is the logical relationship between the ”sentence 1” and the ”sentence 2”?

Choose one from the option.

QQP Whether the ”first sentence” and the ”second sentence” have the same meaning?
Choose one from the option.

SC What is the sentiment of the following paragraph?
Choose one from the option.

TC What is the topic of the following paragraph?
Choose one from the option.

BoolQA According to the following passage, is the question true or false?
Choose one from the option.

MultiRC According to the following passage, is the question true or false?
Choose one from the option.

WiC Given a word and two sentences, whether the word is used with the same sense
in both sentences? Choose one from the option.

Table 9: Instructions for different tasks

Data Field Data Content
question Natalia sold clips to 48 of her friends in April, and then she sold half as many

clips in May. How many clips did Natalia sell altogether in April and May?

answer Natalia sold 48/2 =<< 48/2 = 24 >> 24 clips in May.
Natalia sold 48 + 24 =<< 48 + 24 = 72 >> 72 clips altogether in April and
May. ####72

Table 10: Data structure of GSM8K dataset

the model fulfill distinct roles, which our method effectively leverages to achieve better overall
performance.

(a) Encoder Layer Final Rank

(b) Decoder Layer Final Rank

Figure 5: Comparison of the sum of the resulting ranks in the different modules of encoder and
decoder Layers in CP-Rank training last three tasks of order 1 on standard CL benchmark. Here
the x-axis is the layer index and the y-axis represents different modules (types) of low-rank weight
matrices.
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Data Field Data Content
problem A board game spinner is divided into three parts labeled $A$, $B$ and $C$.

The probability of the spinner landing on $A$ is $\frac{1}{3}$ and the
probability of the spinner landing on $B$ is $\frac{5}{12}$. What is the
probability of the spinner landing on $C$? Express your answer as a common
fraction.

level Level 1

type Counting & Probability

solution The spinner is guaranteed to land on exactly one of the three regions, so we
know that the sum of the probabilities of it landing in each region will be 1. If
we let the probability of it landing in region $C$ be $x$, we then have the
equation $1 = \frac{5}{12}+\frac{1}{3}+x$,
from which we have $x=\boxed{\frac{1}{4}}$.

Table 11: Data structure of MATH dataset

Dataset name Category Task Metric
1. GSM8K Math Benchmark Math Reasoning Exact Prediction Accuracy
2. MATH Math Benchmark Math Reasoning Exact Prediction Accuracy

Table 12: The details of GSM8K and MATH datasets used in our CL experiments. For the matric,
we use the exact prediction accuracy for evaluating these two datasets, which is the correction rate
of the final answer.

A.5 FORGETTING ERROR IN LOW-RANK CL

In this section, we examine the forgetting error is a toy setting to illustrate the proposed method.
This analysis aims to elucidate the key idea to gradually increase the rank to mitigate forgetting. It
is important to note that this analysis is not intended to be rigorous and future work will focus on
developing a more thorough and rigorous understanding of the forgetting and generalization errors.
To this end, inspired by Li et al. (2023), we consider a simple linear regression setting with two
tasks. Each task Tk is associated with a data distribution Dk and contains a separate target dataset
Sk = {(xk,i, yk,i)}nk

i=1 where xk,i ∈ Xk and yk,i ∈ Yk. For simplicity, we use 2 tasks and all
nk = n for explanation. The population risks for the two tasks can be denoted by

R1(W0 +BA) =
1

n
ED1
∥y1 −X1(W0 +BA)∥2 (9)

R2(W0 +BA) =
1

n
ED2
∥y2 −X2(W0 +BA)∥2 (10)

respectively, where (X1, y1) is the dataset of the first task and (X2, y2) is the dataset of the second
task. Xk = (xk,1, . . . ,xk,n) ∈ Rn×d and yK = (yk,1, . . . , yk,n) ∈ Rn for k = 1, 2.
Assumption 1 (Fixed design) Assume that the feature vectors (x1,i))

n
i=1 and (x2,i)

n
i=1 are fixed and

that the labels (y1,i)ni=1 and (y2,i)
n
i=1 are independent random variables.

