

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOU ONLY MEASURE ONCE: ON DESIGNING SINGLE-SHOT QUANTUM MACHINE LEARNING MODELS

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Quantum machine learning (QML) models conventionally rely on repeated mea-
014 surements (shots) of observables to obtain reliable predictions. This dependence
015 on large shot budgets leads to high inference cost and time overhead, which is
016 particularly problematic as quantum hardware access is typically priced propor-
017 tionally to the number of shots. In this work we propose *You Only Measure Once*
018 (*Yomo*), a simple yet effective design that achieves accurate inference with dra-
019 matically fewer measurements, down to the single-shot regime. *Yomo* replaces
020 Pauli expectation-value outputs with a probability aggregation mechanism and in-
021 troduces loss functions that encourage sharp predictions. Our theoretical analysis
022 shows that *Yomo* avoids the shot-scaling limitations inherent to expectation-based
023 models, and our experiments on MNIST and CIFAR-10 confirm that *Yomo* consis-
024 tently outperforms baselines across different shot budgets and under simulations
025 with depolarizing channels. By enabling accurate single-shot inference, *Yomo*
026 substantially reduces the monetary and computational costs of deploying QML,
027 thereby lowering the barrier to practical adoption of QML.

029 1 INTRODUCTION

031 Quantum computing (Nielsen & Chuang, 2010) has emerged as a promising paradigm for advancing
032 computational capabilities beyond the classical regime. In particular, quantum machine learning
033 (QML) (Cerezo et al., 2022; Huang et al., 2022; Biamonte et al., 2017; Benedetti et al., 2019)
034 seeks to leverage quantum resources for learning tasks such as classification (Pérez-Salinas et al.,
035 2020; Schuld et al., 2021; Liu et al., 2025b; Gong et al., 2024), generation (Khatri et al., 2024),
036 and reinforcement learning (Chen et al., 2020; Liu et al., 2024). Unlike classical machine learning,
037 however, QML inherently involves probabilistic measurement outcomes. To obtain reliable outputs,
038 QML models typically require repeated circuit executions, aggregating many measurement shots to
039 estimate expectation values of observables. This reliance on repeated measurements constitutes one
040 of the fundamental distinctions between classical and quantum machine learning.

041 As a result, the resource requirements for training and inference in QML are substantial. Since
042 access to quantum hardware is predominantly cloud-based and requires waiting in queues, the mon-
043 etary cost of usage scales proportionally with the number of shots. In addition, shot repetition
044 contributes significant time overhead: in general only a single quantum processing unit (QPU) is
045 available to execute the circuit, limiting opportunities for parallelization. Given the scarcity of quan-
046 tum hardware resources, this repetition exacerbates both the financial and computational burden of
047 deploying QML models. From the broader perspective of a machine learning model’s lifecycle,
048 the inference stage typically dominates the overall cost (Sardana et al., 2023; Samsi et al., 2023).
049 This observation further motivates the development of shot-efficient QML models, particularly in
050 the inference phase. While several recent works have begun exploring shot-efficient methods in
051 QML and variational quantum algorithms (VQAs) (Phalak & Ghosh, 2023; Kim et al., 2024; Liang
052 et al., 2024), and theoretical concepts of single-shot inference have been proposed (Recio-Armengol
053 et al., 2025b), there remains no clear design pathway for implementing such models. Moreover, the
practical implications of a truly single-shot inference QML model, both in terms of hardware usage
and experimental throughput, have yet to be systematically studied.

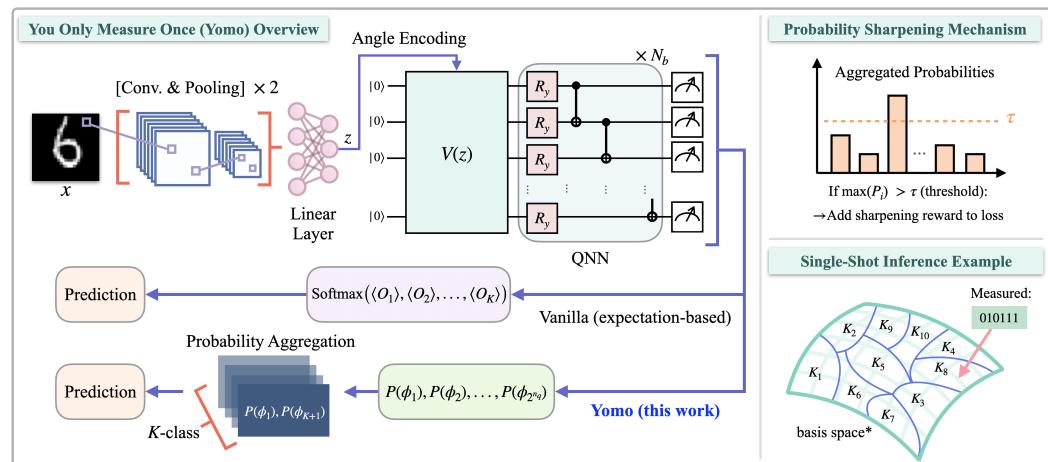


Figure 1: Overview of the proposed Yomo framework. Left: The input image is processed by two convolution–pooling layers and a linear layer before angle encoding into a parameterized quantum circuit (QNN) with N_b layers. The vanilla (Pauli expectation-based) approach applies a softmax over measured expectation values $\langle O_1 \rangle, \dots, \langle O_K \rangle$ to produce class probabilities. In contrast, Yomo aggregates measurement probabilities $P(\phi_1), \dots, P(\phi_{2^{n_q}})$ into K classes for prediction. Top-right: Probability Sharpening Mechanism. During training, if the maximum aggregated probability exceeds a threshold τ , an additional sharpening reward is added to the loss, encouraging confident and peaked predictions. Bottom-right: Single-shot inference example. A single measured bitstring is mapped to one of the K classes via probability aggregation, enabling accurate inference with only one measurement shot. (*The basis space is shown only for graphical illustration. Basis states with the same label do not necessarily form a contiguous group, but may be distributed across different regions of the basis space.)

Inspired by these considerations, we propose **You Only Measure Once (Yomo)**, a simple yet effective design for shot-efficient QML. Yomo departs from the conventional Pauli expectation-value paradigm by leveraging probability aggregation of measurement outcomes, enabling accurate predictions even in the single-shot regime. Empirically, Yomo achieves competitive or superior classification accuracy compared to expectation-based baselines while requiring an order of magnitude fewer shots. This translates directly into reduced inference cost and time overhead: for a fixed budget, one can perform many more experiments, or alternatively, achieve comparable performance at a fraction of the resource usage. By bridging theoretical insights with practical implementation, Yomo demonstrates a clear pathway toward cost-efficient QML.

In summary, our contributions are as follows:

1. Introduction of Yomo framework, achieving high classification accuracy even in the single-shot inference regime.
2. Development of formal results bounding the number of measurement shots required to achieve a target error probability, proving that Yomo can surpass conventional expectation-based QML models in shot efficiency.
3. Extensive experiments on MNIST and CIFAR-10 demonstrating that Yomo consistently outperforms Vanilla QML in single-shot and few-shot regimes, validated under both noiseless simulation and simulated noise models derived from public single-qubit and two-qubit error rates of current quantum hardware.

2 RELATED WORKS

Research on reducing measurement overhead in quantum computing has mainly focused on *shot-efficient estimation methods* such as classical shadows (Huang et al., 2020), and on shot allocation

108 strategies during QML training (Phalak & Ghosh, 2023; Liang et al., 2024). More recently, Recio-
 109 Armengol et al. (2025b) introduced *single-shot QML*, while others explored *train-on-classical*,
 110 *deploy-on-quantum* paradigms (Duneau et al., 2024; Recio-Armengol et al., 2025a). Our work dif-
 111 fers by addressing the inference stage, where deployment costs dominate. A more comprehensive
 112 review of related works is provided in Appendix B.

114 3 PRELIMINARY: QUANTUM MACHINE LEARNING MODELING

116 QML integrates the expressive power of quantum circuits with classical machine learning tech-
 117 niques (Cerezo et al., 2022; Huang et al., 2022; Biamonte et al., 2017; Benedetti et al., 2019). A
 118 standard workflow consists of two main components: (i) a classical feature extractor that compresses
 119 high-dimensional input data, and (ii) a quantum neural network (QNN) that processes the encoded
 120 features within a quantum state space.

122 **Model design.** Let the input be denoted by $x \in \mathbb{R}^d$. A classical feature extractor $f_{\theta_c}(\cdot)$, parame-
 123 terized by θ_c , such as a convolutional-linear network, maps it into a feature vector:

$$124 \quad z = f_{\theta_c}(x) \in \mathbb{R}^{n_f}. \quad (1)$$

125 The extracted feature vector $z \in \mathbb{R}^{n_f}$ is encoded into the quantum circuit via angle encoding, where
 126 features are sequentially mapped to single-qubit rotations along all three axes (R_y, R_z, R_x) in a
 127 cyclic fashion¹. Specifically, each feature dimension z_j parametrizes one rotation gate, assigned to a
 128 qubit following the repeating pattern (R_y, R_z, R_x) , creating a quantum state $|\psi(z)\rangle$ with n_q qubits:

$$129 \quad |\psi(z)\rangle = V(z)|0\rangle^{\otimes n_q} = \prod_{i=1}^{n_f} R_{\alpha(j)}^{i \bmod n_q}(z_i)|0\rangle^{\otimes n_q}, \quad \alpha(j) \in \{y, z, x\}, \quad (2)$$

132 where $\alpha(j)$ denotes the rotation axis determined by the cyclic order (y, z, x) , and R_x^i means the R_x
 133 gate is applied to the i -th qubit.

