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Abstract

Yorùbá—an African language with roughly 47001
million speakers—encompasses a continuum002
with several dialects. Recent efforts to develop003
NLP technologies for African languages have004
focused on their standard dialects, resulting in005
disparities for dialects and varieties for which006
there are little to no resources or tools. We take007
steps towards bridging this gap by introduc-008
ing a new high-quality parallel text and speech009
corpus YORÙLECT across three domains and010
four regional Yorùbá dialects. To develop this011
corpus, we engaged native speakers, travelling012
to communities where these dialects are spo-013
ken, to collect text and speech data. Using our014
newly created corpus, we conducted extensive015
experiments on (text) machine translation, au-016
tomatic speech recognition, and speech-to-text017
translation. Our results reveal substantial per-018
formance disparities between standard Yorùbá019
and the other dialects across all tasks. How-020
ever, we also show that with dialect-adaptive021
finetuning, we are able to narrow this gap. We022
believe our dataset and experimental analysis023
will contribute greatly to developing NLP tools024
for Yorùbá and its dialects, and potentially for025
other African languages, by improving our un-026
derstanding of existing challenges and offering027
a high-quality dataset for further development.028
We will release YORÙLECT dataset and models029
publicly under an open license.030

1 Introduction031

While great strides have been made in developing032

NLP resources for low-resource languages, the ma-033

jority of these efforts have been directed towards034

the “standard” dialect of these languages, largely035

neglecting the long tail of non-standard dialects036

spoken by millions (Faisal et al., 2024; Alam et al.,037

2024). Dialects of a language exhibit nuanced038

yet distinguishable differences in lexicon, pronun-039

ciation, spelling, and syntax, mirroring regional,040

societal, and cultural differences (Chambers and041

Trudgill, 1998). Usually, a “standard” dialect is 042

the dialect with the highest population of speak- 043

ers, and sometimes the only dialect with a standard 044

orthography (Milroy and Milroy, 2012). 045

African languages are linguistically diverse 046

(Adebara and Abdul-Mageed, 2022; Siminyu and 047

Freshia, 2020), yet severely under-resourced. Most 048

of these languages have numerous varieties, (usu- 049

ally regional), some of which are mostly-spoken 050

and lack a standard orthography (Batibo, 2005; 051

Heine and Nurse, 2000). Developing language 052

technologies has been incredibly challenging for 053

African languages (Nekoto et al., 2020; Muham- 054

mad et al., 2023; Ogundepo et al., 2023; Adelani 055

et al., 2023; Dione et al., 2023; Adelani et al., 2024, 056

2021b), partly due to the scarcity of extensive lan- 057

guage resources required for developing systems 058

that are robust to the variations in linguistic fea- 059

tures (Adebara and Abdul-Mageed, 2022; Siminyu 060

and Freshia, 2020). 061

To address this problem, in this work we focus 062

on curating dialectal resources for Yorùbá, a low- 063

resource language with 47 million native speakers 064

around the world. Yorùbá language is native to 065

Southwestern Nigeria, Republic of Benin, and Re- 066

public of Togo. Yorùbá encompasses a dialect con- 067

tinuum including several distinct regional dialects 068

(Rowlands, 1967). Due to Yorùbá’s low-resource 069

status, the majority of published NLP work have 070

been done on the Standard Yorùbá dialect (Ogun- 071

remi et al., 2024; Aremu et al., 2023; Ahia et al., 072

2021; Dione et al., 2023; Shode et al., 2023; Ogun- 073

depo et al., 2023; Akinade et al., 2023; Adelani 074

et al., 2023; Muhammad et al., 2023; Adelani et al., 075

2021a; Adebara et al., 2022, 2021; Lee et al., 2023). 076

We introduce the first-ever corpus of high quality, 077

contemporary Yorùbá speech and text data paral- 078

lel across four Yorùbá dialects; Standard Yorùbá, 079

Ifè./ i f E /, Ìlàje./ i l a dZ E / and Ìjè.bú/ i dZ E 080

b u / in three domains (religious, news, and Ted 081

talks). This newly curated benchmark, developed 082
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English Standard Ìjè.bú Ifè. Ìlàje. Domain
All the efforts to
talk to ASUU chair-
man failed because
he said he has noth-
ing to say

Gbogbo ìgbiyànjú
láti bá alága ASUU
sò. rò. lò jásí pàbó ni-
tori ó ni òun kò ni
ohunkóhun láti so. .

Gbogbo ìgbiyànjú
láti bá alága ASUU
sò. rò. re jasi afo to ri
ó so. fo òún ni ohun
kóhun láti so. .

Gbogbo ègbiyànjú
láte. bá alága ASUU
sò. rò. lò. jásí pàbó
torí ó ghíi òun né.
ihunkíhun ún so. .

Dede ìgbiyànjú áti
bá alága ASUU fò.
rèé já ní pàbo torí
ó fò. ró. pé ó ghún né
irú kirun gho fé fò .

News

They called unto
God in the upper
room for the release
of the holy spirit .

Wón ké pe .lórun
ni yàrá orí òkè fún
itújáde è.mí mímó .

Wón ké pè .lórun ni
yàrá orí òkè fún itú
jáde è.mí mímó .

Igán ké pe .lóun
né. yàrá orí òkè ún
è. tújáde è.mi mé.mó.

Ghón kélè kpè.lórun
ni yàrá orígho òkè
ghún itújáde è.mí
mímó .

Religion

We all look for
characteristics that
has to do with self-
centeredness, and
they are similar to
this.

Gbogbo wa la máa
ń wá àwo.n ànimó.
tó ni i s.e pè. lú iwa
imo. tara nikan, ìrísí
wo.n si jo. èyi.

