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Abstract

Motivated by deep neural networks, the deep Gaussian process (DGP) generalizes the
standard GP by stacking multiple layers of GPs. Despite the enhanced expressiveness, GP,
as an L2 regularization prior, tends to be over-smooth and sub-optimal for inhomogeneous
objects, such as images with edges. Recently, Q-exponential process (Q-EP) has been
proposed as an Lq relaxation to GP and demonstrated with more desirable regularization
properties through a parameter q > 0 with q = 2 corresponding to GP. Sharing the similar
tractability of posterior and predictive distributions with GP, Q-EP can also be stacked
to improve its modeling flexibility. In this paper, we generalize Q-EP to deep Q-EP to
model inhomogeneous data with improved expressiveness. We introduce shallow Q-EP as
a latent variable model and then build a hierarchy of the shallow Q-EP layers. Sparse
approximation by inducing points and scalable variational strategy are applied to facilitate
the inference. We demonstrate the numerical advantages of the proposed deep Q-EP model
by comparing with multiple state-of-the-art deep probabilistic models.

Keywords: Deep Probabilistic Models, Inhomogeneous Subjects, Regularization, Latent
Representation, Model Expressiveness

1. Introduction

Gaussian process (GP Rasmussen and Williams, 2005; J. M. Bernardo and Smith, 1998) has
gained enormous successes and been widely used in statistics and machine learning com-
munity. With its flexibility in learning functional relationships (Rasmussen and Williams,
2005) and latent representations (Titsias and Lawrence, 2010), and capability in tractable
uncertainty quantification, GP has become one of the most popular non-parametric model-
ing tools. Facilitated by the sparse approximation (Titsias, 2009) and scalable variational
inferences (SVGP Hensman et al., 2015; Salimbeni and Deisenroth, 2017), GP has been
popularized for a variety of high-dimensional learning tasks. Inspired by the advancement
of deep learning (Goodfellow et al., 2016), Damianou and Lawrence (2013) pioneered in
generalizing GP with deep structures, hence named deep GP. Ever since then, there has
been a large volume of follow-up works including deep convolutional GP (Blomqvist et al.,
2020), deep sigma point process (DSPP Jankowiak et al., 2020b), deep image prior (Ulyanov
et al., 2020), deep kernel process (Aitchison et al., 2021), deep variational implicit process
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(Ortega et al., 2023), deep horseshoe GP (Castillo and Randrianarisoa, 2024), and various
applications (Dutordoir et al., 2020; Li et al., 2021; Jones et al., 2023).

Despite its flexibility, GP, as an L2 regularization method, tends to produce random
candidate functions that are over-smooth and thus sub-optimal for modeling inhomogeneous
objects with abrupt changes or sharp contrast. To address this issue, an Lq based stochastic
process, Q-exponential process (Q-EP Li et al., 2023), has recently been proposed to impose
flexible regularization through a parameter q > 0, which includes GP as a special case when
q = 2. Similarly as Lasso inducing sparsity for regression, q = 1 is often adopted for Q-EP
to impose stronger regularization than GP to properly capture dramatic changes in certain
portions of inhomogeneous data, e.g., edges in an image. Different from other L1 based
priors such as Laplace random field (Podgórski and Wegener, 2011; Kozubowski et al.,
2013) and Besov process (Lassas et al., 2009; Dashti et al., 2012), Q-EP shares with GP the
unique tractability of posterior and predictive distributions (Theorem 3.5 of Li et al., 2023),
which essentially permits a deep generalization by stacking multiple stochastic mappings
(Damianou and Lawrence, 2013).

Motivated by the improved expressiveness of deep GP and the flexible regularization of
Q-EP, in this work we generalize Q-EP to deep Q-EP to enhance the capability of Q-EP in
modeling inhomogeneous data. On one hand, by stacking multiple layers of Q-EP mappings,
deep Q-EP becomes more capable of characterizing complex latent representations than
the standard Q-EP. On the other hand, inherited from Q-EP, deep Q-EP maintains the
control of regularization through the parameter q > 0, whose smaller values impose stronger
regularization, more amenable than (deep) GP to preserve inhomogenous traits such as
edges in an image. First, we introduce the building block, shallow Q-EP model, which
can be regarded as a kernelized latent variable model (LVM) (Lawrence, 2003; Titsias and
Lawrence, 2010). Such shallow model is also viewed as a stochastic mapping F from input
(or latent) variables X to output variables Y defined by a kernel. Then as in Lawrence
and Moore (2007); Damianou and Lawrence (2013), we extend such mapping by stacking
multiple shallow Q-EP layers to form a hierarchy for the deep Q-EP. Sparse approximation
by inducing points (Titsias, 2009) is adopted for the variational inference of deep Q-EP. A
theoretic barricade for developing the evidence lower bound (ELBO) in the setting of Q-EP
is that the power in the exponent of its density makes involved expectations intractable. We
solve this challenge by taking advantage of Jensen’s inequality. The inference procedure, as
in deep GP, can be efficiently implemented in GPyTorch (Gardner et al., 2018).

Connection to existing works Our proposed deep Q-EP is closely related to deep
GP (Damianou and Lawrence, 2013) and two other works, deep kernel learning (DKL-GP
Wilson et al., 2016) and DSPP (Jankowiak et al., 2020b). Deep Q-EP generalizes deep GP
with a parameter q > 0 to control the regularization (See Figure 1 for its effect on learning
representations) and includes deep GP as a special case for q = 2. DKL-GP combines
the deep learning architectures (neural networks) with the non-parametric flexibility of
kernel methods (GP). DSPP is motivated by parametric GP models (PPGPR Jankowiak
et al., 2020a) and applies sigma point approximation or quadrature-like integration to the
predictive distribution. The majority of popular deep probabilistic models rely on GP. This
is one of the few developed out of a non-Gaussian stochastic process. Our proposed work
on deep Q-EP has multi-fold contributions to deep probabilistic models:
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1. We propose a novel deep probabilistic model based on Q-EP that generalizes deep GP
with flexibility of regularization for handling data inhomogeneity.

2. We develop the variational inference for deep Q-EP and efficiently implement it.
3. We demonstrate numerical advantages of deep Q-EP over its shallow counterpart and

the state-of-the-art deep probabilistic models.
The rest of the paper is organized as follows. Section 2 introduces the background of

Q-EP. We then develop shallow Q-EP in Section 3 as the building block for deep Q-EP in
Section 4. In these two sections, we highlight the importance of posterior tractability in
the development and some obstacles in deriving the variational lower bounds. In Section
5 we demonstrate the numerical advantages by comparing with multiple deep probabilistic
models in various learning tasks. Finally, we conclude with some discussion on the limitation
and potential improvement in Section 6.