134 The encoded state is then processed by a variational circuit composed of multiple blocks of parame-
 135 terized single-qubit rotations and entangling gates (e.g., CNOTs). With n_q qubits and N_b layers, the
 136 variational ansatz can be expressed as:

$$137 \quad U(\theta) = \prod_{\ell=1}^{N_b} \left(\prod_{i=1}^{n_q-1} \text{CNOT}^{i, i+1} \prod_{j=1}^{n_q} R_y^j(\theta_j^{(\ell)}) \right). \quad (3)$$

140 yielding the final state $|\psi(z, \theta)\rangle = U(\theta)V(z)|0\rangle^{\otimes n_q}$.

142 **Pauli Expectation-based outputs.** In the conventional QML model (called Vanilla in the follow-
 143 ing of this study), class scores are obtained by measuring expectation values of observables in the
 144 computational basis. Each class k is associated with a Hermitian operator O_k , typically chosen as a
 145 tensor product of Pauli matrices. The specific operator used in this study is provided in Appendix D.
 146 The score for class k is then:

$$147 \quad \mu_k = \langle \psi(z, \theta) | O_k | \psi(z, \theta) \rangle. \quad (4)$$

148 These scores form the logits of a softmax classifier:

$$149 \quad p_k = \frac{\exp(\mu_k)}{\sum_{j=1}^K \exp(\mu_j)}, \quad \hat{y} = \arg \max_k p_k. \quad (5)$$

152 **Loss function.** For training the Vanilla QML model, we employ the standard cross-entropy loss to
 153 align the predicted probability distribution with the true class labels. Given logits μ_k derived from
 154 expectation values and the corresponding softmax probabilities p_k , the cross-entropy loss is defined
 155 as (with sample number N_s)

$$156 \quad \mathcal{L}_{\text{CE}} = -\frac{1}{N_s} \sum_{i=1}^{N_s} y_i \log p_i, \quad (6)$$

158 where y_i is the one-hot encoded ground-truth label and p_i denotes the predicted probability for
 159 class i . This objective encourages the model to assign high probability to the correct class while
 160 penalizing incorrect predictions, serving as the standard baseline criterion in classification tasks.

161 ¹In general, angle encoding can be implemented using different choices or arrangements of single-qubit
 162 gates; here we present only one example.

162 **Measurement considerations.** Since expectation values are ensemble quantities, they cannot be
 163 extracted precisely from a single run of the quantum circuit. Instead, the circuit must be executed
 164 repeatedly, each time measuring in the computational basis, and the outcomes are averaged to ap-
 165 proximate the expectation value. With eigenvalues bounded in $[-1, 1]$, Hoeffding’s inequality shows
 166 that N measurement shots reduce the estimation error at a rate $O(1/\sqrt{N})$ (more in Appendix C).
 167 Thus, reliable predictions require a large shot budget, especially when the decision margin Δ be-
 168 tween the top-two class scores is small. As a result, expectation-based inference is both time- and
 169 resource-intensive, since quantum hardware must be reset and re-executed for every shot.

171 4 YOMO MODEL

173 With the motivation of reducing the measurement shot count of a QML model during inference, it is
 174 possible to investigate what kind of the design is required to make such behavior possible, construct
 175 the component, and even push the boundary to single-shot inference. Inspired by the concept of
 176 “You Only Look Once (YOLO)” (Redmon et al., 2016), we propose Yomo: You Only Measure
 177 Once, which can achieve high testing accuracy during inference with only single-shot measurement
 178 of quantum circuit. Fig. 1 provides a comprehensive overview of Yomo.

180 **Model design.** Yomo shares the same construction as the expectation-based (Vanilla) QML model
 181 up to the preparation of the quantum state. An input $x \in \mathbb{R}^d$ is mapped into a feature vector
 182 $z = f_{\theta_c}(x) \in \mathbb{R}^{n_f}$ by a classical feature extractor, which is then embedded into qubits through angle
 183 encoding with cyclic rotations (R_y, R_z, R_x) . The encoded state is processed by a variational QNN
 184 consisting of parameterized single-qubit rotations and entangling CNOT layers, yielding the final
 185 state $|\psi(z, \theta)\rangle = U(\theta)V(z)|0\rangle^{\otimes n_q}$. Finally, unlike Vanilla QML that computes expectation values
 186 of Pauli observables, Yomo performs computational basis measurement on all qubits, producing a
 187 probability distribution over 2^{n_q} basis states²:

$$188 P(\phi) = |\langle \phi | \psi(z, \theta) \rangle|^2 = \langle \psi(z, \theta) | \Pi_\phi | \psi(z, \theta) \rangle, \quad \phi \in \{0, 1\}^{n_q}, \quad \Pi_\phi = |\phi\rangle\langle\phi|. \quad (7)$$

189 That is, the basis probabilities can be understood as expectation values of projection operators Π_ϕ
 190 forming the computational-basis POVM (positive operator-valued measure).

192 **Probability aggregation.** Since classification requires K output classes, the 2^{n_q} computational
 193 basis states are partitioned into K groups according to their index order (e.g., 0000, 0001, 0010, …).
 194 Specifically, each class is assigned $\lfloor 2^{n_q} / K \rfloor$ consecutive basis states, and the remaining

$$196 r = 2^{n_q} - \lfloor 2^{n_q} / K \rfloor \cdot K, \quad r \leq K$$

197 basis states are distributed one by one to the first r classes. Let \mathcal{S}_k denote the set of basis states
 198 assigned to class k . The aggregated probability for class k is then defined as

$$200 p_k = \frac{1}{|\mathcal{S}_k|} \sum_{\phi \in \mathcal{S}_k} P(\phi), \quad k = 1, \dots, K. \quad (8)$$

202 The final prediction is given by

$$204 \hat{y} = \arg \max_k p_k. \quad (9)$$

205 Note that with this design, although the full probability distribution is required during the training
 206 stage, at inference a single measured bitstring can be directly mapped to a class label according to
 207 the pre-defined partition of basis states. This property is the central mechanism that enables Yomo
 208 to perform accurate classification in the single-shot regime.

210 **Loss functions.** To stabilize training and encourage confident predictions, the Yomo loss function
 211 combines three components:

$$212 \mathcal{L}_{\text{yomo}} = \mathcal{L}_{\text{CE}} + \gamma \mathcal{L}_{\text{PS}} + \omega \mathcal{L}_{\text{E}}, \quad (10)$$

214 ²At this stage, obtaining the full set of 2^{n_q} probabilities during training requires exact state-vector simu-
 215 lation. For fairness, the Vanilla baseline is also trained under exact simulation. We discuss implications of this
 constraint in the following sections.

216 where $\mathcal{L}_{\text{CE}} = -\frac{1}{N_s} \sum_{i=1}^{N_s} y_i \log p_i$ is the standard cross-entropy loss with N_s samples, y_i and p_i denote the true label and predicted probability of the correct class for sample i , \mathcal{L}_{PS} is a sharpening loss, and \mathcal{L}_{E} enforces low-entropy distributions. The probability sharpening mechanism rewards predictions whose probability p_i (corresponding to prediction \hat{y}) with data sample index i surpasses a threshold $\tau \in (0, 1)$:

$$\mathcal{L}_{\text{PS}} = 1 - \frac{1}{|\{i \mid p_i > \tau\}|} \sum_{i:p_i > \tau} p_i. \quad (11)$$

224 This term encourages the model to push confident predictions further toward one-hot distributions.
225 As one can observe, if there are no prediction p_i larger than τ , then \mathcal{L}_{PS} is 1, and \mathcal{L}_{PS} will be close
226 to 0 if $p_i > \tau$ and $p_i \rightarrow 1$. In addition, we introduce an entropy regularization term

$$\mathcal{L}_{\text{E}} = -\frac{1}{N_s} \sum_{i=1}^{N_s} p_i \log p_i, \quad (12)$$

230 which penalizes flat probability distributions and promotes sharper decision boundaries. The hyper-
231 parameters γ and ω control the relative strengths of sharpening and entropy regularization.
232

233 5 THEORETICAL RESULTS

236 We summarize the main theoretical findings supporting the proposed Yomo framework. Complete
237 derivations and proofs are provided in Appendix C.

238 **Theorem 5.1** (Shot requirement of Yomo). *Let $p > \frac{1}{2}$ denote the probability that a single-shot
239 measurement yields the correct class in the trained Yomo model. To achieve $\Pr(\text{incorrect}) \leq \delta$, with
240 $\Pr(\text{incorrect}) \leq \exp(-2N(p - \frac{1}{2})^2)$, a sufficient shot budget N_{yo} is:*

$$N_{\text{yo}} \geq \frac{\ln(1/\delta)}{2(p - \frac{1}{2})^2} \quad (13)$$

244 Here $\Pr(\text{incorrect})$ denotes the misclassification probability under finite-shot sampling, and $\delta \in$
245 $(0, 1)$ is the target error tolerance. (For even N , assume adversarial tie-break; random ties change
246 only constants.)

247 **Theorem 5.2** (Shot requirement of Vanilla QML). *Let Δ be the minimum margin between the
248 top-two class scores in the infinite-shot limit, L be the Lipschitz constant of the score-expectation
249 mapping, and K the number of classes. To achieve $\Pr(\text{incorrect}) \leq \delta$, with $\Pr(\text{incorrect}) \leq$
250 $2K \exp(-2N(\frac{\Delta}{4L})^2)$, a sufficient shot budget N_{va} is:*

$$N_{\text{va}} \geq \frac{8L^2}{\Delta^2} \ln \frac{2K}{\delta} \quad (14)$$

254 **Theorem 5.3** (Condition for fewer shots at fixed δ). *Fix δ . If the trained Yomo model achieves*

$$p \geq \frac{1}{2} + \frac{\Delta}{4L} \sqrt{\frac{\ln(1/\delta)}{\ln(2K/\delta)}}, \quad (15)$$

258 then Yomo requires fewer measurement shots than Vanilla QML to reach the same target error prob-
259 ability δ .

