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ABSTRACT

Quantum machine learning (QML) models conventionally rely on repeated mea-
surements (shots) of observables to obtain reliable predictions. This dependence
on large shot budgets leads to high inference cost and time overhead, which is
particularly problematic as quantum hardware access is typically priced propor-
tionally to the number of shots. In this work we propose You Only Measure Once
(Yomo), a simple yet effective design that achieves accurate inference with dra-
matically fewer measurements, down to the single-shot regime. Yomo replaces
Pauli expectation-value outputs with a probability aggregation mechanism and in-
troduces loss functions that encourage sharp predictions. Our theoretical analysis
shows that Yomo avoids the shot-scaling limitations inherent to expectation-based
models, and our experiments on MNIST and CIFAR-10 confirm that Yomo consis-
tently outperforms baselines across different shot budgets and under simulations
with depolarizing channels. By enabling accurate single-shot inference, Yomo
substantially reduces the monetary and computational costs of deploying QML,
thereby lowering the barrier to practical adoption of QML.

1 INTRODUCTION

Quantum computing (Nielsen & Chuang, 2010) has emerged as a promising paradigm for advancing
computational capabilities beyond the classical regime. In particular, quantum machine learning
(QML) (Cerezo et al., 2022; Huang et al., 2022; Biamonte et al., 2017; Benedetti et al., 2019)
seeks to leverage quantum resources for learning tasks such as classification (Pérez-Salinas et al.,
2020; Schuld et al., 2021; Liu et al., 2025b; Gong et al., 2024), generation (Khatri et al., 2024),
and reinforcement learning (Chen et al., 2020; Liu et al., 2024). Unlike classical machine learning,
however, QML inherently involves probabilistic measurement outcomes. To obtain reliable outputs,
QML models typically require repeated circuit executions, aggregating many measurement shots to
estimate expectation values of observables. This reliance on repeated measurements constitutes one
of the fundamental distinctions between classical and quantum machine learning.

As a result, the resource requirements for training and inference in QML are substantial. Since
access to quantum hardware is predominantly cloud-based and requires waiting in queues, the mon-
etary cost of usage scales proportionally with the number of shots. In addition, shot repetition
contributes significant time overhead: in general only a single quantum processing unit (QPU) is
available to execute the circuit, limiting opportunities for parallelization. Given the scarcity of quan-
tum hardware resources, this repetition exacerbates both the financial and computational burden of
deploying QML models. From the broader perspective of a machine learning model’s lifecycle,
the inference stage typically dominates the overall cost (Sardana et al., 2023; Samsi et al., 2023).
This observation further motivates the development of shot-efficient QML models, particularly in
the inference phase. While several recent works have begun exploring shot-efficient methods in
QML and variational quantum algorithms (VQAs) (Phalak & Ghosh, 2023; Kim et al., 2024; Liang
et al., 2024), and theoretical concepts of single-shot inference have been proposed (Recio-Armengol
et al., 2025b), there remains no clear design pathway for implementing such models. Moreover, the
practical implications of a truly single-shot inference QML model, both in terms of hardware usage
and experimental throughput, have yet to be systematically studied.
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Figure 1: Overview of the proposed Yomo framework. Left: The input image is processed by two
convolution–pooling layers and a linear layer before angle encoding into a parameterized quantum
circuit (QNN) with Nb layers. The vanilla (Pauli expectation-based) approach applies a softmax
over measured expectation values ⟨O1⟩, . . . , ⟨OK⟩ to produce class probabilities. In contrast, Yomo
aggregates measurement probabilities P (ϕ1), . . . , P (ϕ2nq ) intoK classes for prediction. Top-right:
Probability Sharpening Mechanism. During training, if the maximum aggregated probability ex-
ceeds a threshold τ , an additional sharpening reward is added to the loss, encouraging confident and
peaked predictions. Bottom-right: Single-shot inference example. A single measured bitstring is
mapped to one of the K classes via probability aggregation, enabling accurate inference with only
one measurement shot. (*The basis space is shown only for graphical illustration. Basis states with
the same label do not necessarily form a contiguous group, but may be distributed across different
regions of the basis space.)

Inspired by these considerations, we propose You Only Measure Once (Yomo), a simple yet ef-
fective design for shot-efficient QML. Yomo departs from the conventional Pauli expectation-value
paradigm by leveraging probability aggregation of measurement outcomes, enabling accurate pre-
dictions even in the single-shot regime. Empirically, Yomo achieves competitive or superior clas-
sification accuracy compared to expectation-based baselines while requiring an order of magnitude
fewer shots. This translates directly into reduced inference cost and time overhead: for a fixed bud-
get, one can perform many more experiments, or alternatively, achieve comparable performance at a
fraction of the resource usage. By bridging theoretical insights with practical implementation, Yomo
demonstrates a clear pathway toward cost-efficient QML.

In summary, our contributions are as follows:

1. Introduction of Yomo framework, achieving high classification accuracy even in the single-
shot inference regime.

2. Development of formal results bounding the number of measurement shots required to
achieve a target error probability, proving that Yomo can surpass conventional expectation-
based QML models in shot efficiency.

3. Extensive experiments on MNIST and CIFAR-10 demonstrating that Yomo consistently
outperforms Vanilla QML in single-shot and few-shot regimes, validated under both noise-
less simulation and simulated noise models derived from public single-qubit and two-qubit
error rates of current quantum hardware.

2 RELATED WORKS

Research on reducing measurement overhead in quantum computing has mainly focused on shot-
efficient estimation methods such as classical shadows (Huang et al., 2020), and on shot allocation

2
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strategies during QML training (Phalak & Ghosh, 2023; Liang et al., 2024). More recently, Recio-
Armengol et al. (2025b) introduced single-shot QML, while others explored train-on-classical,
deploy-on-quantum paradigms (Duneau et al., 2024; Recio-Armengol et al., 2025a). Our work dif-
fers by addressing the inference stage, where deployment costs dominate. A more comprehensive
review of related works is provided in Appendix B.

3 PRELIMINARY: QUANTUM MACHINE LEARNING MODELING

QML integrates the expressive power of quantum circuits with classical machine learning tech-
niques (Cerezo et al., 2022; Huang et al., 2022; Biamonte et al., 2017; Benedetti et al., 2019). A
standard workflow consists of two main components: (i) a classical feature extractor that compresses
high-dimensional input data, and (ii) a quantum neural network (QNN) that processes the encoded
features within a quantum state space.