Dede wa re n wa
iwa ànimó. rè nii
s.e. pè. lú iwa imo. lara
nikan, irisi wo. si jo.
ìwé

Gbogbo ria la máa
ghá ino.n àné.mó. kó.
né.é. i se pè. lú èghà
èmo. tara o.ni nikàn,
è.risi rian sèè jo. yèé
.

Dede gha rèé mi fé.
àghan ànimá yii né.
i se kpè. lu ighà imò-
tara o. ne. nùkàn, ìrísí
ghàn si jo. èyi

Ted
Talks

Table 1: Examples of parallel translations across all dialects and domains in YORÙLECT. Words that are unique
across all dialects are highlighted in red.

with native speakers, can be used in (text-to-text)083

machine translation (MT), automatic speech recog-084

nition (ASR), speech-to-text translation (S2TT),085

and speech-to-speech translation (STST) tasks. We086

discuss in detail the data curation process, criteria087

for data selection, and the steps we took to ensure088

data quality and integrity (§3). We first conduct089

extensive experiments evaluating the zero-shot per-090

formance of recent state-of-the-art models for MT,091

ASR, and S2TT (§4, §5). Our results and anal-092

ysis indicate that current models are not robust093

enough to handle existing variation in Yorùbá di-094

alects. Given these poor results, we proceed to095

adapt (fine-tune) existing models on our training096

data across all tasks to boost overall performance.097

With 802 training instances in each dialect, this098

approach leads to an average increase of 14 and 5099

BLEU points for both MT and S2TT respectively,100

as well as a 20-point decrease in word-error-rate101

for ASR. Our work aims to motivate the commu-102

nity to build technology for languages alongside103

their dialects, especially for low-resource dialects104

of low-resource languages, as this will promote105

linguistic diversity, and ensure that technological106

advancements benefit all language communities.107

2 Yorùbá and its Regional Dialects108

The Yorùbá language is spoken natively by roughly109

47 million people in Nigeria1 and in the neighbor-110

ing countries of the Republic of Benin and Togo111

and also Côte d’Ivoire, Sierra Leone, Cuba, and112

Brazil. In Nigeria, Yorùbá speakers are mainly con-113

centrated in the Southwest region, spanning states114

like Oyo, Ogun, Osun, Ondo, Ekiti, and Lagos, and115

North Central states like Kogi, and Kwara.116

1https://en.wikipedia.org/wiki/Yoruba_language

Figure 1: Geographical distribution of Yorùbá dialects
in West Africa. Map from (Ozburn, 2023).

The extensive Yorùbá-speaking population and 117

their dispersion across various regions have led 118

to the emergence of geography-specific linguistic 119

variations (Ballard, 1971). The number of exist- 120

ing Yorùbá dialects is estimated between twelve 121

to twenty-six (Ojo, 1977; Adetugbo, 1982; Oye- 122

laran, 1971; Oyelaran and Watson, 1991) and the 123

differences present in these dialects are evident in 124

pronunciation, grammatical structure, and vocab- 125

ulary (Adetugbo, 1982; Przezdziecki, 2005; Olu- 126

muyiwa, 2009; Arokoyo et al., 2019; Olánrewájú, 127

2022). Also categorized as a Volta-Niger language 128

within the Yoruboid subgroup of the Niger-Congo 129

family, Yorùbá is a tonal language with three ba- 130

sic tones: low, middle, and high (Courtenay, 1969; 131

Oyetade, 1988), as well as two or three contour 132

tones.2 Previous research (Adeniyi, 2021) has in- 133

dicated that the phonetic nuances of contour tones 134

2A contour tone is a combination of two more basic tones
such as a falling tone made up of a high tone and a low tone,
or a rising tone consisting of a low tone followed by a high
tone.
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are a major distinguishing feature among Yorùbá135