260 **Theorem 5.4** (Condition for smaller δ at fixed N). *Fix N . If the trained Yomo model achieves*

$$p \geq \frac{1}{2} + \sqrt{\left(\frac{\Delta}{4L}\right)^2 - \frac{\ln(2K)}{2N}}, \quad (16)$$

264 then Yomo attains a smaller incorrect probability δ than Vanilla QML with the same shot budget N .

265 **Theorem 5.5** (Single-shot condition). *In the $N = 1$ regime, if the trained Yomo model achieves*

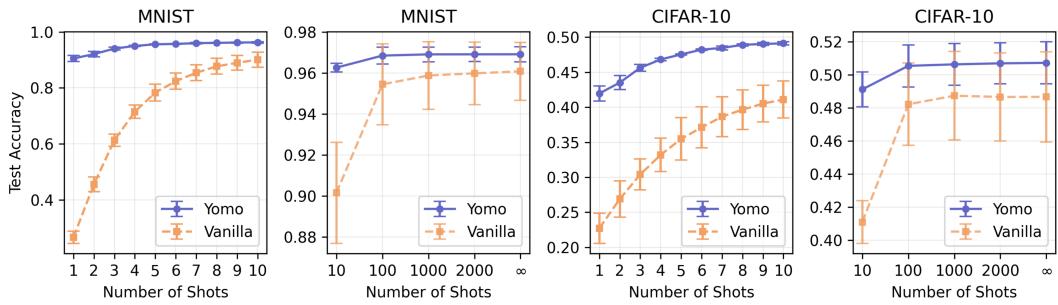
$$p \geq 1 - 2K \exp\left(-\frac{\Delta^2}{8L^2}\right), \quad (17)$$

266 then its incorrect probability δ is guaranteed to be smaller than that of Vanilla QML.

270 The above results reveal that Vanilla is fundamentally disadvantaged in two ways. First, its bound
 271 carries a multiplicative $2K$ factor from the union bound over K classes, which directly inflates the
 272 shot requirement. Second, its dependence on the top-two score margin Δ means that if Δ shrinks,
 273 often exponentially with qubit count or under noise (McClean et al., 2018), then the required N_{va}
 274 in Eq. 14 grows exponentially as well. In contrast, Yomo’s requirement in Eq. 13 depends only on
 275 $p - \frac{1}{2}$, determined by training, which can remain stable as qubit count increases, enabling Yomo
 276 to sustain low-shot performance even in high-dimensional regimes where Vanilla QML becomes
 277 impractical during inference.

279 6 EXPERIMENTS

281 We validate the effectiveness of Yomo by comparing it against Vanilla QML models. Hyperpara-
 282 meter and training settings for all experiments are provided in Appendix D. Reported results are
 283 averaged over 5 runs with different random seeds to ensure robustness.



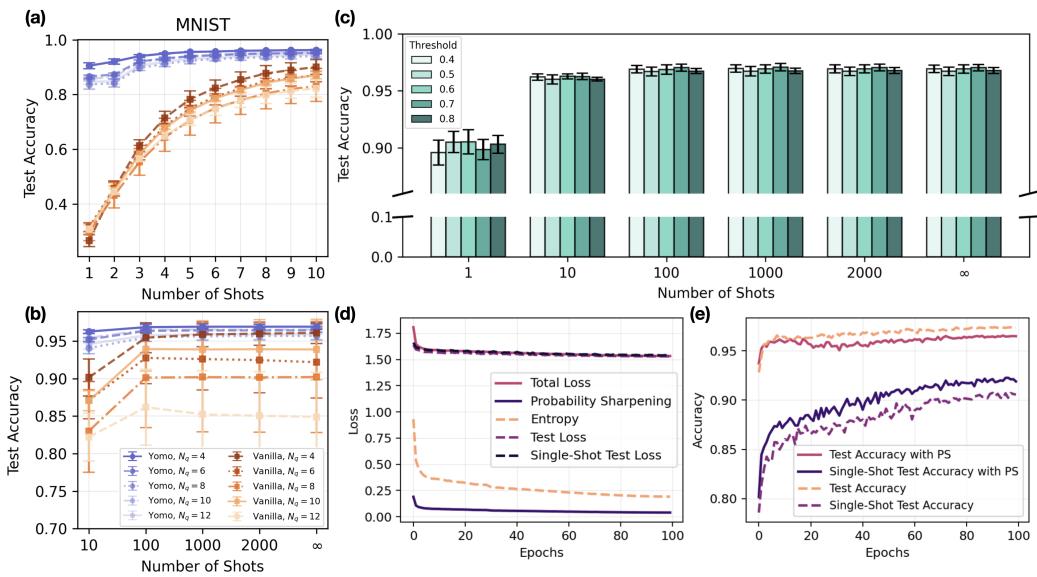
297 Figure 2: Comparison of test accuracy between Yomo (blue, solid line) and Vanilla (orange, dashed line)
 298 models across different shot budgets on MNIST (left two panels) and CIFAR-10 (right two
 299 panels). Both models use $n_q = 4$ qubits and $N_b = 5$ QNN blocks. For Yomo, the threshold
 300 parameter is fixed at $\tau = 0.6$.

302 **Single-shot behavior of Yomo.** We first evaluate Yomo and Vanilla on MNIST and CIFAR-10
 303 classification tasks under varying shot budgets. With the network structure fixed as described in
 304 Sec. 4, these experiments directly assess the contribution of Yomo’s probability-based output and
 305 loss design. As shown in Fig. 2, under the single-shot regime (shots = 1) on MNIST, Vanilla
 306 achieves only 26.59% test accuracy, whereas Yomo attains 90.52%. Increasing the number of shots
 307 substantially improves Vanilla: at shots = 10, its accuracy reaches 90.08%, comparable to Yomo’s
 308 single-shot performance. This indicates that Yomo can achieve the same level of accuracy with
 309 roughly $10\times$ fewer shots. Notably, Yomo also continues to improve as the shot budget increases.
 310 In Fig. 2, we further extend the evaluation up to shots $\rightarrow \infty$, corresponding to exact state-vector
 311 simulation. Across the full shot regime, Yomo consistently outperforms Vanilla. Similar trends are
 312 observed on the more challenging CIFAR-10 task, where Yomo maintains its advantage in both the
 313 low- and high-shot settings.

314 **Effects of qubit count.** As discussed in Sec. 5, the required number of shots for Vanilla grows
 315 with decreasing top-two score margin Δ , which typically shrinks as the system size increases. The
 316 sufficient budget scales as $N_{\text{va}} \geq O(1/\Delta^2)$, implying severe shot requirements for larger n_q . In
 317 contrast, Yomo is not constrained by this dependence. To verify this, we compare both models with
 318 increasing qubit counts, $n_q \in \{4, 6, 8, 10, 12\}$, while fixing $N_b = 5$. Results in Fig. 3(a,b) clearly
 319 show that Vanilla suffers significant performance degradation as n_q increases. Although larger qubit
 320 counts introduce more trainable parameters, Vanilla would require deeper circuits (larger N_b) to
 321 maintain expressivity. On the other hand, larger n_q can also allow shallower input encodings for a
 322 fixed number of features, which is advantageous in the noisy intermediate-scale quantum (NISQ)
 323 (Preskill, 2018) regime. Yomo, however, shows no comparable performance decay as n_q grows,
 324 consistent with our theoretical findings in Sec. 5.

324 **Is threshold τ important?** During training, Yomo employs a probability sharpening mechanism
 325 (Eq. 11). Intuitively, setting τ too low may amplify incorrect predictions early in training, while set-
 326 ting it too high primarily enhances already confident predictions, providing limited benefit. Hence,
 327 an intermediate threshold is expected to be most effective. Figure 3(c) shows test accuracy across
 328 different τ values and shot budgets. While results for shots > 10 are relatively insensitive to τ , in
 329 the single-shot regime the accuracy peaks at $\tau = 0.6$, confirming this moderate choice as optimal.
 330

331 **Probability sharpening mechanism.** Figures 3(d,e) compare training dynamics of Yomo with
 332 and without the sharpening loss \mathcal{L}_{PS} (Eq. 11). The inclusion of \mathcal{L}_{PS} clearly improves single-shot test
 333 accuracy, as shown in Fig. 3(e), validating the effectiveness of this mechanism in guiding the model
 334 toward more confident and accurate predictions.



355 Figure 3: Extended evaluation of Yomo and Vanilla models. (a, b) Effect of qubit count $n_q \in$
 356 4, 6, 8, 10, 12 on MNIST accuracy. (c) Sensitivity to threshold $\tau \in 0.4, 0.5, 0.6, 0.7, 0.8$. While
 357 performance is similar for shots > 10 , single-shot accuracy peaks at $\tau = 0.6$. (d) Training loss
 358 decomposition of Yomo into total loss, probability sharpening (PS) loss, entropy loss, and test losses.
 359 (e) Test accuracy trajectories with and without the sharpening loss \mathcal{L}_{PS} ($\tau = 0.6$).
 360

361 **Noisy simulation with deeper QNN.** Since Yomo targets shot-efficient inference, it is crucial to
 362 test its reliability under realistic NISQ noise. To this end, we approximate hardware noise using
 363 depolarizing channels applied to both single-qubit (1Q) and two-qubit (2Q) operations (details pro-
 364 vided in Appendix E). Noise model approximations for different quantum hardware platforms are
 365 constructed by mapping publicly reported 1Q and 2Q error rates to depolarizing error probabilities,
 366 as summarized in Table 1. Figs. 4 and 5 present noisy simulation results for Yomo and Vanilla on
 367 MNIST and CIFAR-10, respectively, evaluated across shot budgets $N_{\text{shot}} \in \{1, 100, \infty\}$ and dif-
 368 ferent numbers of QNN blocks. The simulated hardware noise model includes Quantinuum H1-1,
 369 IBM_Pittsburgh, Google Willow, and IonQ Forte. Among these, Quantinuum H1-1 exhibits per-
 370 formance closest to the noiseless baseline, followed by IBM_Pittsburgh, Google Willow, and IonQ
 371 Forte. This ordering mirrors their reported 2Q error rates, indicating that as circuit depth increases,
 372 the 2Q error rate becomes the dominant factor governing overall model accuracy.

