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Abstract

Classifiers built upon vision-language models such as CLIP have shown remarkable zero-shot
performance across a broad range of image classification tasks. Prior work has studied
different ways of automatically creating descriptor sets for every class based on prompt
templates, ranging from manually engineered templates over templates obtained from a
large language model to templates built from random words and characters. Up until now,
deriving zero-shot classifiers from the respective encoded class descriptors has remained nearly
unchanged, i.e., classify to the class that maximizes cosine similarity between its averaged
encoded class descriptors and the image encoding. However, weighing all class descriptors
equally can be suboptimal when certain descriptors match visual clues on a given image
better than others. In this work, we propose AutoCLIP, a method for auto-tuning zero-shot
classifiers. AutoCLIP tunes per-image weights to each prompt template at inference time,
based on statistics of class descriptor-image similarities. AutoCLIP is fully unsupervised,
has only a minor additional computation overhead, and can be easily implemented in few
lines of code. We show that AutoCLIP outperforms baselines across a broad range of
vision-language models, datasets, and prompt templates consistently and by up to 3 percent
point accuracy.

1 Introduction

Classifiers built upon vision-language models (VLMs) such as CLIP (Radford et al., 2021) and CoCa (Yu
et al., 2022) have shown strong zero-shot transfer capabilities across various tasks. Such zero-shot transfer is
appealing since it allows for obtaining high-performing classifiers on novel domains without the overhead of
data acquisition and labelling. However, it has been observed that prompt engineering plays a crucial role for
obtaining strong zero-shot classifiers, that is: zero-shot classifiers derived from VLMs need to be constructed
based on a set of prompt templates (parameterized by the class name) that cover potential variation of the
domain. These prompt templates can be hand-designed (Radford et al., 2021), generated by a large-language
model (Menon & Vondrick, 2022), or randomly generated (Roth et al., 2023).

Prompts can also be learned via test-time prompt tuning (TPT) (Shu et al., 2022; Zhao et al., 2023). This
approach makes the zero-shot classifier adaptable to the datum of interest, which is possible by effectively
leveraging the knowledge of the general-purpose VLM. Shu et al. (2022) tune prompts so that the predictive
entropy for a single image is minimized, while Zhao et al. (2023) maximizes a CLIP reward. These prior
TPT methods require the VLM’s image encoder to process several augmentations for each image. Moreover,
gradients with respect to the prompts require backpropagation through the VLM’s text encoder, thereby
substantially increasing the overall inference cost.

We propose to not tune the prompts but instead use a large set of predefined and fixed prompt templates and
to adapt the weights of those prompt templates for each image at test-time. This approach has the major
advantage that adaptation takes place entirely in the embedding space without requiring additional forward
or backward passes through the VLM’s encoders, which significantly lowers the test-time computation and
memory overhead compared to prior TPT methods. Our work is similar to Allingham et al. (2023), but comes
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Figure 1: Conceptual Illustration of AutoCLIP. CLIP’s zero-shot classifiers are based on a set of prompt
templates ti (“A photo of a <class_name>”, “A drawing of a <class_name>”, ...). Inserting class names c
into these templates gives a set of class descriptors that are encoded into a joint embedding space together
with the respective image. Standard CLIP averages encoded class descriptors qi(c) into class queries qc, and
classifies to the class that has maximal cosine similarity with the encoded image. However, this ignores that
some prompt templates describe the image of interest better than others (their embeddings have higher
average similarity): for instance, when the image is a drawing, the template “A drawing of a <class_name>”
results in stronger class descriptors than other templates and should thus be weighted higher when computing
class queries. AutoCLIP determines such weights directly from class descriptor-image similarities in the
embedding space. Here, the car image is taken from Atkinson (2015).
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with the major advantages that our approach can adapt weights for single samples and does not require
access to the pre-training feature distribution.

We briefly summarize the standard way of constructing zero-shot classifiers from VLMs (see Figure 1 left).
At first, a collection of prompt templates is instantiated for each class to form a set of class descriptors
(e.g., “A photo of a car”, and “A drawing of a car” are sample class descriptors of class car). These
descriptors are processed by the text encoder and the resulting encoded descriptors are averaged to obtain
the image-independent class queries (e.g. qcar). Besides, the image encoder processes the input image to be
classified to get the image encoding, which lies in the same embedding space as class queries. The cosine
similarity of the encoded image to every (averaged) class query is computed, and the output prediction is
assigned to the class with maximum similarity.

This work follows a similar zero-shot classification setup, except that we change how class queries are computed.
Instead of a simple average of the encoded class descriptors, we propose to take a weighted average, wherein
weights of the encoded class descriptors are automatically tuned for each image separately. The weights are
determined in a manner that prompt templates whose resulting class descriptors are closer to the respective
image embedding get higher weightage than those being less similar (see Figure 1 right). Our approach
is motivated by the intuition that prompt templates with high similarity describe relevant properties of
the image better than ones with lower similarity (see Figure 6 for evidence supporting this intuition). We
denote our method that automatically adapts the weights of the encoded class descriptors for each image as
AutoCLIP.

We empirically show that AutoCLIP improves the performance of zero-shot classifiers across many datasets,
VLMs, and prompt strategies with little inference-time overhead. Note that AutoCLIP is fully zero-shot as
it does not require any supervision from the target task. Furthermore, AutoCLIP makes no assumptions on
the underlying VLM and can thus be broadly applied, potentially also to multi-modal models beyond VLMs
such as ImageBind (Girdhar et al., 2023b).