Model design. Let the input be denoted by x ∈ Rd. A classical feature extractor fθc(·), parame-
terized by θc, such as a convolutional–linear network, maps it into a feature vector:

z = fθc(x) ∈ Rnf . (1)
The extracted feature vector z ∈ Rnf is encoded into the quantum circuit via angle encoding, where
features are sequentially mapped to single-qubit rotations along all three axes (Ry, Rz, Rx) in a
cyclic fashion1. Specifically, each feature dimension zj parametrizes one rotation gate, assigned to a
qubit following the repeating pattern (Ry, Rz, Rx), creating a quantum state |ψ(z)⟩ with nq qubits:

|ψ(z)⟩ = V (z)|0⟩⊗nq =

nf∏
i=1

R
i mod nq

α(j)

(
zi
)
|0⟩⊗nq , α(j) ∈ {y, z, x}, (2)

where α(j) denotes the rotation axis determined by the cyclic order (y, z, x), and Ri
x means the Rx

gate is applied to the i-th qubit.

The encoded state is then processed by a variational circuit composed of multiple blocks of parame-
terized single-qubit rotations and entangling gates (e.g., CNOTs). With nq qubits and Nb layers, the
variational ansatz can be expressed as:

U(θ) =

Nb∏
ℓ=1

nq−1∏
i=1

CNOTi,i+1

nq∏
j=1

Rj
y

(
θ
(ℓ)
j

) . (3)

yielding the final state |ψ(z, θ)⟩ = U(θ)V (z)|0⟩⊗nq .

Pauli Expectation-based outputs. In the conventional QML model (called Vanilla in the follow-
ing of this study), class scores are obtained by measuring expectation values of observables in the
computational basis. Each class k is associated with a Hermitian operator Ok, typically chosen as a
tensor product of Pauli matrices. The specific operator used in this study is provided in Appendix D.
The score for class k is then:

µk = ⟨ψ(z, θ)|Ok|ψ(z, θ)⟩. (4)
These scores form the logits of a softmax classifier:

pk =
exp(µk)∑K
j=1 exp(µj)

, ŷ = argmax
k

pk. (5)

Loss function. For training the Vanilla QML model, we employ the standard cross-entropy loss to
align the predicted probability distribution with the true class labels. Given logits µk derived from
expectation values and the corresponding softmax probabilities pk, the cross-entropy loss is defined
as (with sample number Ns)

LCE = − 1

Ns

∑Ns

i=1
yi log pi, (6)

where yi is the one-hot encoded ground-truth label and pi denotes the predicted probability for
class i. This objective encourages the model to assign high probability to the correct class while
penalizing incorrect predictions, serving as the standard baseline criterion in classification tasks.

1In general, angle encoding can be implemented using different choices or arrangements of single-qubit
gates; here we present only one example.

3
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Measurement considerations. Since expectation values are ensemble quantities, they cannot be
extracted precisely from a single run of the quantum circuit. Instead, the circuit must be executed
repeatedly, each time measuring in the computational basis, and the outcomes are averaged to ap-
proximate the expectation value. With eigenvalues bounded in [−1, 1], Hoeffding’s inequality shows
that N measurement shots reduce the estimation error at a rate O(1/

√
N) (more in Appendix C).

Thus, reliable predictions require a large shot budget, especially when the decision margin ∆ be-
tween the top-two class scores is small. As a result, expectation-based inference is both time- and
resource-intensive, since quantum hardware must be reset and re-executed for every shot.

4 YOMO MODEL

With the motivation of reducing the measurement shot count of a QML model during inference, it is
possible to investigate what kind of the design is required to make such behavior possible, construct
the component, and even push the boundary to single-shot inference. Inspired by the concept of
“You Only Look Once (YOLO)” (Redmon et al., 2016), we propose Yomo: You Only Measure
Once, which can achieve high testing accuracy during inference with only single-shot measurement
of quantum circuit. Fig. 1 provides a comprehensive overview of Yomo.

Model design. Yomo shares the same construction as the expectation-based (Vanilla) QML model
up to the preparation of the quantum state. An input x ∈ Rd is mapped into a feature vector
z = fθc(x) ∈ Rnf by a classical feature extractor, which is then embedded into qubits through angle
encoding with cyclic rotations (Ry, Rz, Rx). The encoded state is processed by a variational QNN
consisting of parameterized single-qubit rotations and entangling CNOT layers, yielding the final
state |ψ(z, θ)⟩ = U(θ)V (z)|0⟩⊗nq . Finally, unlike Vanilla QML that computes expectation values
of Pauli observables, Yomo performs computational basis measurement on all qubits, producing a
probability distribution over 2nq basis states2:

P (ϕ) =
∣∣⟨ϕ|ψ(z, θ)⟩∣∣2 = ⟨ψ(z, θ)|Πϕ|ψ(z, θ)⟩, ϕ ∈ {0, 1}nq , Πϕ = |ϕ⟩⟨ϕ|. (7)

That is, the basis probabilities can be understood as expectation values of projection operators Πϕ

forming the computational-basis POVM (positive operator-valued measure).

Probability aggregation. Since classification requires K output classes, the 2nq computational
basis states are partitioned intoK groups according to their index order (e.g., 0000, 0001, 0010, . . . ).
Specifically, each class is assigned ⌊2nq/K⌋ consecutive basis states, and the remaining

r = 2nq − ⌊2nq/K⌋ ·K, r ≤ K

basis states are distributed one by one to the first r classes. Let Sk denote the set of basis states
assigned to class k. The aggregated probability for class k is then defined as

pk =
1

|Sk|
∑
ϕ∈Sk

P (ϕ), k = 1, . . . ,K. (8)

The final prediction is given by
ŷ = argmax

k
pk. (9)

Note that with this design, although the full probability distribution is required during the training
stage, at inference a single measured bitstring can be directly mapped to a class label according to
the pre-defined partition of basis states. This property is the central mechanism that enables Yomo
to perform accurate classification in the single-shot regime.