373 Figs. 4 and 5 further reveal a clear contrast between Vanilla and Yomo in terms of depth–performance
 374 behavior under noisy conditions. For Vanilla, at sufficiently large shot budgets ($N_{\text{shot}} = 100, \infty$),
 375 test accuracy initially increases with the number of QNN blocks, reaching a sweet spot around 10–15
 376 blocks before degrading as noise accumulates. This indicates that, when enough measurement pre-
 377 cision is available, additional expressiveness from deeper circuits can momentarily outweigh the
 378 effects of noise. In contrast, Yomo already achieves strong accuracy at very low depth ($N_b = 5$),

378
379
380
381
382
383

Table 1: Depolarizing Noise Level Reference (IBM Quantum, 2025; Google Quantum AI, 2024; Quantinuum Systems, 2025; IonQ, 2025). We note that the IBM Quantum platform’s error rates fluctuate over time. The data presented was recorded on August 28, 2025. For IBM, the 1Q error rates reported are median values, while the 2Q error rates are average values. For all other providers, the reported error rates are average values.

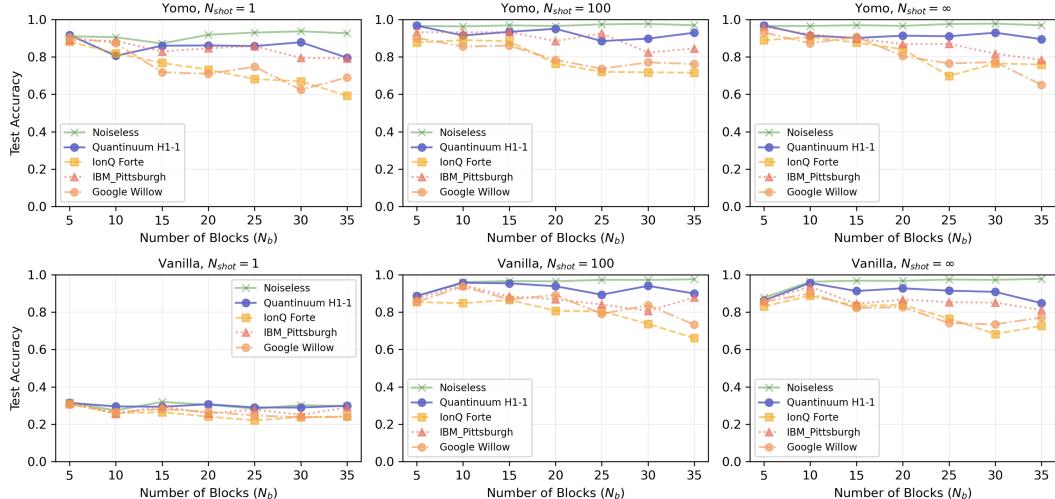
384
385
386
387
388

Device	1-Qubit Error Rate	2-Qubit Error Rate	Approx. Depolarizing p_1/p_2
IBM_Pittsburgh	0.0202%	0.169%	$p_1 \sim 2.02 \times 10^{-4}$, $p_2 \sim 1.69 \times 10^{-3}$
Google Willow	0.035%	0.33%	$p_1 \sim 3.5 \times 10^{-4}$, $p_2 \sim 3.3 \times 10^{-3}$
Quantinuum H1-1	0.0018%	0.097%	$p_1 \sim 1.8 \times 10^{-5}$, $p_2 \sim 9.7 \times 10^{-4}$
IonQ Forte	0.02%	0.4%	$p_1 \sim 2 \times 10^{-4}$, $p_2 \sim 4 \times 10^{-3}$

389

leaving little room for further improvement. As a result, deeper circuits do not provide additional benefit, and performance decreases monotonically due to noise accumulation. This distinction highlights a fundamental difference: while Vanilla relies on deeper circuits and larger shot budgets to exploit expressiveness, Yomo is suitable for low-depth, shot-efficient inference. Moreover, Yomo remains robust on noisy settings, with performance in some hardware configurations (e.g., Quantinuum H1-1) closely tracking the noiseless baseline. Even in the single-shot regime, Yomo matches the accuracy of Vanilla models that require orders of magnitude more measurements, representing its practical advantage in both runtime and hardware cost.

398

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416Figure 4: Comparison of Yomo and Vanilla QML models on MNIST under different hardware noise settings and shot budgets. Top row: Yomo with $N_{\text{shot}} \in \{1, 100, \infty\}$. Bottom row: Vanilla with $N_{\text{shot}} \in \{1, 100, \infty\}$. Each curve shows test accuracy as a function of the number of circuit blocks N_b under noiseless simulation and depolarizing noise models parameterized by hardware benchmarks from Quantinuum H1-1, IonQ Forte, IBM_Pittsburgh, and Google Willow.417
418
419
420
421

7 DISCUSSION AND CONCLUSION

423
424
425
426
427
428
429
430
431

Our experiments demonstrate that Yomo achieves competitive or even superior performance with dramatically fewer measurement shots compared to Vanilla QML models. In some cases, Yomo attains high test accuracy with only a single shot. This has immediate implications for the practical use of quantum hardware. Since providers typically charge in proportion to the number of shots or runtime, reducing the required shots translates directly into lower usage costs. Conversely, under a fixed budget, users could conduct significantly more experiments or obtain higher-quality results. In this sense, Yomo contributes to lowering the economic barrier of adopting quantum technologies in both academic and industrial settings.

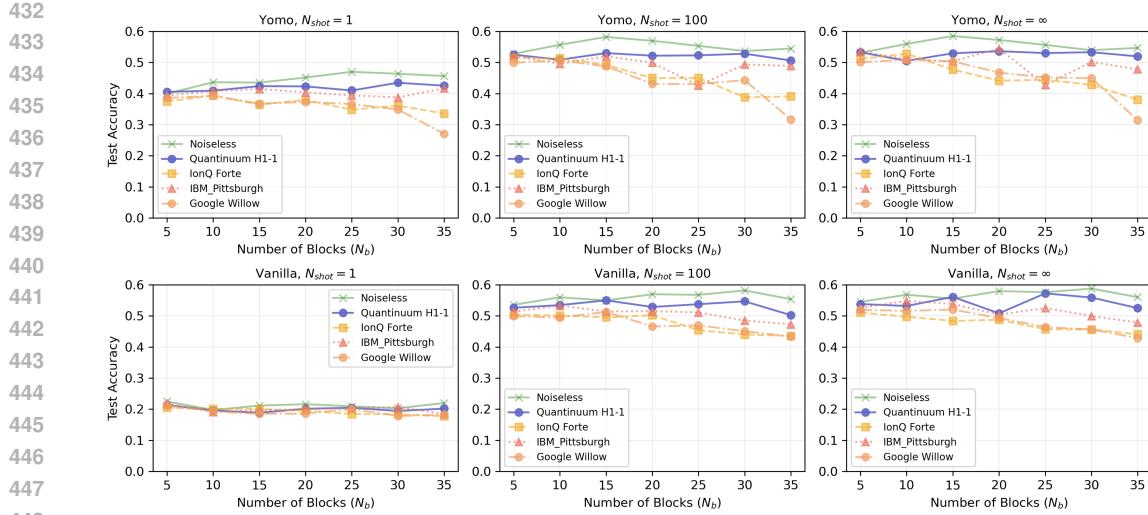


Figure 5: Comparison of Yomo and Vanilla QML models on CIFAR-10 under different hardware noise settings and shot budgets. Top row: Yomo with $N_{\text{shot}} \in \{1, 100, \infty\}$. Bottom row: Vanilla with $N_{\text{shot}} \in \{1, 100, \infty\}$. Each curve shows test accuracy as a function of the number of circuit blocks N_b under noiseless simulation and depolarizing noise models parameterized by hardware benchmarks from Quantinuum H1-1, IonQ Forte, IBM Pittsburgh, and Google Willow.

It is important to emphasize that Yomo is not intended to be trained directly on quantum hardware. Instead, its design is particularly well-suited to the setting where training is performed using classical simulation of quantum states, while deployment takes place on quantum devices. This separation leverages the flexibility of classical training environments, avoiding the substantial shot cost and noise challenges of on-hardware optimization. In the inference stage, however, Yomo’s single-shot capability enables efficient execution on real quantum processors. Notably, in the intermediate qubit regime (e.g., 25–35 qubits), quantum inference with Yomo may even surpass classical simulation in runtime, as suggested by (Chatterjee et al., 2025), due to the intrinsic efficiency of single-shot execution. A systematic investigation of this crossover point, which we leave for future work, could provide valuable guidance for determining when quantum inference becomes advantageous in practice.

Because training remains more efficient and practical on classical hardware in small qubit size, to scale up, an important future direction is to explore advanced classical methods for simulating QNN outputs. For example, the *train-on-classical, deploy-on-quantum* paradigm (Duneau et al., 2024; Recio-Armengol et al., 2025a) highlights the possibility of scalable classical training pipelines. Integrating such methods with shot-efficient inference schemes like Yomo may further reduce the total cost of deploying QML models.