2. Background: Q-exponential Processes

2.1. Multivariate Q-exponential Distribution

Based on Lq regularization, the univariate q-exponential distribution (Dashti et al., 2012)
has density πq(u) ∝ exp (−1

2 |u|
q). Li et al. (2023) generalize the univariate q-exponential

random variable to a multivariate random vector on which a stochastic process can be de-
fined with two requirements by the Kolmogorov’ extension theorem (Øksendal, 2003): i)
exchangeability of the joint distribution, i.e. p(u1:N ) = p(uτ(1:N)) for any finite permu-
tation τ ; and ii) consistency of marginalization, i.e. p(u1) =

∫
p(u1,u2)du2.

Suppose a function u(x) is observed at N locations, x1, · · · , xN ∈ D ⊂ Rd. Li et al.
(2023) provide a consistent generalization, named multivariate q-exponential distribution,
for u = (u(x1), · · · , u(xN )) from the family of elliptic contour distributions (Johnson, 1987).

Definition 1 A multivariate q-exponential distribution for a random vector u ∈ RN , de-
noted as q-EDN (µ,C), has the following density:

p(u|µ,C, q) = q

2
(2π)−

N
2 |C|−

1
2 r(u)(

q
2
−1)N

2 exp

{
−r

q
2

2

}
, r = (u− µ)TC−1(u− µ). (1)

Remark 2 If taken negative logarithm, the density of q-ED in (1) yields a quantity dom-
inated by some weighted Lq norm of u− µ, i.e. 1

2r
q
2 = 1

2∥u− µ∥qC. From the optimization
perspective, q-ED, when used as a prior, imposes Lq regularization in obtaining the maxi-
mum a posteriori (MAP).

2.2. Q-exponential Process and Multi-output Q-EP

Li et al. (2023) prove that the multivariate q-exponential random vector u ∼ q-EDN (0,C)
satisfies the conditions of Kolmogorov’s extension theorem hence it can be generalized to

a stochastic process. For this purpose, we scale it by a factor N
1
2
− 1

q so that its covariance
is asymptotically finite (Proposition 3.1 of Li et al., 2023). If u ∼ q-EDN (0,C), then we

denote u∗ := N
1
2
− 1

qu ∼ q-ED∗
N (0,C) as a scaled q-exponential random variable. With a

covariance (symmetric and positive-definite) kernel C : D×D → R, we define the following
q-exponential process (Q-EP) based on the scaled q-exponential distribution q-ED∗

N (0,C).
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Definition 3 A (centered) q-exponential process u(x) with a kernel C, q-EP(0, C), is a
collection of random variables such that any finite set, u := (u(x1), · · ·u(xN )), follows a
scaled multivariate q-exponential distribution q-ED∗(0,C), where C = [C(xi, xj)]N×N . If
C = I, then u is said to be marginally identical but uncorrelated (m.i.u.).

Remark 4 When q = 2, q-EDN (µ,C) reduces to NN (µ,C) and q-EP(0, C) becomes
GP(0, C). When q ∈ [1, 2), q-EP(0, C) lends flexibility to modeling functional data with
more regularization than GP. In practice, q = 1 is often adopted for faster posterior conver-
gence (Agapiou et al., 2021; Lan et al., 2023) and the capability of preserving inhomogeneous
features (rough functional data, edges in image, etc). Refer to Figure 1 for the regularization
effect of q.

One caveat of Q-EP is that uncorrelation (identity covariance) does not imply indepen-
dence except for the special Gaussian case (q = 2). For multiple Q-EPs, (u1(x), · · · , uD(x)),
we usually do not assume they are independent because their joint distribution is difficult
to work with (due to the lack of additivity in the exponential part of density function
(1)). Rather, uncorrelation is a preferable assumption. In general, we define multi-output
(multivariate) Q-EPs through matrix vectorization.

Definition 5 A multi-output (multivariate) q-exponential process, u(·) = (u1(·), · · · , uD(·)),
each uj(·) ∼ q-EP(µj , Cx), is said to have association Ct if at any finite locations, x =
{xn}Nn=1, vec([u1(x), · · · , uD(x)]N×D) ∼ q-EDND(vec(µ),Ct⊗Cx), where we have uj(x) =

[uj(x1), · · · , uj(xN )]T, j = 1, . . . , D, µ = [µ1(x), · · · , µD(x)]N×D and Cx = [Cx(xn, xm)]N×N .
We denote u ∼ q-EP(µ, Cx,Ct). In particular, {uj(·)} are m.i.u. if Ct = ID.

To improve the modeling expressiveness of Q-EP, we stack m.i.u. multi-output Q-EPs
to build a deep Q-EP, similarly as constructing deep GP with multiple GP layers. For this
purpose, we first introduce Bayesian (multivariate) regression with Q-EP priors.

2.3. Bayesian Regression with Q-EP Priors

Given data x = {xn}Nn=1 and y = {yn}Nn=1, we consider the generic Bayesian regression
model:

y = f(x) + ε, ε ∼ q-EDN (0, Σ),

f ∼ q-EP(0, C).
(2)

It is proved in Theorem 3.5 of Li et al. (2023) that the posterior (predictive) distribution is
analytically tractable when both the prior and the likelihood are Q-EP, which is one of the
keys for the deep generalization of Q-EP.

Theorem 6 For the regression model (2), the posterior distribution of f(x∗) at x∗ is

f(x∗)|y,x, x∗ ∼ q-ED(µ∗,C∗),

µ∗ = CT
∗ (C+Σ)−1y, C∗ = C∗∗ −CT

∗ (C+Σ)−1C∗,

where C = C(x,x), C∗ = C(x, x∗), and C∗∗ = C(x∗, x∗).
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Denote X = [x1, · · · ,xQ]N×Q, F = [f1(X), · · · , fD(X)]N×D and Y = [y1, · · · ,yD]N×D.
With m.i.u. Q-EP priors as in Definition (5) imposed on f := (f1, · · · , fD), we now consider
the following multivariate regression problem:

likelihood : vec(Y)|F ∼ q-EDND(vec(F), ID ⊗Σ),

prior on latent function : f ∼ q-EP(0, C, ID).
(3)

Based on the additivity of q-ED random variables (Fang and Zhang, 1990), we can find the
marginal of Y by noticing that Y = F+ ε with vec(ε) ∼ q-ED(0, ID ⊗Σ):

marginal likelihood : vec(Y)|X ∼ q-EDND(0, ID ⊗ (C+Σ)). (4)

3. Shallow Q-EP Model

In this section we introduce the shallow (1-layer) Q-EP model which serves as a building
block for the deep Q-EP model to be developed in Section 4. We start with the marginal
model (4) that can be identified as a latent variable model (LVM) (Lawrence, 2003) with
a specified kernel. This defines a shallow Q-EP model. Then we develop variational infer-
erence with sparse approximation for such model (Titsias and Lawrence, 2010) and stack
multiple layers to build the deep Q-EP.

The marginal model (4) of Y|X can be viewed as a stochastic mapping (Theorem 2.1
and Proposition A.1 of Li et al., 2023): f̃ : X → Y = RLXS , where Rq ∼ χ2(N), LX

is the Cholesky factor of CX + Σ whose value depends on X, and S := [S1, · · · , SD] ∼
Unif(

∏D
d=1 SN+1), i.e. each Sd is uniformly distributed on a unit-sphere SN+1.

