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Figure 1: In contrast to previous methods that (a) conduct end-to-end naive behavior cloning from
large-scale robotic data or (b) use decoupled visual prediction and inverse dynamics models to set
goals and guide actions, we present end-to-end Predictive Inverse Dynamics Models (PIDM) that
closes the loop between vision and action. Seer, the model we built, surpasses previous states of the
art and demonstrates consistent improvements over the ablated version without pre-training.

ABSTRACT

Current efforts to learn scalable policies in robotic manipulation primarily fall into
two categories: one focuses on “action,” which involves behavior cloning from ex-
tensive collections of robotic data, while the other emphasizes “vision,” enhancing
model generalization by pre-training representations or generative models, also re-
ferred to as world models, using large-scale visual datasets. This paper presents an
end-to-end paradigm that predicts actions using inverse dynamics models condi-
tioned on the robot’s forecasted visual states, named Predictive Inverse Dynamics
Models (PIDM). By closing the loop between vision and action, the end-to-end
PIDM can be a better scalable action learner. In practice, we use Transformers
to process both visual states and actions, naming the model Seer. It is initially
pre-trained on large-scale robotic datasets, such as DROID, and can be adapted
to real-world scenarios with a little fine-tuning data. Thanks to large-scale, end-
to-end training and the continuous synergy between vision and action at each ex-
ecution step, Seer significantly outperforms state-of-the-art methods across both
simulation and real-world experiments. It achieves improvements of 13% on the
LIBERO-LONG benchmark, 22% on CALVIN ABC-D, and 43% in real-world
tasks. Notably, it demonstrates superior generalization for novel objects, lighting
conditions, and environments under high-intensity disturbances. Code and models
will be publicly available.

1 INTRODUCTION

Learning scalable and generalizable policies has become a main focus in robotic manipulation. Re-
cent efforts primarily fall into two categories: one focuses on “action,” like RT-1 (Brohan et al.,
2022) and OpenVLA (Kim et al., 2024), which perform naive behavior cloning from large-scale
robotic data such as Open X-Embodiment and DROID (Padalkar et al., 2024; Khazatsky et al.,
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2024). The other emphasizes “vision” and may learn representations through discriminative or gen-
erative ways and integrate with the control policy in a two-stage manner. For example, R3M (Nair
et al., 2022) and MVP (Xiao et al., 2022) learn discriminative representations from large-scale video
datasets such as Ego4D (Grauman et al., 2022), while UniPI (Du et al., 2024) and Susie (Black et al.,
2023) develop generative models as “world models” to facilitate manipulation policies. Apparently,
the scaling laws in robot learning are still evolving, with researchers exploring strategies through
diverse data and methods.

We revisit these approaches and propose that a scalable manipulation policy should integrate vision
and action in a closed loop. This integration is natural and necessary, as humans typically coordinate
their hands and eyes to manipulate objects. Therefore, closing the loop during training and inference
are both necessary for a better scalable action learner.

This paper achieves this by introducing a simple yet effective end-to-end Predictive Inverse Dy-
namics Models (PIDM) that can unify the advantages of previous methods. As shown in Figure 1, it
predicts actions using Inverse Dynamics Models (IDM) conditioned on the “Predictive” visual states
of the robot. During training, both the visual prediction module and the inverse dynamics module
are optimized synergistically in an end-to-end manner. During inference, PIDM ensures continuous
synergy between vision and action at each execution step. In contrast to previous methods that use
IDM, our approach is the first to optimize vision and action in an end-to-end manner. Throughout
this paper, unless otherwise specified, PIDM is assumed to be end-to-end.

In practice, we use Transformers to process both visual states and actions and name the model Seer.
Seer benefits from PIDM by simultaneously leveraging visual, temporal, and action information
from large-scale datasets, and can be more scalable due to the Transformer architecture. We intro-
duce a foresight token to predict future RGB images and an action token to estimate intermediate
actions between current and predicted future observations. Both tokens are fused with input RGB
images, robot state, and language tokens through a multi-modal encoder. Importantly, we design a
unidirectional attention mask that allows the action token to deeply integrate past and future predic-
tive information, facilitating end-to-end training.