Overall, our main contributions are as follows: we introduce AutoCLIP (Section 3.2), a novel procedure
for constructing zero-shot classifiers from vision-language models. AutoCLIP leverages statistics of class
descriptor-image similarities to automatically determine weights of the prompt templates. We further discuss
a method for automatically tuning AutoCLIP’s step size such that the entropy of the prompt template’s
weights is controlled (Section 3.4). We propose a default entropy reduction factor, which is shared across all
the experiments. By this, AutoCLIP comes essentially without free hyperparameters, which is important
as hyperparameters cannot be tuned in zero-shot settings. We evaluate AutoCLIP on a large number of
datasets, vision-language models, and prompt templates (Section 4) as well as in a controlled setting (Section
5). We find that it improves performance on the vast majority (85%) of settings, by 0.45 percent point
accuracy on average, and by up to 3 percent point in some settings. These gains come essentially for free
with the only cost being a very small inference time overhead (see Section A.1 in the appendix), as our
approach operates entirely in the embedding space. Considering these benefits, we believe that the proposed
AutoCLIP can serve as a default zero-shot inference strategy for VLMs.

2 Related Work

Vision-Language Pretraining. Deep learning with vision-language pretraining has enabled zero-shot trans-
fer capabilities, i.e., the resulting vision-language models (VLMs) are able to perform zero-shot classification
on vastly diverse unseen target datasets given only text prompts of individual target classes. CLIP is one
of the state-of-the-art VLMs pretrained on the well-curated WebImageText dataset containing 400 million
image-text pairs using a contrastive loss (Radford et al., 2021). In terms of datasets used, ALIGN requires
less dataset preprocessing enabling training on a dataset of over a billion image-text pairs (Jia et al., 2021).
Florence (Yuan et al., 2021) expands models to other common modalities (e.g., videos). In terms of the
training loss, CoCa (Yu et al., 2022) leverages an additional captioning loss allowing models to be used in
generative applications. In our work, we study how to optimally use text prompts of the target classes with
these VLMs.
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Prompt Construction. Conventionally, one or several manually designed text prompts per target class are
employed for zero-shot classification (Radford et al., 2021; Jia et al., 2021). Recent research demonstrates that
introducing additional prompts can improve overall performance. DCLIP (Menon & Vondrick, 2022) generates
additional prompts based on querying the large-language model GPT-3 (Brown et al., 2020). WaffleCLIP
(Roth et al., 2023) has shown that classification performance can be further boosted by appending random
words or characters to predefined prompt templates. To derive a zero-shot classifier, these works weight all
text prompts uniformly. In contrast, we propose an approach to adjust weights of individual prompts per
input sample dynamically at test time.

Test-Time Adaptation. Our work can be considered as a test-time adaption approach for VLMs. TENT
(Wang et al., 2020) demonstrates that adapting models to minimize prediction entropy can improve model
performance at test time. In the context of VLMs, TPT (Shu et al., 2022) optimizes prompts of target classes
based on the entropy minimization objective. RLCF (Zhao et al., 2023) demonstrates that minimizing the
entropy objective can lead to overfitting under distribution shift and proposes adaptation based on average
CLIP scores. In contrast to these previous works, we do not perform any adaptation of prompts or model
parameters, but refine weights of individual (encoded) prompts, which is considerably cheaper in terms of
computation and memory consumption. Most similar to our work is Zero-shot Prompt Ensembling (ZPE)
(Allingham et al., 2023), which also determines prompt weights in embedding space. However, ZPE requires
an entire batch of target domain samples and the availability of image features representing the feature
distribution in pre-training (“source domain”). In contrast, our work operates on single images in a source-free
setting.

3 AutoCLIP

We outline the common approach for building zero-shot classifiers for VLMs like CLIP in Section 3.1.
Thereupon, we detail our proposed AutoCLIP as an auto-tuned alternative in Section 3.2, followed by
describing how the required gradient can be calculated in closed-form in Section 3.3, and finally explain how
AutoCLIP’s step size can be automatically determined in Section 3.4.

3.1 Background: Zero-Shot Classifiers for Vision-Language Models

Let us consider a classification task X 7→ C, where X corresponds to the input domain and C = {c1, . . . , cC}
is a set of C classes. We assume that there exists a pretrained VLM such as CLIP that provides a joint
embedding space E and corresponding embedding functions EX : X 7→ E that maps input data x ∈ X into
embedding space E and ET : T 7→ E that maps text into the same embedding space E . Let there be K
prompt templates t1, . . . tK : C 7→ D that map class name c ∈ C to (textual) class descriptors d ∈ T . These
prompt templates can be either manually designed (Radford et al., 2021), generated by a large language
model (Menon & Vondrick, 2022), or randomly generated (Roth et al., 2023). Algorithm 1 summarizes the
standard zero-shot classifier for VLMs: average the class descriptor encodings e(d) into class queries qj , then
compute cosine similarities sj between class query and encoded image e(x), and classify to the class that
maximizes similarity.

3.2 Auto-Tuning Zero-Shot Classfiers

AutoCLIP modifies Line 7 in Algorithm 1. Instead of computing class queries as simple average of class
descriptor encodings qj = 1/K

∑K
i=1 e

(d)
ij , AutoCLIP uses a weighted average: qj =

∑K
i=1 wie

(d)
ij with

learnable w satisfying wi ≥ 0,
∑K

i=1 wi = 1, which we enforce by reparameterizing w = softmax(ρ) and
ρ ∈ RK . AutoCLIP’s guiding intuition (see Figure 1) is to assign higher weights wi to prompt templates ti

that result in class descriptor encodings e
(d)
ij that are more similar to the encoded image e(x), that is: ti with

large e
(xd)
ij = e

(d)
ij · e(x) (j = 1, . . . , C). This is inspired by the observation that class descriptors having higher

similarity in the embedding space describe the image better (according to contrastive pretraining objectives
in typical VLMs).
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Algorithm 1 Zero-Shot Classifier for a single sample x