Note that X is an input variable in supervised learning, and could also be a latent
variable in unsupervised learning. In the latter case, the shallow Q-EP model (4) of Y|X
can be regarded as an LVM obtained by integrating out the latent function F in model (3),
which is a linear mapping in probabilistic PCA (Tipping and Bishop, 1999) and a multi-
output GP in GP-LVM (Lawrence, 2003, 2005). Hence, we propose the shallow Q-EP model
as a Q-EP LVM by replacing GP with Q-EP in the LVM.

For the convenience of exposition, we set Σ = β−1IN and denote K := CX + Σ. For
K = [k(xn,xm)]N×N we adopt the following automatic relevance determination (ARD)
kernel as in Titsias and Lawrence (2010), e.g., squared exponential (SE), to determine the
dominant dimensions in the input (latent) space:

k(xn,xm) =
1

α
exp

{
−1

2
(xn − xm)Tdiag(γ)(xn − xm)

}
. (5)

3.1. Bayesian Shallow Q-EP

Like Titsias and Lawrence (2010), we adopt a prior for the input (latent) variable X and
introduce the following Bayesian shallow Q-EP model:

marginal likelihood : vec(Y)|X ∼ q-ED(0, ID ⊗K),

prior on input/latent variable : vec(X) ∼ q-ED(0, INQ).
(6)

Compared with the optimization method (Lawrence, 2003), the Bayesian training procedure
is robust to overfitting and can automatically determine the intrinsic dimensionality of the
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nonlinear input (latent) space (Titsias and Lawrence, 2010) by thresholding the correlation
length-scale γ.

For more practical applications, we use variational Bayes, instead of Markov Chain
Monte Carlo (MCMC), to train the shallow Q-EP model (6). The variational inference for
this model is much more complicated than GP-LVM because the log-likelihood (3) is no
longer represented as a quadratic form of data. It should be noted that many expectations
in the evidence lower bound (ELBO) are no longer analytically tractable with a general
power q in the exponent of the density (1), which makes it much more challenging to derive
a computable ELBO. We solve this issue with the help of Jensen’s inequality.

For variational Bayes, we approximate the posterior distribution p(X|Y) ∝ p(Y|X)p(X)
with the uncorrelated q-ED: q(X) ∼ q-ED(µ,diag({Sn})), where each covariance Sn is
of size Q × Q and can be chosen as a diagonal matrix for convenience. To speed up
the computation, sparse variational approximation (Titsias, 2009; Lawrence and Moore,
2007) is adopted by introducing the inducing points X̃ ∈ RM×Q with their function val-
ues U = [f1(X̃), · · · , fD(X̃)] ∈ RM×D. Hence the marginal likelihood p(Y|X) in (6)
can be augmented to a joint distribution of several q-ED random variables: p(Y|X) ∝
p(Y|F)p(F|U,X, X̃)p(U|X̃) , where p(vec(F)|U,X, X̃) ∼ q-ED(vec(KNMK−1

MMU), ID ⊗
(KNN −KNMK−1

MMKMN )) and p(vec(U)|X̃) ∼ q-ED(0, ID ⊗KMM ).

Denote φ(r;Σ,D) := −D
2 log |Σ|+ ND

2

( q
2 − 1

)
log r − 1

2r
q
2 . With the variational distri-

bution q(F,U,X) = p(F|U,X)q(U)q(X) for q(U) ∼ q-ED(M,diag({Σd})), the following
final ELBO is obtained by the similar approach in (SVGP Hensman et al., 2015) (Refer to
Section A.1 for details):

log p(Y) ≥L(q) =
∫
q(X)q(U)p(F|U,X) log

p(Y|F)p(U)p(X)

q(U)q(X)
dFdUdX

≥h∗(Y,X)−KL∗
U −KL∗

X,

h∗(Y,X) =φ(rY;β−1IN , D),

rY =r(Y,Ψ1K
−1
MMM) + βtr(MTK−1

MM (Ψ2 −ΨT
1Ψ1)K

−1
MMM)

+ βD[ψ0 − tr(K−1
MMΨ2)] + β

D∑
d=1

tr(K−1
MMΣdK

−1
MMΨ2),

−KL∗
U =

1

2

D∑
d=1

log |Σd|+ φ

(
tr(MTK−1

MMM) +
D∑

d=1

tr(ΣdK
−1
MM );KMM , D

)
,

−KL∗
X =

1

2

N∑
n=1

log |Sn|+ φ

(
tr(µTµ) +

N∑
n=1

tr(Sn); IN , Q

)
,

(7)

where ψ0 = tr(⟨KNN ⟩q(X)), Ψ1 = ⟨KNM ⟩q(X), and Ψ2 = ⟨KMNKNM ⟩q(X).

Remark 7 When q = 2, φ(r;Σ,D) = −D
2 log |Σ| − 1

2r with r = r(Y,Ψ1K
−1
MMM) becomes

the log-density of matrix normal MNN×D(Ψ1K
−1
MMM, β−1IN , ID). Then the ELBO (7)

reduces to the ELBO as in Equation (7) of (SVGP Hensman et al., 2015) with an extra term
βtr(MTK−1

MM (Ψ2−ΨT
1Ψ1)K

−1
MMM). The computational complexity, O(NM2), remains the

same as GP-LVM (Titsias and Lawrence, 2010).
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Figure 1: 2d latent space of multi-phase oil-flow dataset: contrasting GP-LVM (q = 2)
(left) with two shallow Q-EPs for q = 1.25 (middle) and q = 1 (right). Smaller q tends to
contract the latent space and hence regularizes the learned latent representation, an effect
similarly existing among ridge regression, elastic-net, and Lasso.

We demonstrate the behavior of shallow Q-EP as an LVM in unsupervised learning
and contrast it with GP-LVM using the canonical multi-phase oil-flow dataset (Titsias and
Lawrence, 2010) that consists of 1000 observations (12-dimensional) corresponding to three
different phases of oil-flow. Figure 1 visualizes the 2d latent subspaces identified with two
most dominant latent dimensions found by GP-LVM (left) and two shallow Q-EP models
with q = 1.25 (middle) and q = 1 (right) respectively. The vertical and horizontal bars
indicate axis aligned uncertainty around each latent point. As GP-LVM corresponds to a
shallow Q-EP with q = 2, the parameter q > 0 controls a regularization effect of shallow
Q-EP: the smaller q leads to more regularization on the learned latent representations and
hence yields clusters more aggregated, as illustrated by the green class in upper row of
Figure 1. All models identify three intrinsic dimensions, as indicated by three dominant
inverse lengthscales in the lower row.

4. Deep Q-EP Model

Now we construct the deep Q-EP model by stacking multiple shallow Q-EP layers introduced
in Section 3, similarly as building deep GP with GP-LVMs (Damianou and Lawrence, 2013).
More specifically, we consider a hierarchy of L shallow Q-EP layers (6) as follows:

ynd = f0d (x
1
n) + ε0nd, d = 1, · · · , D0, x1

n ∈ RD1 ,

x1nd = f1d (x
2
n) + ε1nd, d = 1, · · · , D1, x2

n ∈ RD2 ,

...
...

