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Abstract

Test-Time Discovery (TTD) addresses the critical challenge of identifying and
adapting to novel classes during inference while maintaining performance on
known classes, which is a capability essential for dynamic real-world environ-
ments such as healthcare and autonomous driving. Recent TTD methods adopt
training-free, memory-based strategies but rely on frozen models and static repre-
sentations, resulting in poor generalization. In this paper, we propose a Discrepancy-
Amplifying Adapter (DAA), a trainable module that enables real-time adaptation
by amplifying feature-level discrepancies between known and unknown classes.
During training, DAA is optimized using simulated unknowns and a novel warm-
up strategy to enhance its discriminative capacity. To ensure continual adapta-
tion at test time, we introduce a Short-Term Memory Renewal (STMR) mech-
anism, which maintains a queue-based memory for unknown classes and selec-
tively refreshes prototypes using recent, reliable samples. DAA is further up-
dated through self-supervised learning, promoting knowledge retention for known
classes while improving discrimination of emerging categories. Extensive ex-
periments show that our method maintains high adaptability and stability, and
significantly improves novel class discovery performance. Our code is available at
https://github.com/LeTianL-TT/DAA-for-TTD.

1 Introduction

Test-Time Discovery (TTD) [22] is an emerging and increasingly important task that aims to dynami-
cally identify and classify novel categories during the test phase, while simultaneously maintaining
robust performance on previously learned classes. This capability is critical for real-world applica-
tions such as healthcare, autonomous driving, and robotics, where models must adapt to previously
unseen classes after deployment. While Test-Time Adaptation (TTA) [36} 6} 132, [7]] has attracted
substantial attention for mitigating domain shifts, it typically overlooks the challenge of class shifts,
particularly the emergence of new categories. Novel Class Discovery (NCD) [27,139] is designed for
static settings with separated labeled and unlabeled data, and falls short in test-time scenarios, thus
generally relies on offline clustering and post-hoc evaluation, assuming that novel categories are only
identified in a controlled training environment. Unlike TTA and NCD, TTD explicitly targets novel
class discovery during inference, operates in a distinct paradigm, requiring real-time adaptation
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Figure 1: (a) In Test-Time Discovery (TTD), a model is pretrained on data containing only known
classes. During deployment, the test data may include both known and unknown classes, requiring
the model to predict known classes and discover novel ones. (b) Recent training-free method [22]
relies on fixed features and is difficult to classify via prototype only. Our method maintains known
classes and amplifies differences of unknown classes.

to continuous unlabeled streams of both known and unknown classes, enabling models to maintain
performance and learn emerging categories.

Recent advances in TTD [22] propose a training-free, hash-based memory mechanism for fine-grained
comparisons with past samples, enabling novel class discovery during inference. While eliminating
the need for model update, this approach relies on frozen model parameters and updates only an
external memory. As a result, it suffers from significant estimation errors and limited generalization.
As shown in Fig.[Tb] the use of static prototypes constrains novel classes to the existing feature space
of known classes, often leading to feature overlap and misclassification.

In this paper, we propose a Discrepancy-Amplifying Adapter (DAA) for the TTD task. Unlike prior
methods based on frozen architectures, DAA is a trainable module that enables effective adaptation
to novel knowledge. During training, the backbone learns known classes, while DAA is optimized to
preserve feature consistency. To enhance discrimination of unknown classes, DAA is trained with
simulated unknowns, encouraging amplified feature discrepancies by a warm-up strategy. At test
time, we introduce a novel Short-Term Memory Renewal (STMR) strategy, inspired by the memory
strategy in the previous method [22], to mitigate misclassification. STMR employs a queue-based
memory to prioritize recent and reliable samples, supporting prototype updates, sample replay, and
test-time refinement of DAA. This design improves both memory efficiency and model adaptability.
DAA adapts in real-time testing through self-supervised updates based on predictions and the memory
queue, which ensures knowledge alignment for known classes and improves model plasticity and
generalization to novel classes. Experimental results show that our method outperforms existing
state-of-the-art methods with higher adaptability and stability, and significantly improves novel class
discovery performance.

In summary, our contributions are:
(1) Unlike existing training-free methods that rely solely on pre-trained models, we propose a

trainable module DAA, to address the TTD problem by amplifying feature differences.

(2) We propose a STMR strategy, which rectifies outdated and unreliable knowledge and is used to
maintain known classes and improve the discrimination of unknown classes.

(3) Extensive experiments demonstrate that our method significantly outperforms existing methods.

2 Related Work

Test-Time Training (TTT) [16, 30, 21] is an emerging paradigm in machine learning that focuses on
adapting pre-trained models to distribution shifts during inference. Unlike traditional training methods
that rely solely on a fixed dataset, TTT leverages self-supervised tasks to update model parameters



dynamically using the input data structure. TTT methods such as TTT++ [20] and TTT-MAE [9]
employ auxiliary tasks like image rotation prediction or masked autoencoding to refine feature
extractors during inference. These methods aim to align the model’s internal representations with the
test data distribution, thereby enhancing generalization [17,18}131]]. However, TTT methods typically
focus on predefined categories and overlook the discovery of novel classes during testing, which is a
critical limitation in open-world environments where new classes may emerge unexpectedly.

Novel Category Discovery (NCD) [10} 43} |45] addresses the challenge of identifying previously
unseen classes during inference. NCD methods can detect new categories autonomously, often
through clustering techniques. For instance, DTC [11] leverages prior knowledge of related image
classes to reduce ambiguity in clustering and enhance the quality of newly discovered classes. Other
methods, such as PromptCCD [3] and GCD [34], employ advanced techniques to improve the
detection and representation of novel classes. On-the-fly Category Discovery (OCD) [8 144] tries to
perform online discovery and make instant inference by hash coding and hamming distance. However,
OCD focuses on discovery rather than improving performance through the testing phase and can only
provide hash descriptions for class prototypes, which ignore the model adaptation on new classes.
While NCD has made significant progress in offline settings, it falls short in dynamic, real-time
applications where models must adapt to new classes instantly.

Test-Time Discovery (TTD) introduces a novel task that enables models to dynamically discover
novel classes during inference while maintaining known-class performance, bridging the gap between
TTT and NCD. The pioneering work by Lyu et al. [22]]. proposes a training-free framework leveraging
Locality-Sensitive Hashing (LSH) to construct a memory buffer for efficient sample comparison and
pseudo-label refinement. Their method groups similar test samples, combining global prototypes
and local hash-based predictions. While this approach mitigates catastrophic forgetting by freezing
model parameters, it inherently limits the model’s capacity to adaptively refine feature representations
for enhanced discrimination between old and new classes. Recent efforts in Test-Time Adaptation
(TTA) [ 14, 25] explore lightweight parameter updates but remain confined to domain shifts rather
than class shifts. Our method aims to address the limitations of existing TTD techniques by enhancing
the model’s ability to adapt to new classes in real-time while maintaining robust performance on
known classes, a critical improvement over static architectures in evolving open-world settings.

3 Method: Discrepancy-Amplifying Adapter

3.1 Problem Definition

The goal of TTD is to enable testing models to not only classify samples from known classes
accurately, but also to identify and classify samples from unknown classes dynamically by adaptation.
During the training phase, let Dyyin = { (24, v:) } ZN:";‘“ be the training dataset, where x; is a data point
and y; € Yk, 18 its corresponding label from the set of known classes )i,. The model f is trained on
Dirain to learn the representations of the known classes. During the test phase, the model encounters a
test dataset Dyee = DX, U DU1. The set of unknown classes comprises seen and unseen parts, i.e.,
Yun = Vseen U Vunseen- Once a new class is discovered, it becomes a seen class. As the example shown
in Fig. [Ta] after discovering new classes “Apple” and “Bird”, a TTD model needs to distinguish
whether the test sample is “Dog”, “Cat”, “Apple”, or “Bird”.

The TTD task requires the model to achieve two objectives. First, novel class discovery and learning,
where inputs z € D, must be identified as belonging to unseen classes and assigned new labels to
distinguish them from known-class samples. Second, unified classification, where all inputs © € Dieg
are accurately classified into either a known class y € Y, or a novel class y € Vieen, With Vieen

denoting the set of dynamically discovered novel classes.