Our inference-stage evaluation explicitly accounts for realistic practical constraints, finite measurement shots and noisy environment. We employed error models parameterized by 1Q and 2Q depolarizing noise derived from publicly available error rates. While these models cannot capture all device-specific imperfections, they offer a reasonable proxy for the effects of hardware noise. Importantly, our results show that Yomo maintains robust single-shot behavior even under these noise conditions. We note, however, that real devices such as IBM Pittsburgh or Google Willow have limited qubit connectivity, which would require additional SWAP gates compared to the fully connected ion-trap architectures of IonQ and Quantinuum. This connectivity overhead may further degrade performance in practice, suggesting that Yomo’s advantage could be even more pronounced on hardware with higher connectivity.

By enabling accurate single-shot inference, Yomo reduces costs of deploying QML, thereby making quantum models more accessible. Looking forward, combining Yomo with advances in classical simulation techniques, scaling analyses of the quantum-classical crossover regime, and device-aware optimizations will further advance the feasibility of practical QML deployment.

486 REFERENCES
487

488 Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum cir-
489 cuits as machine learning models. *Quantum science and technology*, 4(4):043001, 2019.

490 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
491 Quantum machine learning. *Nature*, 549(7671):195–202, 2017.

492 Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational quan-
493 tum optimization from symmetry protection. *Physical review letters*, 125(26):260505, 2020.

494 Juan Carrasquilla, Mohamed Hibat-Allah, Estelle Inack, Alireza Makhzani, Kirill Neklyudov, Gra-
495 ham W Taylor, and Giacomo Torlai. Quantum hypernetworks: Training binary neural networks
496 in quantum superposition. *arXiv preprint arXiv:2301.08292*, 2023.

497 Marco Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J Coles. Chal-
498 lenges and opportunities in quantum machine learning. *Nature Computational Science*, 2(9):
499 567–576, 2022.

500 Avimita Chatterjee, Sonny Rappaport, Anish Giri, Sonika Johri, Timothy Proctor, David E Bernal
501 Neira, Pratik Sathe, and Thomas Lubinski. A comprehensive cross-model framework for bench-
502 marking the performance of quantum hamiltonian simulations. *IEEE Transactions on Quantum
503 Engineering*, 2025.

504 Kuan-Cheng Chen, Samuel Yen-Chi Chen, Chen-Yu Liu, and Kin K Leung. Quantum-train-based
505 distributed multi-agent reinforcement learning. In *2025 IEEE Symposium for Multidisciplinary
506 Computational Intelligence Incubators (MCII Companion)*, pp. 1–5. IEEE, 2025a.

507 Kuan-Cheng Chen, Samuel Yen-Chi Chen, Chen-Yu Liu, and Kin K Leung. Toward large-scale
508 distributed quantum long short-term memory with modular quantum computers. In *2025 Interna-
509 tional Wireless Communications and Mobile Computing (IWCMC)*, pp. 337–342. IEEE, 2025b.

510 Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng
511 Goan. Variational quantum circuits for deep reinforcement learning. *IEEE access*, 8:141007–
512 141024, 2020.

513 Samuel Yen-Chi Chen, Chen-Yu Liu, Kuan-Cheng Chen, Wei-Jia Huang, Yen-Jui Chang, and Wei-
514 Hao Huang. Differentiable quantum architecture search in quantum-enhanced neural network
515 parameter generation. *arXiv preprint arXiv:2505.09653*, 2025c.

516 Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen Dugan, Di Luo, and Marin Soljacic. Quanta:
517 Efficient high-rank fine-tuning of llms with quantum-informed tensor adaptation. *Advances in
518 Neural Information Processing Systems*, 37:92210–92245, 2024.

519 Luciano S de Souza, Jonathan HA de Carvalho, and Tiago AE Ferreira. Classical artificial neural
520 network training using quantum walks as a search procedure. *IEEE Transactions on Computers*,
521 71(2):378–389, 2021.

522 Tiffany Duneau, Saskia Bruhn, Gabriel Matos, Tuomas Laakkonen, Katerina Saiti, Anna Pearson,
523 Konstantinos Meichanetzidis, and Bob Coecke. Scalable and interpretable quantum natural lan-
524 guage processing: an implementation on trapped ions. *arXiv preprint arXiv:2409.08777*, 2024.

525 Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
526 rithm. *arXiv preprint arXiv:1411.4028*, 2014.

527 Li-Hua Gong, Jun-Jie Pei, Tian-Feng Zhang, and Nan-Run Zhou. Quantum convolutional neural
528 network based on variational quantum circuits. *Optics Communications*, 550:129993, 2024.

529 Google Quantum AI. Willow spec sheet. Technical report, Google Quantum AI,
530 2024. URL <https://quantumai.google/static/site-assets/downloads/willow-spec-sheet.pdf>.

531 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
532 system from very few measurements. *Nature Physics*, 16(10):1050–1057, 2020.

540 Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hart-
 541 mut Neven, Ryan Babbush, Richard Kueng, John Preskill, et al. Quantum advantage in learning
 542 from experiments. *Science*, 376(6598):1182–1186, 2022.

543

544 Larry Huynh, Jin Hong, Ajmal Mian, Hajime Suzuki, Yanqiu Wu, and Seyit Camtepe. Quantum-
 545 inspired machine learning: a survey. *arXiv preprint arXiv:2308.11269*, 2023.

546 IBM Quantum. Compute resources. Technical report, IBM Quantum Platform, 2025. URL <https://quantum.cloud.ibm.com/computers>.

547

548

549 IonQ. Ionq forte system performance metrics. Technical report, IonQ, Inc., 2025. URL <https://ionq.com/quantum-systems/forte>.

550

551 Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
 552 Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
 553 molecules and quantum magnets. *nature*, 549(7671):242–246, 2017.

554

555 Sachin Kasture, Oleksandr Kyriienko, and Vincent E Elfving. Protocols for classically training
 556 quantum generative models on probability distributions. *Physical Review A*, 108(4):042406, 2023.

557

558 Nikhil Khatri, Gabriel Matos, Luuk Coopmans, and Stephen Clark. Quixer: A quantum transformer
 559 model. *arXiv preprint arXiv:2406.04305*, 2024.

560

561 Youngmin Kim, Enhyeok Jang, Hyungseok Kim, Seungwoo Choi, Changhun Lee, Donghwi Kim,
 562 Woomin Kyoung, Kyujin Shin, and Won Woo Ro. Distribution-adaptive dynamic shot optimiza-
 563 tion for variational quantum algorithms. *arXiv preprint arXiv:2412.17485*, 2024.

564

565 Toshiaki Koike-Akino, Francesco Tonin, Yongtao Wu, Frank Zhengqing Wu, Leyla Naz Cando-
 566 gan, and Volkan Cevher. Quantum-peft: Ultra parameter-efficient fine-tuning. *arXiv preprint*
 567 *arXiv:2503.05431*, 2025.

568

569 Senwei Liang, Linghua Zhu, Xiaolin Liu, Chao Yang, and Xiaosong Li. Artificial-intelligence-
 570 driven shot reduction in quantum measurement. *Chemical Physics Reviews*, 5(4), 2024.

571

572 Chu-Hsuan Abraham Lin, Chen-Yu Liu, and Kuan-Cheng Chen. Quantum-train long short-term
 573 memory: Application on flood prediction problem. In *2024 IEEE International Conference on*
574 Quantum Computing and Engineering (QCE), volume 2, pp. 268–273. IEEE, 2024.

575

576 Chu-Hsuan Abraham Lin, Chen-Yu Liu, Samuel Yen-Chi Chen, and Kuan-Cheng Chen. Quantum-
 577 trained convolutional neural network for deepfake audio detection. In *2025 IEEE International*
578 Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), pp. 1–5. IEEE,
 579 2025.

580

581 Chen-Yu Liu, Chu-Hsuan Abraham Lin, Chao-Han Huck Yang, Kuan-Cheng Chen, and Min-Hsiu
 582 Hsieh. Qtrl: Toward practical quantum reinforcement learning via quantum-train. In *2024 IEEE*
583 International Conference on Quantum Computing and Engineering (QCE), volume 2, pp. 317–
 584 322. IEEE, 2024.

585

586 Chen-Yu Liu, Kuan-Cheng Chen, Yi-Chien Chen, Samuel Yen-Chi Chen, Wei-Hao Huang, Wei-Jia
 587 Huang, and Yen-Jui Chang. Quantum-enhanced parameter-efficient learning for typhoon trajec-
 588 tory forecasting. *arXiv preprint arXiv:2505.09395*, 2025a.

589

590 Chen-Yu Liu, Kuan-Cheng Chen, Keisuke Murota, Samuel Yen-Chi Chen, and Enrico Rinaldi.
 591 Quantum relational knowledge distillation. *arXiv preprint arXiv:2508.13054*, 2025b.

592

593 Chen-Yu Liu, En-Jui Kuo, Chu-Hsuan Abraham Lin, Jason Gemsun Young, Yeong-Jar Chang, Min-
 594 Hsiu Hsieh, and Hsi-Sheng Goan. Quantum-train: Rethinking hybrid quantum-classical machine
 595 learning in the model compression perspective. *Quantum Machine Intelligence*, 7(2):80, 2025c.

596

597 Chen-Yu Liu, Chao-Han Huck Yang, Hsi-Sheng Goan, and Min-Hsiu Hsieh. A quantum circuit-
 598 based compression perspective for parameter-efficient learning. In *The Thirteenth International*
599 Conference on Learning Representations, 2025d.