...
...

xL−1
nd = fL−1

d (zn) + εL−1
nd , d = 1, · · · , DL−1, zn ∈ RDL ,
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where εℓ ∼ q-ED(0,Γℓ), f ℓ ∼ q-EP(0, kℓ, IDℓ
) for ℓ = 0, · · · , L− 1 and Y = X0, Z = XL.

Consider the prior Z ∼ q-ED(0, INDL
). The joint probability, augmented with the

inducing points X̃ℓ+1 and the associated function values Uℓ = [f ℓd(X̃
ℓ+1)]

Dℓ+1

d=1 , is de-

composed as p({Xℓ,Fℓ,Uℓ}L−1
ℓ=0 ,Z) =

∏L−1
ℓ=0 p(X

ℓ|Fℓ)p(Fℓ|Uℓ,Xℓ+1)p(Uℓ) · p(Z). And we

use the variational distribution Q =
∏L−1

ℓ=0 p(F
ℓ|Uℓ,Xℓ+1)q(Uℓ)q(Xℓ+1), with q(Xℓ+1) =

q-ED(µℓ+1, diag({Sℓ+1
n })). Then the ELBO becomes

L(Q) =

∫
{Fℓ,Uℓ,Xℓ+1}L−1

ℓ=0

Q log
p({Xℓ,Fℓ,Uℓ}L−1

ℓ=0 ,Z)∏L−1
ℓ=0 q(U

ℓ)q(Xℓ+1)

L−1∏
ℓ=0

dFℓdUℓdXℓ+1

= h0 −KLU0 +

L−1∑
ℓ=1

[hℓ −KLUℓ +Hq(Xℓ)]−KLZ,

where hℓ =
〈
log p(Xℓ|Fℓ)

〉
q(Fℓ)q(Xℓ+1)q(Xℓ)

with q(X0) = q(Y) ≡ 1. Based on the previous

bound (7), we have for ℓ = 1, · · · , L− 1 (Refer to Section A.2 for details):

h0 ≥h∗(Y,X1), hℓ ≥ h∗(Xℓ,Xℓ+1) = φ(rµℓ ; Γℓ, Dℓ), −KLUℓ ≥ −KL∗
Uℓ , Hq(Xℓ) ≥ H∗

Xℓ

rµℓ =r(µℓ,Ψℓ
1(K

ℓ
MM )−1Mℓ) + tr((Mℓ)

T
(Kℓ

MM )−1(Ψℓ
2 − (Ψℓ

1)
T
(Γℓ)−1Ψℓ

1)(K
ℓ
MM )−1Mℓ)

+Dℓ[ψ
ℓ
0 − tr((Kℓ

MM )−1Ψℓ
2)] +

Dℓ∑
d=1

tr((Kℓ
MM )−1Σℓ

d(K
ℓ
MM )−1Ψℓ

2)

+ tr((IDℓ
⊗ (Γℓ)−1) diag({Sℓ

n})),

−KL∗
Uℓ =

1

2

Dℓ∑
d=1

log |Σℓ
d|+ φ

(
tr((Mℓ)

T
(Kℓ

MM )−1Mℓ) +

Dℓ∑
d=1

tr(Σℓ
d(K

ℓ
MM )−1);Kℓ

MM , Dℓ

)
,

H∗
Xℓ

=
1

2

N∑
n=1

log |Sℓ
n|, −KL∗

Z =
1

2

N∑
n=1

log |SL
n |+ φ

(
tr((µL)

T
µL) +

N∑
n=1

tr(SL
n); IN , DL

)
,

where ψℓ
0 = tr((Γℓ)−1⟨Kℓ

NN ⟩q(Xℓ+1)), Ψ
ℓ
1 = ⟨Kℓ

NM ⟩q(Xℓ+1), and Ψℓ
2 = ⟨Kℓ

MNKℓ
NM ⟩q(Xℓ+1).

5. Numerical Experiments

In this section, we compare our proposed deep Q-EP with deep GP (DGP Damianou
and Lawrence, 2013), deep kernel learning with GP (DKL-GP Wilson et al., 2016), and
deep sigma point process (DSPP Jankowiak et al., 2020b) using simulated and benchmark
datasets. In simulations, deep Q-EP model manifests unique features in properly modeling
inhomogeneous data. For benchmark regression and classification problems, deep Q-EP
demonstrates superior or comparable numerical performance. In most cases, 2 layer struc-
ture is sufficient for deep Q-EP to have superior or comparable performance compared
with deep GP, and DSPP. A large feature extracting neural network (DNN with structure
DL−1000−500−50−D0) is employed before one GP layer for DKL-GP unless stated other-
wise. The Matérn kernel (ν = 1.5) is adopted for all the models with trainable hyperparame-
ters (magnitude and correlation strength) and q = 1 is chosen in Q-EP and deep Q-EP mod-
els for handling data inhomogeneity. All the computer codes are implemented in GPyTorch

(Gardner et al., 2018) available at https://github.com/lanzithinking/DeepQEP.
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(a) Shallow GP regression. (b) Shallow Q-EP regression.

(c) Deep GP regression. (d) Deep Q-EP regression.

(e) DKL-GP regression. (f ) DSPP regression.

Figure 2: Comparing deep Q-EP (2(d)) with cutting-edge deep models including deep GP
(2(c)), DKL-GP (2(e)) and DSPP (2(f )) on modeling a 2d-output time series.

5.1. Regression

Time Series We first consider a simulated 2-dimensional time series from Li et al. (2023),
one with step jumps and the other with sharp turnings, whose true trajectories are as follows:

uJ(t) = 1, t ∈ [0, 1]; 0.5, t ∈ (1, 1.5]; 2, t ∈ (1.5, 2]; 0, otherwise;

uT(t) = 1.5t, t ∈ [0, 1]; 3.5− 2t, t ∈ (1, 1.5]; 3t− 4, t ∈ (1.5, 2]; 0, otherwise.

We generate time series {yi}Ni=1 by adding Gaussian noises to the true trajectories eval-

uated at N = 100 evenly spaced points ti ∈ [0, 2], i.e., y∗
i = [uJ(ti), uT (ti)]

T + εi, εi
iid∼

N(0, σ2I2), with σ = 0.1, i = 1, · · · , N. Then we make prediction over 50 points evenly
spread over [0, 2].

Abrupt changes exist in these time series for either values or directions, hence pose
challenges for standard GP as an L2 penalty based regression method. As shown in Figure
2, results by both deep GP and deep Q-EP are comparatively better than their shallow
(one-layer) versions. Among these models, deep Q-EP yields the most accurate prediction
and the tightest uncertainty bound (refer to Table B.1) due to its L1 regularization feature
that is more suitable to capture these abrupt changes. The loss of (deep) Q-EP model may
not be comparable to those for other models because they are based on different probability
distributions, and yet it converges faster and and more stably than GP (and the other two
benchmark deep probabilistic models), supporting its advantage in convergence (Remark
4). Both DKL-GP and DSPP suffer from slow convergence and unstable training. As
seen in Table B.1 comparing mean of absolute error (MAE), standard deviation (STD) of
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variational distribution and coefficient of determination (R2), their results possess larger
standard errors from repeated experiments, even though few individual runs may yield
better results than Deep Q-EP.