Existing TTD methods [22] follow the NCD paradigm, which relies on a fixed backbone where
feature representations for unknown classes remain static during the testing phase. These approaches
avoid model updates and instead depend on memory buffers storing representative samples, with
prediction and novel class discovery based solely on distances to stored prototypes. However, the
frozen representations hinder the model’s ability to effectively discriminate between known and
emerging unknown classes. To overcome this limitation, we introduce a trainable component, the
Discrepancy-Amplifying Adapter (DAA). Moreover, to improve adaptability and ensure long-term
efficacy, we propose Short-Term Memory Renewal (STMR), a dynamic memory mechanism that
continuously updates and refreshes stored representations.
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Figure 2: Method Schema. The DAA preserves known class features and amplifies discrepancies
with unknowns—simulated during training and encountered during testing. It is updated online to
maintain discrimination. The memory system includes sample queues for replay and renewal, and
feature queues for prototype computation.

3.2 Discrepancy-Amplifying Warm-up before Testing

The failure of past TTD methods was because unknown classes and known classes could not be
effectively separated, and this situation could not be improved over time. DAA is a lightweight
module inserted into a pre-trained model to enable efficient fine-tuning for unknown classes. Given an
input image x, the backbone produces a feature vector r(x) = f(z) € R, which is then transformed
by DAA into an adapted representation. The core design of DAA lies in keeping the backbone
that contains known classes unchanged, and entrusting the discovery and learning of new classes to
the constructed DAA module. To achieve this, we first propose a discrepancy-amplifying warm-up
strategy for DAA update before the testing phase. Warm-up has been used in TTA [26] 41] to further
build a knowledge structure for the source model [2, |5)]. The discrepancy-amplifying warm-up
strategy first simulates unknown classes and then trains with a pre-amplify loss.

Unknown Class Simulation. During training, only known classes are available, yet the model
must remain adaptable to future unknowns. To address this, in the discrepancy-amplifying warm-up
strategy, we propose to simulate unknown class features by combining Gaussian noise and the Mixup
technique [42]]. Given two difference samples x and z’, the synthetic feature T is generated as follows:

t(x)=X-r(z)+ (1 —N)-r(z') +n, (1)
where n denotes a vector of Gaussian noise with a mean of zero and a certain covariance matrix. The

mixing coefficient \ is drawn from a Beta distribution. This augmentation increases training diversity
and encourages the DAA to learn more generalized, transferable representations.

Discrepancy Pre-Amplification. Building upon the unknown class simulation introduced in the
warm-up stage, we design a dual-objective training to guide the discrepancy pre-amplification of DAA.
The effect of the training must retain the original representation of known classes while amplifying
the distinction between simulated unknown and known features. To preserve the learned semantics of
known classes, we constrain the DAA output to remain close to the original backbone feature f(x)
using an MSE loss. Simultaneously, given a test batch BB, and for = € B, we apply a contrastive loss
on the adapted unknown features to maximize inter-class discrepancy, ensuring the model learns
more discriminative representations for novel classes:

exp(7[DAA(E(2)). DAA(E(x) )
> aren (0 [DAA(r(z')), DAA(E(2))])’
(2)
where o denotes the cosine similarity. DAA(T(x))qug is the feature obtained through data augmenta-
tion operations. The total warm-up loss for DAA is a weighted combination:

Etrain(B) = EmEB Ekn(x) + Lun(z)- (3)
This Discrepancy-Amplifying Warm-up strategy has been empirically shown to facilitate novel class
discovery by enhancing feature separation during the early training phase. However, during testing,
samples from unknown classes often exhibit high uncertainty and noise. Blindly updating the model

with such unreliable samples can undermine the benefits of warm-up, potentially causing semantic
drift and loss of discrimination between known and unknown classes.

Linlx) = [DAA(x(x)) — x(@)]*, Lun(a) = —log




3.3 Short-Term Memory Renewal

Inspired by [22], we introduce a Short-Term Memory Renewal (STMR) mechanism during testing.
This memory-guided strategy enables the DAA to selectively integrate informative samples while
continuously refreshing its representation space, thereby preserving class boundaries and stabilizing
adaptation in the presence of noisy unknown inputs. As illustrated in Fig.[3] STMR employs a queue-
based memory system consisting of sample queues S and feature queues F for each class. For known
classes, memory queues are initialized using training data and remain static. Their corresponding
prototypes are computed and fixed during the training phase. To prevent catastrophic forgetting,
we employ sample replay by randomly selecting ¢, ~ S, and using them to regularize the DAA
updates for known class ¢ € Yk,. In contrast, novel classes begin with empty memory, which is
updated dynamically as new unknown samples are discovered. Unknown-class memory Sy, and Fyy,
follows a First-In-First-Out (FIFO) strategy to ensure temporal relevance.

However, since the initial predictions for unknown samples may be noisy and DAA parameters
evolve over time, prototype drift and representation mismatch may occur. To address this, STMR
introduces a renewal step and it will trigger every several batch. A subset of unknown memory
samples z ~ S, are extracted by the backbone and DAA for a seen class c. Then, the feature
t = DAA[r(z)] is re-evaluated to obtain updated predictions §. If § € Yky, the sample z is discarded
to avoid contamination of unknown memory with misclassified known-class data. If § € ), the
feature T is used to update DAA via contrastive loss to enhance its separability from known-class
features. Then z and T re-queue the sample and its updated feature into Sy and F respectively. The
update of the unknown sample and feature queues are updated as follows:

Se¥ « FIFO(S5 Y, ), For? < FIFO(Fi7 1). )
The prediction and test-time training using DAA can be seen in Sec.[3.4]

For a newly discovered class c, the prototype is computed as the mean of its feature queue:
Pe = Ezes: (DAA[r(z)]). 5)

Compared with the memory strategy in HM [22], which stores uncertain samples over time but does
not update the model, STMR uses short-term, renewable memory with selective filtering to retain
only reliable representations. This design not only avoids the accumulation of errors but also enables
model updates via contrastive learning, allowing STMR to adapt to novel classes while preserving
known-class performance.

3.4 Test-Time Prediction and Training with DAA

In this subsection, we illustrate how to use DAA to conduct prediction and learning at test time. When
encountering the test data point with a known or unknown class, the prediction procedure involves
calculating the cosine similarity between the test samples and the prototypes of known classes to
determine their classification. Based on the max similarity scores, we apply a confidence threshold ~y
to determine whether a test sample = belongs to a seen class or an unseen class.

o Jargmax ¢y, oy, (P(2)), if max. P(z) > 7, ©)

| new unseen class, otherwise,
where prediction comparison P(z) = sim(DAA[r(z)], pc), sim() operator refers to the similarity
(cosine similarity) between two vectors. If the sample is classified as an unseen class § € Vynseen, this
class will become a seen class Vieen <— ¥, and the model will treat this sample as the first instance of
this new seen class. The feature vector DAA[r(x)] will be used as the initial prototype for this class,
denoted as p;. Subsequent samples will be compared to all known and seen prototypes, including
this new py.

For the test-time training, we update the DAA to involve knowledge from novel classes. For known
classes, we continue to use the MSE loss, which penalizes deviations between the original and adapted
features to ensure that the DAA does not alter the feature representations significantly. Converse
to known classes, unknown classes are handled with a contrastive loss that encourages the DAA to
produce features distinct from both known classes and other unknown classes. Specifically, given a
test batch data B, the test-time training with DAA can be represented by two kinds of loss functions.
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Figure 3: STMR strategy. Replay samples are randomly drawn from the known-class memory to
mitigate catastrophic forgetting in DAA, while renewal samples are selected from the unknown-class
memory to refresh prototype representations and support timely memory updates.

The first kind of loss is the self-supervised learning loss via the pseudo labels, which is similar to the
test-time training in TTA:

Ekn(B, C) =E Eun(B7 C) = EIEB Eun(x@ = C). (7)

The second kind represents the replay for known and the renewal for seen classes via retrain samples
in memory:

zeB Ekn(-r"g = C),

Lreplay

kn (C) :E(x’f)e($&7\7:kc") ‘Ckn(«r), L'{lennewal(c)

= E@#esg, o) Lun(T) (8)

un ’

The overall testing phase loss for the DAA is shown below:
Lis(B) = A1 Ecen, (Laa(B,c) + L™ (0)) + X Eeene, (Lun(Bie) + LE(C)) )

where \; and ), are hyperparameters that balance the contributions of each loss term.