dialects.136

Yorùbá dialectal forms in Nigeria can be clas-137

sified into five regional groupings: Northwest138

Yorùbá (NWY), Northeastern Yorùbá (NEY), Cen-139

tral Yorùbá (CY), Southwest Yorùbá (SWY), and140

Southeast Yorùbá (SEY). Phonological, lexical,141

and grammatical differences distinguish these142

groupings, given the diverse levels of mutual in-143

telligibility among the “regional” dialects within144

each category (Arokoyo et al., 2019; Olumuyiwa,145

2016; Abiodun et al.). In this work, our focus lies146

on Ifè. , a dialect in the Central Yoruba classifica-147

tion, Ìjè.bú, and Ìlàje. dialects, which belong to the148

Southeast Yoruba classification. We display the ge-149

ographical distribution of Yorùbá dialects in West150

Africa in Figure 1.151

Comparative dialectal analysis Standard152

Yorùbá, Ifè. , Ìjè.bú and Ìlàje. dialects exhibit both153

similarities and differences in their orthographic154

representations, morphology, and semantics. For155

instance, standard Yorùbá dialect has fused velar156

fricative /G/ and labialised voiced velar /gw/ into157

/w/ (Adetugbo, 1982) and our curated data revealed158

a similar pattern for Ìjè.bú. In contrast, Ifè. uses159

/G/ in certain occurrences while Ìlàje. has heavily160

retained the /gw/ and /G/ in its representations.161

As a result, at the word level, “àwo.n” (3p pl.) is162

represented similarly in standard dialect and Ìjè.bú163

but as “igho. n” in Ifè. and “àghan” in Ìlàje. . Besides164

the contrastive consonant nature, the oral and165

nasal vowels are also both contrastive in Ifè. and166

Ìlàje. dialects respectively. Further analsyses of167

YORÙLECT reveal that the low nasalised vowel /ã/168

mostly follows “gh” in Ìlàje. while the back lower-169

mid nasalised vowel /Õ/ accompanies “gh” in Ifè.170

dialect. One remarkable semantic variation is that171

standard Yorùbá dialect uses “so. ” and “wi pe” as172

say/talk, however for Ìlàje. and Ìjè.bú the morpheme173

mostly used is “fo. ” while Ifè. uses “ghii”, all of174

which have the same semantics.175

3 YORÙLECT Corpus176

We curated parallel text and recorded high quality177

speech data across Ifè. , Ìjè.bú, Ìlàje. , and Standard178

Yorùbá dialects. Our data curation process involves179

three main steps: (i) text curation and dialect lo-180

calization; (ii) speech recording; and (iii) text and181

audio alignment.182

3.1 Text Curation and Dialect Localization 183

We collected textual Standard Yorùbá data from the 184

following sources: (i) Bible study manuals;3 (ii) the 185

Yorùbá portion of MTTT, a collection of multitarget 186

bitexts based on TED Talks (Duh, 2018); and (iii) 187

Yorùbá news articles within the MAFT corpus (Al- 188

abi et al., 2022). Given resource limitations and the 189

demanding nature of this task, we gathered 352 sen- 190

tences from the Bible study manuals, 247 sentences 191

from TED Talks, and 907 sentences from news arti- 192

cles, amounting to a total of 1,506 sentences. Next, 193

we proceeded to localising the compiled Standard 194

Yorùbá text into the three respective dialects: Ifè. , 195

Ìjè.bú, and Ìlàje. by recruiting trained linguists and 196

translators who are literate and also native speakers 197

of the respective dialects. We hired two translators 198

or linguists per dialect and gave each a different 199

domains to localise. The localisation process took 200

about six to eight weeks and this included the lo- 201

calisation, quality assessment and incorporation of 202

corrections. We provided monetary compensation 203

for the localisation of the text. 204

3.2 Speech Recording 205

Speaker selection is crucial when creating an ASR 206

corpus; a speaker should be fluent, literate, trained, 207

and familiar with voice recording (Ogayo et al., 208

2022; van Niekerk et al., 2017). Due to time con- 209

straints and speaker availability, we were only able 210

to record speech in standard Yorùbá, Ifè. , and Ìlàje. 211

dialects, leaving Ìjè.bú for a later version of the 212

dataset. We retained the linguists and translators 213

who localised the standard Yorùbá text into Ifè. and 214

Ìlàje. dialects. We then recruited two additional 215

native speakers per dialect that are literate in ren- 216

dering the localised text into audio. All dialectal 217

voice talents received monetary compensation. We 218

first conducted an interview, then asked the new 219

recruits to record random samples of the text and 220

send the recordings for assessment. The audio 221

and corresponding text are vetted, after which we 222

selected native speakers with high reading compe- 223

tence, good voice texture, and reading pace. This 224

brought the total number of voice talents per dialect 225

to four. To ensure that each voice talent within a 226

dialect recorded text across all domains, we divided 227

text in each domain (religion, Ted, news) into four 228

parts. Each person recorded roughly 375 sentences 229

from each domain resulting in a total of 3 hours of 230

3https://faithrebuilder.org/
conference-bible-study-manuals
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BLEU ↑ AfriCOMET ↑

Ìjè.bú Ifè. Ìlàje. Standard Ìjè.bú Ifè. Ìlàje. Standard

M2M100 0.00 0.49 0.25 0.49 0.26 0.27 0.26 0.30
NLLB-600M 7.26 7.52 5.78 16.51 0.52 0.50 0.49 0.65

GMNMT 18.24 17.16 12.66 43.46 0.59 0.57 0.56 0.74

Menyo 2.76 2.66 1.57 7.49 0.44 0.40 0.40 0.52
MT0 5.81 6.68 4.61 17.22 0.52 0.50 0.47 0.65
Aya 7.18 7.71 4.91 16.46 0.49 0.50 0.45 0.63

Table 2: Zero-shot MT evaluation across all models. Google Translate outperforms all other systems and shows
greater robustness to dialectal variation. However, a significant performance gap remains compared to the Standard
Yoruba dialect.

speech per dialect.231

Recording is conducted using the speech232

recorder application designed by the YorubaVoice233

project (Ogunremi et al., 2024). The text files234

were uploaded per domain for each speaker on235

the YorubaVoice Recorder app. We used an M1236

Pro 2021 chip MacBook with an audio-technica237

AT2020USB-X microphone set-up in an anechoic238

and sound-isolated voice recording booth for the239

recording process. Each text is recorded at 48 kHz240

and the audio files are provided in 16 bit linear241

PCM RIFF format. The app generates metadata242

that includes a unique speaker ID, audio ID with243

corresponding text, and the audio file. Finally, all244

the recordings were subjected to a quality control245

process by the data coordinator. We manually ver-246

ified that the correct text was aligned with the ap-247

propriate audio file and re-aligned them when nec-248

essary. We also discovered one empty audio file249

in a particular dialect and proceeded to delete it,250

along with its corresponding text-audio pairs in all251

other dialects.252

Final data statistics In total, the text portion253

of YORÙLECT consists of 1506 parallel sentences254

per dialect and 6024 sentences overall, while the255

speech portion consists roughly 3 hours of audio256

each in standard Yorùbá, Ifè. and Ìlàje. , resulting in 9257

hours of speech in total. We split the text and audio258

pairs in each dialect into 804 training samples, 200259

validation samples and 502 test samples.260

4 Zero-shot Experiments261

We start by evaluating the zero-shot performance262

of current state-of-the-art models on the test por-263

tion of YORÙLECT. Based on the results from this264

initial evaluation, we then adapt the top-performing265

zero-shot models by finetuning on the training por-266

tion of YORÙLECT and report results in §5.1. MT267

Dialect length (hours) Avg. length (seconds) Avg. tokens

Standard 2.93 6.99 15.81
Ìlàje. 3.30 7.89 15.84
Ifè. 3.03 7.23 15.53

Ìjè.bú - - 15.25

Table 3: Statistics of YORÙLECT. The number of train,
validation and test samples is consistently (804/200/502)
for each dialect.