594 Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Bar-
 595 ren plateaus in quantum neural network training landscapes. *Nature communications*, 9(1):4812,
 596 2018.

597 Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information: 10th
 598 Anniversary Edition*. Cambridge University Press, Cambridge, 2010.

600 Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. Data re-uploading
 601 for a universal quantum classifier. *Quantum*, 4:226, 2020.

602 Koustubh Phalak and Swaroop Ghosh. Shot optimization in quantum machine learning architectures
 603 to accelerate training. *IEEE Access*, 11:41514–41523, 2023.

605 John Preskill. Quantum computing in the nisq era and beyond. *Quantum*, 2:79, 2018.

606 Quantinuum Systems. Performance validation. Technical report, Quantinuum, 2025. URL
 607 https://docs.quantinuum.com/systems/user_guide/hardware_user_guide/performance_validation.html.

608 Erik Recio-Armengol, Shahnawaz Ahmed, and Joseph Bowles. Train on classical, deploy on
 609 quantum: scaling generative quantum machine learning to a thousand qubits. *arXiv preprint
 arXiv:2503.02934*, 2025a.

610 Erik Recio-Armengol, Jens Eisert, and Johannes Jakob Meyer. Single-shot quantum machine learn-
 611 ing. *Physical Review A*, 111(4):042420, 2025b.

612 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 613 real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern
 614 recognition*, pp. 779–788, 2016.

615 Manuel S Rudolph, Jacob Miller, Danial Motlagh, Jing Chen, Atithi Acharya, and Alejandro
 616 Perdomo-Ortiz. Synergistic pretraining of parametrized quantum circuits via tensor networks.
 617 *Nature Communications*, 14(1):8367, 2023.

618 Waheeda Saib, Petros Wallden, and Ismail Akhalwaya. The effect of noise on the performance
 619 of variational algorithms for quantum chemistry. In *2021 IEEE International Conference on
 620 Quantum Computing and Engineering (QCE)*, pp. 42–53. IEEE, 2021.

621 Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
 622 William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
 623 Benchmarking the energy costs of large language model inference. In *2023 IEEE High Perfor-
 624 mance Extreme Computing Conference (HPEC)*, pp. 1–9. IEEE, 2023.

625 Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
 626 Accounting for inference in language model scaling laws. *arXiv preprint arXiv:2401.00448*,
 627 2023.

628 Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
 629 analytic gradients on quantum hardware. *Physical Review A*, 99(3):032331, 2019.

630 Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the expres-
 631 sive power of variational quantum-machine-learning models. *Physical Review A*, 103(3):032430,
 632 2021.

633 Daniel Stilck França and Raul Garcia-Patron. Limitations of optimization algorithms on noisy quan-
 634 tum devices. *Nature Physics*, 17(11):1221–1227, 2021.

635 Hanrui Wang, Yongshan Ding, Jiaqi Gu, Zirui Li, Yujun Lin, David Z Pan, Frederic T Chong, and
 636 Song Han. Quantumnas: Noise-adaptive search for robust quantum circuits. In *The 28th IEEE
 637 International Symposium on High-Performance Computer Architecture (HPCA-28)*, 2022.

638 Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
 639 Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. *Nature com-
 640 munications*, 12(1):6961, 2021.

648 Christopher J Wood. Special session: Noise characterization and error mitigation in near-term
649 quantum computers. In *2020 IEEE 38th International Conference on Computer Design (ICCD)*,
650 pp. 13–16. IEEE, 2020.

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A MOTIVATION: THE IMPORTANCE OF SHOT EFFICIENCY FOR INFERENCE
703

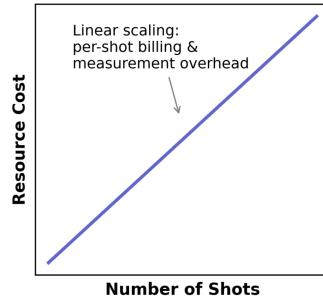
704 Most prior research on QML has focused on improving the training phase, such as optimizing gradients or reducing the number of circuit evaluations required during parameter updates. However, scaling studies in classical machine learning have shown that, once a model is deployed at scale, the dominant cost often shifts from training to inference (Sardana et al., 2023). The same trend is expected for QML, such that when quantum hardware becomes routinely accessible, inference will constitute the primary driver of both computational and monetary cost. In such a setting, shot efficiency during inference becomes essential. From a practical perspective, achieving competitive performance with a fraction of the measurement shots would offer a decisive advantage. As illustrated in Fig. 6, if the target accuracy can be reached using only a handful of shots, the savings in hardware usage grow proportionally with the reduction in shots³. This means that, under a fixed quantum computing budget, a researcher or practitioner could run many more experiments, accelerating scientific progress and enabling broader adoption in industrial applications. Conversely, for a fixed workload, the overall inference cost could be reduced by orders of magnitude. In both scenarios, shot-efficient inference directly lowers the barrier to practical deployment of QML.

725 B EXPANDED RELATED WORKS
726

727 **Shot-efficient estimation methods.** A prominent line of work focuses on minimizing the number of circuit executions required to extract useful information. For instance, the classical shadow framework (Huang et al., 2020) reuses measurement data to predict many observables simultaneously. While highly effective for general quantum state tomography, these approaches are not specifically designed for QML tasks, where the objective is to train and deploy predictive models efficiently.

728 **Shot-efficient QML.** Within the QML literature, shot optimization has primarily been investigated in the context of *training*. Several works propose adaptive or distribution-aware strategies to allocate shots during training epochs (Phalak & Ghosh, 2023; Liang et al., 2024), thereby accelerating convergence while preserving accuracy. Although these methods demonstrate that judicious shot allocation can substantially reduce training cost, the models still rely on expectation-value outputs at inference time. As such, they do not directly address the cost of deployment, where inference calls may dominate the lifecycle usage of a machine learning model. More recently, Recio-Armengol et al. (2025b) introduced the concept of *single-shot QML*, providing a theoretical characterization of when a QML model can achieve reliable predictions with only a single measurement. Their work highlights both the promise and the difficulty of realizing single-shot models in practice. While the potential cost savings are significant, training such models directly is shown to be challenging. Despite the importance of this direction, there has been limited follow-up work, largely due to the absence of a concrete architectural design or implementation pathway.

729 **Training on classical hardware.** Complementary to these lines of research, other efforts have 730 investigated hybrid training settings such as *train-on-classical, deploy-on-quantum*, where models 731 are trained using classical simulations and then deployed on real quantum hardware (Duneau et al., 732 2024; Recio-Armengol et al., 2025a). These works primarily address the training bottleneck imposed by scarce quantum resources and the challenges of gradient evaluation. In contrast, our work 733 focuses on the inference stage. Nevertheless, the *train-on-classical* paradigm offers a promising 734 pathway for scaling up the models proposed here in future work.



735 Figure 6: Resource cost scales linearly with the number of measurement shots due to both 736 per-shot billing and measurement overhead.

737 ³Quantum hardware providers typically charge in proportion to the number of measurement shots or to 738 execution time, which itself scales linearly with shots. For example, the IBM Quantum Platform pricing page 739 (<https://www.ibm.com/quantum/products>) and IonQ on AWS Braket pricing page (<https://aws.amazon.com/braket/pricing/>).

756 **C THEORETICAL RESULTS ON INFERENCE SHOT REQUIREMENT**
 757

758 In the main paper, we stated several theoretical guarantees on the shot requirements for inference
 759 in both expectation-based (Vanilla) QML and probability-aggregation (Yomo) QML. For completeness,
 760 we provide the detailed proofs here.
 761

762 **Vanilla QML.** Expectation-based QML models produce predictions by computing class scores
 763 $s_c = g_c(\boldsymbol{\mu})$, where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ are expectation values $\mu_c = \langle O_c \rangle$ of class observables $\{O_c\}$.
 764 The predicted label is then given by $\arg \max_c \text{softmax}(s_c)$. We adopt the following assumptions:
 765

- **Bounded outcomes.** Each single-shot outcome used to estimate μ_c lies in $[-1, 1]$ (e.g.,
 766 Pauli eigenvalues ± 1).
- **Lipschitz scores.** The score map $s = g(\boldsymbol{\mu})$ is L -Lipschitz under $\|\cdot\|_\infty$, i.e.,
 767

$$|s_c(\hat{\boldsymbol{\mu}}) - s_c(\boldsymbol{\mu})| \leq L\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_\infty.$$

768 For linear logits, one has $L = \|W\|_\infty$.
 769

- **Margin.** Let $s_{(1)} > s_{(2)}$ denote the top-two true scores and define the margin $\Delta := s_{(1)} - s_{(2)} > 0$.
 770

771 **Lemma C.1** (Concentration of expectations). *For each class c , with N i.i.d. measurement shots and
 772 estimator $\hat{\mu}_c$,*

$$\Pr(|\hat{\mu}_c - \mu_c| \geq \varepsilon) \leq 2 \exp(-2N\varepsilon^2). \quad (18)$$

773 **Proposition C.2** (Argmax stability under margin). *If $\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_\infty \leq \Delta/(4L)$, then the predicted
 774 class is preserved, i.e., $\arg \max_c \hat{s}_c = \arg \max_c s_c$.*

775 *Proof sketch.* By Lipschitz continuity,

$$\max_c |\hat{s}_c - s_c| \leq L\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_\infty \leq \Delta/4.$$

776 Thus,

$$\hat{s}_{(1)} - \hat{s}_{(2)} \geq (s_{(1)} - \frac{\Delta}{4}) - (s_{(2)} + \frac{\Delta}{4}) = \frac{\Delta}{2} > 0,$$

777 ensuring that the argmax is unchanged. \square

778 **Corollary C.2.1** (Decision tail bound). *Using a union bound over K classes and Lemma C.1,*

$$\Pr(\text{incorrect}) \leq \Pr\left(\max_c |\hat{\mu}_c - \mu_c| > \frac{\Delta}{4L}\right) \leq 2K \exp\left(-2N\left(\frac{\Delta}{4L}\right)^2\right). \quad (19)$$

779 *Equivalently, to guarantee $\Pr(\text{incorrect}) \leq \delta$, it suffices to take*

$$N \geq \frac{8L^2}{\Delta^2} \ln \frac{2K}{\delta}. \quad (20)$$

780 Hence the decision error probability decays in N , but the required shot budget scales with $\frac{L^2}{\Delta^2}$.
 781 As system size grows, margins Δ often shrink while Lipschitz constants L increase, inflating the
 782 required N and making Vanilla QML inference shot-inefficient.
 783

784 **Yomo QML.** In Yomo, inference is based on direct measurement outcomes. Let $p \in (0, 1)$ denote
 785 the probability that a single shot yields the correct class label (i.e., the true class receives the majority
 786 of aggregated probability). With N i.i.d. shots and majority vote, the number of correct votes follows
 787 $S_N \sim \text{Binomial}(N, p)$.

