
Published as a conference paper at ICLR 2023

HOW TO PREPARE YOUR TASK HEAD FOR FINETUNING

Yi Ren
University of British Columbia
renyi.joshua@gmail.com

Shangmin Guo
University of Edinburgh
s.guo@ed.ac.uk

Wonho Bae
University of British Columbia
whbae@cs.ubc.ca

Danica J. Sutherland
University of British Columbia & Amii
dsuth@cs.ubc.ca

ABSTRACT

In deep learning, transferring information from a pretrained network to a down-
stream task by finetuning has many benefits. The choice of task head plays an
important role in fine-tuning, as the pretrained and downstream tasks are usually
different. Although there exist many different designs for finetuning, a full under-
standing of when and why these algorithms work has been elusive. We analyze
how the choice of task head controls feature adaptation and hence influences the
downstream performance. By decomposing the learning dynamics of adaptation,
we find that the key aspect is the training accuracy and loss at the beginning of
finetuning, which determines the “energy” available for the feature’s adaptation.
We identify a significant trend in the effect of changes in this initial energy on the
resulting features after finetuning. Specifically, as the energy increases, the Eu-
clidean and cosine distances between the resulting and original features increase,
while their dot products (and the resulting features’ norm) first increase then de-
crease. Inspired by this, we give several practical principles that lead to better
downstream performance. We analytically prove this trend in an overparamter-
ized linear setting, and verify its applicability to different experimental settings.

1 INTRODUCTION

In the era of deep learning, pretraining a model on a large dataset and adapting it to downstream tasks
is a popular workflow. With the help of large amount of data and huge computing resources, the pre-
trained model can usually provide beneficial features for the downstream tasks. Such a framework
is proven to be efficient and effective in many domains and tasks, e.g. natural language process-
ing (Kenton & Toutanova, 2019), computer vision (Chen et al., 2020b), graph based learning (Liu
et al., 2022), and so on. Although different variants of pretraining and finetuning (FT) methods are
widely applied – including direct finetuning, finetuning after linear probing (Kumar et al., 2022),
side-tuning (Zhang et al., 2020a), using different learning rates for different layers (Zhang et al.,
2021), and more – a detailed understanding of how features are adapted during finetuning under
different settings remains elusive.

Our work builds significantly off the analysis of Kumar et al. (2022), who study the interactions
between the “task head” (the final layer of the network, usually randomly initialized) and the “back-
bone” (usually copied from the pretrained model). Kumar et al. claim that the standard finetuning
method, randomly initializing a task head then updating all parameters of the whole network, can
distort the pretrained features and hence can deteriorate the generalization ability if (as they assume)
the previous backbone features were optimal for the downstream task. By analyzing an overparam-
eterized linear model, they prove that linear probing (i.e., only updating the parameters of the task
head) first, followed by finetuning the whole network, leads to better performance in their setting.

In this work, we consider less stringent assumptions than they made, and study more practical set-
tings from a different perspective. First, we consider scenarios where the pretrained features are
not optimal for the downstream tasks, thus feature adaptation is indeed beneficial. Unlike the two
extreme cases studied by Kumar et al. (2022), i.e. finetuning with fully random initialization and

1

Published as a conference paper at ICLR 2023

Figure 1: Left: a general example of pretraining (PT), head probing (HP) and finetuning (FT) pro-
cedure (DS is short for downstream). Right: an example showing that neither probing the head to
converge nor no probing is the optimum (pretrained on ImageNet-1K and finetuned on STL10).
fully-pretrained parameters, we consider intermediate cases where features are mildly adapted by
stopping earlier (before convergence) in the linear probing procedure. To better understand the fea-
ture’s behavior, we decompose the learning dynamics of the feature vector during finetuning based
on “energy” and “direction” of the learning. We discover a non-trivial trend in how this “energy”
affects the way that features change from their initialization, which can inspires us to design an ap-
propriate finetuning procedure. Under this framework, we demonstrate that the “unchanged feature”
assumption of Kumar et al. (2022) is hard to achieve.

Second, our task heads are not necessarily linear. Inspired by the illustrations of Olah et al. (2020),
it is reasonable to only preserve the lower layers of the pretrained model and reinitialize the top
layers, assuming that the low-level features are common across task. That is, the probed task head
is non-linear, and we refer to this more general process as “head probing” (HP) rather than linear
probing. Our analysis can also help to explain feature behavior in this setting.

Finally, following our analysis, we provide a user guide to conclude when and why specific methods
should be considered. Specifically, we have one basic method: stop head probing earlier, before
convergence; and three advanced tricks: 1.) use label smoothing during head probing; 2.) use more
complex task head design; 3.) merge and reinitialize some later layers of the backbone and attach
them to the task head. In summary, in this work:

• we formalize and explain feature adaptation by decomposing the learning dynamics;
• we find a non-trivial trend in feature adaptation and verify it in many cases;
• and we show how controlling feature adaptation can improve downstream performance.

2 MOTIVATION

Pretrain-then-finetune is a popular workflow for many tasks in deep learning. One common practice
is to 1) randomly initialize a task head, 2) attach it to a pretrained backbone, then 3) finetune the
whole network together (Li et al., 2020). However, the untrained task head may distort the pre-
trained features during finetuning. To solve this problem, Kumar et al. (2022) propose to train the
head to fully converge before the finetuning. However, suppose we train the head long enough and
its training accuracy (HP-train-acc) converges to 100%, then the features won’t change during the
finetuning stage. To sum up from the above, we can see that neither probing the head to converge nor
no probing is optimal, since the pretraining and downstream tasks (or datasets) are usually distinct.
To verify this argument, we HP various number of epochs before finetuning, and record the cor-
responding validation accuracy after finetuning (FT-valid-acc for short), and the results are shown
in Figure 1. It is surprising to see that stopping the head training earlier (before the convergence
of HP-train-acc) brings more improvement. As the only variable among these experiments is the
parameters of the head before finetuning, the following two questions emerge:

How does the task head influence the pretrained features during finetuning?
How does the feature adaptation influence the generalization performance after finetuning?

3 BACKGROUND

We first clarify the scope of our analysis. We don’t consider the details of the pretraining procedure,
instead just assuming that there are some well-trained checkpoints for a particular dataset or task.

2

Published as a conference paper at ICLR 2023

Meanwhile, our formulation is not restricted to classification tasks; our use of the term “label” or
“target” can be any form of supervisory signals.

3.1 PROBLEM SETTING AND TWO STAGE TRAINING

When training a model for a downstream task, our goal is to find a predictor f ◦ g : Rd → Rk

that maps a high-dimensional input signal x ∈ Rd to a task-related prediction q ∈ Rk. As depicted
by the left-bottom panel of Figure 1, we split the predictor into two parts: the backbone f(x;B) :
Rd → Rh which maps the input signal to intermediate representations z ∈ Rh, and the task head
g(z; v) : Rh → Rk which gives the prediction vector q ∈ Rk (e.g. logits in classification tasks using
cross-entropy loss). Usually, the backbone f is parameterized by B and initialized by copying from
a pretrained model. The task head g parameterized by v, on the other hand, is usually randomly
initialized and might be a complex non-linear function. The training has two distinct stages: 1) head
probing (HP) where we fix f and only update the parameters v of g for τ epochs; 2) finetuning
(FT) where the parameters {v,B} of f ◦ g are updated together until convergence. In this work, we
analyze how the FT stage is influenced by the architecture and v at the beginning of finetuning.

Following the general formulation above, we show a simple overparameterized linear regression (or
equivalently, a binary classification) below as a case study to illustrate more insights. Suppose the
N input signals are stacked, X = [x(1), ..., x(N)]⊤ ∈ RN×d, the loss function can be written as

LB,v =
1

2
∥XB⊤v − Y ∥22, (1)

where B ∈ Rh×d, v ∈ Rh, and Y ∈ RN . That is, k = 1, z = Bx, q = z⊤v, and L(q, y) = 1
2 (q−y)2.

3.2 WHAT TO EXPECT DURING ADAPTATION

Compared with training a randomly initialized model, adaptation on downstream tasks needs more
care. One reason is that the pretrained parameters from f(x;B) inherits all the information from the
pretraining task, even any bias and noise. Furthermore, as mentioned by Kumar et al. (2022) and Du
et al. (2018), f(x;B) is tied to g(z; v) at each time step during FT, thus the bias and noise in f(x;B)
also influence the learning of g(z; v). Hence, before conducting downstream adaptation, we might
consider: to what extent do we want to change the feature extractor f(x;B)? Here, we list three
possible cases of how much we should update f(x;B):

• Strong: the pretrained features are far from the optimal ones for downstream task, so we
need substantial feature adaptation.

• Mild: f(x;B) is reasonably good, but adaptation to the downstream domain is helpful.

• Tiny: the pretrained f(x;B) is near optimal and only need to be slightly adapted.

In the rest of this paper, we first analyze how f(x;B) and g(z; v) interact with each other, under both
the general case and the simplified case. Based on our observations, we propose several practical
principles in Section 5.1 for better downstream performance.

4 INTERACTION BETWEEN THE BACKBONE AND HEAD

Rather than linking the choice of v0 (the task head parameters at the beginning of FT) to the loss
function, we sketch how f(x;B) and g(z; v) interact during FT, which depicts how z changes ac-
cordingly. Although our analysis cannot provide any theoretical guarantee, knowing how z changes
under different v0 will lead us to better HP-FT design in practice.

4.1 AVERAGE INITIAL ENERGY

We start from analyzing the behavior of z(j)t = f(x(j);Bt), i.e. the feature extractor at time t, when
the network parameters are updated with samples x(1), ..., x(N) using gradient descent. When using

3

Published as a conference paper at ICLR 2023

(a) Influence of τ on energy. (b) Influence of τ on direction.