Discussion: Training-free TTD vs. DAA. Training-free TTD approaches such as HM [22] rely only
on a fixed model and static feature distribution, updating only class prototypes to accommodate novel
classes. While effective in certain scenarios, such methods struggle with complex or overlapping
feature distributions. In particular, when unlearned features from different unknown classes are
entangled, prototypes are constrained to represent mixed semantics, resulting in suboptimal dis-
crimination and degraded classification performance. Moreover, the absence of model adaptation
during test time limits their capacity to incorporate new knowledge. In contrast, our DAA enables
dynamic model updates during testing, allowing the feature distribution to evolve with incoming data.
This adaptability improves the model’s ability to disentangle and separate unknown classes while
preserving representations of known ones. By explicitly amplifying inter-class discrepancies and
refining the feature space through continual adaptation, DAA achieves more robust generalization
and higher accuracy in open-world scenarios.

4 Experiment

4.1 Experimental Details

Dataset details. We conduct our experiments based on three benchmark datasets, namely CIFAR100
(C100)[14]), Caltech-UCSD Birds-200-2011 (CUB)[335]] and Tiny ImageNet[15]]. All these datasets
are split into known and unknown classes (7:3). The model is trained on the known training set, and
tested on the mixture of known and unknown test sets. We follow three transformed datasets used for
discovery in TTD work: CIFAR100D, CUB-200D, and Tiny-ImageNetD. The dataset partitioning
follows the scheme outlined in Table [l More details of the dataset construction can be seen in
Appendix.

Table 1: Statistic of the used datasets.

| CIFAR100D | CUB-200D | Tiny-ImagenetD
Dataset Labeled | Known Unknown No. of samples | Known Unknown No. of samples | Known Unknown No. of samples
TrainSet v 70 0 35000 140 0 4195 140 0 70000
TestSet 70 30 10000 140 60 5794 140 60 10000




Table 2: Major comparisons on CIFAR100D, CUB-200D, and Tiny-ImageNetD (Tiny-IND in table).
Real-time evaluation reflects the accumulated performance across all test batches, while post evalua-
tion reassesses all test samples after training the DAA, updating the memory and prototypes. (Bold
data is the best performance and Underline data is the second-best performance.)

Real-time Evaluation Post Evaluation
KAT HCA?T ARIT NMIt VMt KA?T HCA?T ARIT NMIt VMt KF|

Threshold | 76.4620.98 0.64£0.01 0.42+0.01 0.85+0.00 0.85+0.00|76.62+1.85 0.60£0.01 0.42+£0.01 0.72£0.01 0.72£0.01 6.45+1.78
L2P [38] |59.932.15 0.53£0.00 0.37+0.01 0.76x0.01 0.76£0.01|50.53£7.25 0.50+£0.02 0.37+0.01 0.69£0.05 0.69+0.05 27.85+7.21
DP[37] |66.09£1.01 0.58£0.00 0.44+0.01 0.80+0.00 0.80+0.00 |56.19£2.00 0.55£0.01 0.44+0.01 0.72£0.00 0.72£0.00 29.0621.99
GMP [3] |72.7741.20 0.59+0.00 0.3120.02 0.78£0.00 0.78+0.00|67.21+2.53 0.58+0.02 0.46x0.01 0.71+0.00 0.71+£0.00 17.69+2.53
PHE [44] | 68.1821.12 0.60£0.01 0.44+0.01 0.73£0.01 0.73+0.01|68.20£1.07 0.58+0.01 0.42+0.00 0.70£0.01 0.70£0.01 2.15+0.92
HM [22] |79.17+0.13 0.61£0.01 0.43+0.01 0.82+0.01 0.82+0.01|80.73£1.59 0.63+0.00 0.48+0.01 0.73£0.00 0.73£0.00 3.411.49
Ours 80.81:044 0.6620.01 0.52+0.01 0.85:0.00 0.85+0.00|80.27+0.60 0.65:0.01 0.53:0.01 0.75:0.01 0.75:0.01 3.10+0.70

Threshold | 66.09£1.20 0.53+0.02 0.20£0.01 0.83+0.01 0.83£0.01|65.52+3.68 0.48+0.00 0.20£0.00 0.70£0.00 0.70+0.00 1.61+3.55
L2P [38] |46.22+1.53 0.49+0.01 0.28+0.01 0.80+0.00 0.80£0.00|31.97+3.35 0.41+0.01 0.27+0.01 0.71+0.01 0.71+0.01 42.29+3.14
DP [37] |53.69+1.24 0.55%0.03 0.29+0.01 0.83+0.01 0.83+0.01|63.37+3.27 0.48+0.02 0.24+0.01 0.48+0.00 0.48+0.00 5.85+3.11
GMP [3] |62.97£1.33 0.57+0.03 0.29+0.00 0.84+0.00 0.84+0.00|58.11£3.00 0.48+0.01 0.26+0.01 0.71£0.00 0.71x0.00 5.46+2.77
PHE [44] |44.66+1.03 0.49+0.01 0.28+0.00 0.82+0.01 0.82+0.01 |44.63+0.95 0.49+0.01 0.24+0.00 0.65+0.01 0.65+0.01 3.96+1.11
HM [22] |66.20£0.55 0.52+0.01 0.34+0.01 0.83+£0.00 0.83+0.00|64.42+0.65 0.50£0.01 0.27+0.01 0.70£0.00 0.70£0.00 4.07+0.47
Ours 68.09+0.33 0.63+0.01 0.40+0.01 0.88+0.00 0.88+0.00 | 66.26+0.39 0.58+0.01 0.32+0.01 0.75+0.00 0.75+0.00 3.60+0.39

Threshold | 57.53+1.80 0.57£0.00 0.31+0.01 0.85£0.01 0.85£0.01|52.36x3.10 0.24+0.01 0.15£0.01 0.34+0.00 0.34+0.00 22.90+3.08
L2P [38] |46.25+1.41 0.51£0.01 0.33+0.01 0.81+0.00 0.81£0.00|29.50+3.77 0.43+0.01 0.33£0.01 0.69+0.00 0.69+0.00 47.97+3.77
DP [37] [46.51£0.58 0.51+0.00 0.33+0.00 0.81+0.00 0.81+0.00|28.53+3.33 0.42£0.01 0.32+0.01 0.68+0.01 0.68+0.01 47.57+3.32
GMP [3] |62.47£1.40 0.51x0.01 0.30£0.01 0.72£0.01 0.72+0.01|63.95+2.04 0.56+0.01 0.43+0.01 0.72+0.01 0.72+0.01 16.86+2.04
PHE [44] |58.39+1.29 0.55£0.02 0.25+0.00 0.86+0.01 0.86+0.01|58.39+1.14 0.45+0.01 0.34+0.01 0.64+0.01 0.64+0.01 3.47£1.32
HM [22] |75.31+1.31 0.61+0.00 0.38+0.00 0.87+0.00 0.87+0.00|74.94+2.20 0.56+0.02 0.40+0.00 0.72+0.00 0.72+0.00 1.15+2.18
Ours 76.38+0.82 0.63+0.01 0.41+0.01 0.88+0.00 0.88+0.00|75.50+1.96 0.58+0.01 0.42+0.01 0.73+0.00 0.73+0.00 2.39+1.56

Method

CIFAR100D

CUB200D

Tiny-IND

Implementation details. In our implementation, we build our method on the prompt-based method
L2P [38]], which employs a ViT-B/16 backbone [[13]] following the pertaining procedure of NCD and
GMP work. We employed the contrastive loss of the GCD literature when we fine-tune the retained
model on the known classes, using SGD optimizer and cosine decay learning rate scheduler with an
initial learning rate of 0.1 and minimum learning rate of 0.0001, and weight decay of 0.00005. All
input images are resized to 224 x 224 and augmented to match the pretrained backbone settings.

Evaluation metrics. Following [22], we use the following metrics. We first provide some cluster
metrics that traditional NCD methods use, including Hungarian Cluster Accuracy (HCA) [24]],
Adjusted Rand Index (ARI) [28]], Normalized Mutual Information (NMI) [23]] and V-Measure [29].
(1) measures the clustering accuracy by optimal one-to-one mapping between predicted clusters and
true labels using the Hungarian algorithm. (2) ARI quantifies the similarity between the predicted
clustering assignments and the true labels while adjusting for chance. (3) NMI assesses the mutual
dependence between predicted and true labels by shared information between the two distributions.
(4) VM simultaneously constrains the purity and coverage of the clusters through the harmonic
mean. For known classes, we also employ two key metrics to comprehensively assess the model’s
performance: Known Accuracy (KA) and Known Forgetting (KF). KA measures the traditional
classification accuracy of the model on known classes while KF quantifies the degree of performance
degradation on known classes over time.