We conduct extensive experiments on both simulation and real-world benchmarks. On two widely
adopted simulation benchmarks, LIBERO-LONG (Liu et al., 2024) (10 tasks) and CALVIN ABC-
D (Mees et al., 2022) (34 tasks), our method demonstrates a 10.4% improvement in success rate and
a 0.71 increase in average task completion length compared to state-of-the-art baselines. Our results
further indicate superiority in long-horizon task completion, unseen scene generalization, and data
efficiency. Additionally, We evaluate our method on four challenging real-world tasks with over
900 trials. Leveraging the public large robot dataset DROID (Khazatsky et al., 2024), our method
consistently shows robustness, even under disturbances and with limited fine-tuning data.

2 RELATED WORK

Action-Centric Pre-training for Manipulation. Recent advancements in action-centric pre-
training have significantly enhanced manipulation policies. Approaches like SMART (Sun et al.,
2023) and DualMind (Wei et al., 2023) emphasize understanding the dynamics within environments.
Some studies (Agrawal et al., 2016; Brandfonbrener et al., 2024) integrate current and goal infor-
mation to extract effective features or serve as an auxiliary objective. Subsequently, a standard
behavior cloning approach is applied during downstream task implementations. Additionally, RT-
X (Padalkar et al., 2024) and Octo (Ghosh et al., 2024) focus on pre-training robot policies using
diverse datasets to facilitate extensive generalization capabilities. Recently, vision-language mod-
els (VLMs) have demonstrated considerable common-sense knowledge about the world and strong
capabilities in understanding both language and images. OpenVLA (Kim et al., 2024) further pre-
trains VLMs using robotic data, leveraging their prior knowledge to achieve robust performance
on downstream language-conditioned manipulation tasks. While these methods primarily supervise
actions, they do not fully exploit the rich visual and temporal information inherent in robot demon-
strations. In contrast, we pre-train policies by integrating conditional visual foresight and inverse
dynamics prediction, allowing for comprehensive utilization of robotic data.

Vision-Centric Pre-training for Manipulation. Extensive research has focused on visual pre-
training for visuomotor control (Karamcheti et al., 2023; Zeng et al., 2024). One major direction
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Figure 2: Pipeline of Seer. Seer consists of three parts: Multi-Modal Encoder, Conditional Visual
Foresight and Inverse Dynamics Prediction. In Multi-Modal Encoder, Seer incorporates the fore-
sight token [FRS] and the action token [INV]. Both tokens attend to the RGB images, language
tokens, and robot state tokens, with [INV] also attending to [FRS]. In Conditional Visual Foresight,
the encoded [FRS], along with new mask tokens, aims to reconstruct future RGB images. In Inverse
Dynamics Prediction, the encoded [INV] and other tokens speculate intermediary actions.

involves representation learning using techniques such as masked image modeling (Xiao et al., 2022;
Radosavovic et al., 2023; Seo et al., 2023), contrastive learning (Nair et al., 2022; Ma et al., 2022;
2023), and generative video pre-training (Wu et al., 2024). Another line of work focuses on visual
expectations guiding actions, termed the Predictive Inverse Dynamics Model (PIDM) (Bharadhwaj
et al., 2024; Wang et al., 2024; Soni et al., 2024; Chen et al., 2024). Firstly, a video generation
model predicts future visual sub-goals and is pre-trained on general visual datasets. Then, an in-
verse dynamics (goal-conditioned) low-level policy is trained on downstream robot data to predict
the intermediary actions. Compared to these two-stage PIDM, we propose an end-to-end PIDM
paradigm that leverages large-scale robot data for pre-training, showing better performance.

Pre-training Datasets for Manipulation. High-quality, large-scale, and diverse pre-training data is
crucial for acquiring manipulation skills. Image datasets (Deng et al., 2009), video datasets (Damen
et al., 2018; Goyal et al., 2017); (Grauman et al., 2022), and robot datasets are commonly utilized
for this purpose. Image datasets provide rich semantic information, while video datasets contain
temporal information. Both enhance visual representations for manipulation, however, their lack of
action labels and robot states limits their utility in decision-making. Some studies focus on collecting
robot behavior data (Mandlekar et al., 2019; Walke et al., 2023; Dasari et al., 2019; Bahl et al.,
2023; Jang et al., 2022), but the data diversity remains relatively constrained. Recent efforts aim to
further scale and diversify robot datasets. For instance, the Open X-Embodiment dataset (Padalkar
et al., 2024) aggregates data from 22 different robots across 21 institutions, covering 527 skills and
160,266 tasks. DROID (Khazatsky et al., 2024) includes 76,000 trajectories collected across 564
scenes and 86 tasks. In this work, we leverage DROID to pre-train policies for real-world validation,
demonstrating that rich behavioral data significantly enhances success rates in downstream tasks.