experiments are conducted on all dialects, while 268

ASR and S2TT experiments are conducted on all 269

expect Ìjè.bú. 270

4.1 Machine Translation 271

We evaluate two classes of translation systems: MT- 272

specific models and LMs. Here, the MT-specific 273

models use an encoder-decoder architecture and 274

are trained on large amounts of parallel data in mul- 275

tiple languages, whereas the LMs are decoder-only 276

models trained to maximize likelihood (i.e., next- 277

token prediction) on text in multiple languages. All 278

models we evaluate have standard Yorùbá text in 279

their training data. We only evaluate translation 280

from the standard language or dialect into English 281

since these experiments are zero-shot and we can- 282

not expect the models to generate text in one of the 283

dialects. This essentially enables us to measure the 284

robustness of all of these models to variation in the 285

Yorùbá language. 286

MT-Specific Models We evaluate M2M-100 287

(Fan et al., 2020), NLLB (Costa-jussà et al., 288

2022), and MENYO-20k (Adelani et al., 2021a). 289

M2M-100 and NLLB are multilingual MT mod- 290

els trained on data spanning 100 and 202 lan- 291

guages respectively. MENYO-20k is a Yorùbá- 292

to-English-specific model fine-tuned on top of the 293

multilingual pretrained mT5 model (Xue et al., 294

2021). MENYO-20k’s model is trained with the 295
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ASR (WER) ↓ S2TT (BLEU) ↑

Ifè. Ìlàje. Standard Ifè. Ìlàje. Standard

MMS 85.38 83.79 72.50 - - -
SeamlessM4T 96.14 101.99 80.14 5.52 3.30 13.16
Whisper 104.50 127.21 130.96 0.17 0.21 0.23

Table 4: Zero-shot performance on automatic speech recognition and speech translation.

MENYO-20k dataset, a curated multi-domain stan-296

dard Yorùbá dataset with proper orthography.297

Language Models We evaluate two multilingual298

LMs, Aya (Üstün et al., 2024) and MT-0 (Muen-299

nighoff et al., 2023), trained on 101 and 46 lan-300

guages, respectively (standard Yorùbá included).301

We prompt the LM to generate translations in a302

zero-shot setting with the prefix “Translate to En-303

glish: " added to each sentence and greedily decode304

the continuation. We do not provide in-context ex-305

amples in order to create a comparable setting to306

the evaluation of MT-specific models.307

Finally, we include Google Translate (GM-308

NMT)4 due to its widespread commercial use. We309

request the NMT model through the API, and can-310

not control any other aspects of its usage.311

Results We measure translation quality using312

AfriCOMET (Wang et al., 2023) and BLEU (Pap-313

ineni et al., 2002). Firstly, we report zero-shot per-314

formance across all models in Table 2. Although315

performance is relatively low across the board,316

among MT-specific models, NLLB performs best317

across all dialects, outperforming M2M100 and318

MENYO-20k. Comparing performance on LMs,319

Aya performs better than MT0 on all dialects except320

standard Yorùbá. Google Translate outperforms all321

systems across all dialects. Overall, we see a huge322

performance gap between standard Yorùbá and the323

rest of the dialects. This observation is not surpris-324

ing and is very consistent across all systems. The325

results in Table 2 also show that Ìlàje. has the worst-326

performing BLEU score across all models. We327

hypothesize that this is because Ìlàje. is largely spo-328

ken in Ò. ndó. state, which is geographically distant329

from Ò. yó. state where standard Yorùbá originated330

from.331

4.2 Automatic Speech Recognition332

We evaluate three models: Whisper (Radford333

et al., 2022), SeamlessM4T (Communication et al.,334

4https://translate.google.com/. API last accessed
on June 7, 2024.

