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Abstract
Alternative splicing diversifies the transcriptome, yet its regulation remains difficult
to decode. We present CellSpliceNet, an interpretable transformer model that
predicts splicing outcomes across C. elegans neurons by integrating four modalities:
long-range genomic sequence, local RNA regions of interest (ROIs), predicted RNA
secondary structure, and cell-type–specific gene expression. Modality-specific
encoders—including graph-signal scattering for structure and expression—feed
a multimodal multi-head attention module that preserves per-modality signals
while enabling expression-informed interactions with sequence and structure.
Attention pooling highlights salient biology (e.g., splice boundaries and single-
stranded loop regions) and enables deep model interpretability. On held-out data,
CellSpliceNet outperforms strong baselines and achieves Spearman ρ = 0.88,
with robust accuracy across neuron subtypes.

1 Introduction

RNA alternative splicing is a fundamental mechanism that promotes functional diversity in eukaryotic
organisms by allowing a single gene to produce multiple mRNA and protein isoforms [1], thereby
greatly expanding the functional repertoire encoded by the genome [2]. Recent work has shown the
capability of transformers [3] and LLMs [4] to learn motif co-occurrence from large sequence corpora
and surpass classic tools like GeneSplicer and MaxEntScan [5, 6, 7, 8, 9], however comprehensive
modeling of RNA alternative splicing remains a challenge. These models often miss junction-proximal
regulatory motifs, secondary-structure constraints, and cell-specific factors, limiting mechanistic
insight into splicing variation. Major obstacles include RNA’s four-letter alphabet (weakening
standard tokenization), ambiguous splice-related motifs that boost false discoveries, noise from
weakly constrained noncoding regions [10, 11], and the difficulty of modeling cell-specific regulation
driven by interacting splice factors.

To address these challenges, we propose CellSpliceNet, a deep multimodal transformer-based
framework that integrates four key sources of information: the full-length RNA sequence, its predicted
secondary structure, regions of interest (ROIs) around splice junctions, and single-cell gene expression
profiles. By explicitly modeling junction-proximal sequence context—where regulatory elements
often reside—and rendering secondary structures as nucleotide–base-pair graphs, a novel the employ
of geometric scattering on these graphs (with Dirac node signals) to distill multiscale structural cues.
This design enables CellSpliceNet to capture both global and local features critical to splice-site
selection while remaining mechanistically interpretable. CellSpliceNet delivers state-of-the-art
performance alongside fine-grained interpretability for dissecting splicing regulation.
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Figure 1: CellSpliceNet integrates multimodal inputs including (global) sequence , structure ,

(local) region of interest and expression to predict the percentage spliced in (PSI) metric.

2 Methods

Model Overview and Objective We model exon inclusion by predicting percent spliced in
(PSI)—the probability an exon appears in the mature transcript. The model (Fig. 1) is trained
end-to-end to minimize mean squared error between predicted and observed PSI. To capture diverse
splicing mechanisms, we encode four complementary modalities (detailed below).

Full-length RNA sequence To capture long-range regulatory signals that affect splicing, we
tokenize the full-length RNA sequence using a patch-based strategy. Using single nucleotides (A, T,
C, and G) as tokens would confine a computational model to a shallow four-symbol vocabulary [12],
providing little higher-order context; therefore, we instead group contiguous bases into overlapping
k-mer “patches.” Each patch is projected into an embedding space through a linear layer, following
the Vision Transformer paradigm [13].

RNA secondary structure RNA folding can influence exon inclusion by modulating the
accessibility of splice sites and nearby regulatory motifs, a mechanism known as structural
masking [14]. To model this, we extract the intronic regions flanking each target exon and predict
their secondary structures using ViennaRNA [15]. These structures are converted into graphs, with
nodes representing nucleotides and edges representing base pairs. We then cast the structures as
nucleotide–base-pair graphs and pioneer the use of geometric scattering on these graphs (see supp.
mat.), with Dirac node signals, to distill multiscale features relevant to exon inclusion [16].

Regions of interest Regions near splice junctions are enriched for cis-regulatory elements such
as enhancers and silencers that modulate exon inclusion. To isolate these signals, we define regions
of interest (ROIs) that span 200 base pairs upstream and downstream of each splice junction. These
local sequence windows are embedded independently from the full-length transcript to emphasize
short-range sequence features critical to splicing.