For unknown classes, we use two agreement metrics: (1) True-label Agreement ratio (TA). This
metric measures the maximum proportion of samples from a given true class that are predicted as the
same class; and (2) Cluster Agreement ratio (CA). This metric measures the maximum proportion of
samples from a given predicted cluster that have the same true label.

1 N

TA = Eceyfg;w Juax (Zwep 1[j(x) = M) ; (10)
1

CA = ]Epeym@ Crélggg (Z(w,y)eqj“ 1(y = C)> : (11)

where 1(-) is the indicator function (1 if true, O otherwise). For more details of the metrics, see
Appendix.

4.2 Major Comparisons

In this paper, we first compare our methods with naive thresholding-based training-free methods.
When exceeding the threshold, the naive method will be considered to have discovered a new class.
And we compare with some training-required methods including L2P [38]], DP [37], and GMP [3]],
these methods update prompts like TTA and CL methods. We also compare with the recent PHE [44]]
method for OCD and HM [22] method for TTD.
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Figure 4: Major comparisons (TAT, CAT) on CIFAR100D, CUB-200D, and Tiny-ImageNetD. Real-
time evaluation reflects the accumulated performance across all test batches, while post-evaluation

reassesses all test samples after the whole test phase. Method A, B, C, D, E and F represent
“Threshold”, “L2P”, “DP”, “GMP”, “PHE” and “HM”.

Comparisons on clustering metrics. As shown in Table[2] across multiple datasets, our method
demonstrates significant advantages in both real-time and post evaluations. In real-time evaluation,
our method achieves the best performance on HCA, ARI, NMI, and VM metrics (e.g., 0.66, 0.52, 0.85,
and 0.85 on CIFAR; 0.63, 0.40, 0.88, and 0.88 on CUB; 0.63, 0.41, 0.88, and 0.88 on Tiny-ImageNet).
This indicates that our method excels in hierarchical clustering, clustering quality, and matching
accuracy. In post evaluation, our method also maintains the highest performance on these metrics
(e.g.,0.65,0.53, 0.75, and 0.75 on CIFAR; 0.58, 0.42, 0.75, and 0.75 on CUB; 0.58, 0.42, 0.73, and
0.73 on Tiny-ImageNet), further validating the superiority of our method in clustering and matching
tasks. Additionally, regarding the knowledge forgetting (KF) metric, although knowledge updates
may sometimes result in slightly higher KF values compared to methods that do not update the model,
our experiments show that the forgetting of existing knowledge during the DAA update process is
minimal. There is no forgetting, and our method exhibits good knowledge retention capabilities.

Comparisons on TA & CA. In our analysis, TA and CA are employed to quantify the agreement
within true labels and clusters, respectively. However, simply predicting most samples into a single
new cluster can inflate either TA or CA values. This scenario, while focusing single metric, may not
reflect meaningful clustering performance. Therefore, our goal is to achieve a balanced and maximized
performance in both TA and CA. This ensures that the clustering results are not only consistent
with the true labels but also maintain meaningful and distinct cluster structures. The analysis of our
experimental results, as detailed in Fig.[4] reveals several key insights into the performance of various
methods in the context of Test-Time Discovery (TTD). The comparison between training-based and
training-free methods is particularly illuminating. Training-based methods, which update the model
parameters upon encountering new classes, tend to degrade in performance. This is attributed to
the immediate adaptation to new classes, which often results in lower TA and CA metrics, along
with an increased risk of catastrophic forgetting, where the model loses its ability to recognize
previously learned classes. Conversely, training-free methods like HM, which do not update the
model parameters, struggle to learn from new classes effectively. This limitation arises because
the model’s capacity to refine its representations in response to novel classes is constrained. Our
proposed method balances these extremes and yields more balanced performance across all three
datasets, indicating that our method enhances the network’s adaptability in discovering novel classes.

4.3 Analysis on DAA

Distance between prototypes. In Fig.[5] the prototype distance analysis highlights the superior
effectiveness of the DAA method over HM baselines. Specifically, features learned with DAA exhibit
larger prototype distances, indicating enhanced class separability, particularly for novel classes. We
also compute the ratio of average intra-class to inter-class distances. A higher Intra/Inter ratio reflects
tighter within-class clustering and greater between-class separation. As shown, the DAA method
yields a significantly higher Intra/Inter ratio than HM methods, demonstrating its strong ability to
produce more discriminative and well-structured feature representations for new classes.

Ablation study. Table 3] summarizes the ablation results. Activating TTT alone improves CA but
leads to model instability and a higher KF. Using only DAA (TA+CA: 76.00 real-time, 65.13 post)
outperforms the fixed model (71.84 real-time, 64.34 post), confirming the effectiveness of discrepancy
amplification. Combining TTT and DAA further boosts TA and CA in real-time settings, though KF
remains high. Incorporating STMR into the full model yields the best overall performance (TA+CA:
78.42 real-time, 73.52 post) and reduces KF, demonstrating that STMR stabilizes prototype updates
by mitigating interference from outdated representations and enhancing knowledge retention.
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Different Memory Size. Figure[6 shows the effect of memory size on model performance. While
larger memory can store more samples, it may include outdated or irrelevant data, weakening
prototype quality. Conversely, too small a memory may fail to capture representative features,
reducing generalization. Additionally, increasing memory size leads to higher computational cost.
These results highlight the need to balance memory capacity and efficiency to ensure accurate
prototype representation without excessive time overhead.

Different discoverable class numbers. Given that the distribution of known and unknown classes
varies across different scenarios, Table [ shows that it is crucial to appropriately set the number
of discoverable classes to achieve optimal TTD performance. Our method demonstrates superior
performance compared to the HM method across various settings. Specifically, when the number of
discoverable classes is increased, our method generally achieves higher TA and CA, indicating better
adaptation to new classes and more coherent clustering. However, if the number of discoverable
classes far exceeds the true number, real-time evaluation shows improvements in TA and CA, but
post-evaluation reveals a drop in TA and more severe forgetting indicated by higher KF. While a
higher number of discoverable classes can enhance adaptability, it may also introduce noise and
disrupt the model’s ability to retain knowledge. More experiment is mentioned in Appendix.

Table 3: Ablation study. T: Test-time Training, D: Table 4: Comparisons of different dis-

DAA, S: STMR, T+C: TA+CA. coverable class numbers.

‘ Real-time Eval ‘ Post Eval Known + |  Real-time Eval | Post Eval
T D S Unknown| TA' CA T+C | TA CA T+C KF
| TA. CA T+C| TA CA T+C KF 70+30 | 2111 56.87 77.98 [31.03 3481 65.84 347
80420 | 11.57 64.15 75.72 |20.90 31.09 51.99 0.69
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v 25.63 50.37 76.00|25.11 40.02 65.13 2.70 70430 | 32.40 46.02 78.42 |35.97 37.55 73.52 3.54
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Frenquency of STMR. The frequency of STMR plays a crucial role in balancing the trade-off
between model performance and computational efficiency. As shown in Fig.[7] A lower frequency of
STMR leads to insufficient updates and refinements of the model during the test phase, resulting in
poorer recognition performance for both known and novel classes. While increasing the frequency of
STMR can improve the model’s ability to adapt to new data, it also leads to a substantial increase in
computational overhead. Frequent STMR operations require more time and resources for processing
each batch.
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Figure 7: Trends of TA, CA and KF with different Figure 8: Trends of TA, CA and KF with different
STMR frenquency. replay samples.

Different replay samples. The number of replay samples used in the memory replay mechanism
affects the performance of our method. Fig.[8]shows that when no replay samples are used, the
model exhibits the highest level of knowledge forgetting, as indicated by the largest KF value. As the
number of replay samples increases, the KF value decreases at the cost of increased computational
time. A well-tuned number of replay samples ensures that the model can effectively leverage memory
replay to mitigate catastrophic forgetting while maintaining reasonable processing times.



Post visualization using t-SNE. In Fig.[9] we employ t-SNE [33] to visualize the true-label distribu-
tion of test samples. L2p and GMP methods that directly update the base model parameters often
risk disrupting the model’s existing structure, leading to destructive confusion between classes. HM
methods, due to their inability to update the model, maintain a static feature distribution. In contrast,
our method strikes a balance by actively disrupts the feature distribution and attempts to learn updates
that separate features from different classes and keep a clearer boundary than other methods. Effect
of DAA in our method can be seen in Appendix.
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Figure 9: T-SNE visualization on CIFAR100D with 5 known and 5 unknown classes.