1: ▷ Generate K × C class descriptors
2: d← {ti(cj) | i ∈ {1, . . . , K}, j ∈ {1, . . . , C}}
3: ▷ Encode image of interest x with VLM
4: e(x) ← EX(x)/||EX(x)||2
5: ▷ Encode all class descriptors with VLM
6: e

(d)
ij ← ET (dij)/||ET (dij)||2

7: wi ← 1/K ▷ Uniform prompt template weights
8: for j ∈ 1, . . . , C do
9: ▷ Class queries as average class descriptor encodings

10: qj ←
∑K

i=1 wie
(d)
ij

11: ▷ Cosine similarity between e(x) and class query qj

12: sj ← e(x) · qj

13: end for
14: ▷ Assign x to class cj⋆ with maximum similarity
15: j⋆ ← arg maxj sj

When determining the template’s weights w, we have C descriptor-image similarities e
(xd)
ij for each template

ti. AutoCLIP needs to aggregate those C similarities across classes when assigning larger weights to more
relevant prompt templates. Intuitively, simply averaging all C similarities (“mean” aggregation) ignores that,
in the classification objective, we ultimately only care about classes that result in the descriptors closest to
e(x); however, taking only the class with highest similarity per template into account (“max” aggregation)
ignores inherent ambiguity in the image and was found to be suboptimal (Roth et al., 2023). We propose a
middle ground of aggregating via a smooth approximation to the maximum function via logsumexpj(e(xd)

ij ) =
log

∑C
j=1 exp e

(xd)
ij . This logsumexp aggregation takes all classes into account but assigns higher importance

to more relevant classes (ones resulting in higher similarities to the image x). AutoCLIP then determines
weights wi such that logsumexpj(sj) = logsumexpj(

∑K
i=1 wie

(xd)
ij ) = logsumexpj(softmax(ρ) · e(xd)

:j ) gets
increased by one step of gradient ascent in the direction of ∇ρ logsumexpj(softmax(ρ) · e(xd)

:j ). We note
that − logsumexp has been interpreted as the energy function of a data point (for appropriately trained
classifiers) (Grathwohl et al., 2020); in this view, AutoCLIP can be interpreted as minimizing the energy
and maximizing the probability density p(x) of x under the zero-shot classifier (see Section A.3 for more
details).

We summarize AutoCLIP in Algorithm 2. We initialize ρ = 0, which corresponds to an unweighted average
of the class descriptor encodings (Line 8). Similar to Algorithm 1, we compute the pairwise cosine similarities
sj between encoded image e(x) and class queries qj (Line 9-14). Instead of directly classifying to the class with
maximum similarity to the image, AutoCLIP updates the class descriptor weights first. For this, the gradient
g = ∇ρ logsumexpj(sj) is computed (Line 16), an appropriate step size α is selected (Line 18, see Section
3.4), and ρ = α · g and w = softmax(ρ) are updated (Line 20). Based on the new w, AutoCLIP computes
updated class queries qj and class-image similarities (Line 21-26) and finally selects the class with maximum
similarity for the image (Line 28). It is worth emphasizing that AutoCLIP is permutation-invariant in the
prompt templates ti.

We note that Line 9-20 could be repeated for several iterations with smaller step sizes; however preliminary
experiments indicate no advantage of doing more than one iteration. We call AutoCLIP “auto-tuned”
because its weights w are automatically adapted for every input independently. Moreover, we note that in
practice, models like CLIP scale e(xd) by a learned temperature (exponential logit scale) τ to obtain well
calibrated classifiers; we use the same temperature for scaling e(xd) in the logsumexp aggregation (as there is
no labelled data in a zero-shot setting on which a temperature could be tuned).
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Algorithm 2 AutoCLIP: Auto-Tuned Zero-Shot Classifier for a single sample x

1: ▷ Generate K × C class descriptors
2: d← {ti(cj) | i ∈ {1, . . . , K}, j ∈ {1, . . . , C}}
3: ▷ Encode image of interest x with VLM
4: e(x) ← EX(x)/||EX(x)||2
5: ▷ Encode all class descriptors with VLM
6: e

(d)
ij ← ET (dij)/||ET (dij)||2

7: ▷ Uniform weights wi = 1/K
8: ρ← 0; wi ← softmax(ρ)
9: for j ∈ 1, . . . , C do

10: ▷ Class queries as average class descriptor encodings
11: qj ←

∑K
i=1 wie

(d)
ij

12: ▷ Cosine similarity between e(x) and class query qj

13: sj ← e(x) · qj

14: end for
15: ▷ Compute gradient (Section 3.3)
16: g ← ∇ρ log

∑C
j=1 exp(sj)

17: ▷ Determine stepsize (Section 3.4)
18: α← BISECT(sm_entropy(α · g)− β log2 K, 0, 1010)
19: ▷ Update ρ with one gradient ascent step and step size α
20: ρ← α · g; wi ← softmax(ρ)
21: for j ∈ 1, . . . , C do
22: ▷ Class queries as average class descriptor encodings
23: qj ←

∑K
i=1 wie

(d)
ij

24: ▷ Cosine similarity between e(x) and class query qj

25: sj ← e(x) · qj

26: end for
27: ▷ Assign x to class cj⋆ with maximum similarity
28: j⋆ ← arg maxj sj

3.3 Closed-form Computation of Gradient

While ∇ρ logsumexp(s) can be easily computed using automatic differentiation, we note that there can
be runtime environments for inference such as on edge devices where running automatic differentiation
is undesirable. For such cases, the gradient ∇ρ logsumexpj(sj) can also be computed in closed-form:(
∇ρ logsumexpj(sj)

)
i

=
∑K

k=1(
∑C

j=1 softmax(s)j · e(xd)
ij ) · wi(δik − wk), with δij being the Kronecker delta

function with δii = 1 and δij = 0 for i ̸= j.