Gene expression and splicing-factor dynamics Splicing varies across cell types with splicing-
factor (SF) expression and activity. We integrate single-cell RNA-seq (imputed with MAGIC [17])
for 243 curated SFs, building neuron-type–stratified expression matrices. To capture co-regulation,
we compute pairwise mutual information and discretize it to form SF co-expression graphs (nodes =
SFs; edges = significant dependencies). Each graph is encoded with geometric scattering [16] using
Dirac signals weighted by average expression (App. A), yielding a compact representation of the
regulatory context shaping exon selection.

Fusing heterogeneous modalities Each of the four modalities is processed by a dedicated
Transformer encoder. To enable selective exchange while preserving modality-specific learning, we
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Figure 2: CellSpliceNet is highly competitive for PSI prediction. (a). The ablation study (b). Comparisons
of the CellSpliceNet outperforms 5 different methods on Spearman correlation, Pearson correlation, and R2.
(c). PHATE visualizations of test samples color-coded by PSI values.

use a Zorro-inspired attention mask [18] that blocks cross-modal attention except via designated
fusion tokens; expression is allowed to influence all others to reflect SF control over sequence and
structure. The resulting embeddings are concatenated and passed to an MLP to predict PSI, trained
end-to-end with a squared-error loss (Eqn. (1)).

L = (yi − ŷi)
2; ŷi = LogSigmoid

(
MLP(zcat,i) +MLP(ze,i)

)
(1)

Here, zcat,i represents the concatenated embeddings from all modalities and ze,i is the residual
expression component. This formulation ensures predictions remain within biologically meaningful
bounds while penalizing large deviations from ground truth.

Modality-specific interpretation mechanism CellSpliceNet is a multimodal multi-head
transformer to integrate the four modalities along with a set of learnable fusion tokens. While
conceptually related to a recent work on multimodal protein analysis [19], our approach introduces
more advanced techniques for information fusion. As previously described, the total number of
tokens for the {sequence, structure, ROI, expression} modalities are {N , S, B, K} respectively,
where each token is embedded into RD. Concretely, we denote:

Zseq = {zseq
n }Nn=1, Zroi = {zroi

b }Bb=1, Zstc = {zstc
s }Ss=1, Zexp = {zexp

s }Ks=1,

where z ∈ RD. In addition, we introduce P learnable fusion tokens: Zfus = {zfus
p }Pp=1, zfus

p ∈ RD.
The multimodal tokens are formed by concatenating the modality-specific tokens.

In a vanilla transformer [3], a standard multi-head self-attention module will be used to compute
key K, query Q, and value V as learned projections of Zmultimodal. To do this, we used a Zorro
attention mechanism [18], which accommodates specific attention constraints. Specifically, let
modality(i) ∈ {seq, stc, roi, exp, fus} denote the modality type of the i-th token. We define a Zorro
mask MASK ∈ {0, 1}L×L, where L = N + S +B +K + P , is:

MASKij =

{
1 if modality(i) = modality(j) or modality(i) ∈ {exp, fus}
0 otherwise.

Attention-based pooling and PSI prediction Processing the tokens with the multimodal
transformer module is a dimension-preserving step, which means Hmultimodal ∈ R(N+2S+B+P )×D.
We can therefore re-partition the multimodal hidden state by modality. This gives us the sequence
hidden state (Hseq ∈ RN×D), structure hidden state (Hstc ∈ RS×D), ROI hidden state (Hroi ∈
RB×D), expression hidden state (Hexp ∈ RS×D), and fusion hidden state (Hfus ∈ RP×D). For each
modality, we apply attention pooling to aggregate the hidden state into a single vector, following
RELSO [20]. Concretely, for each modality-specific hidden state Hmod, we learn a low-dimensional
attention score:

βmod = Softmax(θmod
2 σ(BatchNorm(θmod

1 (Hmod)⊤))),
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Figure 3: Illustration of modality-specific attention analyses enabled by CellSpliceNet.

where βmod is the attention weights across the input for the given modality, θmod
1 ∈ Rd×D and

θmod
2 ∈ R1×d are learned parameters, BatchNorm denotes a batch normalization layer, and σ(·)

denotes a GELU activation. The resulting attention weights βmod are applied to Hmod to produce a
single hidden state vector: hmod = (βmod)⊤Hmod ∈ RD. We obtain pooled hidden states for sequence,
structure, ROI, expression, and fusion. These are concatenated: hcat =

[
hseq||hstc||hroi||hexp||hfus

]
.