2023), and MMS (Pratap et al., 2024). All mod- 335

els include standard Yorùbá in their pretraining 336

data. Whisper is an end-to-end ASR model, imple- 337

mented as an encoder-decoder transformer, trained 338

on 680,000 hours of multilingual and multitask 339

supervised data collected from the web. The au- 340

thors argue that it is robust to accents and vari- 341

ations in speech. It was optimized to perform 342

the tasks of transcribing audio into its original 343

language and translating the audio into English 344

text. SeamlessM4T is a multilingual and multi- 345

modal model that also translates and transcribes 346

across speech and text. It is trained on 470,000 347

hours of mined speech and text-aligned data and 348

supports ASR, S2TT, speech-to-speech translation, 349

text-to-text translation and text-to-speech transla- 350

tion, although our focus here is ASR and S2TT. 351

MMS is an ASR-only model finetuned on top of 352

wav2vec 2.0 (Baevski et al., 2020) models across 353

1,107 languages. In addition to dense finetuning, 354

they also finetune language-specific adapter mod- 355

ules (Houlsby et al., 2019) for each language in 356

their pretraining data. 357

Results We report word error rate (WER) with 358

the models MMS, SeamlessM4T, and Whisper in 359

Table 4 (left). Performance is generally poor across 360

all models, with MMS performing the best. We 361

hypothesize that MMS performs best due to its 362

training with parameter-efficient finetuning using 363

language-specific adapters. We see an average 364

performance gap of 12 points between standard 365

Yorùbá and the other dialects on MMS and Seam- 366

lessM4T. With Whisper, the case is different: while 367

the WER is generally very high, we see that only Ifè. 368

is substantially better across all dialects. Upon man- 369

ually reviewing the transcriptions from all models, 370

we noticed that Whisper did not include diacritics 371

in its generated transcriptions. Yorùbá is a tonal 372

language, and diacritics play a crucial role in dis- 373

ambiguating word meanings. We believe that this, 374

coupled with the generation of overly segmented 375

transcriptions contributes to Whisper’s exception- 376

ally high word-error rate exceeding 100. 377
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4.3 Speech Translation378

We only evaluate Whisper (Radford et al., 2022)379

and SeamlessM4T (Communication et al., 2023).380

Just like MT, we only evaluate translation from the381

standard language or dialect into English as we382

cannot expect the models to generate text in any of383

the dialects without explictly finetuning it do so.384

Results In Table 4 (right), we present the zero-385

shot speech-to-text translation (S2TT) results of386

SeamlessM4T and Whisper models, the only open-387

source models we are aware of that include cover-388

age for Standard Yorùbá. Among all the tasks we389

evaluated, S2TT appears to be the most challenging.390

Performance is absolutely low for both models with391

Whisper performing particularly poorly. Across392

dialects, with SeamlessM4T, Standard Yoruba per-393

forms better yet again with an average of 9 points394

performance gap compared to Ìlàje. and Ifè. .395

5 Finetuning Experiments396

5.1 Machine Translation397

Next, we finetune NLLB-600M (Team et al., 2022)398

on the training portion of our dataset in both di-399

rections, English→Dialect and Dialect→English.400

We experiment with training all dialects jointly un-401

der the Yorùbá language code, and training the di-402

alects separately by adding new language codes for403

each dialect and initializing them with the Yorùbá404

embedding. In an attempt to further boost perfor-405

mance, we augment our training data with 10k in-406

stances from MENYO-20k (Adelani et al., 2021a).5407

Results In Figure 2 we analyze the transla-408

tion quality following NLLB finetuning from409

Dialect→English, comparing it with both the trans-410

lation quality prior to finetuning and with Google411

Translate, which serves as the top-performing zero-412

shot system (Table 2). Our results demonstrate that413

with only 802 training instances per dialects we414

outperform Google Translate on the non-standard415

dialects. While the performance of Google Trans-416

late remains notably superior for the standard di-417

alect, we anticipate that scaling up the data could418

potentially bridge this gap.419

We present results for fine-tuning from420

English→Dialect in Table 12 in the Appendix.421

Our observation is that performance is generally422

5MENYO-20k was included in NLLB’s pretraining data,
however we try to include it in another step of language-
specific finetuning.

Dialect
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Figure 2: MT results (↑). We compare BLEU across
Google Translate, NLLB prior to finetuning, and NLLB
after finetuning.

worse than fine-tuning in Dialect→English direc- 423

tion. This is consistent with previous findings that 424

translating into English could be easier than trans- 425

lating from it (Belinkov et al., 2017). 426

5.2 Automatic Speech Recognition 427

We finetune MMS (Pratap et al., 2024) and XLSR- 428

Wav2Vec2 (Baevski et al., 2020). For the MMS 429

model, we only finetune the Yorùbá adapter layer, 430

while the other weights of the model are kept 431

frozen. 432

Results We compare performance after finetun- 433

ing XLSR and MMS with two different model sizes 434

each: 300M and 1.3B parameters. MMS is a more 435

suitable choice for finetuning because of its pa- 436

rameter efficiency, since we only have to tune the 437

Yorùbá adapter layers. However, we choose to com- 438

pare it with XLSR as well, as previous studies have 439

reported significant performance improvements by 440

finetuning XLSR (Ogunremi et al., 2024). In Fig- 441

ure 3, we first see that for XLSR, fine tuning a 442

model with less capacity (300M parameters) yields 443

better performance across all dialects compared to 444

fine tuning a model with about 4× more parame- 445

ters. However, with MMS, we see that finetuning 446

the 1.3B model yields a lower WER compared to 447

finetuning the 300M model. Here, the performance 448

gap is not as drastic as with XLSR. 449

On average, there is a performance improve- 450

ment of approximately 20% after finetuning. As 451

expected, across all models, the performance on 452

the Standard Yorùbá dialect remains considerably 453

better than that of Ìlàje. and Ifè. . We expect that 454

increasing the size of the finetuning data could help 455

close this gap and could be addressed in future 456

work. 457
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Figure 3: ASR results. (↓) We compare WER between
zero-shot and jointly fine-tuning on all dialects on XLSR
and MMS models.

5.3 Speech-to-Text Translation458

SeamlessM4T (Communication et al., 2023) is459

the only model we finetune for speech-to-text-460

translation, since it its the best performing model461

from zero-shot experiments (see Table 4 and the462

only other S2TT model (to the best of our knowl-463

edge) with Yoruba in its training data asides. We464

finetune in the (Dialect→English) direction.465

Dialect

B
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U

0

5

10

15

20

Standard Ife Ilaje

Zero-shot Finetuned

Figure 4: S2TT results (↑). We compare BLEU prior to
finetuning and after finetuning SeamlessM4T.