3 METHOD

In this section, we describe Seer in detail. We begin with a brief problem formulation (Section 3.1).
Next, we discuss keys in our end-to-end PIDM—conditional visual foresight and inverse dynamics
prediction (Section 3.2), enabling Seer to forecast the future and adjust actions accordingly. We then
elaborate on the carefully designed model architecture (Section 3.3), through which we formulate
Seer in an end-to-end manner. Finally, we provide implementation details (Section 3.4).

3.1 PROBLEM FORMULATION

Given a large-scale dataset of diverse manipulation demonstrations D1 = {(l, ot, st, at)Ti
t=0}

N1
i=0,

and a smaller downstream dataset D2 = {(l, ot, st, at)
Tj

t=0}
N2
j=0 (where N1 >> N2), our goal is

3
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to enhance downstream task performance through effective pre-training on D1, followed by fine-
tuning on D2. Each trajectory {(l, ot, st, at)Tt=0} provides the time step t, language instruction l,
RGB images ot from the eye-on-hand and eye-on-base views, robot states st and robot actions at,
which include arm actions aarm (6D pose) and gripper actions aarm (open or close). It is important
to note that current large pre-training robot data may contain incomplete language annotations l
and task-agnostic actions at, such as random exploration in the environment (Mees et al., 2022).
However, Seer could handle this scenario effectively due to the following specific design choices.

3.2 END-TO-END PIDM

Vision: Conditional Visual Foresight. A key insight is that informative future states guide actions.
Therefore, we propose conditional visual foresight ffore to effectively anticipate future visual repre-
sentations. Seer takes as input a goal g in the form of language instructions or robot states, along
with historical observations ht, and predicts the RGB images at the time step t+n, denoted by ôt+n

ôt+n = ffore(g, ht). (1)

The historical observations ht consist of the RGB images ot−m+1:t and robot states st−m+1:t over
the last m time steps. Due to the rich information contained in RGB images, their abundance, and
easy accessibility, we select them as future representatives. Following (He et al., 2022), the loss
function Lfore computes the mean squared error (MSE) at the pixel level

Lfore = ∥ffore(g, ht)− ot+n∥22. (2)

Action: Inverse Dynamics Prediction. Given two temporally ordered observations ot and ot+1,
inverse dynamics prediction estimates the intermediate action ât. Here, we extend inverse dynam-
ics finv to predict the action sequence ât:t+n−1 given goal g, historical observations ht and ot+n.
Specifically, we replace ground truth ot+n with the predicted representation ôlt+n in the latent space

ât:t+n−1 = finv(g, ht, ô
l
t+n). (3)

The loss function Linv comprises the arm action loss Larm and the gripper action loss Lgripper

Linv = Larm + λLgripper, (4)

where Larm is a Smooth-L1 loss, Lgripper is a Binary Cross Entropy (BCE) loss and λ is set to 0.01.

Close the Loop between Vision and Action. Seer integrates conditional visual foresight with in-
verse dynamics prediction effectively through training, enabling full utilization of both vision and
action information in robot data. In detail, ffore incorporates a clear goal g and historical observa-
tions ht to predict future RGB images ôt+n. A latent representation ôlt+n (leading to ôt+n) and ht

facilitate action prediction via finv. Due to the model design of Seer, all these processes are executed
in an end-to-end manner. The overall training loss L comprises Lfore and Linv

L = αLfore + Linv, (5)

where α is a hyperparameter set to 0.5. Compared to single-step action prediction, predicting mul-
tiple steps provides temporal action consistency and robustness to idle actions (Chi et al., 2023).
During inference, we can either discard actions beyond the first step or apply temporal ensemble
techniques to compute a weighted average of the multi-step actions.

3.3 MODEL ARCHITECTURE

Input Tokenizers. As illustrated in Figure 2, the model processes three types of inputs: language,
images, and robot states. We use different encoders to tokenize each modality accordingly. For
language inputs, we first tokenize the text and then use a CLIP text encoder (Radford et al., 2021) to
obtain text embeddings, which are subsequently projected into a latent space using a linear layer. For
image inputs, the images are first patchified and passed through a pre-trained Vision Transformer
(ViT) (He et al., 2022) to generate visual embeddings. Since the ViT produces hundreds of em-
beddings per image, imposing a significant computational burden on the transformer backbone, and
much of the visual information is irrelevant to the manipulation task, we employ a perceiver resam-
pler (Alayrac et al., 2022) to extract task-relevant visual features and reduce the number of image
tokens. For the robot state, we encode it into state tokens using a multi-layer perceptron (MLP).