Figure 2: Left: histogram of p0 and ey under different τ . Right: approximated change of the ‘direc-
tion’ term in Equation (2) under different τ . The titles represent the settings. HP τ means HP for τ
epochs. Toy+MLP means pretrain a 4-layer MLP on full MNIST then transfer to a distorted subset
of MNIST. Res50-IN1K(Sup)-STL means pretrain a ResNet50 on ImageNet-1k using supervised
classification, then transfer to a downstream task on STL10. See Appendix B for more details.

cross-entropy loss, we can have the following result: 1

z
(j)
t+1 − z

(j)
t =

γ

N

N∑
n=1

 κ
(j,n)
t︸ ︷︷ ︸

slow-change

·
(
∇zq

(n)
t

)⊤

︸ ︷︷ ︸
direction

·
(
eyn

− p
(n)
t

)
︸ ︷︷ ︸

energy

+O(γ2), (2)

where γ is the learning rate, κ(j,n)
t =

(
∇Bz

(j)
t

)(
∇Bz

(n)
t

)⊤
∈ Rh×h is the empirical neural tangent

kernel (NTK) of the backbone between x(j) and x(n) at time t,2 ∇zq
(n)
t ∈ Rk×h is the gradient of

the task head prediction w.r.t the representation vector z at time t, 3 p
(n)
t = Softmax(q(n)t) is the

predicted probability vector for input x(n), and eyn is the one-hot vector of the label yn.

In this decomposition, the first term is often understood to change only slowly during FT, i.e. the
lazy-parameters setting used by Chizat et al. (2019); Yang & Hu (2020). The second term determines
the direction, and the last term provides “energy” for the update of z. Formally, we can define the
Average Initial Energy (AIE) and use it to bound the norm of z(j)T − z

(j)
0 :

Proposition 1. Ex(j)∥z
(j)
T − z

(j)
0 ∥2 ≤ c · Eaie, where Eaie ≜ Ex(n)∥eyn − p

(n)
0 ∥2 is the Average

Initial Energy (AIE). Here c is a constant, T is the FT epochs, and p
(n)
0 is the model’s prediction of

sample x(n) at the beginning of FT (or at the end of HP).

Proof. See Appendix A.

Although this bound is loose and requires approximations based on assumptions, the proposition
supports our intuition: if we prob the head for too long (i.e. a large τ), the HP-train-acc can be very
high, hence on average p0 is close to ey and the features adapt less, and vice versa. Our intuition is
further verified in the right panel of Figure 2 where we plot the predicted probability of the correct
class, i.e. [p

(n)
0]yn

, for each sample. Furthermore, we find that it is unlikely to obtain zero energy
(not as assumed by Kumar et al. (2022)) in many practical applications: even with high accuracy
there will always be some gap between p0 and ey by definition, and moreover the training accuracy
after HP is sometimes far from perfect (see Section 5).

4.2 NON-TRIVIAL TREND OF FEATURE ADAPTATION

Following Proposition 1, we can link the adaptation of features to τ via AIE. In the proof of Propo-
sition 1, we disentangle the dependence of the direction and energy terms using Cauchy-Schwarz

1The case for MSE loss, as well as the derivation of this equation, can be found in Appendix A.
2In a linear model z = Bx, κ(j,n)

t = (x(j))⊤(x(n)) · Ih×h is invariant during FT (i.e., independent of t).
3Note that ∇zq

(n)
t depends on the parameters of the current task head vt in the generally, whereas ∇zq

(n)
t =

v⊤ is independent of n if the model is linear.

4

Published as a conference paper at ICLR 2023

Figure 3: How zt changes from z0. The ellipses in the third panel represent the scattered features.
The scatter plots are the PCA projection of the resulting zt after finetuning. For tiny, mild, and
strong adaption, we use τ = 1024, 64, 0, respectively. The heat-maps of the last column are the
“head-exchange” experiments (all under the Toy+MLP settings).

inequality, i.e., (∇zq)⊤(ey − p0) ≤ ∥∇zq∥2 · ∥ey − p0∥2. However, recall that the direction term
Equation (2) in also plays an important role, especially at the beginning of finetuning.

To verify our hypothesis about the direction term, we depict the change of this term during finetuning
in the right panel of Figure 2. Suppose a linear task-head (non-linear heads have similar behavior
in the NTK regimes), this quantity can be approximated by the norm of the gradients to vt, since
∥∇zqt+1 − ∇zqt∥2F = ∥v⊤t+1 − v⊤t ∥22 = γ2∥∇vL∥22. As we find ∥vt∥2 changes little during the
finetuning stage, the large ∥∇vL∥2 is more likely from a big direction change. As illustrated by
Figure 2, when τ = 0, ∇zqt changes a lot at the beginning of FT, which can make z(n) change in
inconsistent directions. When τ = 1024, the direction term changes only a little through finetuning.

This finding inspires us to look deeper at what is the difference between a strong adaptation (e.g.,
τ = 0) and a mild adaptation (e.g., τ = 4). To get an overall picture of z’s change, only ∥zT − z0∥2
is not enough. Hence we analyze the following four quantities related to the similarity between the
features before finetuning z0 and afterwards zT : ∥zT − z0∥2, ∥zT ∥2, z⊤T z0, and cos(zT , z0). With
an overparameterized model, we can analytically calculate the expressions of them and make the
following conclusion:
Proposition 2 (Informal). In an overparameterized two-layer linear model, when τ increases (the
AIE decreases), ∥zT − z0∥22 monotonically decreases while ∥zT ∥22 and z⊤T z0 exhibit a quadratic
trend. The trend of cos(zT , z0) is hard to predict, but there is a phase that this value increases fast.

Such a trend is illustrated in Figure 3, supported by various experiments in Appendix C, and strictly
proved in Appendix D. With this information, we can infer the behavior of zT and sketch it in the
second and the third panels. In the “tiny” case, when vτ0 is fully converged (τ → ∞), the features
are almost stable during finetuning; this only works well when the pretrained features are perfect
for the downstream task. In the “mild” case, when τ is reasonably large, the resulting zT will be
stretched (∥zT ∥2 increases) in a similar direction (cosine changes little). This kind of z can make the
original overlapped features become more separable without changing the manifold of the features
too much, which is desirable in most transfer learning scenarios. For the “strong” case, where we
only HP for a few updates or simply use a random head, zT will change in an unpredictable way,
especially for the early updates. Although the fine-tuned model may generalize well, zT might be
quite different from z0. Thus, if we believe the pretrained features are too specific to the pretraining
dataset, the “strong” case is a reasonable choice.

Note that even though the scatter plots of the mild and strong cases look similar, the correspond-
ing feature manifold might be quite different. To verify this, we first run HPτ -FT (i.e., load the
pretrained model, prob the head for τ epochs, then finetune to converge) for 7 different τ . Then
we save the converged backbone and task-head separately for each τ , and pair-wisely exchange the
head and backbone to build 49 new models (without further tuning). The training and validation
accuracy of the 49 models are reported in Figure 3. The results match well with our analysis: 1) the

5

Published as a conference paper at ICLR 2023

off-diagonal values are lower, which means the representations learned by experiments with differ-
ent τ are different; 2) for the strong adapted backbones (the first two columns), the heads from other
cases are not compatible, which means the features’ manifold are significantly changed; 3) for the
mild and tiny cases (latter columns), the aforementioned incompatibility almost disappears, which
means the features’ manifold of these cases are quite similar.

4.3 BACKBONE DEPTH AND HEAD CAPACITY

Beyond how long we train the task head, the structure and capacity of the task head also influence
the training prediction after this stage, thus the adaptation of zt. We briefly discuss the trend here
and verify them in Section 5. When using a low-capacity head (e.g. a linear head parameterized by a
h×k matrix), it might be hard to preserve the pretrained z0 even a very large τ is chosen, as the head
cannot achieve a high enough training accuracy to decrease AIE. On the other hand, if the capacity of
the task head is much bigger than the backbone, the information from the pretrained network might
be easily distorted. For example, consider using only the first block of a pretrained ResNet18 as the
backbone and concatenating the other 3 blocks with a 10-layer wide MLP. If this huge task head is
randomly initialized, the information contained in the backbone could be completely rewritten, as
the random changing phase of zt can be very long (remember that in Equation (2), zt will change in
random directions before ∇vqt becomes less noisy).

5 EXAMPLES ON REAL TASKS

In this section, we first provide a “user guide” of all the aforementioned methods. Note that given
the pretrained and downstream tasks, determining the optimum adaptation energy is rather heuristic:
the user guide only provides some high-level suggestions for the practitioners. We then provide
abundant real examples of how to apply these principles. Generally, we can first try sweeping the
optimal τ using linear head and consider other advanced tricks if necessary.

5.1 USER GUIDE

The goal of this paper is to provide a toolbox for preparing the task-head before finetuning. Here,
we suggest a “phenomenon → hypothesis → solution” workflow and use the validation performance
for verification. Recall how we mitigate the overfitting problem using dropout: validation accuracy
decrease after convergence → model overfitted → add dropout. Similarly, we can have: HP train-
acc converge to 100% → no enough energy → use smaller τ .

However, in practice, it is unknown that how much energy is beneficial, as the neural network might
not encode the input samples as we humans expected. Hence, we suggest starting from the basic
setting, i.e. using a linear head and sweeping τ to get a high-level understanding of how the energy
influence the downstream generalization. Usually, selecting the optimal τ∗ using validation accuracy
can ensure a reasonably good test performance, as verified in the next subsection.

The advanced tricks are only applicable to specific scenarios and need more consideration. For ex-
ample, if we really want tiny energy but using the linear head only achieves less than 50% training
accuracy after head probing, we can consider an MLP head to increase the converged training ac-
curacy (hence reduce the energy). If we want a mild adaptation, but the training accuracy during
HP goes to 100% too fast, using label smoothing during HP can be considered. If we believe the
downstream task only needs low-level features of the backbone, partial-backbone is a good choice.
However, these advanced tricks also have side effects that are deleterious to the downstream perfor-
mance. We will analyze their advantage and limitations in Section 5.3 with concrete examples.

5.2 BASIC METHOD: EARLIER STOPPING HP

Following our theory, when the learning rate for HP is fixed, the value of τ is positively corre-
lated with the training accuracy, thus negatively correlated with energy. Hence, given a pretrained
backbone and a downstream task, we can always start from sweeping τ (see Figure 4).