3.4 Auto-Tuning the Step Size

The only free hyperparameter of AutoCLIP is the step size α. We note that in a zero-shot setting, there
is by definition no labeled data on which such free hyperparameters can be tuned. Because of this, free
hyperparameters need to be selected globally in a dataset-independent manner. However, a global choice for
the step size α is problematic since the scale of the gradient g = ∇ρ logsumexp(s) depends on the dataset, and
the step size would have to be adapted accordingly. We address this by proposing a different parameterization
in which the free hyperparameter is easily interpreted and the step size α is a derived quantity. Specifically, we
control the entropy of the query weights w, entropy(w) = −

∑K
i=1 wi log2 wi. The standard, uniform weights

have maximum entropy log2 K and we set the target entropy to β · log2 K, where the entropy reduction factor
β ∈ [0, 1] is the new free hyperparameter that we set globally to β = 0.85. Intuitively, β → 1 corresponds
to more equally weighted prompt templates while β → 0 to selecting the prompt template with maximum
similarity. We present an ablation of the effect of β’s choice on AutoCLIP in Figure 4.
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CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.75 (+0.5) 52.84 (+0.7) 57.12 (+1.3) 64.43 (+0.7) 84.79 (+0.8) 73.90 (+0.6)
EuroSAT 34.95 (-1.2) 46.16 (-0.7) 55.93 (+1.4) 55.09 (+0.6) 65.09 (+1.8) 54.77 (-0.4)
Food101 80.26 (+1.4) 84.13 (+1.3) 88.85 (+0.9) 93.71 (+0.4) 94.52 (+0.3) 90.46 (+0.4)
Oxford Pets 83.09 (+2.6) 85.63 (+2.9) 85.89 (+1.9) 91.64 (+0.9) 92.82 (+0.9) 92.03 (+1.2)
ImageNet 60.42 (+0.6) 63.80 (+0.6) 68.70 (+0.5) 75.89 (+0.3) 79.07 (+0.0) 75.63 (+0.2)
ImageNetV2 53.44 (+0.4) 56.49 (+0.8) 62.54 (+0.6) 70.17 (+0.4) 72.21 (+0.2) 68.08 (+0.1)
ImageNetR 29.32 (+0.9) 51.04 (+1.0) 59.13 (+1.0) 73.98 (+0.4) 78.85 (+0.6) 75.59 (+0.8)

Table 1: Accuracy of AutoCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis) for K = 100
WaffleCLIP prompt templates across models and datasets, averaged over 7 runs.

With sm_entropy(α · g) denoting the entropy of the weights w = softmax(α · g), selecting the step size α
is now equivalent to solving for f(α) = 0 for f(α) = sm_entropy(α · g)− β · log2 K. As sm_entropy(α · g)
monotonically decreases with α, we use bisection on α ∈ [0, 1010] for finding α with f(α) ≈ 0. We note that
sm_entropy(0 · g) = log2 K and thus f(0) > 0 for all β < 1; similarly, sm_entropy(α · g) ≈ 0 for α = 1010 in
all settings we considered and thus f(1010) < 0 for all β > 0, which together satisfies the prerequisites for
running bisection. The additional bisection has little overhead compared to the cost of encoding the image x
with Ex (see Section A.1 in the appendix for details).

4 Experiments

Experimental Setting In this section, we compare AutoCLIP to standard zero-shot classifiers on a
wide range of zero-shot image classification benchmarks and a variety of settings. We conduct experiments
on the datasets CUB200 (Welinder et al., 2010), EuroSAT (Helber et al., 2019), Food101 (Bossard et al.,
2014), Oxford Pets (Parkhi et al., 2012), ImageNet (Russakovsky et al., 2015), ImageNetV2 (Kornblith et al.,
2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-C (Hendrycks & Dietterich, 2019). We study six
different vision-language models: from CLIP (Radford et al., 2021), we use ResNet-50 (RN50) (He et al.,
2015) and vision transformer (ViT-B/32, ViT-B/16, and ViT-L/14) model variants (Dosovitskiy et al., 2021).
Moreover, we use the ViT-L/14 model variant from DataComp (Gadre et al., 2023) and the one trained with
CoCa (Yu et al., 2022).

Additionally, we study three ways of generating prompt templates: 1) using the 80 manually designed
templates from Radford et al. (2021) (CLIP), 2) templates based on querying a large-language model (DCLIP)
(Menon & Vondrick, 2022), and 3) templates that append random words or characters to predefined prompt
templates (WaffleCLIP) (Roth et al., 2023). We vary the number of templates from K = 4 to K = 500; if there
is a fixed number of templates available such as in CLIP/DCLIP, templates are sampled with replacement.
To account for randomness in the template construction/sampling, we report results averaged over 7 runs.
We base our implementation on https://github.com/ExplainableML/WaffleCLIP from Roth et al. (2023)
and highly appreciate their code release under a permissible license. We report the difference of accuracy
of AutoCLIP compared to the baseline zero-shot classifier with uniform prompt template weights ("∆
Accuracy"). Absolute performance across different datasets and VLMs is shown in Table 1 (and in Table 2
and Table 3 in the appendix).