Confused

Comparison of unknown class label matching. Fig.|10|shows the matching between predictions
and ground truth, where the base-model updating method easily makes chaos and fails to classify. In
the Prototype-only method like HM, lots of old samples are classified into unknown clusters, while
DAA w/o STMR performs better. DAA w/ STMR further corrects many classification relationships,
increases the number of samples in unknown clusters and reduces the number of samples in old
categories that are misclassified.
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Figure 10: Matching comparison between unknown class predictions and ground truth across methods
on CIFAR-100D (90+10). Black rectangles indicate old class samples misclassified as unknowns.

5 Conclusion

In this paper, we introduced the Discrepancy-Amplifying Adapter (DAA) and the Short-Term Memory
Renewal (STMR) strategy to tackle the challenge of Test-Time Discovery (TTD). By combining
trainable adaptation with efficient memory management, our method enables accurate and dynamic
identification of novel classes while preserving performance on known classes. DAA enhances
feature discrimination by amplifying discrepancies between known and unknown categories, while
STMR ensures adaptive and efficient prototype updates through short-term, sample-driven memory
refresh. Extensive experiments across multiple benchmarks confirm the superiority of our approach
in both real-time and post-hoc evaluations, consistently outperforming existing methods. Our results
underscore the importance of real-time adaptability and memory-aware design in TTD. While
our method shows strong performance, it introduces additional computation during the warm-up
and adaptation phases, and the heuristic-based memory update may limit performance in highly
noisy environments. In our future work, we plan to explore more lightweight and adaptive adapter
architectures, as well as principled memory selection and compression strategies. Additionally,
extending our framework to handle multi-modal or continual learning scenarios could further broaden
its applicability in open-world environments.
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made in the paper.
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much the results can be expected to generalize to other settings.
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should reflect on how these assumptions might be violated in practice and what the
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The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to the data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars in our experiment rusults.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of our work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Our work does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in our work does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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DAA: Amplifying Unknown Discrepancy
for Test-Time Discovery

( Appendix )

A Comparison of TTD task and other Category Discovery task

We compare TTD with related settings. Out-of-Distribution (OOD) [40, [19] detection neither
discovers novel classes nor adapts during inference. TTA [[1] handles distribution shifts via self-
supervised learning but assumes all test samples belong to known classes. NCD [[11]] and GCD [34]]
both aim to identify unknown classes at test time under an offline inference paradigm through
clustering the entire test set. OCD [8]] resembles TTD in identifying known and unknown classes, but
does not incorporate test-time learning from novel classes.

Test-Time Discovery (TTD) is a challenging task that focuses on class shifts rather than domain
shifts during test time. It requires the model to not only discover new classes but also classify them
accurately while maintaining robust performance on previously seen classes. This dual requirement
is particularly demanding due to several intrinsic complexities: the intricate nature of class discovery,
the scarcity of labeled data for new classes, and the often ambiguous boundaries between classes.
The key challenges in TTD can be summarized as follows:

(1) Distinguishing between the discovery of new classes and the identification of already discovered
ones.

(2) Learning and adapting to new classes with limited sample sizes during testing phase.

(3) Avoiding catastrophic forgetting, where the process of learning new classes can inadvertently
degrade the model’s performance on previously learned classes.

Table 5: Comparison between different category discovery settings.

Type Train Test Discovery  Test-time Learning
OOD Known classes Shift Known classes N/A N/A
TTA  Known classes Shift Known classes N/A Shift Known classes
NCD Known classes Unknown classes Post N/A
GCD Known classes Known classes + Unknown classes Post N/A
OCD Known classes Known classes + Unknown classes  Real-time N/A

TTD Known classes Known classes + Unknown classes  Real-time Unknown classes

B Details of datasets

We conduct our experiments using three widely recognized benchmark datasets: CIFAR100
(C100) [14], Caltech-UCSD Birds-200-2011 (CUB) [35]], and Tiny ImageNet [15]. Each of these
datasets is systematically partitioned into known and unknown classes. The model undergoes training
on the known training set and is subsequently evaluated on a mixed set containing both known
and unknown classes. Since the primary objective of these datasets is to facilitate new class dis-
covery, we follow the HM [22] and use the transformed versions as CIFAR100D, CUB-200D, and
Tiny-ImageNetD to reflect this adaptation.

The dataset partitioning follows the scheme outlined in Table[6] Specifically, during the training
phase, we divide the training set into known and unknown classes based on their class index order.
For instance, in CIFAR100, the first 70 classes are designated as known, while the remaining 30
classes are treated as unknown. The supervised training process is then conducted using only the
known classes within the labeled training set. More precisely, CIFAR100D consists of classes 0-69
(70 known classes in total), CUB-200D includes classes 0—139 (140 known classes in total), and
Tiny-ImageNetD comprises classes 0—139 (140 known classes in total), all of which are utilized for
training.

During the test phase, the model is evaluated on the entire unlabeled test set, which includes samples
from all categories, enabling new class discovery and classification. While the category labels remain
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structured according to the original known-unknown splits (e.g., 70+30 for CIFAR100D and 140+60
for CUB-200D and Tiny-ImageNetD), these labels are only used for metric evaluation and are not
provided to the model during inference. This setup ensures a realistic scenario for open-world
learning, where the model must autonomously identify and categorize previously unseen classes.

Table 6: Statistic of the used datasets.

| CIFAR100D | CUB-200D | Tiny-ImagenetD
Dataset Labeled\ Known Unknown No. of samples \ Known Unknown No. of samples \ Known Unknown No. of samples
TrainSet v 70 0 35000 140 0 4195 140 0 70000
TestSet 70 30 10000 140 60 5794 140 60 10000

C Metric Definition

The evaluation process is structured into two distinct parts: one focusing on known classes and
the other on unknown classes. To ensure a comprehensive assessment, we follow HM [22] and
employ both real-time evaluation and post-evaluation strategies. For test-time evaluation, real-time
performance is a critical factor. Thus, we compute and report real-time scores for all evaluation
metrics as the model processes each test sample. This approach provides immediate insights into the
model’s performance and enables dynamic tracking of classification accuracy and discovery efficiency.
Alongside these real-time scores, we present the final accumulated values, which represent the overall
average performance across the entire test set. In addition, recognizing that traditional novel class
discovery (NCD) methods typically rely on post-evaluation, we also incorporate this approach for
comparative analysis. In post-evaluation, all test samples are revalidated collectively after the entire
test phase is complete. This post-hoc evaluation allows for a more refined assessment by leveraging
the full distribution of test samples, potentially improving class assignment and clustering accuracy.
By providing both real-time and post-evaluation scores, we ensure a thorough and balanced evaluation
of the model’s effectiveness in handling both known and unknown classes.

C.1 Metrics for known classes

For the evaluation of known classes, we employ two key metrics to comprehensively assess the
model’s performance: Known Accuracy (KA) and Known Forgetting (KF).

(1) Known Accuracy (KA). KA measures the traditional classification accuracy of the model on
known classes, reflecting its ability to correctly recognize and classify samples that were part of the
training set. This metric serves as a standard benchmark for evaluating the retention of previously
learned knowledge:

1 )
KA = Ecedtuan 5] > 1) =), (12)
¢ ! gepes

where Yknown is set of predefined known classes, D is test samples with ground-truth class ¢, §(x)
is the predicted label for sample x, 1(-) is the indicator function (1 if prediction matches true class c,
0 otherwise)

(2) Known Forgetting (KF). KF, on the other hand, quantifies the degree of performance degradation
on known classes over time. It captures the extent to which the model forgets previously learned
information as it encounters new data, particularly when adapting to novel classes. A lower KF score
indicates better knowledge retention, while a higher score suggests significant forgetting.

KF = KApre — KApog, (13)

where KA and KA. are the KA computed on all test data with known classes, before and after
Testing Phase.

C.2 Metrics for unknown classes

GT

For unknown classes, since the predicted label space )., does not match the cluster label space

Vseen, WE propose agreement metrics to assess effectiveness. In the test set D', a sample z has a
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true label y € VST and a predicted cluster label §(x) € Vieen. We define the subset of D' with true
label ¢ as D™, and the cluster with predicted label p as C;;™.