4
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Multi-Modal Encoder. The multi-modal encoder in our model is based on a GPT-2 style trans-
former architecture. Before feeding the sequential language-image-state pairs into the transformer,
we append readout tokens [INV] and [FRS] to each timestep. These readout tokens attend to em-
beddings from different modalities, serving as image and action latents used for conditional visual
foresight and inverse dynamics prediction. To incorporate temporal information, we also add a
learnable position embedding to the tokens for each timestep.

The [FRS] token aims to facilitate conditional visual foresight, corresponding to aforementioned
ôlt+n. It attends to language, historical image and state tokens. Conversely, the [INV] token performs
inverse dynamics prediction conditioned on the predicted visual foresight, attending to the input
tokens and, crucially, the foresight token [FRS]. This special unidirectional attention mask in a
transformer encoder, highlighted in Figure 2, brings two benefits. First, this will help the [INV]
token deeply integrate both past and future predictive information within a multi-layer network.
Second, this enables an end-to-end training paradigm through the fusion in the latent space.

Readout Decoders. Encoded by the multi-modal encoder, the action and image latents generated by
the [INV] and [FRS] readout tokens are fed into the readout decoders to predict images and actions.
The action decoder utilizes an MLP to transform the action latent into the action vector at. For
image decoding, we employ a vision transformer (ViT) as the image decoder, following (He et al.,
2022). The image decoder takes the image latent along with masked tokens as input. Processed by
ViT, the output corresponding to each masked token represents a specific patch of the image.

3.4 IMPLEMENTATION DETAILS

Training. During training, the pre-trained visual and text encoders remain frozen. The training
objectives remain consistent–conditional visual foresight and inverse dynamics prediction, enabling
a smooth transition from pre-training to fine-tuning. Notably, two key differences in model con-
figurations exist between these phases. First, missing language instructions are common in robotic
pre-training datasets. In such cases, during pre-training, the robot state token at the future time step
t+ n+ 1 acts as a goal. The [FRS] would attend to it instead of the language token, ensuring [FRS]
to acquire unambiguous information. Second, pre-training data may include random or meaning-
less behaviors, such as environmental exploration. Consequently the [INV] and [FRS] tokens do not
attend to previous image and robot state tokens to prevent overfitting to any specific behaviors.

Inference. During inference, the complete language instruction l, robot states s, and image obser-
vations o are provided as inputs. The [FRS] token attends to the historical image, state, and language
instruction tokens to perform conditional visual foresight, predicting the future images. In turn,
the [INV] token attends to the input tokens and one more foresight [FRS] token to perform inverse
dynamics prediction, outputting the action. Further details are available in the Appendix.

4 SIMULATION EXPERIMENTS

We conduct experiments on two simulation benchmarks LIBERO-LONG (Liu et al., 2024),
CALVIN ABC-D (Mees et al., 2022). Our aim is to answer: 1) How does our method perform
on challenging simulation benchmarks? 2) Does our pipeline maintain consistent effectiveness as
the amount of downstream fine-tuning data varies? 3) Are the training objectives in Seer effective?

4.1 BENCHMARKS, BASELINES AND METRICS

Benchmarks. LIBERO-LONG (Liu et al., 2024) encompasses diverse object interactions and versa-
tile motor skills. We pre-train our model on the LIBERO-90 dataset, which includes demonstrations
for 90 short-horizon tasks with full annotations, and then fine-tune and evaluate it on LIBERO-
LONG, which features long-horizon tasks. CALVIN ABC-D (Mees et al., 2022) is a benchmark
focusing on language-conditioned visual robot manipulation. It contains 34 tasks across four dis-
tinct environments (Env A, B, C, and D), each varying in object and scene visual appearance. For
pre-training, we utilize the official robot play data with no language instructions, while the remain-
ing data with full annotations is used for fine-tuning.

Baselines. For LIBERO-LONG, we implement a vanilla multi-task policy MTACT without pre-
training, general image-based pre-trained policy MVP (Xiao et al., 2022), video-based pre-trained

5
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Table 1: LIBERO-LONG results. For each task, we present the average performance of top-3
checkpoints averaged over 20 rollouts. Avg. Success is the average success rate across ten tasks. We
demonstrate superior performance over baselines, achieving higher Avg. Success and better results
on a large majority of tasks. The best results are bolded.