We then feed this concatenated vector hcat into a k-layer MLP, and the output of the MLP is
subsequently passed through a linear layer. The final prediction is obtained using a LogSigmoid
activation function, effectively mapping the output to the log-probability space.

Results

Performance We ablated the four CellSpliceNet inputs to quantify their respective contributions,
namely the full-length RNA sequence, ROI, secondary structure, and gene expression. The full
multimodal CellSpliceNet achieved Spearman 0.88 on PSI prediction; removing any single
modality reduced performance to 0.74 (No Sequence), 0.81 (No ROI), 0.82 (No Structure), and 0.84
(No Expression), underscoring their complementarity (Fig. 2a). For benchmarking, we compared
CellSpliceNet with SpliceTransformer [21], SpliceFinder [22], SpliceAI [23], Pangolin [24],
and ViT [13] using Spearman, Pearson, and R2 (Fig. 2b). CellSpliceNet led by +0.07 on both
correlations and +0.11 R2 over ViT, with even larger margins over the four domain-specific baselines.
Results are means across three random seeds, confirming multimodal integration yields state-of-the-
art PSI prediction. Additionally, PHATE [25] embeddings were generated from the test set sequence
modality prior to the final MLP layer (Fig. 2c). Embeddings are colored by target and predicted PSI
values, revealing a close alignment between the learned latent space and the ground truth. Taken
together, these results demonstrate that the multimodal architecture of CellSpliceNet advances the
state of the art in splicing prediction.

Interpretability We probe the attention pooling layer after multi-head attention in CellSpliceNet
to locate modality regions most predictive of PSI. Across neuron types, attention concentrates at
intron–exon boundaries (Fig. 3, first column). Aggregated histograms show most weight on exonic
and immediately flanking intronic patches, consistent with canonical splice sites and nearby auxiliary
elements. Mapping the structure stream’s attention onto predicted secondary structures for exon-
centred windows reveals a strong bias toward unpaired nucleotides: loop residues, especially within
exonic cores, receive the highest weights, while adjacent stems are de-emphasised (Fig. 3, second
column). Genome-wide, loops significantly outscore stems.

In the ROI stream focusing on the two splice junctions, nucleotide-level attention peaks over the
exon core and decays into flanking introns (Fig.3, third column). An “attention wheel” summary
shows a systematic upstream bias; quantitatively, upstream exon, downstream exon, upstream intron,
and downstream intron account for 39.6%, 28.0%, 21.4%, and 10.9% of ROI attention, respectively
(Fig.3third column), despite architectural symmetry.

Finally, CellSpliceNet exposes heterogeneous splicing-factor usage across neurons (Fig.3, last
column). Clustering factors in the top 85th percentile of attention (Fig.3, last column bottom row)
highlights influential regulators such as smu-1, unc-75, hrp-1, exc-7, and grld-1.
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Supplementary Materials

A multimodal dataset for C. elegans splicing prediction

C. elegans provides a compact, well-annotated nervous system (302 neurons/118 classes) with a
complete connectome [26], neuron-resolved transcriptomes [27, 28], and curated gene models [29].
We assemble an exon-centered, coordinate-aligned, modality-synchronized resource that, for each
target exon, co-registers four views: whole-gene sequence, local secondary structure, junction ROIs,
and neuron-type–resolved expression/co-expression. Exon-usage quantifications follow Weinreb
et al. [30].

RNA sequence To expose transcript-scale dependencies while retaining base-level detail, we
provide whole-gene sequences (max 25 kb). Sequences are tiled with a 64 bp sliding window
(chosen by validation grid search) to yield patches {xi}Ni=1 augmented with aligned genomic-context
indicators (exon/intron/junction). This design supports long-context modeling [3, 31, 32, 33, 34, 35,
36, 37, 38] without discarding distal signals.