788 **Proposition C.3** (Binomial tail bound for majority vote). *For odd N (ties can be handled analogously), the error probability is*

$$\Pr(\text{incorrect}) = \Pr\left(S_N < \frac{N}{2}\right) = \sum_{k=0}^{\lceil N/2 \rceil - 1} \binom{N}{k} p^k (1-p)^{N-k} \leq \exp\left(-2N(p - \frac{1}{2})^2\right). \quad (21)$$

789 *Thus, to ensure $\Pr(\text{incorrect}) \leq \delta$, it suffices to take*

$$N \geq \frac{\ln(1/\delta)}{2(p - \frac{1}{2})^2}. \quad (22)$$

In practice, training typically yields $p \geq 0.85\text{--}0.95$, in which case $N = 3\text{--}5$ already achieves $> 99\%$ reliability. This theoretical guarantee aligns with our empirical observations and explains the rapid accuracy gains observed when moving from single-shot to small-shot inference in Yomo.

Theorem C.4 (Condition for fewer shots at fixed δ). *Fix a target error level $\delta \in (0, 1)$. If the trained Yomo model satisfies*

$$p \geq \frac{1}{2} + \frac{\Delta}{4L} \sqrt{\frac{\ln(1/\delta)}{\ln(2K/\delta)}},$$

then Yomo requires no more (and strictly fewer whenever the inequality is strict) measurement shots than Vanilla to reach error at most δ .

Proof. From the bounds above, $N_{\text{yo}}(\delta) \geq \frac{\ln(1/\delta)}{2(p-\frac{1}{2})^2}$ and $N_{\text{va}}(\delta) \geq \frac{8L^2}{\Delta^2} \ln \frac{2K}{\delta}$. Requiring $N_{\text{yo}}(\delta) \leq N_{\text{va}}(\delta)$ gives $\frac{\ln(1/\delta)}{2(p-\frac{1}{2})^2} \leq \frac{8L^2}{\Delta^2} \ln \frac{2K}{\delta}$, equivalently $(p - \frac{1}{2})^2 \geq \frac{\Delta^2}{16L^2} \frac{\ln(1/\delta)}{\ln(2K/\delta)}$. Taking square roots proves the claim. \square

Theorem C.5 (Condition for smaller δ at fixed N). *Fix a shot budget $N \in \mathbb{N}$. If the trained Yomo model satisfies*

$$p \geq \frac{1}{2} + \sqrt{\left(\frac{\Delta}{4L}\right)^2 - \frac{\ln(2K)}{2N}},$$

then Yomo attains a smaller error probability than Vanilla with the same N shots.

Proof. We require $\delta_{\text{yo}} \leq \delta_{\text{va}}$, i.e. $e^{-2N(p-\frac{1}{2})^2} \leq 2K e^{-2N(\Delta/4L)^2}$. Taking logs yields $-2N(p - \frac{1}{2})^2 \leq \ln(2K) - 2N(\Delta/4L)^2$ and hence $(p - \frac{1}{2})^2 \geq (\Delta/4L)^2 - \frac{\ln(2K)}{2N}$. Taking square roots gives the result (the condition is non-vacuous when the term under the square root is nonnegative). \square

Theorem C.6 (Single-shot condition). *In the $N = 1$ regime, if the trained Yomo model satisfies*

$$p \geq 1 - 2K \exp\left(-\frac{\Delta^2}{8L^2}\right),$$

then Yomo’s error probability is no larger than Vanilla’s.

Proof. For $N = 1$, Yomo’s error is exact: $\delta_{\text{yo}} = 1 - p$. Vanilla’s bound gives $\delta_{\text{va}} \leq 2K \exp[-2(\Delta/4L)^2] = 2K \exp\left[-\frac{\Delta^2}{8L^2}\right]$. Requiring $1 - p \leq \delta_{\text{va}}$ yields the stated inequality. \square

Concluding remark. Taken together, these results show a clear separation between expectation-based (Vanilla) QML and probability-aggregation (Yomo) QML in terms of inference shot complexity. For Vanilla, the required number of shots scales inversely with the square of the classification margin Δ and grows with the Lipschitz constant L , both of which typically worsen with circuit size and noise. In contrast, Yomo’s requirement depends only on the single-shot correctness probability p , which is directly controlled by training. As a result, once training produces p moderately above $1/2$, Yomo achieves reliable inference with only a handful of shots, often orders of magnitude fewer than Vanilla. This theoretical advantage explains and complements the empirical findings reported in the main text.

Table 2: Comparison of shot complexity between Vanilla (expectation-based) QML and Yomo (probability-aggregation) QML. Bounds are up to constant factors and logarithmic terms.

	Vanilla QML	Yomo QML
Error bound	$\delta_{\text{va}} \leq 2K \exp\left(-2N\left(\frac{\Delta}{4L}\right)^2\right)$	$\delta_{\text{yo}} \leq \exp\left(-2N(p - \frac{1}{2})^2\right)$
Shots for target δ	$N \geq \frac{8L^2}{\Delta^2} \ln \frac{2K}{\delta}$	$N \geq \frac{\ln(1/\delta)}{2(p - \frac{1}{2})^2}$
Single-shot error	$\delta_{\text{va}} \leq 2K e^{-\Delta^2/(8L^2)}$	$\delta_{\text{yo}} = 1 - p$

864 D HYPERPARAMETER AND TRAINING SETTINGS IN EXPERIMENTS
865866 **Software and Hardware.** All experiments were performed on a system equipped with 8 NVIDIA
867 A100 GPUs. The implementation was based on the TorchQuantum framework (Wang et al., 2022).
868 The code for this study will be released publicly on GitHub in the coming months.
869870 **Optimizer and Learning Rate.** For classification tasks (MNIST and CIFAR-10), we used the
871 Adam optimizer with a learning rate of 5×10^{-3} for MNIST and 1×10^{-3} for CIFAR-10.
872873 **Batch Size and Epochs.** Batch size was set to 128 for MNIST classification tasks and 64 for
874 CIFAR10 classification tasks. All models were trained for 100 epochs.
875876 **Loss Coefficients.** The weighting coefficients γ and ω in the total loss function (Eq. 10) are both
877 fixed to 0.05 throughout our experiments.
878879 **Pauli Observables in Vanilla QML.** In Vanilla QML, each class is associated with a Hermitian
880 observable constructed from tensor products of Pauli operators. Following prior works, we select a
881 fixed set of 10 observables as the measurement target. For the case of $n_q = 4$ qubits and 10-class,
882 these are
883

884
$$\{ZIII, IZII, IIZI, IIIZ, ZZII, ZIZI, IZZI, IIZZ, YIYI, IYIY\},$$

885 where X, Y, Z denote Pauli matrices and I is the identity. For larger numbers of qubits ($n_q > 4$),
886 the observables are extended by appending identity operators to the right, ensuring that they act non-
887 trivially only on the first four qubits. This construction provides a consistent set for classification
888 tasks, while maintaining scalability across different circuit widths.
889890 **Training procedure.** Yomo models are trained entirely on classical simulators of quantum states,
891 where exact probability distributions $P(\phi)$ can be computed. For fairness, the Vanilla baseline is
892 likewise evaluated using exact state-vector simulation. The trainable parameters consist of both the
893 classical feature extractor parameters θ_c and the quantum circuit parameters θ . Given the aggregated
894 class probabilities $\{p_k\}_{k=1}^K$ defined in Eq. 8, the training objective is the total loss $\mathcal{L}_{\text{yomo}}$ (Eq. 10).
895 Optimization proceeds by computing gradients with respect to (θ_c, θ) . Formally, for a parameterized
896 hybrid model

897
$$z = f_{\theta_c}(x), \quad |\psi(z, \theta)\rangle = U(\theta) V(z) |0^{\otimes n_q}\rangle,$$

898 the aggregated class probability for class k is
899

900
$$p_k(x; \theta_c, \theta) = \frac{1}{|\mathcal{S}_k|} \sum_{\phi \in \mathcal{S}_k} |\langle \phi | \psi(z, \theta) \rangle|^2.$$

901 Gradients with respect to θ_c are obtained via backpropagation, whereas gradients with respect to the
902 quantum parameters θ are, in principle, evaluated using the parameter-shift rule (Schuld et al., 2019).
903 In our simulations, however, both θ_c and θ are updated using PyTorch’s automatic differentiation
904 engine (autograd). The parameter updates follow the standard form
905

906
$$(\theta_c^{(t+1)}, \theta^{(t+1)}) = (\theta_c^{(t)}, \theta^{(t)}) - \eta \nabla_{(\theta_c, \theta)} \mathcal{L}_{\text{yomo}}(\theta_c^{(t)}, \theta^{(t)}), \quad (23)$$

907 where η is the learning rate and $\nabla_{(\theta_c, \theta)}$ denotes the joint gradient. In our experiments we employed
908 the Adam optimizer for stability.
909910 We emphasize that this training is performed entirely on classical simulators, avoiding the pro-
911hibitive shot cost of gradient estimation on quantum devices. The trained parameters (θ_c^*, θ^*) are
912 then deployed for inference, where Yomo’s shot-efficient prediction mechanism eliminates the need
913 to reconstruct Pauli expectation values.
914915 E NOISY SIMULATION WITH DEPOLARIZING ERROR
916917 The depolarizing error has been widely used as a baseline noise model in studies of NISQ algo-
918 rithms, including QML and VQAs (Preskill, 2018; Bravyi et al., 2020; Stilck Fran  a & Garcia-
919 Patron, 2021). In particular, several works simulate device behavior by mapping reported hardware
920

gate error rates directly to depolarizing error probabilities (Wang et al., 2021; Saib et al., 2021; Wood, 2020). While real hardware noise is typically biased and correlated, the depolarizing approximation is a first-order approximation of the noise, capturing the dominant effect of error rates on algorithmic performance.