Method Avg.
Success ↑

Put soup
and box
in basket

Put box
and butter
in basket

Turn on
stove and
put pot

Put bowl in
drawer and

close it

MTACT 41.0 30.0 50.0 75.0 85.0
MVP 68.2 83.3 90.0 80.0 88.3
MPI 77.3 66.6 86.6 96.6 95.0

OpenVLA 54.0 35.0 95.0 65.0 45.0
Ours (w/o pretrain) 78.7 80.0 90.0 91.7 81.7

Ours 87.7 91.7 90.0 98.3 100

Put mugs on
left and

right plates

Pick book
and place it

in back

Put mug on
plate and put

pudding to right

Put soup
and sauce
in basket

Put both pots
on stove

Put mug in
microwave and

close it

20.0 75.0 0.00 0.00 10.0 65.0
46.7 63.3 45.0 78.3 60.0 46.7
83.3 83.3 56.6 86.6 40.0 78.3
40.0 80.0 60.0 45.0 20.0 55.0
85.0 65.0 86.7 88.3 51.7 66.7
91.7 93.3 85.0 88.3 61.7 71.7

policy MPI (Zeng et al., 2024) and robot-data-based pre-trained policy OpenVLA (Kim et al.,
2024). For CALVIN ABC-D, we select baselines that have demonstrated top competitive perfor-
mance in prior reports. Roboflamingo (Li et al., 2023) is a method stepped from a vision-language
model (Alayrac et al., 2022). Susie (Black et al., 2023) is a classical two-stage PIDM. GR-1 (Wu
et al., 2024) relies on generative video pre-training, while 3D Diffusor Actor captures 3D represen-
tations to enhance manipulation.

Metrics. In LIBERO-LONG, each method is evaluated across 20 rollouts with varying initial states
for each task. We report both per-task and average success rates. In CALVIN ABC-D, the robot
executes 1,000 task sequences, with each sequence comprising five consecutive tasks; a new task
is initiated only after the preceding task has been successfully completed. We report the average
success rates and the average length of completed sequences.

4.2 SIMULATION MAIN RESULTS

Table 2: CALVIN ABC-D results. We present the average success rates of top-3 checkpoints
computed over 1000 rollouts for each task and the average number of completed tasks to solve
5 instructions consecutively (Avg. Len.). Ours shows consistent and significant superiority over
baselines. The best results are bolded.

Method Task completed in a row

1 2 3 4 5 Avg. Len. ↑

Roboflamingo 82.4 61.9 46.6 33.1 23.5 2.47
Susie 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 85.4 71.2 59.6 49.7 40.1 3.06

3D Diffusor Actor 92.2 78.7 63.9 51.2 41.2 3.27
Ours (w/o pretrain) 93.0 82.4 72.3 62.6 53.3 3.64

Ours 94.4 87.2 79.9 72.2 64.3 3.98

We conduct experiments on the LIBERO-LONG benchmark. The results, presented in Table 1,
indicate that our policy achieved an average success rate of 78.7% without pre-training. After pre-
training, the success rate increases by an additional 9%, significantly outperforming the baselines.
Compared to MTACT, our policy is more effective and benefits further from pre-training. The
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visual pre-training methods MVP and MPI achieve performance levels only comparable to our pol-
icy without pre-training, suggesting that visual pre-training alone is insufficient for manipulation
tasks. Pre-training the entire policy using robotic data is necessary to enhance both perception and
decision-making capabilities. In comparison to OpenVLA, our model (316M) uses only 4% of its
parameters (7B) yet achieves a 62% relative improvement in performance. We hypothesize that the
moderate model size reduces the risk of overfitting. Overall, these results underscore the advantages
Seer and demonstrate the effectiveness of our pre-training objectives.

We evaluate various methods on CALVIN ABC-D. Notably, the pre-training data lacks language
annotations and includes meaningless actions and random explorations within these environments.
Evaluation is conducted in Environment D, which differs visually from Environments A, B, and
C where the data was collected. As shown in Table 2, our method significantly outperforms the
baselines. Our method surpasses the two-stage PIDM Susie (Wu et al., 2024) by a large margin,
probably due to our delicate model design and end-to-end training paradigm. It also outperforms the
video generative pre-training method GR-1 (Wu et al., 2024), demonstrating the advantage of pre-
training the entire policy. Furthermore, our results indicate that our method remains applicable even
in the absence of language annotations and with noisy pre-training datasets. It can also effectively
handle a certain degree of visual appearance variation.