UCI Regression Benchmark Next, we test deep Q-EP on a series of benchmark re-
gression datasets (Wilson et al., 2016; Jankowiak et al., 2020b) from UCI machine learning
repository. They are selected to represent data at different scales. As in Table 1, for most
cases, deep Q-EP demonstrates superior or comparable performance measured by testing
data in terms of MAE (accuracy), STD (uncertainty) and NLL because the Q-EP prior
provides crucial regularization for datasets where sparse regression is more appropriate.
Note that, the marginal likelihood (NLL) values are not comparable among different mod-
els (with distinct probability distributions, refer to (1)) and are only listed for reference.
As the data volume increases, DNN feature extractor starts to catch up so that DKL-GP
surpasses the vanilla deep Q-EP in the song dataset.

Table 1: Regression on UCI datasets: mean of absolute error (MAE), standard deviation of predic-
tive distribution (PSD) and negative logarithm of marginal likelihood (NLL) values by various deep
models. Each result of the upper part is averaged over 10 experiments with different random seeds;
values in the lower part are standard errors of these repeated experiments.

Deep GP Deep Q-EP DKL-GP DSPP

Dataset N, d MAE PSD NLL MAE PSD NLL MAE PSD NLL MAE PSD NLL

concrete 1030, 8 10.586 1.846 25.473 9.114 2.179 4.020 9.770 2.943 10.837 10.740 2.567 9.882
gas 2565, 128 0.187 0.395 0.402 0.136 0.163 1.069 0.965 0.611 2.236 0.292 0.385 -0.431
elevators 16599, 18 0.0639 0.088 -1.035 0.0636 0.067 -0.008 0.101 0.084 -0.197 0.066 0.087 -1.005
protein 45730, 9 0.385 0.526 0.755 0.351 0.363 1.873 0.364 0.425 0.769 0.365 0.208 0.148
song 515345, 90 0.379 0.478 0.686 0.398 0.397 1.869 0.355 0.440 0.640 0.394 0.235 0.501

concrete 1030, 8 0.681 0.010 2.644 0.809 0.032 0.054 0.504 0.113 0.946 1.675 0.506 2.312
gas 2565, 128 0.071 0.058 0.162 0.027 0.027 0.107 0.291 0.082 0.755 0.239 0.241 0.874
elevators 16599, 18 2.86e-4 4.08e-4 6.79e-3 3.95e-4 1.97e-4 6.24e-3 0.070 5.97e-3 1.738 9.70e-4 0.024 0.056
protein 45730, 9 4.77e-3 4.16e-3 7.47e-3 4.46e-3 3.83e-3 0.011 0.083 0.040 0.197 8.84e-3 0.024 0.016
song 515345, 90 1.73e-3 4.13e-3 3.98e-3 0.041 0.039 0.084 5.48e-3 5.08e-3 0.016 0.029 0.124 0.191

5.2. Classification

Simulation with Inhomogeneous Boundaries Consider a simulated classification prob-
lem with labels created on annular regions of a rhombus for i = 1, · · · , N :

yi = [cos(0.4 ∗ u ∗ π∥xi∥1)] + 1, u ∼ Unif[0, 1], xi ∼ N (0, I2),

where [x] rounds x to the nearest integer. We generate N = 500 random data points ac-
cording to the formula which results in 3 classes’ labels as illustrated in the leftmost panel of
Figure 3. Note, the class regions have clear shapes with edges and are not simply connected.
Q-EP and deep Q-EP are superior than their GP rivals in modeling such inhomogeneous
data. Indeed, Figure 3 shows that even with small amount of data, Q-EP has better decision
boundaries than GP and a 3-layer deeper Q-EP yields the best result closest to the truth
among all the models. On the contrary, (deep) GP tends to yield round and over-smooth
decision boundaries because of its L2 nature. This is further illustrated in Figure B.1 with
more fine details revealed by the logits. Note, it is understandable that none of these models
characterizes the correct boundary around the corners due to the absence of data. Table
B.2 compares their performance on testing data in terms of classification accuracy (ACC),
area under ROC curve (AUC) and deep Q-EP achieves the highest accuracy.
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Figure 3: Comparing shallow (1-layer), deep (2-layer) and deeper (3-layer) Q-EPs with
GP, deep GP, DKL-GP and DSPP on a classification problem defined on annular rhombus.
Circles, upper and lower triangles label three classes in the training data.

Table 2: Classification on UCI datasets: accuracy (ACC), area under ROC curve (AUC) and
negative logarithm of marginal likelihood (NLL) values by various deep models. Each result of the
upper part is averaged over 10 experiments with different random seeds; values in the lower part are
standard errors of these repeated experiments.

Deep GP Deep Q-EP DKL-GP DSPP

Dataset N, d, k ACC AUC NLL ACC AUC NLL ACC AUC NLL ACC AUC NLL

haberman 306, 3, 2 0.727 0.460 5.803 0.732 0.505 5.516 0.690 0.511 6.060 0.716 0.496 27.046
dermatology 366, 94, 4 0.443 0.494 14.972 0.512 0.527 14.330 0.339 0.515 16.508 0.458 0.482 72.449
tic-tac-toe 957, 27, 2 0.971 0.515 2.719 0.972 0.532 -0.572 0.885 0.653 3.692 0.736 0.503 233.559
car 1728, 21, 4 0.990 1.000 2.237 0.983 0.999 -0.630 0.737 0.826 8.906 0.758 0.848 7.48e3
nursery 12959, 27, 5 0.9996 0.967 2.841 0.9996 0.982 -13.401 0.503 0.654 69.032 0.717 0.839 1.43e4

haberman 306, 3, 2 0.012 0.081 0.271 0.020 0.072 1.156 0.092 0.093 0.728 0.031 0.048 42.901
dermatology 366, 94, 4 0.053 0.047 1.303 0.071 0.054 0.510 0.102 0.052 1.505 0.072 0.048 8.668
tic-tac-toe 957, 27, 2 0.021 0.081 0.407 0.040 0.369 0.880 0.270 0.172 2.271 0.227 0.442 123.140
car 1728, 21, 4 9.14e-3 2.27e-4 1.208 7.04e-3 1.34e-3 1.927 0.378 0.282 4.586 0.220 0.183 1.03e4
nursery 12959, 27, 5 6.28e-8 0.042 4.664 6.28e-8 0.031 94.847 0.416 0.275 78.647 0.178 0.083 2.01e4

UCI Classification Benchmark We also compare deep Q-EP with other deep proba-
bilistic models on several benchmark classification datasets with different sizes from UCI
machine learning repository. Table 2 summarizes the comparison results in terms of ACC,
AUC and NLL. Deep Q-EP still excels in most cases or has comparable performance, further
supporting its advantage in the classification task.