Results We present the main results in Figure 2. Overall, the figure contains 990 different combinations
comparing AutoCLIP with the baseline; AutoCLIP is better in 840 cases (≈ 85%) and on average it is
better by 0.45 percent point accuracy. We also observe a trend that for larger number of prompt templates K,
the advantage of AutoCLIP (∆ Accuracy averaged across datasets, models and CLIP/DCLIP/WaffleCLIP)
increases: from ∆ = 0.06 for K = 4 over ∆ = 0.33 for K = 10 and ∆ = 0.49 for K = 50 to ∆ = 0.57 for
K = 200. When aggregating over models, datasets and number of prompt templates, AutoCLIP achieves
the largest average improvement for WaffleCLIP (∆ = 0.61), but still improves for CLIP (∆ = 0.40) and
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Figure 2: Accuracy improvement (∆ Accuracy) of AutoCLIP over baseline zero-shot classifier across models,
datasets, and prompt ensembles. Shown are mean and standard error over 7 runs.

8



Under review as submission to TMLR

1 2 3 4 5
Severity

0.50

0.25

0.00

0.25

0.50

 A
cc

ur
ac

y
CLIP
RN50

DCLIP
CLIP
WaffleCLIP

1 2 3 4 5
Severity

CLIP
ViT-B-32

1 2 3 4 5
Severity

CLIP
ViT-B-16

1 2 3 4 5
Severity

CLIP
ViT-L-14

1 2 3 4 5
Severity

CLIP DataComp
ViT-L-14

Figure 3: ImageNet-C accuracy improvement (∆ Accuracy) of AutoCLIP over baseline zero-shot classifier
for K = 100 across models, corruption severity and prompt ensembles, averaged over corruptions and 7 runs.
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Figure 4: Ablation on target entropy rate β. Shown is the accuracy improvement (∆ Accuracy) of AutoCLIP
over baseline zero-shot classifier for a CLIP ViT-B-16, and 100 WaffleCLIP prompt templates, averaged over
7 runs.

DCLIP (∆ = 0.29). Taken together, the findings indicate that AutoCLIP benefits from larger (increased K)
and more diverse (WaffleCLIP) sets of prompt templates.

When comparing different vision-language models, AutoCLIP brings the biggest benefit for CLIP ViT-B-16
(∆ = 0.68) and the smallest one for CoCa ViT-L-14 (∆ = 0.19), with all other models having average
∆ between 0.36 and 0.52. Comparing different datasets, AutoCLIP performs strongest on Oxford Pets
(∆ = 1.15) and worst on EuroSAT (∆ = −0.24); we hypothesize that this is because EuroSAT is in general a
challenging dataset for CLIP on which the image encoder produces embeddings that are not very informative
about image properties, which deteriorates the prompt weight selection as it becomes harder to decide which
prompt describes an image of interest well. We note that EuroSAT is the only setting on which AutoCLIP
hurts performance on average; on all other datasets, AutoCLIP improves performance: ∆(CUB200) = 0.5,
∆(Food101) = 0.52, ∆(ImageNet) = 0.17, ∆(ImageNetV2) = 0.2, and ∆(ImageNetR) = 0.71. While these
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Figure 5: Comparison of different objective functions for auto-tuning. Shown is the accuracy improvement
(∆ Accuracy) of AutoCLIP over baseline zero-shot classifier for a ViT-B-16, and 100 WaffleCLIP prompt
templates, averaged over 7 runs.

improvements are of modest magnitude, they essentially come for free by a mere change of the inference
procedure.

In Figure 3, we present results on ImageNet-C for WaffleCLIP with K = 100 for different severities and
averaged across corruptions. AutoCLIP consistently improves performance for the smaller vision-language
models (RN50, ViT-B-32, ViT-B-16) and sees a minor drop of performance for the two ViT-L-14 variants.
Averaged across all models, corruptions, and severities, AutoCLIP improves performance by ∆ = 0.11. We
provide plots for each corruption separately for WaffleCLIP prompt templates in the appendix in Figure 9.
The biggest average benefit of AutoCLIP is obtained for the low-frequency corruptions “saturate” (∆ = 0.22),
“brightness” (∆ = 0.22), and “contrast” (∆ = 0.23); the smallest average benefit for “shot-noise” (∆ = 0.05)
and “snow” (∆ = 0.06).

Ablations We ablate AutoCLIP’s choice of the target entropy rate β (which defaults to 0.85) and the
objective function (defaults to logsumexp). In Figure 4, we observe that AutoCLIP’s performance for most
datasets does not depend strongly on the specific choice of the target entropy rate β as ∆ Accuracy stays
relatively constant in the range β ∈ [0.7, 0.9]. This is a desirable property as in a zero-shot setting without
labeled data, tuning β per dataset would be infeasible. For two datasets (Oxfort Pets and EuroSAT), our
default value of β = 0.85 was suboptimal and a considerably smaller choice of β = 0.7 would have obtained
considerably better results. Also on average, β = 0.7 performs favorably and we recommend this choice for
future work on other datasets and tasks. We provide results for a similar experiment in which we directly
control the step size α in Section A.4. Directly controlling α reduces computation overhead further, but
optimal choices of step size α vary more strongly across datasets than choices for the target entropy rate β.

We motivated the choice of logsumexp as AutoCLIP’s aggregation/objective function in Section 3.2 as
striking a good compromise between max and mean aggregation. In Figure 5, we empirically confirm that the
logsumexp aggregation performs favorably compared to max/mean aggregation on all datasets. Moreover, it
also outperforms entropy aggregation, which is a popular choice for test-time adaptation (Wang et al., 2020;
Shu et al., 2022).

In Figure 6, we show the prompt template weights (K = 30) obtained by AutoCLIP on 500 Food101 samples.
Samples are structured in 10 blocks of 50 samples each, where each block corresponds to one class. Prompt
template weights are relatively similar for instances belonging to the same (unknown) class but vary across
classes. Some templates like the ones starting with “A tattoo of...” or ”A drawing of...” get consistently low
weights as the images of the Food101 dataset do not look like tattoos or origami, while templates starting with
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Figure 6: Illustration of prompt template weights w on 500 samples from the Food101 dataset, with blocks
of 50 samples belonging to the same (unknown) class. CLIP backbone is a ViT-B-16 and 30 CLIP prompt
templates are used.