(1) True-label Agreement ratio (TA). This metric measures the maximum proportion of samples from
a given true class that are predicted as the same class:

1 N
TA = Eceyor 7D§St| prél.‘gfein (ZzeDf“ 1[g(x) = p]) ) (14)

where 1(-) is the indicator function (1 if true, O otherwise).

(2) True-label Entropy (TE). This metric measures the average entropy H (-) of the predicted labels
for samples with that true class:

TE = Eecygy H({j(2)e € D) (s)

where H (-) is Shannon entropy of predicted label distribution which is used to quantifies uncertainty
or diversity in a distribution, H (2;) = — > _. > q(z) logy q().

(3) Cluster Agreement ratio (CA). This metric measures the maximum proportion of samples from a
given predicted cluster that are with the same true label:

(Z(I}ymﬁ 1(y = c)) : (16)

(4) Cluster Entropy (CE). This metric measures the average entropy of the samples that predicted the
true class contained in clusters:

CE = Epeyo. H({yl(z,y) € C;™}). (17)

1
CA = Eyey,, e max
PE C;fSt| ceyst

seen

C.3 Clustering metrics

Traditional novel class discovery (NCD) methods typically rely on post-cluster evaluation, where
the quality of the discovered clusters is assessed after the entire test set has been processed. To
ensure a comprehensive comparison with existing approaches, we also report several widely used
clustering evaluation metrics, including Hungarian Cluster Accuracy (HCA) [24]], Adjusted Rand
Index (ARI) [28]], Normalized Mutual Information (NMI) [23]], and V-Measure [29]]. Note that these
metrics are only evaluated after TTD, say post evaluation.

(1) Hungarian Cluster Accuracy (HCA). This metric measures the clustering accuracy by computing
an optimal one-to-one mapping between predicted clusters and ground-truth labels using the Hungar-
ian algorithm. It provides an intuitive evaluation of how well the discovered clusters align with the
actual class distributions. HCA can be computed as

HCA = E(, e (y = map(ii(2))), (18)

where map(-)is the optimal mapping from clustering to true labels obtained based on the Hungarian
algorithm

(2) Adjusted Rand Index (ARI). ARI quantifies the similarity between the predicted clustering
assignments and the ground-truth labels while adjusting for chance. It accounts for both correct
pairwise clustering and misclustered pairs, offering a robust measure of clustering consistency.

RI — E[RI]

ARl = ————
max(RI) — E[RI]’

19)

where Rand Index (RI) = 22, 4 is the logarithm of samples of the same class assigned to the same

cz >
cluster, and b is the logarithm of samples of different classes assigned to different clusters. n is the
total number of samples, combination C2 = @ and E[RI] is the expected value of RI.

(3) Normalized Mutual Information (NMI). NMI assesses the mutual dependence between predicted
and true labels by measuring the shared information between the two distributions. A higher NMI
value indicates better alignment between the discovered clusters and the actual categories. The value
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interval of NMI is [0,1], and a larger value indicates a higher degree of information sharing between
the clustering results and the real labels.

2-I(U; V)
HU)+HV)’
where U is collection of true labels and V is collection of predictions. I(U;V) is Mutual In-
formation where I(U;V) = H(U) — HU|V). H(U) is the entropy of true label, H(U) =
- 25:1 p(c) logp(c), and H (V) is the entropy of prediction, H(V) = — Zle p(k) log p(k).

(4) V-Measure (VM). The VM is taken in the interval [0,1], which simultaneously constrains the

purity and coverage of the clusters through the harmonic mean. Both VM and NMI are symmetric
metrics that support the comparison of clusters and categories at different scales.

2-h-c
h+c

NMI(U, V) = (20)

V-Measure =

; 2n

where homogeneity h = 1 — H(L(’L‘{‘)}), and completeness ¢ = 1 — H(‘()\‘f)’). HUV) =

— S S ok, t) log p(fkg) and HV|U) = = 3 ST p(t, k) log & p(t) k), where p(t) = N

is the sample proportion of class ¢, p(k) = % is the sample proportion of cluster k, and

p(t, k) = <2470 i the joint distribution probability.

D More TTD Comparisons

In this section, we provide a detailed comprehensive comparison of our method with several ap-
proaches on three benchmark datasets: CIFAR100D, CUB-200D, and Tiny-ImageNetD. The evalua-
tion includes both real-time and post evaluations, where real-time evaluation reflects the accumulated
performance across all test batches, and post evaluation reassesses all test samples after training the
DAA, updating the memory, and prototypes. The results are summarized in Table

D.1 Comparisons on TA & CA

TA and CA are critical metrics for evaluating the performance of test-time discovery methods. TA
measures the overall accuracy of the model in predicting the correct class labels, while CA evaluates
the model’s ability to correctly classify samples within each class. A balanced performance in both
TA and CA indicates that the model not only achieves high overall accuracy but also maintains
meaningful and distinct class structures. Analysis is given in the main text.

D.2 Comparisons on TE & CE

TE and CE are complementary metrics to TA and CA, respectively. Lower values of TE and CE
indicate better performance. However, Our method is not training-free, which means it updates the
model’s representations during test time. This adaptive updating mechanism allows our method to
refine its predictions and improve performance. As a result, our method inevitably has higher TE and
CE values compared to training-free methods like HM.

And the results demonstrate that our method achieves a balanced and maximized performance in
both TA and CA, while also maintaining relatively low TE and CE values. This is attributed to our
DAA and STMR mechanism, which allows the model to refine its representations in response to new
classes without suffering from catastrophic forgetting. Unlike training-free methods that struggle
to learn from new classes, our method leverages the benefits of continuous adaptation to improve
performance. Compared to other model-training methods, our method shows superior robustness and
adaptability, making it a more effective solution for test-time discovery tasks.

E Different discoverable class numbers

In our experiments, we set an upper limit on the number of discoverable classes to investigate its
impact on the performance of test-time discovery (TTD). This is a crucial parameter, as real-world
scenarios may involve a much larger or even infinite number of potential new classes. The results are
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Table 7: More TTD comparisons on CIFAR100D, CUB-200D, and Tiny-ImageNetD (7iny-IND in
table). Real-time evaluation reflects the accumulated performance across all test batches, while post
evaluation reassesses all test samples after training the DAA, updating the memory and prototypes.
(Bold data is the best performance and Underline data is the second-best performance.)