5.3. Inverse Reconstruction of Tomography Image

Computed tomography (CT) is a medical imaging technique to obtain internal details of
human body by measuring X-ray signals through body tissues at multiple angles. The
internal image, X, viewed as a function of pixels on the unit square [0, 1]2 discretized
with size n × n, is mapped by a known Radon transformation, T , to obtain the noise (ε)
contaminated observations (known as sinogram) Y with ns sensors at nθ angles:

vec(Y) = Tvec(X) + ε, Y ∈ Rnθ×ns , T ∈ Rnθns×n2
, X ∈ Rn×n.
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Figure 4: Shepp-Logan phantom: relative error, SSIM, and HarrPSI of reconstructed im-
ages obtained by deep GP, deep QEP and DSPP respectively with various depths. Each
configuration is repeated for 10 times with different random seeds and the standard errors
for the repeated results are indicated by the error bars.

We consider the Shepp-Logan phantom (Shepp and Logan, 1974) as an inverse prob-
lem for reconstructing the true CT image, X†, from the observed sinogram, Y, using deep
probabilistic models. In this example, we set n = 128, nθ = 90, ns = 100 and generate
ε with signal noise ratio ∥TX†∥/∥ε∥ = 100. The high-dimensional (Q = 1282 = 16, 384)
true image (X†) is illustrated in the leftmost of Figure B.4, which also compares different
reconstructions, X̂, by deep GP, deep QEP and DSPP. We omit DKL-GP due to its incom-
parably worse results. In Figure 4, we further compare these models with various depths
in terms of the relative error (∥X̂ − X†∥/∥X†∥), the structured similarity index (SSIM)
(Wang et al., 2004), and the Haar wavelet-based perceptual similarity index (HaarPSI)
(Reisenhofer et al., 2018). We observe that the model performance (lower errors and higher
imaging metrics) improves while the number of layers (depth) increases. The deep QEP
outperforms the other two with sufficient depths (5 in relative error, 3 in SSIM and all cases
in HaarPSI).

6. Conclusion

In this paper, we generalize Q-EP to deep Q-EP, which includes deep GP as a special case.
Moreover, deep Q-EP inherits the flexible regularization controlled by a parameter q > 0,
which is advantageous in learning latent representations and modeling data inhomogeneity.
We first generalize Bayesian GP-LVM to Bayesian QEP-LVM (as shallow Q-EP layer) and
develop the variational inference for it. Then we stack multiple shallow Q-EP layers to build
the deep Q-EP model. The novel deep model demonstrates numerical benefits in various
learning tasks and can be combined with neural network for better characterizing complex
latent representations in different data applications.

As common in GP and NN models, we do observe multi-modality of the posterior
distributions, especially in the hyper-parameter spaces. Sub-optimal solutions can appear
in the stochastic training process. These issues can be alleviated by dispersed or diversified
initialization, or with adaptive training schedulers. One potential application of deep Q-EP
is the inverse learning, similarly as done by deep GP (Jin et al., 2017; Abraham and Deo,
2023). Theory of the contraction properties (Finocchio and Schmidt-Hieber, 2023) is also
an interesting research direction.
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Appendix A. Computation of Variational Lower Bounds

A.1. Shallow Q-EP

The variational lower bound for the log-evidence is

log p(Y) ≥ L(q) :=
∫
q(X) log

p(Y|X)p(X)

q(X)
dX = L̃(q)−KL(q(X)∥p(X)),

where the first term L̃(q) =
∫
q(X) log p(Y|X)dX is intractable and hence difficult to bound.

A.1.1. Lower bound for the marginal likelihood

To address such intractability issue and speed up the computation, sparse variational ap-
proximation (Titsias, 2009; Lawrence and Moore, 2007) is adopted by introducing a set of
inducing points X̃ ∈ RM×Q with their function values U = [f1(X̃), · · · , fD(X̃)] ∈ RM×D.
Hence the marginal likelihood p(Y|X) defined in (6) can be augmented to the following
joint distribution each being a q-ED:

p(Y|X) ∝ p(Y|F)p(F|U,X, X̃)p(U|X̃),

where we have vec(U)|X̃ ∼ q-ED(0, ID ⊗KMM ) and the conditional distribution

vec(F)|U,X, X̃ ∼ q-ED(vec(KNMK−1
MMU), ID ⊗ (KNN −KNMK−1

MMKMN )). (8)

The inducing points X̃ are regarded as variational parameters and hence they are dropped
from the following probability expressions. We then approximate p(F,U|X) ∝ p(F|U,X)p(U)
with q(F,U) = p(F|U,X)q(U) in another variational Bayes as follows

log p(Y|X) ≥
∫
q(F,U) log

p(Y|F)p(F|U,X)p(U)

q(F,U)
dFdU

=

∫
p(F|U)q(U)dU log p(Y|F)dF+

∫
q(U) log

p(U)

q(U)
dU.

(9)

Different from Titsias (2009); Titsias and Lawrence (2010) using the variational calculus,
(SVGP Hensman et al., 2015) computes the marginal likelihood ELBO (9) in two stages.
Instead of the variational free form, we follow Hensman et al. (2015) to use the variational
distribution for U of the following format conjugate to p(F|U):

q(U) ∼ q-ED(M, diag({Σd})). (10)

Noticing that F|U follows a conditional q-exponential (8), we can obtain the variational
distribution of F, q(F), by marginalizing U out as follows

q(F) =

∫
q(F,U)dU =

∫
p(F|U)q(U)dU

∼q-ED(vec(KNMK−1
MMM),

ID ⊗ (KNN −KNMK−1
MMKMN ) + diag({KNMK−1

MMΣdK
−1
MMKMN})).
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Therefore, the variational lower bound of the marginal likelihood (9) becomes

log p(Y|X) ≥ ⟨log p(Y|F)⟩q(F) −KL(q(U)∥p(U)).

Note, log p(Y|F) is not a random quadratic form in general and hence the expec-
tation in the first term has no explicit formula. Denote by log p(Y|F) = φ(r(Y,F)),
where φ(r) := DN

2 log β + ND
2

( q
2 − 1

)
log r − 1

2r
q
2 is convex for q ∈ (0, 2], and r(Y,F) =

vec(Y − F)T(β−1IND)
−1vec(Y−F) = βtr((Y−F)(Y − F)T) is a quadratic form of random

variable Y. Therefore, by Jensen’s inequality, we can bound from below as

⟨log p(Y|F)⟩q(F) = ⟨φ(r(Y,F))⟩q(F) ≥ φ(⟨r(Y,F)⟩q(F)).

where we can calculate the expectation of the quadratic form r(Y,F) as

⟨r(Y,F)⟩q(F) =r(Y,KNMK−1
MMM) + βDtr(KNN −KNMK−1

MMKMN )

+ β
D∑

d=1

tr(KNMK−1
MMΣdK

−1
MMKMN ).