4.3 DATA EFFICIENCY
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Figure 3: Data efficiency. We fine-tune Seer using different propotions of the downstream data.
Our method consistently benefits and surpasses previous SOTA baselines with less data.
Collecting robot data is both time-consuming and labor-intensive, making data efficiency crucial for
robot learning. We evaluate our method on two benchmarks: LIBERO-LONG and CALVIN ABC-
D, using 10%, 20%, 40%, 70%, and 100% of the available data to fine-tune pre-trained policies or
to train policies from scratch. The results, shown in Figure 3, demonstrate that our method consis-
tently enhances policy performance across varying data sizes. Notably, under data-scarce conditions
with only 10% of the training data, the pre-trained policy achieves a 187% relative improvement
in success rate on LIBERO-LONG and a 150% relative improvement in average task length on
CALVIN ABC-D compared to training from scratch. Additionally, our method only requires 70%
data on LIBERO-LONG and 40% data on CALVIN ABC-D respectively to surpass state-of-the-art
baselines. These results highlight the potential of Seer in scenarios with limited fine-tuning data.

4.4 ABLATION STUDIES

We investigate the contributions of conditional visual foresight objective Lfore and inverse dynamics
prediction objective Linv during pre-training and fine-tuning on CALVIN ABC-D. The objectives
during the fine-tuning phase are most closely related to performance in downstream tasks. Thus, we
prioritize ablating the fine-tuning objectives before examining the pre-training objectives.

Fine-tuning objectives. We study the importance of Lfore and Linv during fine-tuning. As shown in
Table 3a, compared to the vanilla baseline, which directly behavior clones (w/o Lfore, w/o Linv), sep-
arately predicting additional future images (w/ Lfore, w/o Linv) yields improvements. This indicates
the benefits of involving future image predictions (Wu et al., 2024). More importantly, integrating
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Table 3: Ablation studies on fine-tuning and pre-training objectives. Integrating the conditional
visual foresight objective Lfore and inverse dynamics prediction objective Linv yields the best perfor-
mance among pre-training and fine-tuning.

(a) Fine-tuning objectives.

Fine-tuning 1 2 3 4 5 Avg.
Len.Lfore Linv

× × 89.9 77.6 64.6 54.4 44.8 3.31
✓ × 91.2 78.6 67.1 56.6 47.8 3.41
✓ ✓ 93.0 82.4 72.3 62.6 53.3 3.64

(b) Pre-training objectives.

Pre-train 1 2 3 4 5 Avg.
Len.Lfore Linv

× × 93.0 82.4 72.3 62.6 53.3 3.64
✓ × 92.3 83.0 74.2 65.9 57.5 3.73
✓ ✓ 94.4 87.2 79.9 72.2 64.3 3.98

Lfore and Linv results in an even greater boost in performance. This demonstrates that utilizing visual
expectations to guide action predictions is a more effective strategy for leveraging the rich visual and
temporal information inherent in robot data than the ablated version (w/ Lfore, w/o Linv).

Pre-training objectives. Once the fine-tuning objectives (Lfore + Linv) are established, we start
to ablate pre-training objectives. The results in Table 3b indicate that pre-training only the vision
prediction module (w/ Lfore, w/o Linv) yields certain benefits, likely due to the vision priors learned
from the extensive data. Moreover, pre-training the whole policy (w/ Lfore, w/ Linv) through the
integration of visual foresight and inverse dynamics results in even greater improvements. This
underscores the importance of the synergy between action and vision priors distilled from large
robot datasets in enhancing performance on downstream tasks.

5 REAL-WORLD EXPERIMENTS

Real-world Setup & Objects

(1) Flip White Bowl

(3) Wipe Board (4) Pick, Place, Close

(2) Stack Cups

Figure 4: Real-world Benchmark. Left: We use a Franka Research 3 robot with a Robotiq-2f-85
gripper and two RealSense D435i cameras. We include different everyday objects on manipulation
tasks. Right: We design four real-world tasks. (1) Flip White Bowl: The robot needs to 1⃝pick an
overturned bowl and 2⃝place it on the coaster. (2) Stack Cups: The robot needs to 1⃝pick the middle
cup, 2⃝cover the small one, 3⃝pick the big one, and 4⃝cover the middle one. (3) Wipe Board: The
robot needs to 1⃝grasp the brush, and 2⃝ 3⃝sweep all the chocolate balls into the dustpan. (4) Pick,
Place, Close: The robot needs to 1⃝pick the carrot, 2⃝put it in the drawer, and 3⃝close the drawer.