Results The results in Figure 4 show that while466

we can reasonably boost performance on Standard467

Yorùbá after finetuning, it still remains a very hard468

task for the other dialects with just finetuning. We469

hypothesize that this occurs for two reasons, firstly470

the amount of Yorùbá S2TT data in SeamlessM4T471

is smaller than the data available to train ASR472

(Communication et al., 2023). Secondly, while473

there is notable lexical variation across Yorùbá di-474

alects, the differences are even more pronounced475

in spoken language. This significant variation in476

pronunciation and intonation, coupled with the fact477

that S2TT data for Yorùbá is scarcer than ASR data478

makes the task of adaptation particularly challeng-479

ing. 480

6 Human Evaluation 481

We complement automatic evaluation metrics with 482

a human evaluation study to assess the quality 483

of translations and transcriptions from the best 484

models after fine-tuning for MT and ASR. Pre- 485

vious research has shown that word error rate 486

(WER) is not nuanced, as it treats all errors in ASR 487

text—insertions, deletions, and substitutions—the 488

same, without considering their impact on readabil- 489

ity (Itoh et al., 2015).6 For ASR, one native speaker 490

per dialect rated the quality of 30 randomly sam- 491

pled transcriptions from the test set produced by 492

our best ASR models after finetuning. After listen- 493

ing to the source speech they assess fluency (how 494

natural and grammatically correct the transcription 495

sounds in their dialect) and adequacy (how accu- 496

rately the transcription conveys the meaning of the 497

source speech) using a Likert scale of (1–5), the 498

higher the better. In Table 5 we show that human 499

raters consider the transcriptions of standard and 500

Ifè. to be moderately adequate and fluent on aver- 501

age, compared to Ìlàje. . These findings align with 502

our observations from automatic metrics. 503

Adequacy ↑ Fluency ↑

Standard 3.37 3.03
Ìlàje. 2.73 2.62
Ifè. 3.40 2.90

Table 5: Average human ratings of adequacy and flu-
ency of transcriptions from the best ASR models after
finetuning.

For MT, we ask human raters to compare the 504

quality of translations from Google Translate with 505

translations after finetuning NLLB, still focusing 506

on fluency and adequacy still using a Likert scale 507

(1–5). We provide the exact phrasings of instruc- 508

tion in the §A.4. Our results, displayed in Ta- 509

ble 6, show that Google Translate is rated to be 510

more fluent and accurate on Standard Yorùbá and 511

Ìlàje. . However, our finetuned NLLB-600M model 512

is rated to be more more fluent and accurate on Ifè. 513

and Ìjè.bú. The results on standard Yorùbá, Ifè. and 514

Ìjè.bú are very consistent with automatic evaluation 515

results in Figure 2. This is not the case with Ìlàje. , 516

as our ratings are lower compared to Google Trans- 517

6https://machinelearning.apple.com/research/
humanizing-wer
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late, which contrasts with our automatic evaluation518

in Figure 2.519

Adequacy ↑ Fluency ↑

GMNMT NLLB GMNMT NLLB

Standard 4.47 4.13 4.73 4.60
Ìlàje. 2.73 2.63 2.10 1.83
Ifè. 2.90 3.67 2.73 3.57

Ìjè.bú 3.37 3.96 3.60 4.20

Table 6: Average human ratings of adequacy and fluency
of test set translations comparing Google Translate with
the best models after fine-tuning NLLB-600M

7 Analysis and Discussion520

Does edit distance explain performance gaps?521

In this analysis we aim to understand how dialectal522

similarity influences model adaptation during fine-523

tuning. Ideally, we expect dialects with higher sim-524

ilarity to Standard Yorùbá to perform better. Edit525

distance (Levenshtein, 1966) is a simple method526

commonly used in dialectometry to infer pronunci-527

ation differences between language dialects (Ner-528

bonne et al., 2020, 1996; Heeringa, 2004). In our529

work, we use edit distance as a proxy for similarity530

between Standard Yorùbá and the other dialects in531

our corpus, expecting that dialects with a higher532

degree of similarity (lower edit distance) will per-533

form better. We compute the average edit distance534

per dialect, d̄ = 1
N

∑N
i=1 d(si, ti), where N is the535

number of sentences in the test set of the dialect, s536

is the sentence in Standard Yorùbá, t is the sentence537

in the corresponding dialect, and d(si, ti) is the edit538

distance between si and ti at the character-level.539

We present the results of this analysis in MT in540

Table 7. As expected, Ifè. has the smallest edit dis-541

tance from Standard Yorùbá and respectively also542

the best performance after finetuning. However543

we surprisingly see that while Ìjè.bú has a higher544

edit distance than Ìlàje. , the model performance is545

higher for Ìjè.bú. We conclude that edit distance546

has a weak correlation with our MT metrics.547

Dialect Avg. ED BLEU AfriCOMET

Ifè. 24.66 22.97 0.59
Ìlàje. 38.07 18.64 0.55
Ìjè.bú 41.46 21.98 0.60

Table 7: Average edit distance and MT-Metrics compar-
ison for MT across dialects.