Denote by h(Y,X) = ⟨⟨log p(Y|F)⟩q(F)⟩q(X). Then we solve the intractable expectation
by another Jensen’s inequality

h(Y,X) ≥ φ(⟨⟨r(Y,F)⟩q(F)⟩q(X)) =: h∗(Y,X).

Define ψ0 = tr(⟨KNN ⟩q(X)), Ψ1 = ⟨KNM ⟩q(X), and Ψ2 = ⟨KMNKNM ⟩q(X). Further we
calculate the expectations of quadratic terms similarly

⟨⟨r(Y,F)⟩q(F)⟩q(X) =⟨r(Y,KNMK−1
MMM)⟩q(X) + βD[ψ0 − tr(K−1

MMΨ2)]

+ β
D∑

d=1

tr(K−1
MMΣdK

−1
MMΨ2),

⟨r(Y,KNMK−1
MMM)⟩q(X) =r(Y,Ψ1K

−1
MMM) + βtr(MTK−1

MM (Ψ2 −ΨT
1Ψ1)K

−1
MMM).

(11)
We also need to compute the K-L divergence KLU := KL(q(U)∥p(U))

KLU =

∫
q(U) log q(U)dU−

∫
q(U) log p(U)dU = −Hq(U)− ⟨log p(U)⟩q(U).

Denote by r = vecT(U−M)
T
diag({Σd})−1vecT(U−M). Then log q(U) = −1

2

∑D
d=1 log |Σd|+

MD
2

( q
2 − 1

)
log r − 1

2r
q
2 . From (Proposition A.1. of Li et al., 2023) we know that r

q
2 ∼

χ2(MD). Therefore

Hq(U) =
1

2

D∑
d=1

log |Σd|+
MD

2

(q
2
− 1
) 2

q
H(χ2(MD)) +

MD

2

=
1

2

D∑
d=1

log |Σd|+
MD

2

(
1− 2

q

)[
MD

2
+ log

(
2Γ

(
MD

2

))
+

(
1− MD

2

)
ψ

(
MD

2

)]
+
MD

2
.
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Denote by φ0(r) := −D
2 log |KMM |+ MD

2

( q
2 − 1

)
log r − 1

2r
q
2 . Then by Jensen’s inequality

again

⟨log p(U)⟩q(U) = ⟨φ0(tr(U
TK−1

MMU))⟩q(U) ≥ φ0(⟨tr(UTK−1
MMU)⟩q(U)),

⟨tr(UTK−1
MMU)⟩q(U) = tr(MTK−1

MMM) +
D∑

d=1

tr(ΣdK
−1
MM ).

The elements of ψ0, Ψ1 and Ψ2 can be computed as

ψn
0 =

∫
k(xn,xn)q-ED(xn|µn,Sn)dxn,

(Ψ1)nm =

∫
k(xn, zm)q-ED(xn|µn,Sn)dxn,

(Ψn
2 )mm′ =

∫
k(xn, zm)k(zm′ ,xn)q-ED(xn|µn,Sn)dxn.

With ARD SE kernel (5), we have ψ0 = Nα−1. While the integration in Ψ1 and Ψ2 is in-
tractable in general, we can compute them using Monte Carlo approximation. Alternatively,
we approximate

(Ψ1)nm ≈ α−1 exp

{
−1

2
⟨(xn − zm)T diag(γ)(xn − zm)⟩q(xn)

}
= α−1 exp

{
−1

2
[(µn − zm)T diag(γ)(µn − zm) + tr(diag(γ)Sn)]

}
,

(Ψn
2 )mm′ ≈ α−2 exp

−1

2

∑
m̃=m,m′

(µn − zm̃)T diag(γ)(µn − zm̃)) + tr(diag(γ)Sn)

 .

If we use the ARD linear form, k(x,x′) = xT diag(γ)x′, then we have

ψn
0 = tr(diag(γ)(µnµ

T
n + Sn)), (Ψ1)nm = µT

n diag(γ)zm,

(Ψn
2 )mm′ = zTm diag(γ)(µnµ

T
n + Sn) diag(γ)zm′ .

A.1.2. Lower bound for the K-L divergence added terms

Lastly, we need to compute the K-L divergence

KL(q(X)∥p(X)) =

∫
q(X) log q(X)dX−

∫
q(X) log p(X)dX = −Hq(X)− ⟨log p(X)⟩q(X).

Denote by r = vec(X− µ)T diag({Sn})−1vec(X−µ). Then log q(X) = −1
2

∑N
n=1 log |Sn|+

NQ
2

( q
2 − 1

)
log r − 1

2r
q
2 . From (Proposition A.1. of Li et al., 2023) we know that r

q
2 ∼

χ2(NQ). Therefore

Hq(X) =
1

2

N∑
n=1

log |Sn|+
NQ

2

(q
2
− 1
) 2

q
H(χ2(NQ)) +

NQ

2

=
1

2

N∑
n=1

log |Sn|+
NQ

2

(
1− 2

q

)[
NQ

2
+ log

(
2Γ

(
NQ

2

))
+

(
1− NQ

2

)
ψ

(
NQ

2

)]
+
NQ

2
.
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Denote by φ0(r) :=
NQ
2

( q
2 − 1

)
log r − 1

2r
q
2 . Then similarly by Jensen’s inequality

⟨log p(X)⟩q(X) = ⟨φ0(tr(X
TX))⟩q(X) ≥ φ0(⟨tr(XTX)⟩q(X)),

⟨tr(XTX)⟩q(X) = tr(µTµ) +
N∑

n=1

tr(Sn).

A.2. Deep Q-EP

We only consider the hierarchy of two QEP-LVMs because the general L-layers follows by
induction:

ynd = fYd (xn) + εYnd, d = 1, · · · , D, xn ∈ RQ,

xnq = fXq (zn) + εXnq, q = 1, · · · , Q, zn ∈ RQZ ,
(12)

where εY ∼ q-ED(0,ΓY ), εX ∼ q-ED(0,ΓX), fY ∼ q-EP(0, kY ) and fX ∼ q-EP(0, kX).
Consider the prior Z ∼ q-ED(0, INQZ

). The variational inference for p(Z|Y) requires
maximizing the following ELBO

log p(Y) ≥ L(Q) :=

∫
Z,FX ,X,FY

Q log
p(Y,FY ,X,FX ,Z)

Q
, (13)

where the joint probability can be decomposed

p(Y,FY ,X,FX ,Z) = p(Y|FY )p(FY |X) · p(X|FX)p(FX |Z)p(Z)

Similarly as in Section 3.1, sparse variational approximation (Titsias and Lawrence, 2010)
is adopted to introduce inducing points X̃ ∈ RM×Q, Z̃ ∈ RM×QZ with associated function
values UY ∈ RM×D,UX ∈ RM×Q respectively. Hence the augmented probability replaces
the joint probability:

p(Y,FY ,X,FX ,Z,UY ,UX) =p(Y|FY )p(FY |UY ,X)p(UY |X̃)·
p(X|FX)p(FX |UX ,Z)p(UX |Z̃)p(Z),

where FY and UY are drawn from the same Q-EP; and similarly are FX and UX . Now we
specify the approximation distribution as

Q = p(FY |UY ,X)q(UY )q(X) · p(FX |UX ,Z)q(UX)q(Z).

and choose q(UY ) and q(UX), and q(X) and q(Z) to be uncorrelated q-ED’s:

q(UY ) ∼ q-ED(MY , diag({ΣY
d })), q(UX) ∼ q-ED(MX , diag({ΣX

d })),
q(X) ∼ q-ED(µX , diag({SX

n })), q(Z) ∼ q-ED(µZ ,diag({SZ
n })).