As stated in the motivation part, during finetuning, we usually expect some feature adaptation while
keeping some pretrained information. Hence, neither τ = 0 nor τ = ∞ is optimal. We find such a

6

Published as a conference paper at ICLR 2023

Figure 4: Sweeping τ from 0 to 200 (in 2n fashion). The valid-accuracy of FT-only setting is the
left most point in each panel. The first 4 columns are on image classification task, the fifth one is on
graph task, and the last one is on image segmentation task.

downstream data: Flowers STL10 CIFAR100 Tox21
pretraining task-data: MoCo-IN Sup-IN Sup-C10 MoCo-IN Sup-IN Sup-C10 MoCo-IN Sup-IN Sup-C10 Sup-pcba

HP-train-acc 59.711 85.826 7.031 91.889 96.291 75.181 56.397 62.709 11.735 79.121
HP0-FT 76.953 91.295 60.714 96.136 97.452 86.811 80.432 84.736 65.608 81.274

HP200-FT 84.882 91.653 43.973 96.363 97.374 84.778 83.744 84.347 63.992 79.666
HPτ∗-FT 86.831 92.299 63.711 96.753 97.697 87.739 83.814 84.971 65.966 83.263

lsHP200-FT 86.946 92.746 42.299 96.639 97.959 85.912 83.412 85.357 65.244 83.853

Table 1: Downstream test accuracy across different settings. τ∗ is selected based on validation accu-
racy in sweeping. The HPτ∗ always bring some improvement. The lsHP can further improve when
the HP-only method achieves a high accuracy (no enough energy for adaptation), but fails when the
pretraining features are not suitable (in Sup-C10 case). See Section 5.3 for more discussions.

trend is consistent across various settings: from image input to graph input, from classification task
to segmentation task, and from supervisory pre-training to unsupervised pre-training.

Other than this general trend, the nuance of experiments under different settings also supports our
analysis well. Specifically, in the image classification experiments shown in Figure 4, adapting a
ResNet50 to STL10 behaves differently on different pretraining task. In the first column, we see a
large τ (small energy) hurts the downstream generalization performance, because the features pre-
trained on CIFAR10 might be far from optimal for the downstream task. In contrast, the features
pretrained on ImageNet-1K (IN1K for short) all provide good results. Among those IN1K pre-
trained models, the model from a supervised classification task leads the best overall downstream
performance, but large τ is still harmful. In other words, the features pretrained this way might be
somewhat too specific to the pretraining dataset, and hence mild adaptation is beneficial. Regarding
the unsupervised pretraining cases, BYOL (Grill et al., 2020) is less sensitive to the choice of τ ,
while MoCo (He et al., 2020) behaves more similarly to the supervised case.

Another interesting finding is that the HP training accuracy at the optimal τ∗ is usually smaller than
the converged value: we cannot select τ based on the standard early stopping criterion on HP train
accuracy. As the task head under τ∗ usually has not converged on the pretraining dataset, we call
this method “earlier stopping HP” (HPτ∗-FT for short). As shown in Table 1, HPτ∗-FT can always
bring improvements.

5.3 ADVANCED TRICKS: SUPERIORITY AND LIMITATION

MLP Head: Instead of using a linear head, authors of Chen et al. (2020b) claim that using an MLP
head can sometimes bring improvement. Following the analysis of this paper, we can consider this
trick when we want small energy while the linear head cannot reach a high HP training accuracy
even after a long HP. For example, in the first two columns in Table 2, the HP-train-acc in the linear
head cases plateaued after reaching 92% or 78%, while a 2-layer MLP can reach 99% and 95%. As
the energy decreases, features adapt less during finetuning (see the decreased distance metrics) and
the final models generalize better.

However, we should be careful when applying this trick if we want to use a small τ (i.e., large
energy). Recall our analysis that the inconsistent direction term (i.e., ∇zqt defined in Equation (2))
makes the feature adaptation more unpredictable at the beginning of finetuning. Increasing the head
capacity in this case would make the head converge slower and hence prolong such a chaos phase.

7

Published as a conference paper at ICLR 2023

Sim-Real Sup-Sketch Sim-STL Sup-STL Sim-STL Sup-STL
HP-train-acc 92.676 78.213 96.875 100 97.607 100
1-cos(zT , z0) 0.1269 0.1422 0.0044 0.017 0.0049 0.0256
∥zT − z0∥22 5.247 4.752 1.792 6.716 1.731 7.391
FT-val-acc

Baseline
Linear-head

78.075 61.545

Baseline
Small energy
ηFT = 1
ηHP = 1 93.914 97.581

Small energy
ηFT = 0.9
ηHP = 0.9 94.015 97.694

HP-train-acc 99.121 94.883 96.875 100 97.982 100
1-cos(zT , z0) 0.1098 0.1104 0.014 0.0549 0.0109 0.0849
∥zT − z0∥22 4.942 4.206 1.841 9.278 3.041 13.881
FT-val-acc

2MLP-head

78.453 63.773

More energy
ηFT = 1
ηHP = 0.9 94.304 97.92

Opposite Energy
ηFT = 0.9
ηHP = 1 93.208 97.039

Table 2: How ls-HP and larger head influence the feature adaptation. The models are pretrained
using SimCLR (Sim) or supervised (Sup) classification on IN1K. Number in blue (red) represent an
decrease (increase) compared with its counterpart in the baseline. See more results in Appendix C.

Label Smoothing HP: Recall that the energy is upper bounded by ∥ey − p0∥22, where p0 is the
model’s prediction after HP for τ epochs. p0 converges to the labels used in HP when τ → ∞.
Hence, instead of changing τ , we can also manipulate the labels in HP to achieve a similar goal.
One simple yet effective way is label smoothing (Müller et al., 2019, e.g.). By setting the labels
during HP as ηHP ey +(1− ηHP) ∗ u, where u is a uniform K-class categorical distribution, the HP
stage can always reserve at least (1− ηHP) ∗ ∥ey −u∥2 energy for the following feature adaptation,
even τ → ∞. Such a trick (lsHP for short) is quite helpful when the HP-train-acc converges to 90%+
very fast, yet we still want a mild adaptation, like the example shown in the second two columns in
Table 2. With lsHP, we see that the features adapt more even the HP-train-accs are unchanged.

To verify that the aforementioned improvement comes from the reserved energy during lsHP, we
further try using smoothed labels during finetuning (e.g., ηFT = 0.9). The results match our anal-
ysis: when ηHP = ηFT = 0.9, the reserved energy disappears, as the labels of the two phases are
the same again. Hence, all the numbers under this condition are quite similar to the baseline case
(ηHP = ηFT = 1). For the “opposite energy” case, we observe a larger adaptation but a worse
generalization performance. That is because the reserved energy make the features adapt in opposite
directions. These results remind us that if we decide to use smooth label in both finetuning and head
probing (e.g., we assume most of the samples in the downstream dataset are ambiguous), we need
to set ηHP ≤ ηFT to ensure a correct direction.

In summary, the lsHP trick is suitable for scenarios where the pretrained features are pretty well and
the standard HP converges to 90%+ very fast. When the HP-train-acc is too low, the assumption
used in HP, i.e. p0 converges to the labels, no longer holds. Hence, lsHP does not always bring
enhancement, an example is given in the last row in Table 1.

Real Sketch Quick
HP-train-acc 92.676 78.213 64.307

-L4.3 100 100 97.666
-L4.2, -L4.1 100 100 100
FT-val-acc 78.075 61.545 59.703

-L4.3 78.528 65.683 67.011
-L4.2 78.427 65.336 67.087
-L4.1 76.689 65.017 68.07

Table 3: ResNet50 pretrained on IN1K
using SimCLR. -L4.x means reinitializ-
ing the blocks in the resnet (merge them
to task head) until layer 4.x.

Partial Backbone:

This is a more intricate trick that requires a stronger and
more heuristic hypothesis. For example, there is a com-
mon belief in the deep-learning community that the lower
layers extract fundamental features (e.g. edges, curves,
and texture in vision tasks) while the higher layers learn
more semantic features (e.g. dog heads or wheels) (Bal-
dock et al., 2021; Olah et al., 2020). Hence, if we be-
lieve the downstream task treats the low-level features as
beneficial while the high-level features are harmful, re-
initializing the higher layers (like the fortuitous forgetting
mentioned by Zhou et al. (2022)) and incorporating them
as part of the task head can be beneficial.

See the results in Table 3, where the Quick4 dataset is
likely to rely more on the low-level features learned dur-
ing pretraining. So the optimal setting for the Quick column is removing information from the last
three layers (i.e., L4.3, L4.2, and L4.1) in ResNet50, while the optimal setting for the other two
cases is to reinitialize only the last layer (i.e., L4.3). Using this trick, the task-head capacity might
increase significantly (see the HP-train-acc increase to 100% after reinitializing). Hence, the prin-
ciples discussed in the MLP-head trick also hold here. However, as it is hard to figure out what are
the beneficial features for downstream tasks, such a trick has the lowest priority in our toolbox.

4Refer to Figure 8 to get an intuition about what the samples in theses dataset look like.

8

Published as a conference paper at ICLR 2023

6 RELATED WORK AND DISCUSSIONS

HP, FT and HP-FT. Head probing and fine tuning are two fundamental algorithms in transfer learn-
ing, which have also attracted much discussion and debate. Intuitively, by freezing the pretrained
backbone, HP will re-combine the features without distorting them, and hence yields better perfor-
mance than FT when features are perfect (Peters et al., 2019). However, when pretrain and down-
stream tasks are very different, adapting the features is important and FT outperforms HP (Chen
et al., 2020b; Zhai et al., 2019; He et al., 2022). Combining the strengths of HP and FT, authors of
Kumar et al. (2022) demonstrate that HP-FT (i.e., first HP, then FT) yields the best performance on
both in-distribution and out-of-distribution cases. Although they provide some theoretical guaran-
tees for the superiority of HP-FT, some of their assumptions are dubious. To shed more lights on
the pros and cons of these two methods, this paper analyze in detail how the features change under
different task-head settings. Specifically, by controlling the HP epochs τ or otherwise influencing
the energy term, we can design different types of feature adaptations for different downstream tasks.
The relationship between the choice of task head and resulting z’s adaptation is explained using
Equation (2), verified by various experiments, and proved in an overparameterized linear model.
Although the paper only analyze these fundamental settings, we believe the analysis provided here
can also be combined with (or explain the benefits of) other more complex finetuning mechanisms,
like those of Guo et al. (2019); Zhang et al. (2020a); Aghajanyan et al. (2021); Howard & Ruder
(2018). For example, a common practice in transfer learning is to use a small learning rate for the
backbone and a large learning rate for task head. From our perspective, this method can weaken the
influence of the “noisy direction” term and make the features adapt in a low energy condition.