For ASR, we compute edit distance on phonetic 548

transcriptions using the PanPhon library developed 549

by (Mortensen et al., 2016). The phonetic edit 550

distance between standard Yorùbá to Ìlàje. and Ifè. 551

is 34.99 and 44.4, respectively. Here again, we 552

also see no correlations between edit distance and 553

performance on dialect adaptation. 554

Joint vs. dialect-specific finetuning. Dialects 555

often exhibit rather subtle variations in text and 556

speech. In data-constrained scenarios like ours, it 557

is reasonable to expect that jointly finetuning on all 558

dialects would result in better performance com- 559

pared to fine-tuning on each dialect individually. In 560

our earlier finetuning experiments detailed in §5, 561

we explored joint training. Now, we try to compare 562

performance between joint training and individual 563

training on MT and ASR tasks. We generally see 564

that on both tasks, joint training is beneficial. In 565

MT, Table 11 in the Appendix shows a huge drop in 566

performance across all dialects when we finetune 567

on each dialect individually. This suggests that 568

by jointly finetuning, the model leverages shared 569

features across dialects for mutual benefit. How- 570

ever, in ASR, as shown in Table 8, the drop in 571

performance with individual finetuning is not as 572

pronounced as with MT. We believe that in this 573

case, the subtle variations in speech are sometimes 574

significant, making it more challenging to greatly 575

benefit from joint training. We however acknowl- 576

edge that the data size of each individual dialect is 577

one-fourth of the whole training set, so data paucity 578

might also be influencing these results. 579

8 Conclusion 580

We introduce YORÙLECT—the first high quality 581

parallel text and speech corpus for four Yorùbá 582

dialects sourced primarily from native speakers, 583

to enable ASR, MT and S2TT tasks for widely- 584

spoken varieties of Yorùbá. We have provided a 585

detailed documentation of data curation process 586

from standard text creation, to dialect localization 587

and speech recording in communities where these 588

dialects are spoken. Extensive experiments reveal 589

that current models are not robust to dialectal vari- 590

ation, and improve significantly after our dialect- 591

adaptive finetuning. Overall, our data collection 592

methodology, new resources and improved models 593

take a step towards enhancing the quality and eq- 594

uity of NLP technologies for Yorùbá dialects and 595

potentially other African languages. 596
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Ethical Considerations597

Our datasets and models will be publicly released598

under an open license to foster research and con-599

tinue to promote the development of NLP tools for600

African languages. Transcriptions, recordings and601

translations are carried out by paid native speakers602

who provided consent to use their voice to train our603

models. We acknowledge that the limited size of604

the corpus might not represent perfectly communi-605

ties and speakers of the dialects. Further, dialectal606

generations, particularly when erroneous, could be607

perceived as biased or even microaggressions by608

some native speakers, as well as dialect-specific er-609

rors from the models (Wenzel and Kaufman, 2024).610

While our work provides resources that aim to re-611

duce dialectal biases and unfairness in multilingual612

NLP systems, future work should focus on care-613

ful human evaluation of how these resources are614

incorporated in end-user tools.615

Limitations616

A limitation of our work is the robustness of617

the metrics we use for evaluation. While all of618

these metrics are standard for all of the tasks,619

we acknowledge that model-based metrics like620

AfriCOMET (Wang et al., 2024) could be biased621

towards standard dialects that their models have622

been trained on. Exploring model-based metrics623

that facilitate robust evaluations on dialectal tasks624

remains a challenge for future work (Faisal et al.,625

2024).626

Additionally, the text portion of our dataset is627

translated from the standard dialect into English628

and the non-standard dialects. We acknowledge629

that this could introduce translation artifacts known630

as translationese (Volansky et al., 2015) that are631

not present in the source dialect. However, we632

believe that the benefits of our dataset outweighs633

the potential risks of these artifacts.634
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A Appendix1234

A.1 Related Work1235

Previous works that have developing technolo-1236

gies and resources for machine translation (Ahia1237

et al., 2021; Adebara et al., 2022, 2021; Lee1238

et al., 2023; Akinade et al., 2023; Adelani et al.,1239

2021a), automatic speech recognition (Ogunremi1240

et al., 2024; Communication et al., 2023; Baevski1241

et al., 2020) and speech translation (Communica-1242

tion et al., 2023; Oneata and Kamper, 2024) for1243

Yorùbá have largely focused on the standard Yorùbá1244

dialect. This is because, just like other African lan-1245

guages, standard Yorùbá is also very low-resourced,1246

and all efforts have been directed there. Several1247

works have shown that models often exhibit perfor-1248

mance disparities between standard languages and1249

their dialectal counterparts (Diab, 2016; Nigmat-1250

ulina et al., 2020; Kantharuban et al., 2023; Ziems1251

et al., 2023; Faisal et al., 2024; Ahmadi et al., 2024;1252

Joshi et al., 2024; Blaschke et al., 2023; Aji et al.,1253

2022; Abdul-Mageed et al., 2023). Arabic lan-1254

guage has roughly 30 regional dialects. Whilst1255

majority of work has being done on Modern Stan-1256

dard Arabic (MSA), Arabic still has the widest1257

coverage of tasks and datasets across several of its1258

dialects (Faisal et al., 2024; Diab and Habash, 2012;1259

Bouamor et al., 2018; Kchaou et al., 2020). Within1260

African languages, some works that aim to build1261

dialect-aware models have conducted their studies1262

on Igbo (Emezue et al., 2024), Luhya (Siminyu1263

et al., 2021; Chimoto and Bassett, 2022), Bemba1264

(Sikasote and Anastasopoulos, 2022) and Kiswahili1265

(Siminyu et al., 2022).1266

A.2 Finetuning setup1267

For the MT, we fine-tuned in both directions with1268

a learning-rate of 2e-5 and batch size of 16. We1269

trained for four epochs, and kept the model with1270

the best eval loss. We used a weight decay of 0.01,1271

warmup ratio 0.1, and a cosine annealing scheduler1272

for learning rate. While for ASR finetuning, we1273

fine-tuned with a learning-rate of 1e-3 and batch1274

size of 8 for 20 epochs, as the validation WER1275

continued to drop after preliminary runs with 101276

epochs. For S2TT, we fine-tuned for 10 epochs1277

with an optimal learning rate of 3e-4. All training1278

was done on two NVIDIA A40 GPUs.1279

Model Standard Ife Ilaje

Zero-Shot 72.50 85.38 83.79
MMS-300m-Individual 74.67 93.20 78.24
MMS-1.3bn-Individual 55.43 72.00 61.80
XLSR-300m-Individual 56.26 81.23 64.22
XLSR-1.3bn-Individual 67.65 78.70 76.36