Then the ELBO (13) becomes

L(Q) :=

∫
Z,UX ,FX ,X,UY ,FY

Q log
p(Y|FY )p(UY )p(X|FX)p(UX)p(Z)

q(UY )q(X)q(UX)q(Z)

= h(Y,X)−KLUY + h(X,Y)−KLUX +Hq(X)−KLZ,
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where we have

h(Y,X) =
〈
log p(Y|FY )

〉
q(FY )q(X)

, h(X,Z) =
〈
log p(X|FX)

〉
q(FX)q(X)q(Z)

.

Note, h(Y,X) ≥ h∗(Y,X) is the same as in the bound (7) for Bayesian LVM. However,
h(X,Z) has an extra integration with respect to q(X). Replacing X with Z and Y with X
in (11), we compute

⟨r(X,Ψ1(K
X
MM )−1UX)⟩q(X) = r(µX ,Ψ1(K

X
MM )−1UX) + tr((ID ⊗ (ΓX)−1) diag({SX

n })).

Therefore we have a updated bound for h(X,Z) ≥ h∗(X,Z) = φ(rµX ; ΓX , Q), where

rµX =r(µX ,Ψ1(K
X
MM )−1MX) + tr((MX)

T
(KX

MM )−1(ΨX
2 −ΨT

1 (Γ
X)−1Ψ1)(K

X
MM )−1MX)

+Q[ψ0 − tr((KX
MM )−1ΨX

2 )] +

Q∑
d=1

tr((KX
MM )−1ΣX

d (KX
MM )−1ΨX

2 )

+ tr((IQ ⊗ (ΓX)−1) diag({SX
n })).

Finally, we have

Hq(X) ≥ 1

2

N∑
n=1

log |SX
n |, −KL(q(Z)∥p(Z)) ≥ 1

2

N∑
n=1

log |SZ
n |+φ0(tr((µ

Z)
T
µZ)+

N∑
n=1

tr(SZ
n )),

where φ0(r) :=
NQZ
2

( q
2 − 1

)
log r − 1

2r
q
2 .

Appendix B. More Numerical Results

B.1. Time Series Regression

Table B.1: Regression on simulated time series: mean of absolute error (MAE), standard deviation
of predictive distribution (PSD), coefficient of determination (R2), negative logarithm of marginal
likelihood (NLL) and running time by various deep models. Each result of the upper part is averaged
over 10 experiments with different random seeds; values after ± are standard errors of these repeated
experiments.

Model MAE PSD R2 NLL time

Deep GP 0.058 ± 0.040 0.180 ± 0.051 0.951 ± 0.061 -1.432 ± 0.617 48.409 ± 0.369
Deep QEP 0.049 ± 0.007 0.087 ± 0.004 0.977 ± 0.008 -2.265 ± 0.158 49.332 ± 0.475
DKL-GP 0.108 ± 0.135 0.163 ± 0.039 0.830 ± 0.382 0.102 ± 5.055 9.978 ± 0.172
DSPP 0.070 ± 0.047 0.249 ± 0.062 0.929 ± 0.094 -2.192 ± 0.684 36.495 ± 0.784

B.2. Simulated Classification
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(a) GP classification. (b) Q-EP classification.

(c) Deep GP classification. (d) Deep Q-EP classification.

(e) DKL-GP classification. (f ) DSPP classification.

Figure B.1: Comparing Q-EP (B.1(b)) and deep Q-EP (B.1(d)) with GP (B.1(a)), deep
GP (B.1(c)), DKL-GP (B.1(e)) and DSPP (B.1(f )) on a classification problem defined on
annular rhombus.

Table B.2: Classification on simulated annual rhombus: accuracy (ACC), area under ROC curve
(AUC), negative logarithm of marginal likelihood (NLL) and running time by various deep models.
Each result of the upper part is averaged over 10 experiments with different random seeds; values
after ± are standard errors of these repeated experiments.

Model ACC AUC NLL time

GP 0.810 ± 0 0.940 ± 0 17.673 ± 0 20.622 ± 0.346
Deep GP 0.825 ± 0.026 0.905 ± 0.012 534.782 ± 69.768 124.486 ± 2.978
QEP 0.834 ± 0 0.935 ± 0 4.670 ± 0 20.442 ± 0.559
Deep QEP 0.856 ± 0.015 0.878 ± 0.019 96.736 ± 7.865 124.752 ± 0.575
DKL-GP 0.664 ± 0.196 0.732 ± 0.200 17.094 ± 5.533 23.874 ± 0.316
DSPP 0.744 ± 0.023 0.829 ± 0.056 588.543 ± 302.576 108.076 ± 1.725
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Deep Q-Exponential Processes

Figure B.2: Comparing shallow (1-layer) and deep (2-layer) Q-EPs with GP, deep GP,
deeper GP (3-layer), DKL-GP and DSPP on a classification problem defined on annulus.
Circles, upper and lower triangles label three classes in the training data.

(a) GP classification. (b) Q-EP classification.

(c) Deep GP classification. (d) Deep Q-EP classification.

(e) DKL-GP classification. (f ) DSPP classification.

Figure B.3: Comparing Q-EP (B.3(b)) and deep Q-EP (B.3(d)) with GP (B.3(a)), deep
GP (B.3(c)), DKL-GP (B.3(e)) and DSPP (B.3(f )) on a classification problem defined on
annulus.
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Table B.3: Classification on simulated annulus: accuracy (ACC), area under ROC curve (AUC),
negative logarithm of marginal likelihood (NLL) and running time by various deep models. Each
result of the upper part is averaged over 10 experiments with different random seeds; values after ±
are standard errors of these repeated experiments.

Model ACC AUC NLL time

GP 0.951 ± 0 0.989 ± 0 18.821 ± 0 49.425 ± 1.728
Deep GP 0.953 ± 0.03 0.991 ± 0.001 467.216 ± 45.845 199.600 ± 10.871
QEP 0.952 ± 0 0.985 ± 0 4.598 ± 0 49.301 ± 1.283
Deep QEP 0.950 ± 0.008 0.992 ± 0.003 123.726 ± 12.965 197.677 ± 12.354
DKL-GP 0.854 ± 0.080 0.941 ± 0.099 19.039 ± 4.223 34.329 ± 0.918
DSPP 0.922 ± 0.026 0.970 ± 0.008 621.152 ± 297.205 166.974 ± 2.839

B.3. Computer Tomography Reconstruction

Figure B.4: Shepp-Logan phantom: true image and estimates by deep GP, deep QEP and
DSPP.
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