We evaluate Seer on four challenging real-world tasks, leveraging a large-scale robot dataset, e.g.,
DROID (Khazatsky et al., 2024) for pre-training. We target answering: 1) Could Seer still work in
real-world tasks? 2) How will Seer perform with minimal fine-tuning data (20 demos per task)? 3)
Whether pre-training will bring consistent benefits under different intensive disturbances?
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5.1 REAL-WORLD BENCHMARK

Real-world Setup. We evaluate on a Franka Research 3 robot equipped with a Robotiq-2f-85 grip-
per across four tasks, as illustrated in Figure 4. We utilize two RealSense D435i cameras, configured
as Eye-on-Hand and Eye-on-Base. Additionally, we ensure hardware synchronization.

Datasets. For pre-training, we select dataset DROID, which contains demonstrations of Franka
robots executing various tasks in diverse scenes. During the fine-tuning phase, we set the control
frequency to 15 Hz, record RGB images, robot states, actions, and save 100 demonstrations per task.

Baselines and Metrics. We benchmark against MVP (image-based pre-trained), MPI (video-based
pre-trained), and OpenVLA (robot-data-based pre-trained). Each method is evaluated over 15 trials
per task, with variations in the initial states of the objects. Each method is allowed three executions
per trial, with the mean performance reported. Given the long-horizon and challenging nature of the
tasks, we define two metrics: Success Rate (SR) and Score (as referenced in (Kim et al., 2024)).
The Score accumulates during the completion of specific intermediary stages, while SR is recorded
as 100% only upon successful completion of the entire task. Details are available in the Appendix.

Tasks. In Flip White Bowl, the robot picks up a randomly overturned bowl and places it on a
coaster, testing basic 6DoF pick & place capability. In Stack Cups, the robot stacks three randomly
placed cups of different colors and sizes. It firstly covers the small cup with the middle one, and
then covers the middle cup with the big one. Since the cup surface is smooth and covering requires a
close fit, this task challenges fine-grained action predictions. In Wipe Board, the robot collects 3 to
7 chocolate balls arranged in 1 to 3 clusters. It uses a brush to sweep the balls into a dustpan, testing
its ability to handle multi-modal settings and perform repetitive motions. In Pick, Place, Close, the
robot picks a randomly set carrot, transports it into an opened drawer and closes the drawer. This
evaluates skills of executing consecutive actions in a large space with articulated objects.

5.2 REAL-WORLD MAIN RESULTS

Table 4: Real-world main results. We evaluate all the methods with 15 (cases) × 3 (repeated trials)
rollouts per task. Our method achieves better performances among all tasks than baselines.

Method Demos
per Task

Flip White Bowl Stack Cups Wipe Board Pick, Place, Close Avg.

SR (%) / Score SR (%) / Score SR (%) / Score SR (%) / Score SR (%) ↑ / Score ↑

MVP 100 80.0 / 24.0 26.7 / 26.0 53.3 / 38.0 60.0 / 31.0 55.0 / 29.8
MPI 100 66.7 / 21.0 26.7 / 29.0 33.3 / 35.0 66.7 / 32.0 48.4 / 29.3

OpenVLA 100 53.3 / 19.0 0.00 / 8.00 0.00 / 4.00 13.3 / 13.0 16.7 / 11.0

Ours (w/o pre-train) 20 26.7 / 10.0 13.3 / 11.0 26.7 / 16.0 33.3 / 28.0 25.0 / 16.3
Ours 20 46.7 / 17.0 0.00 / 7.00 53.3 / 29.0 33.3 / 34.0 33.3 / 21.8

Ours (w/o pre-train) 100 60.0 / 19.0 46.7 / 35.0 60.0 / 37.0 73.3 / 40.0 60.0 / 32.8
Ours 100 86.7 / 26.0 60.0 / 42.0 73.3 / 41.0 86.7 / 42.0 78.4 / 39.5

Effectiveness. As can be seen in Table 4, our pre-trained policy could outperform all the baselines
over all tasks. Specifically, our method improves the average success rate and the accumulated
score from 60.0% to 78.4% and from 32.8 to 39.5 compared to the version trained from scratch.
In comparison with MVP and MPI, which only pre-train vision encoders, our results reinforce the
importance of pre-training the entire policy, aligning with findings from simulation experiments.
Regarding the performance of OpenVLA in the real world, it has a significantly larger tunable model
size (3B here) during full fine-tuning and relies solely on an eye-on-base camera. This could lead to
severe overfitting and coarse action predictions, particularly in tasks where objects are small (as in
Stack Cups) or located far from the camera (as in Wipe Board). In contrast, our method demonstrates
better handling of these tasks due to its moderate model size and comprehensive data utilization.