\ Real-time Evaluation \ Post Evaluation
Method
| KA?T TAT TE|] CAt CE| | KAt TAT TE| CA?T CE| KF]
Threshold | 76.46+0.98 17.21x1.33 0.52+0.04 36.91+3.26 2.07+0.41|76.62+1.85 34.60+2.02 1.10+0.04 18.70+1.24 1.42+0.05 6.45%1.78
g L2P [38] [59.93+2.15 8.57+#2.49 0.60+0.06 43.10+4.30 1.85+0.18|50.53£7.25 9.60+1.50 0.77+0.12 27.39+2.11 1.37+0.24 27.85+7.21
S DP 37 66.09£1.01 8.80+1.69 0.53+0.08 48.34+6.78 1.63+0.30|56.19+2.00 8.68+2.06 0.70+0.08 28.93+2.25 1.34+0.05 29.06+1.99
& GMP 3] [72.77+1.20 7.37+0.88 0.51+0.05 42.26+4.54 1.80+0.24|67.21+2.53 13.04+2.59 1.18+0.06 27.10+1.77 1.55+0.08 17.69+2.53
£ PHE [44] |68.18+1.12 16.63+1.08 0.81+0.03 35.43x1.31 1.9620.10|68.20£1.07 12.17+1.01 1.06+0.03 21.56x1.35 1.68+0.06 2.15+0.92
O HM [22] |79.17+0.13 21.13+0.62 0.67+0.02 56.37+1.42 1.23+0.08 |80.73+1.59 31.03+1.24 1.07+0.02 34.81+1.22 1.50+0.02 3.41+1.49
Ours 80.81+0.44 31.94+0.98 0.76+0.02 45.38+0.88 1.53+0.06|80.27+0.60 35.63+1.11 1.45+0.06 37.31+1.20 1.55+0.09 4.10+0.60
Threshold | 66.09+1.20 43.60+2.08 0.40+0.06 44.05£4.96 1.46+0.40|65.52+3.68 49.90+1.33 0.81+0.00 6.64+0.67 0.70+0.00 1.61+3.55
a L2P [38] |46.22+1.53 9.01+0.87 0.44+0.02 55.37+7.79 0.97+0.25|31.97+#3.35 4.75+0.73 0.51+0.03 24.48+1.65 0.62+0.06 42.29+3.14
g DP[37 53.69+1.24 43.68+2.20 0.40+0.06 45.68+5.88 1.50+0.36 |63.37+3.27 45.94+0.91 1.69+0.02 7.92+1.10 1.10+0.03 5.85+3.11
2 GMP 3] |62.97+1.33 46.44+1.87 0.59£0.03 47.99£4.34 1.4920.13158.11+3.00 48.02+1.20 1.53+0.01 10.31£1.45 0.90£0.00 5.46+2.77
= PHE [44] |44.66+1.03 28.64+1.43 0.63+0.02 59.17+2.88 0.93+0.03|44.63+0.95 13.49+0.43 1.28+0.04 18.73x1.39 1.56+0.12 3.96x1.11
© HM [22] |66.20+0.55 58.30+2.37 0.35+0.02 43.33+6.10 1.92+0.83 |64.42+0.65 65.28+1.78 1.02+0.03 37.25+4.90 1.24+0.22 4.07+0.47
Ours 68.09+0.33 54.49+1.03 0.39+0.01 58.34+1.35 1.08+0.05|66.26+0.39 64.13+2.23 1.12+0.08 44.65+0.88 1.29+0.13 3.60+0.39
Threshold | 57.53+1.80 11.35%1.56 0.48+0.03 63.31+3.55 0.66+0.12]52.36+3.10 6.48+1.40 0.37+0.02 13.81+2.11 0.44+0.02 22.90+3.08
a L2P [38] |46.25+1.41 7.79+£2.92 0.51+0.03 53.55+6.47 1.33£0.23|29.50+3.77 10.38+2.42 0.89+0.06 23.28+0.79 1.37+0.06 47.97+3.77
7z DP[37] |46.51+0.58 6.41+0.93 0.51+0.03 58.27+6.10 1.15+0.21|28.53+3.33 9.63+2.10 0.85+0.02 26.80+1.38 1.33+0.02 47.57+3.32
1 GMP [3] |62.47+1.40 6.25£1.72 0.45+0.02 58.02+4.29 1.08+0.14|63.95+2.04 15.64+2.63 1.30+0.03 26.31+2.33 1.54+0.03 16.86+2.04
.S PHE [44] |58.39£1.29 13.84+0.90 0.48+0.02 71.45+3.80 0.40+0.03|58.39+1.14 12.10£1.05 0.70+0.02 18.64+1.42 1.24+0.01 3.47+1.32
S HM [22] |75.31%1.31 16.04+0.76 0.51:0.00 73.81+2.67 0.61+0.04 |74.94+220 16.23+1.24 0.8120.00 37.43+1.30 1.21+0.02 1.15+2.18
Ours 76.38+0.82 24.10+0.80 0.54+0.00 71.70+2.02 0.73+0.05|75.50£1.96 23.17+1.35 1.14+0.01 36.41+1.12 1.44+0.01 2.39+1.56

summarized in Table 8] where we compare the performance of our method with the HM method under
different settings. We find that increasing the number of discoverable classes generally improves TA
and CA, but the effect depends on the number of known classes. For example, when the number
of known classes is fixed at 70, increasing the number of discoverable unknown classes from 30
to 100 and then to 200, both TA and CA improve significantly. Specifically, for our method, TA
increases from 32.40 to 36.21 and then to 41.84, while CA increases from 46.02 to 48.13 and then
to 30.55 (note that CA drops slightly when the number of unknown classes becomes very large).
Increasing the number of discoverable classes generally leads to higher KF values, indicating more
severe forgetting. For example, when the number of discoverable classes increases from 30 to 200,
the KF value for our method increases from 3.54 to 8.27.

Compared to the HM method, our method shows more balanced performance across different settings.
For instance, when the number of discoverable classes is set to 100, our method achieves a TA of
36.21 and a CA of 48.13, which are significantly more balanced than those of HM (TA: 17.58, CA:
81.28). This indicates that our method is more effective in balancing the discovery of new classes
and the recognition of known classes. However, when the number of discoverable classes far exceeds
the true number, both methods suffer from performance degradation. For example, in the case of 70
known classes and an infinite number of discoverable unknown classes, our method achieves a TA of
31.78 and a CA of 89.58, while HM achieves a TA of 20.37 and a CA of 92.94. This suggests that
while our method is more robust in general, both methods struggle when the number of discoverable
classes becomes excessively large.

The results highlight the importance of appropriately setting the number of discoverable classes for
optimal TTD performance. While more discoverable classes generally improve the model’s ability
to recognize new patterns, they also introduce more complexity and risk of forgetting. Our method
shows a more balanced performance across different settings, achieving higher TA and CA values
while maintaining reasonable TE, CE, and KF values. This demonstrates the effectiveness of our
approach in balancing adaptability and stability during test-time discovery.

F Architecture of DAA

We insert the lightweight DAA after the frozen ViT backbone to project the 768-d feature into an
updated latent space. The architecture of DAA is a standard 2-layer adapter [[12] which includes a
Linear down-projection layer 768 — 128, ReLLU Activation and a Linear up-projection layer 128
— 768. Our technical contribution is the training strategy that endows this simple structure to
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Table 8: Comparisons of different discoverable class numbers.

Known + \ Real-time Eval \ Post Eval
Unknown ‘ TA TE CA CE ‘ TA TE CA CE KF
70+30 21.11 0.66 56.87 127 | 31.03 1.07 3481 150 3.47
70+100 17.58 0.70 8128 0.44 | 25.03 1.82 40.74 1.05 6.46
E 704200 19.86 0.76 8560 0.33 | 26.87 2.17 42.63 0.84 7.79
70+00 2037 0.84 9294 0.16 | 22.63 2.86 47.09 046 10.69
70+Human | 52.10 0.48 4296 1.68 | 4827 1.19 4944 124 581
70+30 3240 0.74 46.02 1521|3597 145 3755 153 3.54
w 10+100 36.21 0.87 48.13 0.69 | 3256 2.05 3144 122 6.73
g5 70+200 41.84 0.90 30.55 0.67 | 31.00 222 2796 093 8.27
C  70+00 31.78 0.98 89.58 0.35 | 2235 299 4932 0.55 11.07
70+Human | 75.22 0.35 30.70 1.97 | 4930 1.35 5061 136 2.68

maintain known class features and amplify discrepancy among unknown class features to gain better
open-world test-time discovery behavior.

* Unlike existing training-free TTD methods like HM, our approach can make DAA have
better ability to distinguish between known classes and unknown classes during the warm
up phase and trainable during the testing phase.

» Compared to traditional methods of updating the entire backbone, we only update DAA and
will not damage the entire backbone.

G T-SNE visualization of the effect of DAA.

To provide a more intuitive understanding of how our method affects the feature space, we conducted
T-SNE [33]] visualizations of the feature embeddings before and after applying our DAA (Dynamic
Adaptation and Augmentation) mechanism. The results are shown in Fig.[TT]

In the pre-training phase, our method attempts to disrupt the feature representations of unknown
classes to some extent. This is evident from the visualization in Fig. [[Tb] where the feature em-
beddings of unknown classes are more scattered and less well-separated from known classes. This
disruption is intentional, as it helps the model to avoid overfitting to the initial feature space and
encourages it to adapt more flexibly during the test phase. After test-time training with DAA, the
boundaries between known and unknown classes become clearer again, as shown in Fig. This
indicates that our method effectively refines the feature space during test-time training, allowing the
model to better distinguish between known and novel classes. In contrast, baseline methods that fix
the model and do not change throughout the entire test phase (as shown in Fig.[TTa) struggle to adapt
to new classes, resulting in less clear boundaries and poorer performance.

This visualization demonstrates the effectiveness of our DAA mechanism in dynamically adapting
the feature space during test-time training, leading to improved performance in recognizing both
known and novel classes.

H Hyper-parameter analysis

H.1 Frenquency of STMR.

The frequency of STMR plays a crucial role in balancing the trade-off between model performance
and computational efficiency. As shown in Fig. we conducted experiments to investigate the
impact of varying the frequency of STMR on the overall performance of our method. The results
indicate that as the frequency of STMR decreases, both the TA and CA deteriorate significantly. This
suggests that a lower frequency of STMR leads to insufficient updates and refinements of the model
during the test phase, resulting in poorer recognition performance for both known and novel classes.