Loss functions. To stabilize training and encourage confident predictions, the Yomo loss function
combines three components:

Lyomo = LCE + γ LPS + ωLE, (10)

2At this stage, obtaining the full set of 2nq probabilities during training requires exact state-vector simula-
tion. For fairness, the Vanilla baseline is also trained under exact simulation. We discuss implications of this
constraint in the following sections.
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where LCE = − 1
Ns

∑Ns

i=1 yi log pi is the standard cross-entropy loss with Ns samples, yi and pi
denote the true label and predicted probability of the correct class for sample i, LPS is a sharpening
loss, and LE enforces low-entropy distributions. The probability sharpening mechanism rewards
predictions whose probability pi (corresponding to prediction ŷ) with data sample index i surpasses
a threshold τ ∈ (0, 1):

LPS = 1− 1

|{i | pi > τ}|
∑

i:pi>τ

pi. (11)

This term encourages the model to push confident predictions further toward one-hot distributions.
As one can observe, if there are no prediction pi larger than τ , then LPS is 1, and LPS will be close
to 0 if pi > τ and pi → 1. In addition, we introduce an entropy regularization term

LE = − 1

Ns

Ns∑
i=1

pi log pi, (12)

which penalizes flat probability distributions and promotes sharper decision boundaries. The hyper-
parameters γ and ω control the relative strengths of sharpening and entropy regularization.

5 THEORETICAL RESULTS

We summarize the main theoretical findings supporting the proposed Yomo framework. Complete
derivations and proofs are provided in Appendix C.
Theorem 5.1 (Shot requirement of Yomo). Let p > 1

2 denote the probability that a single-shot
measurement yields the correct class in the trained Yomo model. To achieve Pr(incorrect) ≤ δ, with
Pr(incorrect) ≤ exp

(
− 2N(p− 1

2 )
2
)
, a sufficient shot budget Nyo is:

Nyo ≥ ln(1/δ)

2 (p− 1
2 )

2
(13)

Here Pr(incorrect) denotes the misclassification probability under finite-shot sampling, and δ ∈
(0, 1) is the target error tolerance. (For even N, assume adversarial tie-break; random ties change
only constants.)
Theorem 5.2 (Shot requirement of Vanilla QML). Let ∆ be the minimum margin between the
top-two class scores in the infinite-shot limit, L be the Lipschitz constant of the score–expectation
mapping, and K the number of classes. To achieve Pr(incorrect) ≤ δ, with Pr(incorrect) ≤
2K exp

(
−2N

(
∆
4L

)2)
, a sufficient shot budget Nva is:

Nva ≥ 8L2

∆2
ln
2K

δ
(14)

Theorem 5.3 (Condition for fewer shots at fixed δ). Fix δ. If the trained Yomo model achieves

p ≥ 1

2
+

∆

4L

√
ln(1/δ)

ln(2K/δ)
, (15)

then Yomo requires fewer measurement shots than Vanilla QML to reach the same target error prob-
ability δ.
Theorem 5.4 (Condition for smaller δ at fixed N ). Fix N . If the trained Yomo model achieves

p ≥ 1

2
+

√(
∆

4L

)2

− ln(2K)

2N
, (16)

then Yomo attains a smaller incorrect probability δ than Vanilla QML with the same shot budget N .
Theorem 5.5 (Single-shot condition). In the N = 1 regime, if the trained Yomo model achieves

p ≥ 1 − 2K exp

(
− ∆2

8L2

)
, (17)

then its incorrect probability δ is guaranteed to be smaller than that of Vanilla QML.

5
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The above results reveal that Vanilla is fundamentally disadvantaged in two ways. First, its bound
carries a multiplicative 2K factor from the union bound over K classes, which directly inflates the
shot requirement. Second, its dependence on the top-two score margin ∆ means that if ∆ shrinks,
often exponentially with qubit count or under noise (McClean et al., 2018), then the required Nva
in Eq. 14 grows exponentially as well. In contrast, Yomo’s requirement in Eq. 13 depends only on
p − 1

2 , determined by training, which can remain stable as qubit count increases, enabling Yomo
to sustain low-shot performance even in high-dimensional regimes where Vanilla QML becomes
impractical during inference.

6 EXPERIMENTS

We validate the effectiveness of Yomo by comparing it against Vanilla QML models. Hyperpa-
rameter and training settings for all experiments are provided in Appendix D. Reported results are
averaged over 5 runs with different random seeds to ensure robustness.

Figure 2: Comparison of test accuracy between Yomo (blue, solid line) and Vanilla (orange, dashed
line) models across different shot budgets on MNIST (left two panels) and CIFAR-10 (right two
panels). Both models use nq = 4 qubits and Nb = 5 QNN blocks. For Yomo, the threshold
parameter is fixed at τ = 0.6.

Single-shot behavior of Yomo. We first evaluate Yomo and Vanilla on MNIST and CIFAR-10
classification tasks under varying shot budgets. With the network structure fixed as described in
Sec. 4, these experiments directly assess the contribution of Yomo’s probability-based output and
loss design. As shown in Fig. 2, under the single-shot regime (shots = 1) on MNIST, Vanilla
achieves only 26.59% test accuracy, whereas Yomo attains 90.52%. Increasing the number of shots
substantially improves Vanilla: at shots = 10, its accuracy reaches 90.08%, comparable to Yomo’s
single-shot performance. This indicates that Yomo can achieve the same level of accuracy with
roughly 10× fewer shots. Notably, Yomo also continues to improve as the shot budget increases.
In Fig. 2, we further extend the evaluation up to shots → ∞, corresponding to exact state-vector
simulation. Across the full shot regime, Yomo consistently outperforms Vanilla. Similar trends are
observed on the more challenging CIFAR-10 task, where Yomo maintains its advantage in both the
low- and high-shot settings.

Effects of qubit count. As discussed in Sec. 5, the required number of shots for Vanilla grows
with decreasing top-two score margin ∆, which typically shrinks as the system size increases. The
sufficient budget scales as Nva ≥ O(1/∆2), implying severe shot requirements for larger nq . In
contrast, Yomo is not constrained by this dependence. To verify this, we compare both models with
increasing qubit counts, nq ∈ {4, 6, 8, 10, 12}, while fixing Nb = 5. Results in Fig. 3(a,b) clearly
show that Vanilla suffers significant performance degradation as nq increases. Although larger qubit
counts introduce more trainable parameters, Vanilla would require deeper circuits (larger Nb) to
maintain expressivity. On the other hand, larger nq can also allow shallower input encodings for a
fixed number of features, which is advantageous in the noisy intermediate-scale quantum (NISQ)
(Preskill, 2018) regime. Yomo, however, shows no comparable performance decay as nq grows,
consistent with our theoretical findings in Sec. 5.
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Is threshold τ important? During training, Yomo employs a probability sharpening mechanism
(Eq. 11). Intuitively, setting τ too low may amplify incorrect predictions early in training, while set-
ting it too high primarily enhances already confident predictions, providing limited benefit. Hence,
an intermediate threshold is expected to be most effective. Figure 3(c) shows test accuracy across
different τ values and shot budgets. While results for shots > 10 are relatively insensitive to τ , in
the single-shot regime the accuracy peaks at τ = 0.6, confirming this moderate choice as optimal.