Assumption 2 (Shared optimal parameter) Assume that there exists a B∗A∗ where B∗ ∈ Rd1×r,
A∗ ∈ Rr×d2 such that

B∗A∗ ∈ argminR1(W0 +BA), B∗A∗ ∈ argminR2(W0 +BA) (11)

We assume there is a common optimal low-rank parameter for the two tasks, which follows (Li
et al., 2023; Van de Ven & Tolias, 2019; Evron et al., 2022).
Assumption 3 (Well-specified noise) Assume that for B∗A∗ in Assumption 2, it holds that: for
k = 1, 2 and i = 1, . . . ,n,

E[yk,i] = x⊤
k,i(W0 +B∗A∗) (12)

σ2 = E(yk,i − x⊤
k,i(W0 +B∗A∗))2 (13)
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(a) Encoder Layer Final Rank

(b) Decoder Layer Final Rank

Figure 6: Comparison of the sum of the resulting ranks in the different modules of encoder and
decoder Layers in CP-Rank training last three tasks of order 2 on standard CL benchmark. Here
the x-axis is the layer index and the y-axis represents different modules (types) of low-rank weight
matrices.

where σ2 > 0 refers to the variance of the label noise.
Assumption 4 (Commutable data covariance matrices). Assume that

H1H2 = H2H1, where H1 =
1

n
X⊤

1 X1 and H2 =
1

n
X⊤

2 X2 (14)

Denote that due to low-rank nature and linear layers, the data representation can be represented by
the low-rank parameter matrices BA, thus we use the left singular vectors U to represent.
Risk decomposition. For simplicity, we use δ1 = B1A1, δ2 = B2A2, and δ∗ = B∗A∗. Accord-
ing to the risk definition and the assumptions on the noise, we have

R1(W0 + δ) =
1

n1
E∥X1(W0 + δ1)− y1∥2

=
1

n1
E∥X1(W0 + δ1)−X1(W0 + δ∗)− ϵ1∥2

= (W0 + δ∗)⊤H1(W0 + δ∗) + σ2

= ⟨H1, (W0 + δ∗)(W0 + δ∗)⊤⟩+ σ2 (15)

Similarly, the risk for the second task is

R2(W0 + δ) = ⟨H2, (W0 + δ∗)(W0 + δ∗)⊤⟩+ σ2 (16)
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Computing forgetting. We now compute forgetting according to Eq. 15 and Eq. 16.

F =E[R1(W0 + δ1 + δ2)−R1(W0 + δ1)]

=⟨H1,E(W0 + δ1 + δ2 − (W0 + δ∗))(W0 + δ1 + δ2 − (W0 + δ∗))⊤⟩
− ⟨H1,E(W0 + δ1 − (W0 + δ∗))(W0 + δ1 − (W0 + δ∗))⊤⟩

=⟨H1,E(δ1 + δ2 − δ∗)(δ1 + δ2 − δ∗)⊤⟩ − ⟨H1,E(δ1 − δ∗)(δ1 − δ∗)⊤⟩
=⟨H1,E(δ1δ⊤1 + δ1δ

⊤
2 − δ1(δ

∗)⊤ + δ2δ
⊤
1 + δ2δ

⊤
2 − δ2(δ

∗)⊤ − δ∗δ⊤1 − δ∗δ⊤2 + δ∗(δ∗)⊤)

− ⟨H1,E(δ1δ⊤1 − δ1(δ
∗)⊤ − δ∗δ⊤1 + δ∗(δ∗)⊤)⟩

=⟨H1,E(δ1δ⊤2 + δ2δ
⊤
1 + δ2δ

⊤
2 − δ2(δ

∗)⊤ − δ∗δ⊤2 )⟩
(1)
= tr(HT

1 E(δ1δ⊤2 + δ2δ
⊤
1 + δ2δ

⊤
2 − δ2(δ

∗)⊤ − δ∗δ⊤2 ))

(2)

≤∥H1∥tr(E(δ1δ⊤2 + δ2δ
⊤
1 + δ2δ

⊤
2 − δ2(δ

∗)⊤ − δ∗δ⊤2 ))

(3)
=∥H1∥(2tr(Eδ1δ⊤2 ) + tr(Eδ2δ⊤2 )− 2tr(Eδ2(δ∗)⊤))
(4)

≤∥H1∥(2tr(Eδ1δ⊤2 ) + r∥Eδ2∥22 − 2tr(Eδ2(δ∗)⊤)) (17)

where r is the rank of δ2. To explain the derivation steps clearly, we assume that A and B are
two matrices, (1) is from ⟨A,B⟩ = tr(BTA), (2) is from tr(A⊤B) ≤ ∥A∥tr(B), (3) is from
tr(A+B) = tr(A) + tr(B), (4) is obtained from tr(δ2δ⊤2 ) ≤ r∥δ2∥22.
Analysis of the upper bound of F .

• The matrix H1 is a data correlation matrix, and in practice, we cannot directly control its
magnitude.

• The term r∥Eδ2∥22 becomes smaller when using a lower rank for δ2, which helps in reduc-
ing the overall forgetting error.

• Additionally, tr(Eδ2(δ∗)⊤) is also expected to be small when using a low-rank approxima-
tion for δ2.

Therefore, the upper bound on the forgetting error is dominated by the term involving δ1δ
⊤
2 , denoted

by:
F ≤ O(tr(δ1δ⊤2 )) (18)
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