“A photo of...” tend to get higher weights, as Food101 contains mostly actual photos. Note that the weight
distribution looks different on other datasets like ImageNet-R, with higher weights for “artistic” prompts (see
Figure 8 in the appendix). Overall, this confirms that AutoCLIP can adapt the zero-shot classifier on the
fly to properties of the respective image. Moreover, AutoCLIP provides accuracy improvements with only
minor additional inference overhead as discussed in Section A.1 in the appendix.

5 Analysis in a Controlled Setting

We study AutoCLIP in a controlled setting, in which we directly sample embedding vectors in an embedding
space corresponding to encoded image and class descriptors, without actually encoding images or text
prompts. By this, we can control key properties of the embeddings and study how they influence AutoCLIP’s
performance. While the setting is strongly simplified, we will nevertheless gain some insights that provide
possible explanations for some of the key findings from Section 4.

We set the number of classes to C = 5, the number of embedding dimensions to d = 128, the number of
prompt templates to K = 10, and the number of instance to 200. We sample class descriptor embeddings
ET (dij) as follows: let cj ∼ N (0, 1, d) ∈ Rd be C d-dimensional standard normal-distributed class means,
let pi ∼ N (0, 1, d) ∈ Rd be K d-dimensional standard normal-distributed prompt embedding means, and
Ψij ∼ N (0, 1, d) ∈ Rd be KC d-dimensional standard normal-distributed prompt-class coupling terms. We
then set ET (dij) = (1− ρ)(cj + pi) + ρΨij , where ρ ∈ [0, 1] controls the “entanglement” between class and
prompt template embeddings. Intuitively, ρ = 0 simulates a setting in which the VLM’s text encoder perfectly
separates class and prompt template related information such that their combination is additive. Increasing
ρ results in a stronger entanglement such that class and prompt template-related information interact more
strongly and are no longer additive. We then set the image embeddings corresponding to a ET (dij) to
EX(x) = ET (dij) + ξ with ξ ∼ N (0, ε, d). Here ε controls the “instance noise”, that is: how much the image
embeddings are spread around the corresponding class descriptor embedding.

Figure 7 compares the accuracy of mean-, max- and AutoCLIP-aggregation (β = 0.85) for different values
of entanglement ρ and instance noise ε. In general, lower entanglement favors mean aggregation (the
standard in CLIP), while higher entanglement favors max-aggregation. Usually, VLM text encoders are
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Figure 7: Comparison of AutoCLIP to “mean” aggregation (Line 10 in Algorithm 1) and “max” aggregation
(sj ← maxi e

(d)
ij · qj) in a controlled and simplified setting. “Instance Noise” controls how strongly instance

encodings vary from their respective mean. “Entanglement” controls how strongly the text encoding of
prompt template and class name are entangled. Shown is mean over 100 random seeds.

good in terms of disentangling concepts, which explains why prior work (Roth et al., 2023) has found
max-aggregation to perform inferior compared to mean-aggregation. On the other hand, we observe that
AutoCLIP nearly always outperforms max-aggregation (except for the small instance noise and strong
entanglement setting), also outperforms mean-aggregation for moderate entanglement (ρ > 0.4), and performs
very close to mean-aggregation for smaller entanglement.

This provides a possible explanation for the findings from Figure 2: for smaller (and weaker) VLMs, the
text embeddings are more entangled and thus AutoCLIP provides stronger benefits compared to standard
mean-aggregation. For larger VLMs like ViT-L-14 based ones, the entanglement decreases and thus the
benefit of AutoCLIP is smaller. Moreover, for small entanglement and large instance noise, AutoCLIP can
also be slightly worse than mean-aggregation in Figure 7. This settings likely corresponds to the ViT-L-14
(low class-prompt entanglement) on ImageNet-C (large instance noise) in Figure 3, where AutoCLIP also
performs slightly worse than mean-aggregation. However, in general Figure 7 shows that AutoCLIP provides
a favorable trade-off between mean- and max-aggregation for many practical settings.

6 Conclusion

We have proposed AutoCLIP, a method for improving zero-shot classifiers on vision-language models. It
automatically tunes per-image weights of prompt templates before aggregating them into class queries.
AutoCLIP improves performance over standard zero-shot classifiers on the vast majority of settings, with
only minimal inference-time overhead. We believe that due to its simplicity and low cost, AutoCLIP has the
potential to be broadly applied in conjunction with vision-language models. For future work, it is exciting to
explore if AutoCLIP also benefits other zero-shot tasks built on top of multi-modal modals such as object
detection with OWL-ViT (Minderer et al., 2022) or multi-modal prompting with ImageBind (Girdhar et al.,
2023a).

12



Under review as submission to TMLR

References
James Urquhart Allingham, Jie Ren, Michael W. Dusenberry, Xiuye Gu, Yin Cui, Dustin Tran, Jeremiah Zhe

Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt weighting technique to improve prompt
ensembling in text-image models. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23, 2023.

Jeremy Atkinson. Car beurre eta. https://openverse.org/image/
5d960316-3209-4ea6-bf4c-458449f9a588?q=Car%20drawing, 2015. Accessed: 2023-09-27.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components
with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan
Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras,
Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu,
Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh
Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal
Shankar, and Ludwig Schmidt. Datacomp: In search of the next generation of multimodal datasets, 2023.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin,
and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15180–15190, June 2023a.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin,
and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15180–15190, 2023b.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin
Swersky. Your classifier is secretly an energy based model and you should treat it like one. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=Hkxzx0NtDB.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. URL
https://api.semanticscholar.org/CorpusID:206594692.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. Proceedings of the International Conference on Learning Representations, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces
of robustness: A critical analysis of out-of-distribution generalization. ICCV, 2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International conference on machine learning, pp. 4904–4916. PMLR, 2021.