Probability sharpening mechanism. Figures 3(d,e) compare training dynamics of Yomo with
and without the sharpening loss LPS (Eq. 11). The inclusion of LPS clearly improves single-shot test
accuracy, as shown in Fig. 3(e), validating the effectiveness of this mechanism in guiding the model
toward more confident and accurate predictions.

Figure 3: Extended evaluation of Yomo and Vanilla models. (a, b) Effect of qubit count nq ∈
4, 6, 8, 10, 12 on MNIST accuracy. (c) Sensitivity to threshold τ ∈ 0.4, 0.5, 0.6, 0.7, 0.8. While
performance is similar for shots > 10, single-shot accuracy peaks at τ = 0.6. (d) Training loss
decomposition of Yomo into total loss, probability sharpening (PS) loss, entropy loss, and test losses.
(e) Test accuracy trajectories with and without the sharpening loss LPS (τ = 0.6).

Noisy simulation with deeper QNN. Since Yomo targets shot-efficient inference, it is crucial to
test its reliability under realistic NISQ noise. To this end, we approximate hardware noise using
depolarizing channels applied to both single-qubit (1Q) and two-qubit (2Q) operations (details pro-
vided in Appendix E). Noise model approximations for different quantum hardware platforms are
constructed by mapping publicly reported 1Q and 2Q error rates to depolarizing error probabilities,
as summarized in Table 1. Figs. 4 and 5 present noisy simulation results for Yomo and Vanilla on
MNIST and CIFAR-10, respectively, evaluated across shot budgets Nshot ∈ {1, 100,∞} and dif-
ferent numbers of QNN blocks. The simulated hardware noise model includes Quantinuum H1-1,
IBM Pittsburgh, Google Willow, and IonQ Forte. Among these, Quantinuum H1-1 exhibits per-
formance closest to the noiseless baseline, followed by IBM Pittsburgh, Google Willow, and IonQ
Forte. This ordering mirrors their reported 2Q error rates, indicating that as circuit depth increases,
the 2Q error rate becomes the dominant factor governing overall model accuracy.

Figs. 4 and 5 further reveal a clear contrast between Vanilla and Yomo in terms of depth–performance
behavior under noisy conditions. For Vanilla, at sufficiently large shot budgets (Nshot = 100,∞),
test accuracy initially increases with the number of QNN blocks, reaching a sweet spot around 10–15
blocks before degrading as noise accumulates. This indicates that, when enough measurement pre-
cision is available, additional expressiveness from deeper circuits can momentarily outweigh the
effects of noise. In contrast, Yomo already achieves strong accuracy at very low depth (Nb = 5),

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Depolarizing Noise Level Reference (IBM Quantum, 2025; Google Quantum AI, 2024;
Quantinuum Systems, 2025; IonQ, 2025). We note that the IBM Quantum platform’s error rates
fluctuate over time. The data presented was recorded on August 28, 2025. For IBM, the 1Q error
rates reported are median values, while the 2Q error rates are average values. For all other providers,
the reported error rates are average values.

Device 1-Qubit Error Rate 2-Qubit Error Rate Approx. Depolarizing p1/p2

IBM Pittsburgh 0.0202% 0.169% p1 ∼ 2.02× 10−4, p2 ∼ 1.69× 10−3

Google Willow 0.035% 0.33% p1 ∼ 3.5× 10−4, p2 ∼ 3.3× 10−3

Quantinuum H1-1 0.0018% 0.097% p1 ∼ 1.8× 10−5, p2 ∼ 9.7× 10−4

IonQ Forte 0.02% 0.4% p1 ∼ 2× 10−4, p2 ∼ 4× 10−3

leaving little room for further improvement. As a result, deeper circuits do not provide additional
benefit, and performance decreases monotonically due to noise accumulation. This distinction high-
lights a fundamental difference: while Vanilla relies on deeper circuits and larger shot budgets to
exploit expressiveness, Yomo is suitable for low-depth, shot-efficient inference. Moreover, Yomo
remains robust on noisy settings, with performance in some hardware configurations (e.g., Quantin-
uum H1-1) closely tracking the noiseless baseline. Even in the single-shot regime, Yomo matches
the accuracy of Vanilla models that require orders of magnitude more measurements, representing
its practical advantage in both runtime and hardware cost.

Figure 4: Comparison of Yomo and Vanilla QML models on MNIST under different hardware
noise settings and shot budgets. Top row: Yomo with Nshot ∈ {1, 100,∞}. Bottom row: Vanilla
with Nshot ∈ {1, 100,∞}. Each curve shows test accuracy as a function of the number of circuit
blocks Nb under noiseless simulation and depolarizing noise models parameterized by hardware
benchmarks from Quantinuum H1-1, IonQ Forte, IBM Pittsburgh, and Google Willow.

7 DISCUSSION AND CONCLUSION

Our experiments demonstrate that Yomo achieves competitive or even superior performance with
dramatically fewer measurement shots compared to Vanilla QML models. In some cases, Yomo
attains high test accuracy with only a single shot. This has immediate implications for the practical
use of quantum hardware. Since providers typically charge in proportion to the number of shots or
runtime, reducing the required shots translates directly into lower usage costs. Conversely, under a
fixed budget, users could conduct significantly more experiments or obtain higher-quality results. In
this sense, Yomo contributes to lowering the economic barrier of adopting quantum technologies in
both academic and industrial settings.

8
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Figure 5: Comparison of Yomo and Vanilla QML models on CIFAR-10 under different hardware
noise settings and shot budgets. Top row: Yomo with Nshot ∈ {1, 100,∞}. Bottom row: Vanilla
with Nshot ∈ {1, 100,∞}. Each curve shows test accuracy as a function of the number of circuit
blocks Nb under noiseless simulation and depolarizing noise models parameterized by hardware
benchmarks from Quantinuum H1-1, IonQ Forte, IBM Pittsburgh, and Google Willow.