Backbone and head depth. Besides the influence of the initial value of the head, this paper also
discusses the influence of the relative capacity between backbone and head. Chen et al. (2020b) show
that a simple MLP head sometimes also brings enhancement. When the backbone only copies the
early layers of the pretrained network, as the downstream task might need different levels of features
(Olah et al., 2020; Baldock et al., 2021; Zhang et al., 2020b), the later layers and the original head
can be combined as the new complex task-head, like the example in Figure 1. Furthermore, in some
encoder-decoder style models, like some the models for some language tasks (Peters et al., 2019;
Zhu et al., 2019), the head (decoder) might have comparable capacity with the backbone (encoder).
In another extreme case, if we use pretrained word2vec features (Mikolov et al., 2013) and plan
to FT them in a downstream task, the task head is the whole network, which is much bigger than
the embedding layer. We believe the discussion in this paper might also help inspire the design of
HP-FT strategy for these practical scenarios.

7 CONCLUSION

This paper studies how the choice of task heads influence the pretrained features z’s adaptation and
hence influence the downstream performance. By decomposing the learning dynamics of z, we find
the keys are the energy and direction terms, which highly correlate with the accuracy at the begin-
ning of the FT process (i.e., the accuracy after HP). Hence under a common HP-FT framework, we
carefully analyze the relationship between the HP epochs (τ) and the features’ adaptation (discrep-
ancy between zT and z0). Different from most existing works, which mainly focus on Euclidean
or cosine distance, we further analyze z⊤T z0 and ∥z0∥22 to depict a more comprehensive relationship
between τ and zT , like the examples in Figure 3. This non-trivial trend is strictly proved in an
overparameterized linear model and experimentally verified under different practical settings.

Based on these observations, we speculate that a suitable adaptation of zT is beneficial when the
pretrained features are not perfect for the downstream tasks. Under different experimental settings,
we illustrate how to achieve better downstream performance by controlling the adaptations of zT
(using early-stopping HP, label smoothing during HP, or manipulating the head’s capacity).

Finally, there are still many open questions and phenomena not address by this study. For exam-
ple, methods to quantitatively or even adaptively analyze the discrepancy between the pretrain and
downstream tasks would be very useful in knowing what kind of head probing to perform in ad-
vance. However, we believe the methods proposed in this paper can help provide a new perspective
on understanding feature adaptation, which we hope will aid future work in this area.

9

Published as a conference paper at ICLR 2023

REFERENCES

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal
Gupta. Better fine-tuning by reducing representational collapse. In International Conference on
Learning Representations, 2021.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 2021.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking Atrous Convolution for Semantic
Image Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2017a.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, pp. 834–
848, 2017b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint, 2020b.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics. JMLR Workshop and Conference Proceedings, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in Neural Information Processing Systems,
2018.

M. Everingham, A. Eslami, L. Gool, C. Williams, J. Winn, and A. Zisserman. Pascal Vis. Obj. Class
Challenge: A Retrospective. IJCV, 2015.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020
(11):113301, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 4805–4814, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

10

Published as a conference paper at ICLR 2023

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks
for image classification with convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 558–567, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
ACL, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. International Conference on
Learning Representations, 2022.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 2019.

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. In International Conference on
Learning Representations, 2020.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang.
Pre-training molecular graph representation with 3d geometry. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xQUe1pOKPam.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 2019.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406–1415, 2019.

Matthew E Peters, Sebastian Ruder, and Noah A Smith. To tune or not to tune? adapting pretrained
representations to diverse tasks. ACL, 2019.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=xQUe1pOKPam
https://openreview.net/forum?id=xQUe1pOKPam

Published as a conference paper at ICLR 2023

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint, 2019.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: a
baseline for network adaptation via additive side networks. In European Conference on Computer
Vision, pp. 698–714. Springer, 2020a.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample bert fine-tuning. In International Conference on Learning Representations, 2020b.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample {bert} fine-tuning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=cO1IH43yUF.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in connec-
tionist networks. International Conference on Learning Representations, 2022.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tieyan
Liu. Incorporating bert into neural machine translation. In International Conference on Learning
Representations, 2019.

12

https://openreview.net/forum?id=cO1IH43yUF

Published as a conference paper at ICLR 2023

1. Theory in overparameterized linear example
2. Decomposition in Eq.2
3. Correlation between HP-train-acc(gap) and dist(zt, z0)
4. Further decompose dist(zt, z0)
5. Trends holds for different settings (MLP, CNN, GNN)

1. Usually mild adaptation is beneficial
2. Better features need less adaptation
3. Other designs like label-smoothing HP,

MLP-head, latter layers forgetting

Structure and

value of 𝒗𝟎
Resulting 𝒛𝒕 ID valid accuracy

Energy, direction
(𝐞𝐲 − 𝐩𝟎)

𝛁𝐳𝐪𝟎

Depends on
PT/DS tasks

Figure 5: The flow of this paper. Code is available at https://github.com/Joshua-Ren/
how_to_prepare_taskhead.

A DECOMPOSITION OF CHANGE OF Z

Proof of Equation (2):

Recall z = fB(x), q = gz(z) and p = Softmax(q). Use b ∈ Rhd×1 to represent the vector form of
B ∈ Rh×d. The MSE loss on one sample is Lmse

(
q(n), eyn

)
= 1

2∥q
(n)−eyn

∥22. The cross-entropy
loss on one sample is Lce

(
q(n), eyn

)
= H

(
eyn

,q(n)
)
, where H(p,q) = −

∑
k pk log qk is the

cross entropy for categorical distribution. Using 1st Taylor expansion, we have:

z
(0)
t+1 − z

(0)
t︸ ︷︷ ︸

h×1

= ∇bz
(0)
t︸ ︷︷ ︸

h×hd

· (bt+1 − bt)︸ ︷︷ ︸
hd×1

+O
(
∥bt+1 − bt∥2

)
. (3)

We then calculate bt+1 − bt assuming the parameters are updated in batch-SGD:

bt+1 − bt︸ ︷︷ ︸
hd×1

= − γ

N
a

N∑
n=1

∇bL
(
q
(n)
t , eyn

)
︸ ︷︷ ︸

1×hd


⊤

(4)

= − γ

N

N∑
n=1

∇qL
(
q
(n)
t , eyn

)
︸ ︷︷ ︸

1×k

· ∇zq
(n)
t︸ ︷︷ ︸

k×h

∇bz
(n)
t︸ ︷︷ ︸

h×hd


⊤

(5)

= − γ

N

N∑
n=1

(
∇bz

(n)
t

)⊤

︸ ︷︷ ︸
hd×h

(
∇zq

(n)
t

)⊤

︸ ︷︷ ︸
h×k

(
∇qL

(
q
(n)
t , eyn

))⊤

︸ ︷︷ ︸
k×1

(6)

For different loss functions, we have different expressions for the last term:

∇qLmse

(
q
(n)
t , eyn

)
=

(
q
(n)
t − eyn

)
; ∇qLce

(
q
(n)
t , eyn

)
=

(
p
(n)
t − eyn

)
, (7)

where q is the logits and p = Softmax(q) is the predicting probability. We see these two kinds of
loss have similar expression on this term, so we only explain the cross-entropy version (as it is more
common in practices) in the main content.

Using the above expressions, we can first bound the high-order term (cross-entropy version):

O(∥bt+1 − bt∥2) = O(γ2∥∇zq
(n)
t ∥2op · ∥∇bz

(n)
t ∥2op · ∥q

(n)
t − eyn

∥2op) = O(γ2), (8)

as long as the hyperparameters are appropriately chosen and the loss doesn’t blow up (or gradient
clipping is applied) in FT stage.

13

https://github.com/Joshua-Ren/how_to_prepare_taskhead
https://github.com/Joshua-Ren/how_to_prepare_taskhead

Published as a conference paper at ICLR 2023

Finally, combining all the expressions, Equation (10) can be rewritten as:

z
(0)
t+1 − z

(0)
t︸ ︷︷ ︸

h×1

= − γ

N

N∑
n=1

(
∇bz

(0)
t

)
︸ ︷︷ ︸

h×hd

(
∇bz

(0)
t

)⊤

︸ ︷︷ ︸
hd×h

(
∇zq

(n)
t

)⊤

︸ ︷︷ ︸
h×k

(
∇qLce

(
q
(n)
t , eyn

))⊤

︸ ︷︷ ︸
k×1

+O(γ2) (9)

=
γ

N

N∑
n=1

κ
(0,n)
t︸ ︷︷ ︸
h×h

·
(
∇zq

(n)
t

)⊤

︸ ︷︷ ︸
h×k

(
eyn − p

(n)
t

)
︸ ︷︷ ︸

k×1

+O(γ2), (10)

which is the same with Equation (2) in the main context.

Proof of Proposition 1:

It is easy to get z(j)T − z
(j)
0 by stacking the LHS of Equation (2) (or Equation (10)) under different t:

z
(j)
T − z

(j)
0 =

T−1∑
t=0

γ

N

N∑
n=1

(
κ
(j,n)
t ·

(
∇zq

(n)
t

)⊤
·
(
eyn

− p
(n)
t

))
+O(γ2) (11)

= γ

T−1∑
t=0

Ex(n)

[
κ
(j,n)
t ·

(
∇zq

(n)
t

)⊤
·
(
eyn

− p
(n)
t

)]
+O(γ2) (12)

= γ · Ex(n)

[
κ(j,n) ·

T−1∑
t=0

(
∇zq

(n)
t

)⊤
·
(
eyn − p

(n)
t

)]
+O(γ2) (13)

= γ · Ex(n)

[
κ(j,n) ·

T−1∑
t=0

v⊤t ·
(
eyn

− p
(n)
t

)]
+O(γ2), (14)

where the first equation follows definition. The second equation is assuming a uniform training
sample distribution, i.e., p(x) = 1

N . The third equation follows the slow-change NTK assumption,
hence κ(j,n) no longer depends on t. The last equation follows the linear-head assumption, i.e.,
∇zq

(n)
t = vt.

We cannot go further as there are three matrices (or vectors) in the expectation. Hence we instead
analyze the F-norm (i.e., L2-norm for the vector z) of the features’ change.