The *depolarizing channel* is a quantum noise process that modifies any state towards a maximally mixed state. For any d -dimensional system (d referred as the number of qubits), the quantum system subjected to depolarizing noise is defined as:

$$\mathcal{E}_{\text{dep}}^{(d)}(\rho) = (1-p)\rho + \frac{p}{d}I_d, \quad (24)$$

where I_d is the d -dimensional identity operator (Nielsen & Chuang, 2010). While this could be modeled with extra control qubits, the practical implementation follows an equivalent definition which applied over time statistically matches Eq. 24. For a 1-qubit system, given any arbitrary quantum state ρ , it holds:

$$\frac{I}{2} = \frac{\rho + X\rho X + Y\rho Y + Z\rho Z}{4} \quad (25)$$

where X, Y, Z are the Pauli operators. Therefore, substituting Eq. 25 to Eq. 24 and reparametrizing p , we can write the depolarizing channel as:

$$\mathcal{E}_{\text{dep}}^{(1)}(\rho) = (1-p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z), \quad (26)$$

Following the same logic, we can write the 2-qubit depolarizing channel as:

$$\mathcal{E}_{\text{dep}}^{(2)}(\rho) = (1-p)\rho + \frac{p}{15} \sum_{P \in \mathcal{P}_2 \setminus \{II\}} P\rho P, \quad (27)$$

where $\mathcal{P}_2 = \{I, X, Y, Z\}^{\otimes 2}$ denotes the two-qubit Pauli group and II is excluded from the summation. This definition generalizes naturally to n qubits: the channel acts by leaving the state unchanged with probability $(1-p)$, while with probability p it applies one of the $4^n - 1$ non-identity Pauli operators uniformly at random.

In practice, depolarizing noise is typically applied after each gate, with separate parameters p_{1Q} and p_{2Q} for 1-qubit and 2-qubit operations, respectively. These parameters are often chosen to match the error rates reported by quantum hardware providers. For example, if a device specifies a 2-qubit gate error rate of 1.0×10^{-3} , one may simulate it by applying a 2-qubit depolarizing channel with $p_{2Q} = 10^{-3}$ after each entangling gate. The quantum circuits of our work comprises only of 1 and 2-qubit gates (RY , RZ , RX and $CNOT$), therefore we modify our quantum circuits following Eqs. 24 and 27 (applying probabilistically the depolarizing Pauli operations) with the probabilities p_1 and p_2 (see Table 1 in the main text) that approximate the quantum devices 1 and 2-qubit errors.

F QUANTUM METHODS IN DIFFERENT TRAINING/DEPLOYMENT SCHEMES

The design of Yomo is most naturally suited to the *train-on-classical, deploy-on-quantum* paradigm, where training can be performed efficiently on simulators and inference leverages quantum hardware with shot-efficient measurement. To place this in context, we summarize and contrast different training and deployment schemes that have been explored in the literature.

Training & deployment on classical. This category corresponds to so-called *quantum-inspired* methods. Here, both training and inference are performed entirely on classical hardware, while the model architecture is motivated by quantum principles such as tensor networks, parameterized unitary evolutions, or measurement-based output mechanisms (Koike-Akino et al., 2025; Huynh et al., 2023). In the example of QuanTA (Chen et al., 2024), which introduces theoretical constructs inspired by quantum states but evaluates them using classical simulation. These methods are advantageous when quantum hardware is unavailable or prohibitively expensive, but they do not provide direct access to quantum resources and are therefore limited to problem sizes classically tractable.

Training & deployment on quantum. This setting corresponds to conventional QML. Both training and inference require direct access to quantum hardware, as the model parameters are updated based on measurements from the quantum device (Cerezo et al., 2022; Huang et al., 2022; Biamonte

et al., 2017; Pérez-Salinas et al., 2020; Schuld et al., 2021; Liu et al., 2025b; Khatri et al., 2024; Chen et al., 2020; 2025b). While this approach is the most “native” to quantum computing, it is also the most resource-intensive: the cost of training scales with the number of shots, circuit depth, and optimization iterations, all of which must be executed on a scarce and noisy quantum processor. As a result, this scheme faces significant scalability challenges in the NISQ era.

Training on quantum, deployment on classical. A different paradigm is represented by *Quantum-Train* (Liu et al., 2025c; 2024; Chen et al., 2025a; Lin et al., 2024; Chen et al., 2025c; Lin et al., 2025) and related approaches (de Souza et al., 2021; Carrasquilla et al., 2023) such as Quantum Parameter Adaptation (QPA) (Liu et al., 2025d;a). In this scheme, a quantum computer is used during training to generate parameters, embeddings, or compressed representations, which are then deployed in a purely classical model for inference. This design leverages quantum resources where they are most impactful, during training, while avoiding the runtime overhead of quantum hardware in deployment. The trade-off, however, is that the inference stage cannot exploit potential quantum advantages in sampling or generative modeling, since the final model is purely classical.

Training on classical, deployment on quantum. Finally, the scheme most relevant to Yomo is to train on classical hardware and deploy on quantum hardware. In this setting, classical simulation is used to optimize the quantum model parameters, which is feasible for medium-scale circuits with efficient simulators such as TorchQuantum or other scalable estimation of expectation value as in (Recio-Armengol et al., 2025a; Kasture et al., 2023; Rudolph et al., 2023). Once trained, the model is executed on a quantum device at inference time, where Yomo’s single-shot measurement design becomes highly advantageous. This scheme reduces training cost by avoiding quantum hardware usage during optimization, while still exploiting genuine quantum inference capabilities at deployment. We argue that this hybrid pathway provides a promising balance between practicality and advantage, especially in the NISQ era where inference costs are expected to dominate.

G TOWARD PRACTICAL QUANTUM COMPUTING DEPLOYMENT VIA THE YOMO CONCEPT

The Yomo framework demonstrates that QML can be made significantly more practical by rethinking the inference stage, instead of relying on expectation values estimated from a large number of repeated measurements. Yomo can extract predictions directly from single-shot measurement outcomes. This idea has immediate implications for the cost and accessibility of QML, as it reduces inference overhead by orders of magnitude. More broadly, however, the Yomo concept points toward a general design principle for quantum algorithms, wherever possible, reformulate output mechanisms to minimize dependence on expectation-value estimation.

Many VQAs share the same bottleneck as conventional QML: their objective functions are expressed as expectation values of observables. Examples include the Variational Quantum Eigensolver (VQE) (Kandala et al., 2017), the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014), and a wide range of hybrid quantum-classical optimization methods. In all of these cases, the dominant runtime cost arises from repeated circuit executions to estimate expectation values with sufficient statistical accuracy. As system size grows, and as optimization landscapes require repeated evaluations, the number of measurement shots can become prohibitively large, both in terms of wall-clock time and monetary cost on cloud-based quantum hardware.

The success of Yomo in the classification setting suggests a broader research agenda: *can other quantum methods be reformulated to operate in a shot-efficient or even single-shot regime?* For instance, one could envision variants of VQE where single-shot samples are aggregated through tailored loss functions or adaptive rescaling, providing sufficiently accurate gradient signals without the need for thousands of measurements per iteration. Similarly, in QAOA, one could investigate whether problem-dependent mappings allow decision-making or objective evaluation directly from raw bitstring samples, bypassing the need for high-precision expectation estimates.

Exploring these directions requires rethinking the interface between quantum circuits and classical post-processing. Yomo demonstrates that with appropriate probability aggregation and carefully designed loss functions, a model can be trained to produce outputs that are robust even under single-shot measurement. Extending this principle to VQAs would mean designing cost functions,

1026 aggregation strategies, or training procedures that explicitly anticipate the single-shot constraint. In
1027 effect, the burden of precision estimation is shifted from the deployment stage to the training or
1028 design stage, where it can be managed more efficiently.

1029 We therefore view Yomo not only as a contribution to QML, but as a foundation for a broader
1030 paradigm shift in quantum algorithm design. By prioritizing shot efficiency at the output stage,
1031 quantum methods can become far more practical to deploy on near-term hardware. This perspective
1032 highlights an important research opportunity: to systematically revisit existing variational algo-
1033 rithms, identify their measurement bottlenecks, and seek shot-efficient reformulations inspired by
1034 the Yomo concept. Such efforts would directly advance the practical deployment of quantum com-
1035 puting by reducing both the temporal and economic costs associated with measurements, thereby
1036 lowering the barrier for real-world applications.

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079