It is important to emphasize that Yomo is not intended to be trained directly on quantum hardware.
Instead, its design is particularly well-suited to the setting where training is performed using classical
simulation of quantum states, while deployment takes place on quantum devices. This separation
leverages the flexibility of classical training environments, avoiding the substantial shot cost and
noise challenges of on-hardware optimization. In the inference stage, however, Yomo’s single-shot
capability enables efficient execution on real quantum processors. Notably, in the intermediate qubit
regime (e.g., 25–35 qubits), quantum inference with Yomo may even surpass classical simulation
in runtime, as suggested by (Chatterjee et al., 2025), due to the intrinsic efficiency of single-shot
execution. A systematic investigation of this crossover point, which we leave for future work, could
provide valuable guidance for determining when quantum inference becomes advantageous in prac-
tice.

Because training remains more efficient and practical on classical hardware in small qubit size, to
scale up, an important future direction is to explore advanced classical methods for simulating QNN
outputs. For example, the train-on-classical, deploy-on-quantum paradigm (Duneau et al., 2024;
Recio-Armengol et al., 2025a) highlights the possibility of scalable classical training pipelines. In-
tegrating such methods with shot-efficient inference schemes like Yomo may further reduce the total
cost of deploying QML models.

Our inference-stage evaluation explicitly accounts for realistic practical constraints, finite measure-
ment shots and noisy environment. We employed error models parameterized by 1Q and 2Q de-
polarizing noise derived from publicly available error rates. While these models cannot capture
all device-specific imperfections, they offer a reasonable proxy for the effects of hardware noise.
Importantly, our results show that Yomo maintains robust single-shot behavior even under these
noise conditions. We note, however, that real devices such as IBM Pittsburgh or Google Willow
have limited qubit connectivity, which would require additional SWAP gates compared to the fully
connected ion-trap architectures of IonQ and Quantinuum. This connectivity overhead may further
degrade performance in practice, suggesting that Yomo’s advantage could be even more pronounced
on hardware with higher connectivity.

By enabling accurate single-shot inference, Yomo reduces costs of deploying QML, thereby making
quantum models more accessible. Looking forward, combining Yomo with advances in classical
simulation techniques, scaling analyses of the quantum-classical crossover regime, and device-aware
optimizations will further advance the feasibility of practical QML deployment.

9
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A MOTIVATION: THE IMPORTANCE OF SHOT EFFICIENCY FOR INFERENCE

Figure 6: Resource cost scales linearly with
the number of measurement shots due to both
per-shot billing and measurement overhead.

Most prior research on QML has focused on im-
proving the training phase, such as optimizing gra-
dients or reducing the number of circuit evaluations
required during parameter updates. However, scal-
ing studies in classical machine learning have shown
that, once a model is deployed at scale, the domi-
nant cost often shifts from training to inference (Sar-
dana et al., 2023). The same trend is expected for
QML, such that when quantum hardware becomes
routinely accessible, inference will constitute the
primary driver of both computational and monetary
cost. In such a setting, shot efficiency during infer-
ence becomes essential. From a practical perspec-
tive, achieving competitive performance with a frac-
tion of the measurement shots would offer a decisive
advantage. As illustrated in Fig. 6, if the target ac-
curacy can be reached using only a handful of shots, the savings in hardware usage grow propor-
tionally with the reduction in shots3. This means that, under a fixed quantum computing budget,
a researcher or practitioner could run many more experiments, accelerating scientific progress and
enabling broader adoption in industrial applications. Conversely, for a fixed workload, the overall
inference cost could be reduced by orders of magnitude. In both scenarios, shot-efficient inference
directly lowers the barrier to practical deployment of QML.

B EXPANDED RELATED WORKS

Shot-efficient estimation methods. A prominent line of work focuses on minimizing the number
of circuit executions required to extract useful information. For instance, the classical shadow frame-
work (Huang et al., 2020) reuses measurement data to predict many observables simultaneously.
While highly effective for general quantum state tomography, these approaches are not specifically
designed for QML tasks, where the objective is to train and deploy predictive models efficiently.

Shot-efficient QML. Within the QML literature, shot optimization has primarily been investi-
gated in the context of training. Several works propose adaptive or distribution-aware strategies to
allocate shots during training epochs (Phalak & Ghosh, 2023; Liang et al., 2024), thereby accelerat-
ing convergence while preserving accuracy. Although these methods demonstrate that judicious shot
allocation can substantially reduce training cost, the models still rely on expectation-value outputs at
inference time. As such, they do not directly address the cost of deployment, where inference calls
may dominate the lifecycle usage of a machine learning model. More recently, Recio-Armengol
et al. (2025b) introduced the concept of single-shot QML, providing a theoretical characterization of
when a QML model can achieve reliable predictions with only a single measurement. Their work
highlights both the promise and the difficulty of realizing single-shot models in practice. While
the potential cost savings are significant, training such models directly is shown to be challenging.
Despite the importance of this direction, there has been limited follow-up work, largely due to the
absence of a concrete architectural design or implementation pathway.

Training on classical hardware. Complementary to these lines of research, other efforts have
investigated hybrid training settings such as train-on-classical, deploy-on-quantum, where models
are trained using classical simulations and then deployed on real quantum hardware (Duneau et al.,
2024; Recio-Armengol et al., 2025a). These works primarily address the training bottleneck im-
posed by scarce quantum resources and the challenges of gradient evaluation. In contrast, our work
focuses on the inference stage. Nevertheless, the train-on-classical paradigm offers a promising
pathway for scaling up the models proposed here in future work.

3Quantum hardware providers typically charge in proportion to the number of measurement shots or to
execution time, which itself scales linearly with shots. For example, the IBM Quantum Platform pricing page
(https://www.ibm.com/quantum/products) and IonQ on AWS Braket pricing page (https://
aws.amazon.com/braket/pricing/).
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C THEORETICAL RESULTS ON INFERENCE SHOT REQUIREMENT

In the main paper, we stated several theoretical guarantees on the shot requirements for inference
in both expectation-based (Vanilla) QML and probability-aggregation (Yomo) QML. For complete-
ness, we provide the detailed proofs here.