On the other hand, while increasing the frequency of STMR can improve the model’s ability to
adapt to new data, it also leads to a substantial increase in computational overhead. Frequent STMR
operations require more time and resources for processing each batch, which can be impractical for

26
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(a) Training-free method like HM (b) DAA after warm-up (c) DAA after post-eval

Figure 11: T-SNE visualization of the DAA’s effect on CIFAR100D with 5 known and 5 unknown
classes.

real-time or resource-constrained applications. Moreover, the improvement in performance brought
by each additional STMR operation diminishes as the frequency increases, indicating that there is a
point of diminishing returns.

Therefore, selecting an optimal frequency for STMR is essential to achieve a balance between
performance and efficiency. A moderate frequency ensures that the model can effectively leverage
STMR for continuous adaptation while avoiding excessive computational costs.

45.0
42.5 E TA E CA 340 = Time
320
S 40.0 1 .\
=) - -
2 575 g 300 7
TR £ 280
g o
D 325 £ 260 ~ >
g = \
< 30.0 1 240 7 .\
{ ]
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25.0 1 1 1 1 1 200 —— T T T T
1 2 5 10 never 1 2 5 10 never

Figure 12: Trends of TA, CA and KF with different STMR frenquency.

H.2 Different replay samples.

The number of replay samples used in the memory replay mechanism is another critical hyper-
parameter that affects the performance of our method. Fig. [I3] shows that the number of replay
samples has a significant influence on the model’s ability to retain knowledge from previous classes
while adapting to new ones. When no replay samples are used, the model exhibits the highest level
of knowledge forgetting, as indicated by the largest KF value. This suggests that without replay,
the model is more prone to catastrophic forgetting, where it quickly forgets previously learned
information as it adapts to new data.

As the number of replay samples increases, the KF value decreases, indicating that the model is
better able to retain knowledge from previous classes. However, this improvement comes at the
cost of increased computational time, as more replay samples require additional processing during
each batch. Moreover, while a moderate number of replay samples can help stabilize the model’s
performance, an excessive number of replay samples can lead to diminishing returns in terms of
performance gains, while further increasing the computational burden.

Thus, choosing an appropriate number of replay samples is crucial for achieving a balance between
knowledge retention and computational efficiency. A well-tuned number of replay samples ensures
that the model can effectively leverage memory replay to mitigate catastrophic forgetting while
maintaining reasonable processing times.
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Figure 13: Trends of TA, CA and KF with different replay samples.

H.3 )\, and )\, during TTT

During test-time training (TTT), the overall testing phase loss for the DAA is shown below:
Len(B) = M - Eeeyy, (Lia(B,c) + L2 (0)) 4 A - Beeyen (Lun(B, ) + L(0), (22)

where A\; and )\, are hyperparameters that balance the contributions of each loss term.

We explored the impact of different ratios between A\; and A, on the overall performance of our
method. The results are presented in Table[9] The MSE loss is used to refine the model’s predictions
for known classes, while the contrastive loss encourages the model to separate the feature embeddings
of known and unknown classes. We conducted experiments with different ratios of MSE loss to
contrastive loss to determine the optimal balance between these two objectives.

When the model places a much higher emphasis on refining the predictions for known classes. This
results in a relatively high TA and CA. However, the model’s ability to distinguish between known
and unknown classes is somewhat limited, as indicated by the higher CE value. As the ratio decreases,
the model starts to pay more attention to the contrastive loss, which helps improve the separation
between known and unknown classes. This leads to a slight increase in CA and a decrease in CE,
indicating better class separation. However, the overall TA and TE values are affected, suggesting
that the model’s ability to accurately classify known classes is slightly compromised. When the ratio
further decreases, the model crashes, as indicated by the extremely high TA and TE values and the
near-zero CA and CE values. This suggests that an excessive emphasis on the contrastive loss can
destabilize the model, leading to poor performance.

These results highlight the importance of carefully balancing the MSE loss and contrastive loss during
TTT. An optimal ratio ensures that the model can effectively refine its predictions for known classes
while also maintaining clear boundaries between known and unknown classes. This balance is crucial
for achieving high accuracy and robustness in recognizing both known and novel classes.

Table 9: Comparisons of ratio between A\, and Ay during TTT.

| Real-time Eval | Post Eval
A1 A ‘ TA TE CA CE ‘ TA TE CA CE KF
1000:0.1 2841 080 4491 1.56 | 2950 1.49 3053 1.74 0.92
1000:0.5 2940 082 4580 1.55 | 3333 153 3466 173 1.23
1000:1 33.66 0.66 4981 139 | 348 1.03 3723 148 2.64
1000:2 3240 0.74 46.02 1.52 | 3597 145 3755 153 3.54
1000:5(crashed) | 78.22 0.20 19.00 0.38 100 0.00 100 199 —
500:1 30.20 0.84 4264 1.64 | 3330 148 3437 171 3.76
500: 2 3498 0.64 4968 140 | 37.60 1.22 3233 153 448
500 : 3(crashed) | 81.59 0.35 15.37 0.62 100 0.00 120 220 —
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H.4 Comparison of different threshold Gamma

During testing phase, we base on the max similarity scores, and apply a confidence threshold ~ to
determine whether a test sample x belongs to a seen class or an unseen class.

o Jargmax ¢y, oy, (P(2)), if max. P(z) > 7, (23)
new unseen class, otherwise,

where prediction comparison P(z) = sim(DAA[r(x)], p¢).

~ was selected through grid search in our experiment, and we analyzed the impact of . The typical
threshold of 7y is 0.7. And our method is not sensitive to selection from one dataset to other datasets.

Table 10: Comparisons of different y during Testing phase.
\ Real-time Eval \ Post Eval
¥ ‘ TA TE CA CE ‘ TA TE CA CE KF

05| 11.85 0.83 4436 1.61 |3003 139 37.14 1.67 5.89
0.6 | 20.04 0.81 48.07 1.56 | 29.83 146 3425 1.78 443
0.7 | 3240 0.74 46.02 152 | 3597 145 3755 153 3.54
0.8 | 2990 0.84 4278 1.65|29.60 1.55 28.65 182 7.96
09 | 1275 0.81 46.00 1.53 |31.10 1.73 27.64 172 10.78

29



I Opverall algorithm

To improve clarity, we provided an overall algorithm as follow.

Algorithm 1 DAA Training and Test-Time Discovery with STMR

Require: Dy, = {(z;, yl)}N"‘“" with known classes Vi, ; test stream Dy, with unknown classes;
frozen backbone f, trainable adapter DAAy; warm-up epochs F, memory size M, confidence
threshold ~y.
Ensure: Predictions g for test samples, dynamically updated 6 and prototypes.
Phase 1: Discrepancy-Amplifying Warm-up (Pre-Testing)
initialize 6 randomly
forepoch=1,...,F do
for mini-batch B C Dy, do
r + f(B) > backbone features
7 < mixup(r) + N (0, X) > synthetic unknowns
Lin MSE(DAA(; (r), r) B> preserve known
Ly < contrastive(DAAg(r), DAAg (7)) > amplify discrepancy
Etrain — Lkn + )\ﬁun
00— n vG»Clrain

end for

end for

Phase 2: Test-Time Discovery with STMR

12: (Skn, Fkn) < load-known-prototypes(Disin)

13: Sun {}7 Fun {}a YVseen < Vkn

14: for each test batch B do

15: r + f(B); z < DAAy(r)

16: compute cosine similarity P(c) between z and all prototypes {p. | ¢ € Vseen }

17: 7 < P(c)

18: if max P > - then

TReYe ke

—_—

19: assign ¢ > known/seen class
20: else

21: 7 < “new_unknown”; Vseen < Vseen U {3}

22: initialize new prototype py < mean(z)

23: end if

> STMR memory renewal (every 1" batches)
24: if § € Y, and batch_idmodT = 0 then

25: for z € Sin[7] do

26: Zrenew < DAAg(f(x))

27: if . P(Zienew) € Ykn then

28: discard x > remove mis-classified known
29: else

30: Funl9]- enqueue(zrenew)

31: end if

32: end for

33: end if

34: FIFO update:

35: Sun[9]. enqueue(B); Fun[9]. enqueue(z)
36: Lieqt < compute-1oss(z, 9, Sun, Fun) > Eq. (6)
37: 0 < 0 — 1 VoLt > self-supervised update

38: end for
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