14

Published as a conference paper at ICLR 2023

∥z(j)T − z
(j)
0 ∥2 = γ ·

∥∥∥∥∥Ex(n)

[
κ(j,n) ·

T−1∑
t=0

v⊤t ·
(
eyn − p

(n)
t

)]∥∥∥∥∥
2

+O(γ2) (15)

≤ γ · Ex(n)

∥∥∥∥∥κ(j,n) ·
T−1∑
t=0

v⊤t ·
(
eyn − p

(n)
t

)∥∥∥∥∥
2

+O(γ2) (16)

≤ γ · Ex(n)

∥∥∥κ(j,n)
∥∥∥
2
·

∥∥∥∥∥
T−1∑
t=0

v⊤t ·
(
eyn

− p
(n)
t

)∥∥∥∥∥
2

+O(γ2) (17)

≤ γ · C1 · Ex(n)

∥∥∥∥∥
T−1∑
t=0

v⊤t ·
(
eyn

− p
(n)
t

)∥∥∥∥∥
2

+O(γ2) (18)

= γ · C1 ·
T−1∑
t=0

Ex(n)

∥∥∥v⊤t ·
(
eyn − p

(n)
t

)∥∥∥
2
+O(γ2) (19)

≤ γ · C1 ·
T−1∑
t=0

Ex(n)

∥∥v⊤t ∥∥2 · ∥∥∥eyn
− p

(n)
t

∥∥∥
2
+O(γ2) (20)

≤ γ · C1 · C2 ·
T−1∑
t=0

Ex(n)

∥∥∥eyn − p
(n)
t

∥∥∥
2
+O(γ2) (21)

≤ γ · C1 · C2 · T · Ex(n)

∥∥∥eyn − p
(n)
0

∥∥∥
2
+O(γ2). (22)

Here the first equation is by definition. The second inequality follows triangle inequality. The third
inequality follows Cauchy-Schwarz inequality. The forth inequality is assuming the F-norm of NTK
is bounded by C1. The fifth equation is sweeping the summation order. The sixth inequality also
follows Cauchy-Schwarz inequality. The seventh inequality assumes the norm of the last layer is
bounded by C2. The eighth inequality is assuming a stable learning process where the gap between
eyn

and p
(n)
0 keeps decreasing during training.

Finally, by taking expectation of all the input samples, we can have:

Ex(j)∥z
(j)
T − z

(j)
0 ∥2 ≤ c · Ex(n)∥eyn

− p
(n)
0 ∥, (23)

where c = γ · C1 · C2 · T is a constant and Ex(n)∥eyn
− p

(n)
0 ∥ is the AIE term (Eaie) defined in

Proposition 1.

Verification of Slow Kernel Change Assumption:

Figure 6: In finetuning, the NTK of the backbone adapts quite slow if the model is pretrained.

We decompose the one-step dynamics of z(j)t in Equation (2) into three parts, which represent kernel,
direction, and energy respectively. In our analysis, we have a mild assumption that the kernel of the

backbone, i.e., κ(j,n)
t =

(
∇Bz

(j)
t

)(
∇Bz

(n)
t

)⊤
∈ Rh×h, changes slow during finetuning when the

learning rate is small and the training is stable (the loss converges). Although there are several

15

Published as a conference paper at ICLR 2023

works supporting this assumption (Yang & Hu, 2020; Geiger et al., 2020), to make the paper more
self-contained, we directly observe how this term adapts during pretraining in Figure 6.

We measure the change of this term by calculating knorm = ∥κ(j,n)
t ∥F and kgap = ∥κ(j,n)

t+1 −
κ
(j,n)
t ∥F for each t during finetuning. As computing the empirical NTK on the whole dataset re-

quires huge memory, we randomly sample 50 x as our “probing samples”, computing knorm and
kgap on 2,500 different (x(j), x(n)) pairs, and then report their mean values at each t. To verify our
assumption, we compare four different settings:

• In Rnd Backbone, we randomly initialize the whole network and train it on the downstream
dataset;

• In PT Backbone HPτ ep, we copy the pretrained backbone, attach a randomly initialized
head, and then HP for τ epochs.

In the first panel in Figure 6, we see the training accuracy of all these settings converge to 100%
(they also have similar validation accuracy). In the second and third panel, we plot the change of
knorm and kgap respectively. It is obvious that compared with using random backbone, the NTK of
a pretrained backbone indeed changes slow during the finetuning stage.

B EXPERIMENTAL SETTINGS

B.1 TOY CASE

The experiments of the toy setting appear in Figure 2 and Figure 3. In the toy setting, we first
pretrain a 4+1 (4 layers of backbone and 1 layer of task head) layers MLP on the full MNIST dataset
(LeCun, 1998), with learning rate 10−3, with cosine scheduler until convergence. The hidden width
is 128 and relu activation is applied for each layer in the backbone. In the downstream task, we only
consider the first three classes and randomly select 1000 samples for each class (i.e., 3*1000 samples
in total). We also apply random rotation and center crop augmentations to simulate the distribution
shift in downstream task, like the right panel in Figure 7. The downstream linear task head is then a
128*3 matrix (weights) and a 128*1 vector (bias). To ensure a fine-grained observation of feature’s
adaptation, we use a small constant learning rate (10−4) in all the experiments. The FT epoch is
50, and the HP epoch ranges from 0 to 50,000 (50,000 is simulating the v∞hp case, usually train 0 to
1,024 epochs).

(a) Pretrain dataset. (b) Downstream (HP/FT) dataset.

Figure 7: Dataset for toy experiments. We use full MNIST dataset to pretrain the network. The
downstream dataset is a subset of MNIST (only 0, 1 and 2) applying random rotation and zoom-in.

B.2 PRACTICAL SETTINGS – CLASSIFICATION

Besides the simple MNIST and MLP, we also verify our analysis in many real settings. To demon-
strate the generality of our findings, we conduct experiments on image classification, image seg-

16

Published as a conference paper at ICLR 2023

sketch

airplane alarm-clock angle apple

real

quick

banana basketball bicycle

Figure 8: DomainNet dataset. Only three domains are used: ‘real’ is similar to IN1K, ‘sketch’ is
less sensitive to color and background, ‘quick’ only contains some lines, which is quite different
from IN1K.

Basic setting:

SimCLR:

𝑿

𝑻𝟏

𝑻𝟐

𝑿𝟏

𝑿𝟐

ResNet-Backbone

ResNet-Backbone

𝒛𝟏

𝒛𝟐

Projection
Head

Projection
Head

Loss

BYOL:

𝑿

𝑻𝟏

𝑻𝟐

𝑿𝟏

𝑿𝟐

Backbone

EMA
Backbone

sg(𝒛𝟐#)

Projection
Head

Loss

Prediction
Head

Projection
Head

𝒛𝟏

𝑿 B3

L4.3

L4.2

L4.1B2B1

ResNet-Backbone

𝒛

Task head

Loss

MoCo:
𝑿 Backbone

Memory bank
Sample

Loss

𝒒

𝒌

Image Segmentation:

𝑿 B3

L4.3

L4.2

L4.1B2B1

ResNet-Backbone

𝒛

Task head

Loss

Partial Backbone:

𝑿 B3B2B1

ResNet-Backbone

𝒛 LossB4

A
SPP

C
O

nv1

C
onv2

U
psam

ple

Figure 9: Introduction of models used in this paper.

mentation, and molecular graph classification tasks. The qualitative trend is quite consistent across
different tasks and networks.

Model Structure:

Specifically, we consider ResNet18/34/50 for the image classification task. They all have 4 blocks,
each containing 3 layers, as illustrated in Figure 9. For the linear task head (or an MLP head), we
directly concatenate a linear layer (or an MLP layer) to the backbone. For the partial backbone
method, several layers in the last block (e.g., L4.3, L4.2, L4.1) might be reinitialized and merged
to the task head. We also provide what is the backbone (all the blue squares) when self-supervised-
learning is considered, e.g., SimCLR, BYOL, and MoCo. In short, after pre-training, the backbones
under different PT tasks might have the same structure.

Pretraining tasks:

We pretrain the ResNet on CIFAR10 using common recipe (10−2 learning rate with a cosine sched-
uler (He et al., 2019), 5 ∗ 10−4 weight decay, simple augmentations like random flipping and crop-
ping, etc.). For the model pretrained on ImageNet, we directly download the checkpoints from
open-source implementations. Due to time and computing resource limitations, for vision tasks, we
only consider MoCo (He et al., 2020), Byol (Grill et al., 2020), SimCLR (Chen et al., 2020a), and

17

Published as a conference paper at ICLR 2023

supervised classification tasks for pretraining. For the graph dataset case, we consider a fundamen-
tal 5-layers graph convolutional network (GCN, (Kipf & Welling, 2017)), the hyper-parameters and
other detailed settings can be found in our github repo. The datasets applied in this paper are listed
in Table 4. Note that the backbone of image segmentation is the same as that in image classification.
The segmentation head is more complex, which will be discussed later.