13

https://openverse.org/image/5d960316-3209-4ea6-bf4c-458449f9a588?q=Car%20drawing
https://openverse.org/image/5d960316-3209-4ea6-bf4c-458449f9a588?q=Car%20drawing
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Hkxzx0NtDB
https://api.semanticscholar.org/CorpusID:206594692


Under review as submission to TMLR

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–2671, 2019.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models. arXiv
preprint arXiv:2210.07183, 2022.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy,
Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas
Kipf, and Neil Houlsby. Simple open-vocabulary object detection with vision transformers. arXiv preprint
arXiv:2205.06230, 2022.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012 IEEE
conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

Karsten Roth, Jae Myung Kim, A Koepke, Oriol Vinyals, Cordelia Schmid, and Zeynep Akata. Waffling
around for performance: Visual classification with random words and broad concepts. arXiv preprint
arXiv:2306.07282, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao.
Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural
Information Processing Systems, 35:14274–14289, 2022.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and Pietro
Perona. Caltech-ucsd birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology,
2010.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer vision. arXiv
preprint arXiv:2111.11432, 2021.

Shuai Zhao, Xiaohan Wang, Linchao Zhu, and Yezhou Yang. Test-time adaptation with clip reward for
zero-shot generalization in vision-language models. ArXiv, abs/2305.18010, 2023. URL https://api.
semanticscholar.org/CorpusID:258959424.

14

https://api.semanticscholar.org/CorpusID:258959424
https://api.semanticscholar.org/CorpusID:258959424


Under review as submission to TMLR

A Appendix

A.1 Inference time overhead of AutoCLIP

In this paragraph, we provide some measurements on inference time overhead by AutoCLIP. We provide
numbers for the case of a ViT-L-14 on the Oxford Pets dataset. Here, encoding an image takes 12.64ms on
a V100 (minimum over 100 images). The baseline “averaging” zero-shot classifiers takes additional 0.08ms
(average over 640 samples) on top to classify a sample. AutoCLIP takes additional 1.54ms (average over
640 samples) for classification when running bisection for autotuning the step size. For a fixed step size, the
overhead of AutoCLIP is 0.45ms. Thus, AutoCLIP with autotuning raises inference time from 12.64ms to
14.18ms. In contrast, TPT (Shu et al., 2022) and RLCF (Zhao et al., 2023), which did not report compute or
memory requirements, require encoding multiple image augmentations. TPT states "We augment a single test
image 63 times using random resized crops and construct a batch of 64 images, including the original one.",
which means that the image encoding time (for instance the 12.64ms from above) is increased by a factor of
64x, plus additional overhead for backpropagating through the text encoder, which likely brings the inference
time per sample close to 1s (or more if multiple test-time adaptation steps are conducted). We note that
for bisection, we use an independent call to scipy.optimize.bisect (Virtanen et al., 2020) (maxiter=100,
xtol=1e-2, rtol=1e-2). A batched variant of bisection could speed-up many workloads.

A.2 Additional Experimental results

We present additional experimental results. Table 2 and Table 3 show the absolute performance of AutoCLIP
on different datasets and VLMs for DCLIP and CLIP prompt templates, respectively, similar to Table 1 in the
main paper for WaffleCLIP templates. Figure 8 illustrates prompt weights on the ImageNetR dataset. Figure
9 contains results of AutoCLIP in terms of ∆ Accuracy on ImageNetC for every corruption seperately.

In Figure 10, we show an additional comparison of AutoCLIP to a stronger baseline which is based on
TopR aggregation. In this TopR aggregation, for each image R prompt templates are selected whose resulting
encoded class descriptors have maximum average cosine similarity to the encoded image. We note that
choosing R is non-trivial in a zero-shot setting due to the lack of labelled validation data. In the figure, we
compare AutoCLIP against this TopR-CLIP for K = 100 DCLIP prompt template, across the same VLMs
and datasets as in Figure 2. We provide results for different choices of R: overall, for the best choice of
R = 20, AutoCLIP is better on 86% of the cases and by 0.40 percent point accuracy on average.

A.3 Motivation of logsumexp in AutoCLIP

As discussed in Section 3.2, AutoCLIP determines weights wi such that logsumexpj(sj) =
logsumexpj(

∑K
i=1 wie

(xd)
ij ) = logsumexpj(softmax(ρ) · e(xd)

:j ) gets increased by one step of gradient ascent
in the direction of ∇ρ logsumexpj(softmax(ρ) · e(xd)

:j ). Empirically, we find in Figure 5 that this logsumexp
objective function outperforms alternative loss functions such as entropy, mean, or max. On the one hand,

CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.75 (+0.1) 53.00 (+0.4) 57.82 (+0.3) 64.57 (+0.3) 85.38 (+0.4) 73.69 (+0.1)
EuroSAT 36.39 (-1.2) 45.88 (-2.2) 59.22 (+2.5) 57.89 (+0.8) 60.08 (-0.7) 57.15 (-1.2)
Food101 79.12 (+0.9) 83.43 (+0.7) 88.53 (+0.5) 93.14 (+0.4) 93.89 (+0.2) 89.77 (+0.3)
Oxford Pets 85.92 (+1.3) 87.11 (+1.0) 88.53 (+0.9) 94.08 (+0.6) 94.00 (+0.4) 93.54 (+0.4)
ImageNet 60.62 (+0.3) 63.89 (+0.2) 69.10 (+0.3) 75.92 (+0.1) 79.02 (+0.0) 75.41 (+0.0)
ImageNetV2 53.60 (+0.3) 56.73 (+0.5) 62.22 (+0.2) 70.01 (+0.1) 71.95 (-0.0) 67.91 (-0.0)
ImageNetR 28.14 (+1.3) 49.51 (+1.6) 58.37 (+1.7) 73.12 (+0.6) 78.06 (+0.7) 73.73 (+1.1)