Vanilla QML. Expectation-based QML models produce predictions by computing class scores
sc = gc(µ), where µ = (µ1, . . . , µK) are expectation values µc = ⟨Oc⟩ of class observables {Oc}.
The predicted label is then given by argmaxc softmax(sc). We adopt the following assumptions:

• Bounded outcomes. Each single-shot outcome used to estimate µc lies in [−1, 1] (e.g.,
Pauli eigenvalues ±1).

• Lipschitz scores. The score map s = g(µ) is L-Lipschitz under ∥ · ∥∞, i.e.,

|sc(µ̂)− sc(µ)| ≤ L∥µ̂− µ∥∞.
For linear logits, one has L = ∥W∥∞.

• Margin. Let s(1) > s(2) denote the top-two true scores and define the margin ∆ :=
s(1) − s(2) > 0.

Lemma C.1 (Concentration of expectations). For each class c, withN i.i.d. measurement shots and
estimator µ̂c,

Pr
(
|µ̂c − µc| ≥ ε

)
≤ 2 exp(−2Nε2). (18)

Proposition C.2 (Argmax stability under margin). If ∥µ̂ − µ∥∞ ≤ ∆/(4L), then the predicted
class is preserved, i.e., argmaxc ŝc = argmaxc sc.

Proof sketch. By Lipschitz continuity,

max
c

|ŝc − sc| ≤ L∥µ̂− µ∥∞ ≤ ∆/4.

Thus,
ŝ(1) − ŝ(2) ≥ (s(1) − ∆

4 )− (s(2) +
∆
4 ) = ∆

2 > 0,

ensuring that the argmax is unchanged.

Corollary C.2.1 (Decision tail bound). Using a union bound over K classes and Lemma C.1,

Pr(incorrect) ≤ Pr
(
max

c
|µ̂c − µc| > ∆

4L

)
≤ 2K exp

(
− 2N

(
∆
4L

)2)
. (19)

Equivalently, to guarantee Pr(incorrect) ≤ δ, it suffices to take

N ≥ 8L2

∆2
ln
2K

δ
. (20)

Hence the decision error probability decays in N , but the required shot budget scales with L2

∆2 .
As system size grows, margins ∆ often shrink while Lipschitz constants L increase, inflating the
required N and making Vanilla QML inference shot-inefficient.

Yomo QML. In Yomo, inference is based on direct measurement outcomes. Let p ∈ (0, 1) denote
the probability that a single shot yields the correct class label (i.e., the true class receives the majority
of aggregated probability). WithN i.i.d. shots and majority vote, the number of correct votes follows
SN ∼ Binomial(N, p).
Proposition C.3 (Binomial tail bound for majority vote). For odd N (ties can be handled analo-
gously), the error probability is

Pr(incorrect) = Pr
(
SN < N

2

)
=

⌈N/2⌉−1∑
k=0

(
N

k

)
pk(1− p)N−k ≤ exp

(
− 2N(p− 1

2 )
2
)
. (21)

Thus, to ensure Pr(incorrect) ≤ δ, it suffices to take

N ≥ ln(1/δ)

2(p− 1
2 )

2
. (22)
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In practice, training typically yields p ≥ 0.85–0.95, in which caseN = 3–5 already achieves> 99%
reliability. This theoretical guarantee aligns with our empirical observations and explains the rapid
accuracy gains observed when moving from single-shot to small-shot inference in Yomo.

Theorem C.4 (Condition for fewer shots at fixed δ). Fix a target error level δ ∈ (0, 1). If the trained
Yomo model satisfies

p ≥ 1

2
+

∆

4L

√
ln(1/δ)

ln(2K/δ)
,

then Yomo requires no more (and strictly fewer whenever the inequality is strict) measurement shots
than Vanilla to reach error at most δ.

Proof. From the bounds above, Nyo(δ) ≥ ln(1/δ)

2(p− 1
2 )

2 and Nva(δ) ≥ 8L2

∆2 ln 2K
δ . Requiring Nyo(δ) ≤

Nva(δ) gives ln(1/δ)

2(p− 1
2 )

2 ≤ 8L2

∆2 ln 2K
δ , equivalently (p − 1

2 )
2 ≥ ∆2

16L2

ln(1/δ)
ln(2K/δ) . Taking square roots

proves the claim.

Theorem C.5 (Condition for smaller δ at fixed N ). Fix a shot budget N ∈ N. If the trained Yomo
model satisfies

p ≥ 1

2
+

√(
∆
4L

)2
− ln(2K)

2N
,

then Yomo attains a smaller error probability than Vanilla with the same N shots.

Proof. We require δyo ≤ δva, i.e. e−2N(p− 1
2 )

2 ≤ 2K e−2N(∆/4L)2 . Taking logs yields −2N(p −
1
2 )

2 ≤ ln(2K)− 2N(∆/4L)2 and hence (p− 1
2 )

2 ≥ (∆/4L)2 − ln(2K)
2N . Taking square roots gives

the result (the condition is non-vacuous when the term under the square root is nonnegative).

Theorem C.6 (Single-shot condition). In the N = 1 regime, if the trained Yomo model satisfies

p ≥ 1 − 2K exp

(
− ∆2

8L2

)
,

then Yomo’s error probability is no larger than Vanilla’s.

Proof. For N = 1, Yomo’s error is exact: δyo = 1 − p. Vanilla’s bound gives δva ≤
2K exp

[
−2(∆/4L)2

]
= 2K exp

[
− ∆2

8L2

]
. Requiring 1− p ≤ δva yields the stated inequality.

Concluding remark. Taken together, these results show a clear separation between expectation-
based (Vanilla) QML and probability-aggregation (Yomo) QML in terms of inference shot complex-
ity. For Vanilla, the required number of shots scales inversely with the square of the classification
margin ∆ and grows with the Lipschitz constant L, both of which typically worsen with circuit size
and noise. In contrast, Yomo’s requirement depends only on the single-shot correctness probability
p, which is directly controlled by training. As a result, once training produces p moderately above
1/2, Yomo achieves reliable inference with only a handful of shots, often orders of magnitude fewer
than Vanilla. This theoretical advantage explains and complements the empirical findings reported
in the main text.

Table 2: Comparison of shot complexity between Vanilla (expectation-based) QML and Yomo
(probability-aggregation) QML. Bounds are up to constant factors and logarithmic terms.