Hyper-parameters for HP and FT:

In this paper, experiments with the same setting in different figures or tables share the same set of
hyper-parameters. Generally, for all the experiments, the batch size is 128, hidden layer width is
256 (in the MLP head case). The input image size for CIFAR pretrained model is 32× 32 while that
for the IN1K pretrained model is 224× 224. Hence in the corresponding experiments, we will first
resize the input samples and then apply random cropping and random flipping augmentations. For
the HP phase, the τ∗ is selected based on the validation performance, but the detailed learning rate
and maximum τ might be different under different settings (as the dataset size are different). For the
FT phase, we use a standard SGD with momentum (β = 0.9). The default learning rate is 10−3 and a
cosine scheduler is applied (the maximum FT epoch also varies for different downstream datasets).
Note that we will early stop the FT process, hence the maximum FT epoch doesn’t influence the
reported performance a lot. For those dataset-dependent hyper-parameters, we summarize them as:

• For the insufficient pretrained backbone cases, i.e., Res50-C10(Sup), Res18-C10(Sup), in
Figure 4, Table 1 and other related experiments in the appendix, we set τ ∈ [0, 200], HP
learning rate is 3 ∗ 10−2, maximum FT epochs is 200 (usually converge less than 100
epochs), with usually a larger initial FT learning rate (e.g., 3 ∗ 10−3);

• For the IN1K pretrained backbone (no matter by supervisory training, MoCo, Byol or Sim-
CLR), which can be found in Figure 1, 2, 4, Table 1 and many figures in the appendix,
we usually set τ ∈ [0, 200], HP learning rate as 10−2, maximum FT epochs as 200, and a
relative small FT learning rate (e.g., 3 ∗ 10−4);

• For any experiments whose downstream tasks are Flowers, Cars (the dataset is small while
number of classes is large), we consider to increase the HP learning rate to 5 ∗ 10−2, and
the maximum FT epochs to 1000 (usually converge less than 200 epochs);

• For any experiments whose downstream task is CIFAR (the dataset is bigger than STL), we
consider to increase the HP learning rate to 5 ∗ 10−3, and the maximum FT epochs to 100
(usually converge less than 50 epochs);

In summary, a general principle for these hyper-parameter selections is that the maximum τ should
make the HP training accuracy converge (increase slowly for several consecutive epochs), while the
finetuning epochs should make the training accuracy converge when τ = 0. For example, if the
downstream task is CIFAR10, which has 50,000 training samples and only 10 classes, finetune 20
epochs is enough. But CIFAR100, which also has 50,000 training samples but with more classes,
50 finetuning epochs are required (we set the maximum FT epochs as 100 for both CIFAR10 and
CIFAR100). For Flowers102, which only has 6,149 training samples but 102 classes, we set the
maximum FT epochs as 1,000 epochs. Anyway, we find the proposed trend is quite robust to these
hyper-parameters. The detailed settings can be found in our code base.

B.3 PRACTICAL SETTINGS – IMAGE SEGMENTATION

In addition to the image classification tasks, we also conduct experiments on image segmentation
tasks to verify the robustness of our analysis on various tasks. An image segmentation task is a task
where a model is trained to make class predictions at each pixel of an image given an input image.
We train and test segmentation models on PASCAL VOC (Everingham et al., 2015) dataset, one of
the most popular image segmentation datasets. An example of input image and segmentation label
are provided in Figure 10.

Model Structure:

For image segmentation tasks, we employ DeeplabV3 (Chen et al., 2017a) with ResNet50 as a
backbone. As with the classification tasks, ResNet50 consists of 4 blocks, each of which contains 3
layers. But unlike the classification tasks, kernel strides for convolutional layers are adjust to have

18

Published as a conference paper at ICLR 2023

train # test # class Comments
MNIST 60,000 10,000 10 Toy downstream use a subset, as in Figure 7.
STL10 5,000 8,000 10 Coates et al. (2011)

CIFAR10 50,000 10,000 10 Krizhevsky et al. (2009)
CIFAR100 50,000 10,000 100 Krizhevsky et al. (2009)
Flowers102 6,149 2,040 102 Nilsback & Zisserman (2008)

StanfordCars 8,144 8,041 196 Krause et al. (2013)
Dom-real <20,000 <4,000 200 (345) A subset, original 345 classes and more samples.

Dom-sketch <20,000 <4,000 200 (345) Less sensitive to color and texture.
Dom-quick <20,000 <4,000 200 (345) Only contains simple curves. (Peng et al., 2019)

ImageNet-1K 1,281,167 – 1000 Deng et al. (2009)
ogbg-moltox21 6,272 1,742 12 Wu et al. (2018)

ogbg-molhiv 32,901 8,226 regression Hu et al. (2020)
ogbg-molpcba 437,929 – 128 Hu et al. (2020)

Table 4: Datasets (vision and molecular graph) used in experiments.

(a) An input image. (b) A segmentation label.

Figure 10: An example of an image and label pair in PASCAL VOC dataset.

the higher spatial resolution for the output features of the backbone; the spatial resolution of the
features is 7× 7 for the classification tasks whereas it is 17× 17 for the segmentation tasks.

The features extracted from the ResNet50 backbone are passed to a segmentation head, which con-
sists of Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2017b) layers followed by a couple of
convolutional layers. ASPP is a stack of five regular and dilated convolutional layers which provide
the features with various size of receptive fields. The spatial resolution of the outputs of the seg-
mentation head stays in 17× 17, which are then upsampled to the original input image size through
bilinear interpolation. Here, we use the whole segmentation head as the task head.

Hyper-parameters for HP and FT: The ResNet50 backbone is pretrained on ImageNet dataset.
We set τ ∈ [0, 200], HP learning rate as 0.3, maximum FT epochs as 200 (usually converge less
than 50 epochs). Also, we use batch size of 16, and a SGD optimizer with momention (β = 0.9) but
without weight decay nor learning rate scheduler.

C MORE EXPERIMENTS

C.1 VERIFICATION ON THE CHANGE OF Z

In Equation (2), we decompose the learning dynamics of zt into three parts: relatively stable kernel,
direction, and energy. Based on this, we can expect a larger adaptation when the initial energy
is large. Furthermore, to get a more precise description of zt’s adaptation, we analyze a simple
overparameterized linear model in Appendix D. We show that as the initial prediction gap (i.e.,
energy) increases, the resulting zt will first be stretched with a small direction change (compared
with the original z0). If the initial energy keeps increasing, the resulting zt might be more and more
dissimilar to the original one. We use four distance related quantity to describe this trend, and verify
it under many different settings. In short, the trends are: 1.) more energy leads to larger ∥zt − z0∥22
and smaller cos(zt, z0); 2.) z⊤t z0 and ∥zt∥22 has a quadratic shape when energy decrease. Figure 11
provides an example of how zt changes when different τ is chosen.

19

Published as a conference paper at ICLR 2023

Figure 11: Change of z during FT under a toy setting. Using transparent square markers, we first
draw the 2-D projections (the first two components in PCA) of 100 randomly selected z

(n)
0 . Then

keeping the eigen-directions of this PCA, we project z(n)t of different t and encode t by transparency.
The converged z is represented by a cross marker with full transparency. It is clear that FT using
vrnd makes z change a lot, while v50000hp doesn’t change z too much.

𝐳𝟎

𝐳𝒕

𝐳𝒕 − 𝐳𝟎 2
2

cos(𝐳𝒕, 𝐳𝟎)

Feature Manifold

𝟎

Figure 12: Explanation of why small change of z⊤t z0, cos(zt, z0) can influence a lot.

Before diving deep into these examples, we provide some general commands. First, we do not
expect the experimental results to align perfectly with the examples in Figure 3, because too many
designs (like dropout, data augmentation, SGD noise, locking in strange local minima, learning rate
schedule, etc.) can influence the shape of the curve, hence we believe observing specific trends in
many cases is already a strong support for our analysis. Second, one might be curious about why in
some cases, the ranges between z⊤t z0 and cos(zt, z0) are so small. Hence in Figure 12, we provide
an illustration of why this happens: as the dot product measures two long vectors (remember they
have the same origin), a small change of z⊤t z0 can make a big difference. A large range of z⊤t z0
and cos(zt, z0) is a sign that zt already moves to another basin, which is the strong-case in Figure 3.
Third, in Appendix D, the change of z is linked to q0 − ey under an MSE loss, while in these
experiments, we use τ as our x-axis and consider a cross-entropy loss. Combining with the NTK
approximation applied in this ideal model, the experimental trends might not be exactly the same
with the theoretical ones.

Then, in Figure 13, Figure 14 and Figure 15, we demonstrate the trend when the model is pretrained
on different datasets, on different tasks, and when the downstream tasks are different, respectively.
Besides the general trends, i.e., decreasing ∥zt − z0∥22, increasing cos(zt, z0), quadratic z⊤t z0 and
∥zt∥22, we can observe another interesting phenomenon when the model is pretrained using different
tasks. See Figure 14, in Byol and SimCLR, sometimes we might get a very big z⊤t z0 (together with
a very small cos(zt, z0)), which makes it hard to observe any quadratic trend in some metrics. But
in the supervised pretraining case (no matter what dataset we use in pretrain and downstream tasks),
we never observe such a phenomenon – the ∥zt − z0∥22 always changes in a relatively small range.
We speculate that in the first several updates during head probing, the features first adapt to the
downstream task (i.e., classification), then gradually adapt to the downstream dataset distribution
(e.g., STL, Flowers, etc.). So a randomly initialized head might influence more when the pretrain
task is different from the downstream one. The detailed mechanism of adaptation of task and data
distribution might be more complex than we expect, so we left this for the future work.

C.2 INFLUENCE OF THE BACKBONE AND THE TASK-HEAD CAPACITY

In Section 4.3, we mention a case where the task head is more complex. For example, the head can
be a two-layers MLP rather than one linear layer, or we can only copy part of the pretrained model
as our backbone. However, these methods and tricks are quite complex and might not necessarily
enhance the performance, hence we put some results and discussions here. Remember that our

20

Published as a conference paper at ICLR 2023

Figure 13: Adaptation of zt when model is pretrained on different datasets.

analysis of how energy influences the features adaptation is still valid in these cases, as illustrated
by the distance related metrics in the tables.

From Table 5, 6, 7, and 8, we can draw the following three conclusions. First, the two-layers MLP
design will surely increase the training accuracy after head probing, and hence make the features
adapt less (but this might not enhance the downstream performance). Second, we compare the
downstream performance when some layers of the backbone are reinitialized as part of the task
head. The title “+L4.3” means we take the last layer (i.e., the 3-rd layer) of the last block (i.e., the
4-th block) in a ResNet50 out, and treat it as part of the task head. The title “+L4.2” and “+L4.1”
means we continue treating the 2-nd or the 1-st layer as the backbone. Under such a setting, the
“+L4.1” case will inherit the least amount of information from the pretrained model, and at the same
time, have the biggest task head. For the results in these tables, we train the head until convergence
in head probing phase, then fine tune the whole network together. Hence we see the “HP-train-acc”
value all increase to roughly 100%. However, the best setting differs when different downstream
datasets are considered. When the pretrained features are good (i.e., trained using IN1K), we see the
Domain-real dataset needs less adaptation and usually performs the best in the baseline case (i.e.,
copy all parameters from the pre-trained model). But Domain-quick dataset, which only contains
some black-and-white lines, prefers the “+L4.1” setting. In other words, preserving the features
captured by the earlier layers of the pretrained model is beneficial. When the pretrained features are
bad, like the CIFAR-pretraining case in Table 7, all these datasets prefer throwing away the later
layers.