Efficiency. We randomly select a subset with 20 demos for fine-tuning in each task. As shown in
Table 4, when the fine-tuning dataset is reduced from 100 to 20 demos per task, our pre-trained
policy consistently shows improvements across most tasks. The exception is in the Stack Cups
task, where we suspect that both the limited fine-tuning data and the inherent difficulty of the task
contribute to low success rates across all methods, resulting in slight distinctions among them.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Evaluation w/o Multi Objects Evaluation w/ Multi Objects

Type Method SR (%) / Score

Multi Objects Ours (w/o pre-train) 33.3 / 11.0
Ours 60.0 / 18.0

Evaluation w/ Clean Background Evaluation w/ Natural Background

Type Method SR (%) / Score

Background Ours (w/o pre-train) 6.67 / 13.0
Ours 33.3 / 29.0

Evaluation w/o Novel Objects Evaluation w/ Novel Objects

Type Method SR (%) / Score

Novel Objects Ours (w/o pre-train) 46.7 / 37.0
Ours 60.0 / 39.0

Evaluation w/o Lightning Evaluation w/ Lightning

Type Method SR (%) / Score

Lightning Ours (w/o pre-train) 46.7 / 30.0
Ours 66.7 / 37.0

Figure 5: Generalization evaluation. We design a generalization test per task with different dis-
turbances. Top Left: In Flip Bowl, we put several bowls with the same shape, size, material and
different colors around the original white one. Top Right: In Stack Cups, we remove the original
black backdrop and keep the natural background. Bottom Left: In Wipe Board, we replace the
chocolate balls with diverse novel small objects. Bottom Right: In Pick, Place, Close, we introduce
an additional light source. Among all tests, our pre-trained method brings consistent benefits.

5.3 ROBUSTNESS

We propose several generalization types to assess the effectiveness of our pre-trained policy across
multiple settings. As shown in Figure 5, in Flip White Bowl, we introduce bowls of different col-
ors alongside the original white bowl. These bowls share identical shape, size, and material, which
could potentially mislead the algorithm. In Wipe Board, we replace the original chocolate balls
with novel objects that vary in mass, shape, and coefficients of friction, thereby increasing the task’s
difficulty. In both scenarios, our pre-trained policy demonstrates significant improvements in suc-
cess rate (SR) and Score. We attribute these enhancements to the extensive variety of interactable
and distractible objects present in the pre-training dataset, which strengthens the model’s semantic
understanding. Additionally, in Pick, Place, Close, we incorporate a strong light source that alters
the visual appearance of objects in RGB images. In Stack Cups, we remove the clean black back-
drop and replace it with a natural background, introducing complex disturbances such as variable
lighting, unseen distractions, and effects on camera exposure. Even under these challenging condi-
tions, our pre-trained policy continues to deliver satisfactory results. We believe that the extensive
pre-training on large-scale robot datasets with diverse scenes contributes to this robustness.

6 CONCLUSION

In this work, we introduce Seer, an end-to-end predictive inverse dynamics model that synergizes
conditional visual foresight with inverse dynamics prediction for manipulation. Seer shows the
state-of-the-art performance on two simulation benchmarks, and demonstrates significant improve-
ments and strong robustness in real-world experiments after being pre-trained on the large robot
dataset DROID. The limitations mainly lie in two aspects. Firstly, we only evaluate 6 downstream
tasks. A broader spectrum of high-precision and contact-rich tasks remain to be explored. Secondly,
evaluating across different robots is also necessary to test Seer’s cross-embodiments capability.
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nikov, Dorsa Sadigh, Edward Johns, Federico Ceola, Fei Xia, Freek Stulp, Gaoyue Zhou, Gau-
rav S. Sukhatme, Gautam Salhotra, Ge Yan, Giulio Schiavi, Hao Su, Haoshu Fang, Haochen Shi,
Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer Walke, Hongjie Fang, Igor Mor-
datch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jaehyung Kim, Jan Schneider, Jasmine Hsu,
Jeannette Bohg, Jeff Bingham, Jiajun Wu, Jialin Wu, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh,
Jitendra Malik, Jonathan Tompson, Jonathan Yang, Joseph J. Lim, João Silvério, Junhyek Han,
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