Vanilla QML Yomo QML

Error bound δva ≤ 2K exp
(
− 2N( ∆

4L )
2
)

δyo ≤ exp
(
− 2N(p− 1

2 )
2
)

Shots for target δ N ≥ 8L2

∆2 ln 2K
δ N ≥ ln(1/δ)

2(p− 1
2 )

2

Single-shot error δva ≤ 2K e−∆2/(8L2) δyo = 1− p
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D HYPERPARAMETER AND TRAINING SETTINGS IN EXPERIMENTS

Software and Hardware. All experiments were performed on a system equipped with 8 NVIDIA
A100 GPUs. The implementation was based on the TorchQuantum framework (Wang et al., 2022).
The code for this study will be released publicly on GitHub in the coming months.

Optimizer and Learning Rate. For classification tasks (MNIST and CIFAR-10), we used the
Adam optimizer with a learning rate of 5× 10−3 for MNIST and 1× 10−3 for CIFAR-10.

Batch Size and Epochs. Batch size was set to 128 for MNIST classification tasks and 64 for
CIFAR10 classification tasks. All models were trained for 100 epochs.

Loss Coefficients. The weighting coefficients γ and ω in the total loss function (Eq. 10) are both
fixed to 0.05 throughout our experiments.

Pauli Observables in Vanilla QML. In Vanilla QML, each class is associated with a Hermitian
observable constructed from tensor products of Pauli operators. Following prior works, we select a
fixed set of 10 observables as the measurement target. For the case of nq = 4 qubits and 10-class,
these are

{ZIII, IZII, IIZI, IIIZ, ZZII, ZIZI, IZZI, IIZZ, Y IY I, IY IY },
where X,Y, Z denote Pauli matrices and I is the identity. For larger numbers of qubits (nq > 4),
the observables are extended by appending identity operators to the right, ensuring that they act non-
trivially only on the first four qubits. This construction provides a consistent set for classification
tasks, while maintaining scalability across different circuit widths.

Training procedure. Yomo models are trained entirely on classical simulators of quantum states,
where exact probability distributions P (ϕ) can be computed. For fairness, the Vanilla baseline is
likewise evaluated using exact state-vector simulation. The trainable parameters consist of both the
classical feature extractor parameters θc and the quantum circuit parameters θ. Given the aggregated
class probabilities {pk}Kk=1 defined in Eq. 8, the training objective is the total loss Lyomo (Eq. 10).
Optimization proceeds by computing gradients with respect to (θc, θ). Formally, for a parameterized
hybrid model

z = fθc(x), |ψ(z, θ)⟩ = U(θ)V (z) |0⊗nq ⟩,
the aggregated class probability for class k is

pk(x; θc, θ) =
1

|Sk|
∑
ϕ∈Sk

∣∣⟨ϕ|ψ(z, θ)⟩∣∣2.
Gradients with respect to θc are obtained via backpropagation, whereas gradients with respect to the
quantum parameters θ are, in principle, evaluated using the parameter-shift rule (Schuld et al., 2019).
In our simulations, however, both θc and θ are updated using PyTorch’s automatic differentiation
engine (autograd). The parameter updates follow the standard form

(θ(t+1)
c , θ(t+1)) = (θ(t)c , θ(t))− η∇(θc,θ)Lyomo(θ

(t)
c , θ(t)), (23)

where η is the learning rate and ∇(θc,θ) denotes the joint gradient. In our experiments we employed
the Adam optimizer for stability.

We emphasize that this training is performed entirely on classical simulators, avoiding the pro-
hibitive shot cost of gradient estimation on quantum devices. The trained parameters (θ⋆c , θ

⋆) are
then deployed for inference, where Yomo’s shot-efficient prediction mechanism eliminates the need
to reconstruct Pauli expectation values.

E NOISY SIMULATION WITH DEPOLARIZING ERROR

The depolarizing error has been widely used as a baseline noise model in studies of NISQ algo-
rithms, including QML and VQAs (Preskill, 2018; Bravyi et al., 2020; Stilck França & Garcia-
Patron, 2021). In particular, several works simulate device behavior by mapping reported hardware
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gate error rates directly to depolarizing error probabilities (Wang et al., 2021; Saib et al., 2021;
Wood, 2020). While real hardware noise is typically biased and correlated, the depolarizing approx-
imation is a first-order approximation of the noise, capturing the dominant effect of error rates on
algorithmic performance.

The depolarizing channel is a quantum noise process that modifies any state towards a maximally
mixed state. For any d-dimensional system (d referred as the number of qubits), the quantum system
subjected to depolarizing noise is defined as:

E(d)
dep (ρ) = (1− p)ρ + p

d Id, (24)

where Id is the d-dimensional identity operator (Nielsen & Chuang, 2010). While this could be
modeled with extra control qubits, the practical implementation follows an equivalent definition
which applied over time statistically matches Eq. 24. For a 1-qubit system, given any arbitrary
quantum state ρ, it holds:

I

2
=
ρ+XρX + Y ρY + ZρZ

4
(25)

where X,Y, Z are the Pauli operators. Therefore, substituting Eq. 25 to Eq. 24 and reparametrizing
p, we can write the depolarizing channel as:

E(1)
dep (ρ) = (1− p)ρ + p

3

(
XρX + Y ρY + ZρZ

)
, (26)

Following the same logic, we can write the 2-qubit depolarizing channel as:

E(2)
dep (ρ) = (1− p)ρ + p

15

∑
P∈P2\{II}

PρP, (27)

where P2 = {I,X, Y, Z}⊗2 denotes the two-qubit Pauli group and II is excluded from the sum-
mation. This definition generalizes naturally to n qubits: the channel acts by leaving the state un-
changed with probability (1− p), while with probability p it applies one of the 4n − 1 non-identity
Pauli operators uniformly at random.

In practice, depolarizing noise is typically applied after each gate, with separate parameters p1Q and
p2Q for 1-qubit and 2-qubit operations, respectively. These parameters are often chosen to match
the error rates reported by quantum hardware providers. For example, if a device specifies a 2-qubit
gate error rate of 1.0 × 10−3, one may simulate it by applying a 2-qubit depolarizing channel with
p2Q = 10−3 after each entangling gate.The quantum circuits of our work comprises only of 1 and
2-qubit gates (RY , RZ, RX and CNOT ), therefore we modify our quantum circuits following
Eqs. 24 and 27 (applying probabilistically the depolarizing Pauli operations) with the probabilities
p1 and p2 (see Table 1 in the main text) that approximate the quantum devices 1 and 2-qubit errors.