RNA secondary structure For each exon, we extract a symmetric 500 bp window (upstream
intron ∥ exon ∥ downstream intron) and compute secondary structure with VIENNARNA [15].
We release dot–bracket strings and base–pair graphs (A∈{0, 1}Slen×Slen ). Multiscale, permutation-
stable features are obtained via geometric scattering [16] from lazy diffusion P and wavelets {Ψj},
producing K=11 channels per nucleotide aligned to transcript coordinates.

Junction ROIs To capture motif-scale cis-signals, we provide donor/acceptor-centered ROIs of
fixed length Sroi=200 bp encoded at single-nucleotide resolution ({A,C,G, T} one-hot with optional
exon/intron tags) plus an index vector mapping each ROI base to transcript coordinates. Tokens use
k=1 (no patching) and are linearly projected with positional encoding.

Expression & co-expression Splicing is cell-type–dependent; we therefore integrate neuron-
type–resolved expression from CeNGEN [39, 40] and single-cell atlases [27]. Raw counts undergo
QC, library-size normalization, and MAGIC imputation [17]. We curate f=243 splicing factors
and, for each of K=50 neuron types, construct Ek ∈Rf×Ck . Pairwise mutual information yields
weighted co-expression Mk (optionally binarized to Ak); node signals are mean expression ak.
Geometric scattering encodes (Mk,ak) into topology-aware coefficients, stacked across types for
direct alignment with the other modalities.

Intended use. The dataset supports: (i) principled benchmarking of long-context genomic models;
(ii) mechanistic attribution linking motifs, structural masking, and distal regulation; and (iii) cell-
type–aware prediction grounded in C. elegans neurobiology [26, 27, 28, 29].

A Geometric Scattering

Our CellSpliceNet employs a novel Geometric Scattering Transform [16] to extract multiscale
features from graph-structured modalities (RNA secondary structure and cell-specific co-expression).
Given a graph G = (V,E) with adjacency A and degree matrix D, define the lazy random-walk
diffusion:

P = 1
2

(
I +D−1A

)
.

Graph wavelets at scale j ∈ {1, . . . , J} are:

Ψj = P 2 j−1

− P 2 j

.

For a node signal x ∈ R|V |, the scattering moments are:

S0 =
1

|V |
∑
v∈V

x(v),
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S1(j) =
1

|V |
∑
v∈V

∣∣∣(Ψjx
)
(v)

∣∣∣,
S2(j1, j2) =

1

|V |
∑
v∈V

∣∣∣(Ψj2 |Ψj1x|
)
(v)

∣∣∣, j1 < j2.

We concatenate all moments up to J = 4 to form a feature tensor

X ∈ R|V |×S×d,

which serves as the multiscale representation for the secondary-structure (and co-expression)
modalities.

B Implementation details

All models were implemented in PyTorch and trained on a single NVIDIA A100 GPU. Data
loading/preprocessing used standard libraries. We ensured reproducibility with fixed random seeds
and a pinned software environment. Preprocessing and end-to-end train/inference scripts, plus
pretrained checkpoints, are available in the public repository.

Splits & repeats. We performed a row-level IID split into train/val/test at 65%/15%/20%: 8,605 /
1,969 / 2,667 samples from 13,241 total, preserved in each fold. To assess robustness we ran k-fold
cross-validation and repeated the full train/test procedure 10× with different seeds. All preprocessing
and partitioning scripts reside under preprocessing (p/).

Leakage control. Normalizers/tokenizers were fit on training only; genomic windows/ROIs were
generated once and forbidden to cross splits; augmentation was applied to training only; early
stopping and hyperparameters were chosen on validation, and the test set was revealed once at the
end.

Training. We optimized CELLSPLICENET with Adam [41] at learning rate 2 × 10−5 and an
exponential scheduler (approximately 1% decay per epoch when stepped once per epoch). Early
stopping used validation performance; the best checkpoint was retained per fold. RNA sequences
were tokenized with a 64 bp sliding window and truncated/padded to 25,000 bp max; ROI and
structure modalities used 200 bp and 500 bp windows, respectively. We used batch size 40. The
backbone is a 12-layer transformer with dmodel=256, 8-head self-attention, a 512-width feed-forward
sublayer, and dropout 0.2 throughout.
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