In summary, although the correlation between features adaptation and downstream task performance
under different settings is quite complicated, our analysis of energy can still explain some phenom-
ena well.

Real Sketch Quick Real Sketch Quick
HP-train-acc 98.994 63.369 48.555 100 93.447 63.75
1− cos(zt, z0) 0.0315 0.2275 0.3506 0.0149 0.2032 0.3375
∥zt − z0∥2 17.868 22.246 27.954 17.694 21.171 27.634

Linear-head
Baseline

val-acc 54.839 37.789 61.416

2-MLP
Head

53.856 35.446 59.199
+L4.3 val-acc 53.629 35.966 61.568 HP-train-acc 99.492 99.072 93.975
+L4.2 val-acc 53.226 36.69 61.391 HP-train-acc 99.033 99.336 98.193
+L4.1 val-acc 53.856 35.446 59.199 HP-train-acc 99.863 93.447 63.75

Table 5: Results on a ResNet50 pertrained on Domain-Real. The pretrained validation accuracy is
only 54.612 while the training accuracy is 100. Maybe because the DomainNet-Real dataset only
contains less than 20k samples.

21

Published as a conference paper at ICLR 2023

Figure 14: Adaptation of zt when model is pretrained using different tasks.

Real Sketch Quick Real Sketch Quick
HP-train-acc 60.039 39.092 51.855 88.965 79.58 76.445
1− cos(zt, z0) 0.3492 0.4181 0.5034 0.3296 0.3672 0.4923
∥zt − z0∥2 9.963 9.72 9.287 9.104 9.209 9.874

Linear-head
Baseline

val-acc 58.846 45.023 61.593

2-MLP
Head

58.77 43.171 60.307
+L4.3 val-acc 59.929 42.882 59.602 HP-train-acc 100 100 98.252
+L4.2 val-acc 60.837 44.734 61.542 HP-train-acc 100 100 100
+L4.1 val-acc 61.164 45.775 62.626 HP-train-acc 100 100 100

Table 6: Results on a ResNet34 pertrained on CIFAR-100 in a classification task.

D ANALYZE LINEAR OVERPARAMETERIZATION PROBLEM

D.1 FORMALIZE THE CHANGE OF REPRESENTATIONS

Section 4 provides some intuitive explanations of how feature extractor f(x;B) changes given dif-
ferent g(z; v), which are well supported by the experimental results. To provide more insights, we

22

Published as a conference paper at ICLR 2023

Figure 15: Adaptation of zt when downstream tasks are different.

Real Sketch Quick Real Sketch Quick
HP-train-acc 96.875 85.938 64.063 96.671 98.438 84.375
1− cos(zt, z0) 0.1384 0.2807 0.4432 0.1544 0.2661 0.4147
∥zt − z0∥2 16.569 18.005 21.869 16.843 17.672 21.389

Linear-head
Baseline

val-acc 85.685 72.51 69.531

2-MLP
Head

85.031 69.651 66.683
+L4.3 val-acc 84.929 69.734 68.422 HP-train-acc 100 100 95.232
+L4.2 val-acc 83.342 68.547 68.7 HP-train-acc 100 100 98.087
+L4.1 val-acc 81.074 69.155 68.246 HP-train-acc 100 100 98.842

Table 7: Results on a ResNet50 pertrained on ImageNet-1K in a classification task.

analyze the change of features (i.e., z) in a simplified overparameterization problem, i.e., the one
provided in Section 3 and in Kumar et al. (2022). Under some mild assumptions and approxima-
tions, we provide an overview of how the norm and direction of z changes under different choice of
v0. We show that the v0 satisfying q0 = Y or q0 = 1

2Y are two critical points in feature adaptation.

We first rewrite Equation (1) in a non-matrix form:

23

Published as a conference paper at ICLR 2023

Real Sketch Quick Real Sketch Quick
HP-train-acc 92.676 78.213 64.307 99.121 94.883 82.354
1− cos(zt, z0) 0.1269 0.1422 0.1934 0.1098 0.1104 0.1522
∥zt − z0∥2 5.247 4.752 4.361 4.942 4.206 3.868

Linear-head
Baseline

val-acc 78.075 61.545 59.703

2-MLP
Head

78.453 63.773 63.609
+L4.3 val-acc 78.528 65.683 67.011 HP-train-acc 100 100 97.666
+L4.2 val-acc 78.427 65.336 67.087 HP-train-acc 100 100 100
+L4.1 val-acc 76.689 65.017 68.07 HP-train-acc 100 100 100

Table 8: Results on a ResNet50 pertrained on ImageNet-1K in a SimCLR task.

LB,v =
1

N

N∑
n=1

1

2
∥v⊤Bx(n) − y∥22, (24)

where y ∈ R as we are considering a regression problem (or a classification problem using MSE
loss). We use the subscript to represent the time step, e.g., q0, z0, v0 and B0 are output, feature,
head parameters and backbone parameters before finetuning. Similarly, qt, zt, vt and Bt are the
corresponding values after finetuned t steps. Note that q(X) and z(X) are functions of N input
samples X ∈ RN×d, but we omit it for simplicity. We use lowercase letters to represent the n-
th element of the vector. Before discussing a specific element, we will clarify whether we are
discussing the initialized case or the finetuned case. For example, specifying qt, we use qn =
f(xn) = (f(X))n to represent the prediction of xn after finetuning.

Remember the goal of this paper is finding a suitable way to select task head, i.e., v0, given the
pretrained feature extractor, i.e., B0. Depending on the discrepancy between the pretraining task
and the downstream task, we might expect zt change differently after finetuning. In other words,
we care about the expected change of zt compared to z0, i.e., Ex∼D [d(zt, z0)], where D is the data
distribution of the downstream task. Depending on what distance measurement (i.e., d(·, ·)) we
choose, there are three different metrics:

• Euclidean: d̄euc ≜ Ex∼D
[
∥zt − z0∥22

]
,

• Dot product: d̄dot ≜ Ex∼D
[
z⊤t z0

]
,

• Cosine: d̄cos ≜ Ex∼D

[
z⊤t z0

∥zt∥2·∥z0∥2

]
.

We start from the Euclidean case:

d̄euc = Ex∼D
[
(zt − z0)

⊤(zt − z0)
]

= Ex∼D
[
z⊤t zt − z⊤t z0 − z⊤0 zt + z⊤0 z0

]
= Ex∼D

[
z⊤t zt − 2z⊤0 zt + z⊤0 z0

]
= Ex∼D

[
x⊤B⊤

t Btx− 2x⊤B⊤
0 Btx+ x⊤B⊤

0 B0x
]

= Ex∼D

[
tr(x⊤(B⊤

t Bt − 2B⊤
0 Bt + B⊤

0 B0)x)
]

= Ex∼D

[
tr((B⊤

t Bt − 2B⊤
0 Bt + B⊤

0 B0)xx
⊤)

]
= Ex∼D

[
tr((B⊤

t Bt − 2B⊤
0 Bt + B⊤

0 B0)xx
⊤)

]
≤ Ex∼D

[
tr(B⊤

t Bt − 2B⊤
0 Bt + B⊤

0 B0) ·M
]

=
[
tr(B⊤

t Bt)− 2tr(B⊤
0 Bt) + tr(B⊤

0 B0)
]
· Ex∼D[M] (25)

where M ≜ tr(xx⊤) or M ≜ ∥xx⊤∥op).

Similarly, we can get the expressions of d̄dot and ∥zt∥22, which are building blocks of d̄cos:

24

Published as a conference paper at ICLR 2023

Ex∼D
[
z⊤t z0

]
= M · tr(B⊤

0 Bt) (26)

Ex∼D
[
∥zt∥22

]
= M · tr(B⊤

t Bt) (27)

D.2 CRITICAL POINTS

Our goal is to find a good initialized task head, i.e., v0, which can lead to better downstream per-
formance. Instead of directly linking v0 to the expected risk, which is a common practice for gen-
eralization analysis 5, we consider this problem from another indirect way. Specifically, we assume
the SGD algorithm with appropriate regularization in FT stage can find a good optimum for the
learning task. What we care more about is whether the features learned from the pretraining stage
adapts well to the downstream task. We believe that if the features are properly adapted to the new
environment, the model has more potential to generalize better. Hence in this part, considering the
aforementioned three distance metrics as the target functions, we formalize how v0 influence them.

From Equation (25), (26) and (27), we find that the behavior of tr(B⊤
0 Bt) and tr(B⊤

t Bt) are the
keys. In these two terms, B0 is given and cannot change, while Bt is determined by the choice of
v0. One way to link these two quantities is using Lemma A.4 in Kumar et al. (2022) or theorem 2.2
in Du et al. (2018):

v0v
⊤
0 − B0B

⊤
0 = vtv

⊤
t − BtB

⊤
t , ∀t, (28)

however, the expression of vt is still hard to obtain (but collecting and visualizing vt is much more
cheaper than Bt). We left this direction for our future work. In this paper, we analyze the problem in
the NTK regime (this is the main assumption of our analysis, which can cause discrepancies between
the theory and experiments).

Closed-form of parameters under NTK approximation:

To get more insights, we approximate the behavior of this model in the NTK regime, in which the
converged parameters can be analytically calculated. Specifically, be applying Equation (8) in Lee
et al. (2019) and assuming t → ∞, we can have:

θt = θ0 − (∇θq0)
⊤K−1

0 (q0 − Y), (29)

where q0 ∈ RN×1 is the model’s prediction on N training samples, i.e., X , and θt, θ0 ∈ R(d+1)∗h×1

are the stacked parameters. Without loss of generality, the first d ∗ h parameters in θ come from B
and the last h parameters come from v.