F QUANTUM METHODS IN DIFFERENT TRAINING/DEPLOYMENT SCHEMES

The design of Yomo is most naturally suited to the train-on-classical, deploy-on-quantum paradigm,
where training can be performed efficiently on simulators and inference leverages quantum hardware
with shot-efficient measurement. To place this in context, we summarize and contrast different
training and deployment schemes that have been explored in the literature.

Training & deployment on classical. This category corresponds to so-called quantum-inspired
methods. Here, both training and inference are performed entirely on classical hardware, while
the model architecture is motivated by quantum principles such as tensor networks, parameterized
unitary evolutions, or measurement-based output mechanisms (Koike-Akino et al., 2025; Huynh
et al., 2023). In the example of QuanTA (Chen et al., 2024), which introduces theoretical constructs
inspired by quantum states but evaluates them using classical simulation. These methods are advan-
tageous when quantum hardware is unavailable or prohibitively expensive, but they do not provide
direct access to quantum resources and are therefore limited to problem sizes classically tractable.

Training & deployment on quantum. This setting corresponds to conventional QML. Both train-
ing and inference require direct access to quantum hardware, as the model parameters are updated
based on measurements from the quantum device (Cerezo et al., 2022; Huang et al., 2022; Biamonte
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et al., 2017; Pérez-Salinas et al., 2020; Schuld et al., 2021; Liu et al., 2025b; Khatri et al., 2024;
Chen et al., 2020; 2025b). While this approach is the most “native” to quantum computing, it is also
the most resource-intensive: the cost of training scales with the number of shots, circuit depth, and
optimization iterations, all of which must be executed on a scarce and noisy quantum processor. As
a result, this scheme faces significant scalability challenges in the NISQ era.

Training on quantum, deployment on classical. A different paradigm is represented by
Quantum-Train (Liu et al., 2025c; 2024; Chen et al., 2025a; Lin et al., 2024; Chen et al., 2025c;
Lin et al., 2025) and related approaches (de Souza et al., 2021; Carrasquilla et al., 2023) such as
Quantum Parameter Adaptation (QPA) (Liu et al., 2025d;a). In this scheme, a quantum computer is
used during training to generate parameters, embeddings, or compressed representations, which are
then deployed in a purely classical model for inference. This design leverages quantum resources
where they are most impactful, during training, while avoiding the runtime overhead of quantum
hardware in deployment. The trade-off, however, is that the inference stage cannot exploit potential
quantum advantages in sampling or generative modeling, since the final model is purely classical.

Training on classical, deployment on quantum. Finally, the scheme most relevant to Yomo is to
train on classical hardware and deploy on quantum hardware. In this setting, classical simulation is
used to optimize the quantum model parameters, which is feasible for medium-scale circuits with
efficient simulators such as TorchQuantum or other scalable estimation of expectation value as in
(Recio-Armengol et al., 2025a; Kasture et al., 2023; Rudolph et al., 2023). Once trained, the model
is executed on a quantum device at inference time, where Yomo’s single-shot measurement design
becomes highly advantageous. This scheme reduces training cost by avoiding quantum hardware
usage during optimization, while still exploiting genuine quantum inference capabilities at deploy-
ment. We argue that this hybrid pathway provides a promising balance between practicality and
advantage, especially in the NISQ era where inference costs are expected to dominate.

G TOWARD PRACTICAL QUANTUM COMPUTING DEPLOYMENT VIA THE
YOMO CONCEPT

The Yomo framework demonstrates that QML can be made significantly more practical by rethink-
ing the inference stage, instead of relying on expectation values estimated from a large number
of repeated measurements, Yomo can extracts predictions directly from single-shot measurement
outcomes. This idea has immediate implications for the cost and accessibility of QML, as it re-
duces inference overhead by orders of magnitude. More broadly, however, the Yomo concept points
toward a general design principle for quantum algorithms, wherever possible, reformulate output
mechanisms to minimize dependence on expectation-value estimation.

Many VQAs share the same bottleneck as conventional QML: their objective functions are expressed
as expectation values of observables. Examples include the Variational Quantum Eigensolver (VQE)
(Kandala et al., 2017), the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al.,
2014), and a wide range of hybrid quantum-classical optimization methods. In all of these cases,
the dominant runtime cost arises from repeated circuit executions to estimate expectation values
with sufficient statistical accuracy. As system size grows, and as optimization landscapes require
repeated evaluations, the number of measurement shots can become prohibitively large, both in
terms of wall-clock time and monetary cost on cloud-based quantum hardware.

The success of Yomo in the classification setting suggests a broader research agenda: can other
quantum methods be reformulated to operate in a shot-efficient or even single-shot regime? For
instance, one could envision variants of VQE where single-shot samples are aggregated through
tailored loss functions or adaptive rescaling, providing sufficiently accurate gradient signals without
the need for thousands of measurements per iteration. Similarly, in QAOA, one could investigate
whether problem-dependent mappings allow decision-making or objective evaluation directly from
raw bitstring samples, bypassing the need for high-precision expectation estimates.

Exploring these directions requires rethinking the interface between quantum circuits and classi-
cal post-processing. Yomo demonstrates that with appropriate probability aggregation and care-
fully designed loss functions, a model can be trained to produce outputs that are robust even under
single-shot measurement. Extending this principle to VQAs would mean designing cost functions,
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aggregation strategies, or training procedures that explicitly anticipate the single-shot constraint. In
effect, the burden of precision estimation is shifted from the deployment stage to the training or
design stage, where it can be managed more efficiently.

We therefore view Yomo not only as a contribution to QML, but as a foundation for a broader
paradigm shift in quantum algorithm design. By prioritizing shot efficiency at the output stage,
quantum methods can become far more practical to deploy on near-term hardware. This perspective
highlights an important research opportunity: to systematically revisit existing variational algo-
rithms, identify their measurement bottlenecks, and seek shot-efficient reformulations inspired by
the Yomo concept. Such efforts would directly advance the practical deployment of quantum com-
puting by reducing both the temporal and economic costs associated with measurements, thereby
lowering the barrier for real-world applications.
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