Table 2: Accuracy of AutoCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis) for K = 100
DCLIP prompt templates across models and datasets, averaged over 7 runs.
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Figure 8: Illustration of prompt template weights w on 500 samples from the ImageNetR dataset, with blocks
of 50 samples belonging to the same (unknown) class. CLIP backbone is a ViT-B-16 and 30 CLIP prompt
templates are used.

we attribute this to logsumexp being “in-between” mean and max as as a “smooth maximum”. On the other
hand, we hypothesize that logsumexp is a reasonable choice because its relationship to the energy function of
a data point — in that view AutoCLIP can be interpreted as minimizing the energy and maximizing the
probability density p(x) of x under the zero-shot classifier. We elaborate this relationship in more detail in
the following paragraph.

According to (Grathwohl et al., 2020), for a softmax-based classifier that assigns logits fθ(x) to class-
probablities via p(y|x) = softmax(f(x)), one can slightly re-interpret the logits obtained from fθ to define
p(x, y) and p(x). For this, one re-uses the logits to define an energy-based model of the joint distribution of

data point x and labels y via pθ(x, y) =
exp(fθ(x)[y])

Z(θ) , where Z(θ) is the unknown normalizing constant and

Eθ(x, y) = −fθ(x)[y] is the energy. Moreover, pθ(x) =
∑

y pθ(x, y) =
∑

y exp(fθ(x)[y])
Z(θ) , and accordingly the

energy corresponds to Eθ(x) = − log
∑

y exp(fθ(x)[y]).

CLIP CLIP CLIP CLIP DataComp CoCa
RN50 ViT-B-32 ViT-B-16 ViT-L-14 ViT-L-14 ViT-L-14

CUB200 47.00 (+0.3) 52.36 (+0.7) 56.99 (+1.2) 63.94 (+0.5) 85.52 (+1.1) 73.99 (+0.1)
EuroSAT 32.28 (-3.7) 44.78 (-1.3) 56.76 (+0.4) 52.96 (+1.8) 61.94 (+1.4) 51.58 (-1.7)
Food101 79.69 (+1.1) 83.64 (+0.9) 88.83 (+0.6) 93.33 (+0.2) 94.55 (+0.3) 90.36 (+0.3)
Oxford Pets 84.30 (+1.7) 85.20 (+2.0) 88.42 (+0.9) 93.24 (+1.2) 93.79 (+1.3) 92.67 (+1.3)
ImageNet 59.90 (+0.2) 63.31 (+0.3) 68.43 (+0.2) 75.38 (+0.1) 79.29 (+0.1) 75.79 (+0.2)
ImageNetV2 52.98 (+0.5) 56.00 (+0.4) 62.12 (+0.2) 69.56 (-0.1) 72.09 (+0.0) 67.90 (-0.0)
ImageNetR 27.11 (+0.9) 47.74 (+0.9) 56.28 (+1.1) 71.30 (+0.4) 78.26 (+0.5) 74.51 (+0.9)

Table 3: Accuracy of AutoCLIP (and ∆ Accuracy to baseline zero-shot classifier in parenthesis) for K = 100
CLIP prompt templates across models and datasets, averaged over 7 runs.
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Figure 9: ImageNetC Accuracy improvement (∆ Accuracy) of AutoCLIP over baseline zero-shot classifier
for WaffleCLIP across models, corruptions, averaged over 7 runs.
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Figure 10: Accuracy improvement (∆ Accuracy) of AutoCLIP with K = 100 DCLIP prompt templates
over TopR zero-shot classifier with different values of R across models, averaged over datasets and 7 runs.
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Figure 11: Control experiment when directly choosing a fixed step size α (and not a target entropy rate β).
Shown is the accuracy improvement (∆ Accuracy) of AutoCLIP over a baseline zero-shot classifier for a
CLIP ViT-B-16, and 100 WaffleCLIP prompt templates, averaged over 7 runs.

In the case of AutoCLIP, the logits fθ(x) correspond to the cosine similarities sj (with optional temperature
scaling). Accordingly, − logsumexpj(sj) can be interpreted as the energy, and AutoCLIP, which maximizes
logsumexpj(sj), can be interpreted as a method for minimizing the energy of the zero-shot classifier.

We note that this interpretation works best for classifiers that were trained with an energy-based loss term
that encourages low energy on the data manifold and high energy elsewhere as discussed by (Grathwohl et al.,
2020). However, empirically we find it to also work well on CLIP-based zero-shot classifiers.

A.4 Step Size Selection in AutoCLIP

AutoCLIP controls the target entropy rate β as free hyperparameter as an alternative parameterization
to directly controlling the step size α. The reason for this is that optimal choices of step size α vary more
strongly across datasets than choices for the target entropy rate β. We show this in Figure 11 (compared to
Figure 4): while the reparametrization from α to β does not change the peak performance of AutoCLIP on
a dataset much, it affects the alignments of curves across datasets. We observe that the curves are more
aligned when varying β than when varying α. Quantitatively, the mean pairwise Pearson product-moment
correlation coefficient between the curves for β in Figure 4 is 0.66, while it is only 0.45 for the curves for α in
Figure 11. Thus, in a zero-shot setting in which hyperparameters cannot be tuned on a per-dataset basis, the
more aligned behavior across datasets for target entropy rate β is preferable to the the step size α.
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