MMS-300m-Joint 58.11 76.58 67.17
MMS-1.3bn-Joint 55.73 73.95 63.94
XLSR-300m-Joint 54.55 73.72 61.03
XLSR-1.3bn-Joint 81.57 90.04 86.30

Table 8: ASR Performance of across all models after
fine-tuning individually and jointly

A.3 Results from Joint vs Individual MT 1280

fine-tuning 1281

We present tables comparing jointly fine-tuning 1282

to individual fine-tuning on MT across the two 1283

training directions in Table 12 and Table 11. 1284

A.4 Human evaluation 1285

We provide exact instructions given to human evlau- 1286

taors for our ASR and MT tasks in Table 5 and 1287

Table 6 1288
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You are tasked to evaluate the performance of an Automatic Speech Recognition (ASR) system on your native
Yoruba dialect. This task involves assessing the accuracy and quality of transcriptions produced by this system when
transcribing audio from a folder that will be provided to you. Your evaluations will help us understand how well
these systems handle linguistic variations. Each filename has a corresponding audio file with the same name in the
audio folder. Listen to the audio first, then look at the transcription from the model. Next, evaluate the quality of the
transcription compared to the audio you listened to and provide a score in the Excel sheet.
Please focus on the following key criteria while evaluating the transcriptions:

Fluency Evaluate how natural and grammatically correct the transcription sounds in your dialect.

1 Incomprehensible: The transcription is completely unintelligible and nonsensical. The text is difficult to
understand.

2 Poor grammar and disfluent: The transcription contains significant errors in grammar, syntax, and vocabulary
that affect the clarity and naturalness of the text.

3 Grammatically correct, potentially unnatural: The transcription is grammatically correct but may have some
errors in spelling, word choice, or syntax.

4 Fluent and natural: The transcription contains no grammatical errors, and the text is somewhat easy to read and
understand.

5 Perfectly fluent and natural: The transcription is completely natural, grammatically flawless, reading as if
written by a native speaker.

Adequacy Assess how accurately the transcription conveys the meaning of the source speech.

1 Nonsense/No meaning preserved: All information is lost between the transcription and the source.

2 Very poor meaning preservation: The transcription preserves little meaning from the source.

3 Moderate meaning preservation: The transcription retains some meaning but still misses important details.

4 Good meaning preservation: The transcription retains most of the meaning of the source.

5 Perfect meaning preservation: The meaning of the transcription is completely consistent with the source.

Table 9: MT Human evaluation guidelines
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You are tasked to evaluate the performance of two Machine Translation systems on your native Yoruba dialect. This
task involves assessing the accuracy and quality of translations produced by these systems, when translating from your
dialect into English. Your evaluations will help us understand how well these systems handle linguistic variations.
Please focus on the following key criteria while evaluating the transcriptions:

Fluency Evaluate how natural and grammatically correct the translation sounds in the target language.

1 Incomprehensible: The translation is completely unintelligible and nonsensical. The text is difficult to under-
stand.

2 Poor grammar and disfluent: The translation contains significant errors in grammar, syntax, and vocabulary
that affect the clarity and naturalness of the text.

3 Mostly grammatically correct, potentially unnatural: The translation has few grammatical errors and also has
some errors in spellings, word choice, or syntax. The language may not be natural.

4 Grammatically correct and natural: The translation contains few grammatical errors, the vocabulary is precise,
and the text is easy to read and understand.

5 Perfectly fluent and natural: The translation is completely fluent, sounds natural and is grammatically correct.

Adequacy Assess how accurately the transcription conveys the meaning of the source speech.

1 Nonsense/No meaning preserved: All information is lost between the translation and the source.

2 Very poor meaning preservation: The translation preserves little meaning from the source.

3 Moderate meaning preservation: The translation retains some meaning but still misses important details.

4 Good meaning preservation: The translation retains most of the meaning of the source.

5 Perfect meaning preservation: The meaning of the translation is completely consistent with the source.

Table 10: ASR Human evaluation guidelines
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BLEU ↑ AfriCOMET ↑

Ìjè.bú Ifè. Ìlàje. Standard Ìjè.bú Ifè. Ìlàje. Standard

Individual 16.53 16.04 12.98 30.27 0.57 0.56 0.52 0.69
Joint 21.98 22.97 18.64 37.55 0.60 0.59 0.55 0.71
Joint + MENYO-20k 19.80 20.77 17.21 31.75 0.54 0.59 0.60 0.71

Table 11: MT Finetuning Evaluation using NLLB-
600M in the Yorùbá to English direction, training the
dialects as individual languages, jointly under Yorùbá,
and jointly along with MENYO-20k data.

BLEU ↑ AfriCOMET ↑

Ìjè.bú Ifè. Ìlàje. Standard Ìjè.bú Ifè. Ìlàje. Standard

Individual 8.48 8.74 5.78 18.32 0.52 0.50 0.47 0.66
Joint 8.71 8.93 6.48 18.98 0.52 0.50 0.47 0.66
Joint + MENYO-20k 7.23 7.25 5.29 17.24 0.50 0.48 0.44 0.65

Table 12: MT Finetuning Evaluation using NLLB-600M
in the English to Yorùbá direction.
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