The K0 = ∇θq0 · (∇θq0)
⊤ ∈ RN×N here is the empirical NTK on X . Specifically, by stacking the

paramters, we can calculate each elements in this kernel as:

κ(x, x′) = x⊤B⊤Bx′ +
h∑

i=1

d∑
j=1

(vixj)(vix
′
j)

= x⊤B⊤Bx′ +
h∑

i=1

v2i

d∑
j=1

xjx
′
j

= x⊤(B⊤B+ ∥v∥22 · Id×d)x
′, (30)

where vi and xi is the i-th element in v and x respectively. Then, the matrix form of emperical NTK
is K0 = X(B⊤

0 B0 + ∥v0∥22 · Id×d)X
⊤.

With the help of Equation (29), we can get the closed-form expression of bt ≜ vec(Bt) (i.e., the
vectorization of matrix Bt):

bt = b0 − (∇bq0)
⊤K−1

0 (q0 − Y), (31)

In Equation (31), we know q0 = XB⊤
0 v0. The term ∇bq0 also depends on v0. As controlling q0,

i.e., the model’s prediction on training samples, is easier in practice (we can directly observe the
training loss or training accuracy), we will consider q0 as the optimizing variable in the rest of the
paper. The following lemma can link ∇bq0 to q0:

5But it is hard to get tight and informative bounds in deep learning, especially in such a practical scenario.

25

Published as a conference paper at ICLR 2023

Lemma 1. For b0 ∈ Rh∗d×1 and ∇bq0 ∈ RN×h∗d, we have ∇bq0 · b0 = q0.

Proof. We check that equation elementwise. For the n-th element in the RHS, we have:

qn = x⊤nB
⊤
0 v0

=

d∑
i=1

h∑
j=1

xivj(B
⊤
0)i,j

=

d∑
i=1

h∑
j=1

xivj(B0)j,i, (32)

where qn is the n-th element of q0, xi is the i-th element of xn, and vj is the j-th element of v0.

For the LHS, the n-th value is e⊤n∇bq0 ·b0, where e⊤n is a one-hot row vector selecting the n-th row
of ∇bq0. From the definition, we know e⊤n∇bq0 = vec(v0x⊤n)

⊤ = [x1v⊤0 , x2v⊤0 , ..., xdv⊤0], which
is a long row vector. Then, the n-th element in the LHS should be:

e⊤n∇bq0 · b0 = vec(v0x⊤n)
⊤ · b0

=

h∗d∑
l

(vec(v0x⊤n))l(b0)l

=

d∑
i=1

h∑
j=1

xivj(B0)j,i

= qn, (33)

where the last equation holds the rule of stacking elements in a matrix. As each elements of the two
sides are equal, the lemma holds.

Critical points of tr(B⊤
0 Bt) and tr(B⊤

t Bt):

Lemma 2. q∗0 = 1
2Y is a maximum of tr(B⊤

0 Bt).

Proof. By definition, we have:

tr(B⊤
0 Bt) = b⊤0 bt

= b⊤0
(
b0 − (∇bq0)

⊤K−1
0 (q0 − Y)

)
= b⊤0 b0 − (∇bq0 · b0)⊤K−1

0 (q0 − Y)

= const. − q⊤0 C1(q0 − Y), (34)

where we call C1 = K−1
0 for convenience. By taking first derivative to q0 and let is equal zero, we

know q∗0 = 1
2Y is a critical point. As the second derivative is −2C1 and C1 is positive definite, this

critical point is a maximum.

Lemma 3. q∗0 = αY, α ∈ (0, 0.5) is a critical point (usually maximum) of tr(B⊤
t Bt). Here

α =
(
IN×N + (C2 − 2C1)

−1C1

)
Y , where C2 = K−1

0 K̃0K−1
0 and K̃0 = XB⊤

0 B0X
T =

(∇vq0)(∇vq0)
⊤ is the NTK when fixing the parameters of the backbone.

26

Published as a conference paper at ICLR 2023

𝐳𝐭 − 𝐳𝟎 2
2

YY/2𝛼Y0

𝐳𝐭
T𝐳𝟎

YY/2𝛼Y0

𝐛𝟎 2
2 + 𝑎1

𝐛𝟎 2
2

𝐳𝐭 2
2

YY/2𝛼Y0

𝐛𝟎 2
2 + 𝑎2

𝐛𝟎 2
2

Figure 16: Illustrations of different metrics if they are 1-D quadratic functions. Here a1 = αY ⊤C1Y
and a2 = Y ⊤C2Y . The x-axis represents the choice of q0, where αY is an example of the critical
point of ∥zt∥22. The black dots are the critical points.

Proof. Similar to Lemma 2, we can write tr(B⊤
t Bt) as b⊤t bt and substitute Equation (31):

tr(B⊤
t Bt) = b⊤t bt

=
(
b0 − (∇bq0)

⊤K−1
0 (q0 − Y)

)⊤ (
b0 − (∇bq0)

⊤K−1
0 (q0 − Y)

)
= b⊤0 b0 − 2(∇bq0 · b0)⊤K−1

0 (q0 − Y) + (q0 − Y)⊤K−1
0 (∇bq0)(∇bq0)

⊤K−1
0 (q0 − Y)

= b⊤0 b0 − 2q⊤0 K−1
0 (q0 − Y) + (q0 − Y)⊤K−1

0 K̃0K−1
0 (q0 − Y)

= b⊤0 b0 − 2q⊤0 C1(q0 − Y) + (q0 − Y)⊤C2(q0 − Y)

= (b⊤0 b0 + Y ⊤C2Y) + q⊤0 (2C1 − 2C2)Y + q⊤0 (C2 − 2C1)q0

= const. + q⊤0 (2C1 − 2C2)Y + q⊤0 (C2 − 2C1)q0 (35)

By taking first derivative and letting it equal zero, assuming (C2 − 2C1) is invertible, we know
q∗0 =

(
IN×N + (C2 − 2C1)

−1C1

)
Y is a critical point. The second derivative is 2C2 − 4C1, which

is usually positive definite in our settings (explain later).

To get more insights, we can look deeper into the critical point mentioned in Lemma 3. Following
the definition of C1 and C2, we can have:

C2 − 2C1 = K−1
0 K̃0K−1

0 − 2K−1
0

= (K−1
0 K̃0 − 2IN×N)K−1

0 , (36)

where K−1
0 K̃0 is the key of understanding this term.

The exact form of this expression is hard to obtain, but as all the NTK or covariance matrices
mentioned here are sysmetric, we can compare the trace of them to get some insights. By def-
inition, tr(K̃0) = tr(XB⊤

0 B0X
⊤) = tr(B⊤

0 B0X
⊤X). If each dimensions of the data sam-

ples are independent, then X⊤X ≈ Id×d, and tr(K̃0) ≈ tr(b⊤0 b0) = ∥b0∥22. Then similarly,
tr(K0) ≈ ∥b0∥22+∥v0∥22. Thus the behavior of term K−1

0 K̃0 can be described by ∥b0∥2
2

∥b0∥2
2+∥v0∥2

2
·IN×N :

• if ∥b0∥22 ≫ ∥v0∥22, which might happen as the backbone contains more parameters than
the head, K−1

0 K̃0 ≈ IN×N ,
• if ∥b0∥22 ≪ ∥v0∥22, which might happen if we split the network in the earlier layer,
K−1

0 K̃0 ≈ 0 · IN×N .

But in either case, the negative of the second derivative of tr(B⊤
t Bt), i.e., Equation (36), is likely

to be positive definite, which means the critical point in Lemma 3 is usually a maximum. Another
interesting fact of Lemma 3 is q∗0 under the aforementioned two extreme conditions. After some
calculation, we can verify that q∗0 → 0 · Y if ∥b0∥22 ≫ ∥v0∥22 and q∗0 → 1

2Y if ∥b0∥22 ≪ ∥v0∥22.

Critical points of d̄euc, d̄dot and d̄cos:

27

Published as a conference paper at ICLR 2023

Recall the definitions of different distance metrics we care about. First, d̄dot is proportional to z⊤t z0,
hence its shape would like the second panel in Figure 16. For d̄euc, we know it is proportional to
tr(B⊤

t Bt)− 2tr(B⊤
0 Bt) + tr(B⊤

0 B0). Substituting results in Equation (34) and Equation (35), we
have:

d̄euc ∝ tr(B⊤
t Bt)− 2tr(B⊤

0 Bt) + const.

= q⊤0 (2C1 − 2C2)Y + q⊤0 (C2 − 2C1)q0 + 2q⊤0 C1(q0 − Y) + const.

= −2q⊤0 C2Y + q⊤0 C2q0 + const. (37)

Obviously, q∗0 = Y is the minimum of d̄euc, as depicted in the first panel in Figure 16. The shape of
d̄cos is hard to obtain. However in the last panel of Figure 16, we demonstrate ∥zt∥22, its denominator,
to assist our further analysis.

D.3 LEARNING DYNAMICS OF THE REPRESENTATION

q0 = Eaie d̄euc d̄dot ∥zt∥2 d̄cos
Y → 1

2Y ↑ ↑ ↑ ↑ ? (↓)
1
2Y → αY ↑ ↑ ↓ ↑ ↓↓
αY → 0 ↑ ↑ ↓ ↓ ? (↓)

Table 9: Question marks in the last column means we cannot accurately predict its change. But it
usually decreases in experiments.

In this subsection, we will put everything together to provide an overview of how zt changes com-
pared with z0. Remember when q0 = Y , the gradient of B0 is zero, hence zt = z0 (Kumar et al.,
2022). When q0 moves linearly from Y to 0, we have the following three phases (see Table 9):

• Y → 1
2Y : zt lengthen its norm with a slightly change in the direction, hence d̄dot also

increase;
• 1

2Y → αY : the norm of zt keeps increasing, but its direction drastically changes in this
phase, which makes d̄dot decrease;

• αY → 0: the norm of zt begins to decrease and the angle between zt and z0 keeps increas-
ing, which makes zt changes a lot.

28

	Introduction
	Motivation
	Background
	Problem Setting and Two Stage Training
	What to Expect During Adaptation

	Interaction between the Backbone and Head
	Average Initial Energy
	Non-trivial trend of feature adaptation
	Backbone Depth and Head Capacity

	Examples on Real Tasks
	User Guide
	Basic Method: earlier stopping HP
	Advanced Tricks: superiority and limitation

	Related Work and Discussions
	Conclusion
	Decomposition of change of Z
	Experimental Settings
	Toy case
	Practical Settings – Classification
	Practical Settings – Image Segmentation

	More experiments
	Verification on the change of z
	Influence of the backbone and the task-head capacity

	Analyze linear overparameterization problem
	Formalize the change of representations
	Critical Points
	Learning dynamics of the representation

