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ABSTRACT

Despite the remarkable advancements, large language models (LLMs) still fre-
quently generate outputs that contain factually incorrect or contextually irrelevant
information, commonly known as hallucinations. Detecting these hallucinations
accurately and efficiently remains an open challenge, especially without relying
on labeled datasets. Current methods primarily depend on internal activation or
consistency of multiple responses for one prompt, limiting their effectiveness in
capturing global semantic and distributional structures of truthful outputs. Be-
sides, methods that estimate latent subspaces directly from mixed-quality data,
suffer from noise contamination and imprecise geometric representations. To ad-
dress these limitations, we propose a novel Distance-Aware Distribution Modeling
(DADM) framework that operates in two stages: first, we apply an iterative distance-
based process to select consistently truthful samples; second, we model the global
distribution using normalizing flows, enabling accurate likelihood estimation by
maximizing the likelihood of truthful samples and minimizing the likelihood of
hallucinated samples. This two-stage design ensures both robust sample purifi-
cation and expressive modeling of truthful generations, leading to interpretable
confidence scores and more reliable hallucination detection. Extensive experiments
on benchmark datasets demonstrate that our method consistently outperforms prior
unsupervised approaches across multiple LLM settings.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in a variety of natural
language processing tasks, including text summarization, translation, and question-answering (Zhao
et al., 2023; Cao et al., 2023; Naveed et al., 2023). Despite their widespread success, a critical
challenge remains: LLMs frequently generate responses containing factually incorrect or contextually
irrelevant information, commonly referred to as hallucinations (Rawte et al., 2023; Bai et al., 2024;
Huang et al., 2025). Such hallucinations significantly undermine the trustworthiness and applicability
of LLMs, especially in domains like healthcare and scientific research.

However, manual annotation for hallucination detection in LLMs is labor-intensive and often im-
practical, particularly in rapidly evolving or specialized domains. To overcome this, recent work has
explored unsupervised approaches that do not rely on explicit ground-truth labels. Some methods
aim to detect inconsistencies between internal model signals and the generated output (Sriramanan
et al., 2024). For example, MIND (Su et al., 2024) leverages internal activations of the model during
generation to identify hallucinated content without requiring manual supervision. Besides, some
research focuses on uncertainty estimation, where semantic entropy across multiple generations is
used to flag outputs with high variability (Kuhn et al., 2023). Additionally, contrastive likelihood
methods evaluate a model’s sensitivity to prompt perturbations as a proxy for factual reliability (Burns
et al., 2022). While these methods are scalable and do not require labeled data, they primarily operate
at the level of individual examples. This limitation may lead to misclassification of rare but valid
outputs or conflation of uncertainty with factual errors.

Another line of work is represented by HaloScope, which estimates hallucination likelihood by
projecting LLM outputs onto a subspace constructed from unlabeled generations and measuring
their distances to this subspace (Du et al., 2024). However, because the subspace is learned from all
prompt-response pairs, including hallucinated samples, it provides a biased and noisy approximation
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of the true semantic structure. The bias of the geometric representation subspace grows rapidly with
the ratio of hallucinations, so the HaloScope may become degenerate and fail to accurately separate
truthful and hallucinated responses, which hampers its reliability in practice.

To overcome the difficulties, we propose a novel two-stage Distance-Aware Distribution Modeling
(DADM) framework for hallucination detection. Our key idea is to select a high-confidence truthful
subset by utilizing the language model’s latent representations and then learn the truthfulness dis-
tribution with this subset to distinguish a truthful response and a potentially hallucinated point. In
contrast to prior approaches such as HaloScope that rely on noisy subspace estimates, our method
leverages a clean subset of truthful responses, which remains stable in the presence of hallucinations.

To be specific, DADM firstly identifies a clean set of truthful examples based on a distance metric
with robust estimations in Stage 1. This subset is obtained through an iterative refinement process,
similar to prior approaches (Rousseeuw, 1984; Rousseeuw & Driessen, 1999), that progressively
filters out likely hallucinations, resulting in a coherent set of high-confidence responses. Notably,
our selection procedure is computationally efficient and remains robust as long as the proportion of
hallucinated responses is below 50%. Leveraging this curated subset, we then capture the complex
distribution of the feature space by training a normalizing flow model in Stage 2. Together, the two
stages form a cohesive system: the initial selection provides reliable supervision for the flow model,
and the learned likelihoods further refine detection.

Empirical results validate the effectiveness and robustness of DADM. Across a range of benchmark
datasets spanning factual verification and commonsense reasoning, our DADM consistently outper-
forms existing unsupervised baselines. Specifically, we observe improvements of over 6% AUROC
on factual tasks such as TriviaQA (Joshi et al., 2017) for OPT-6.7b model, and even larger gains
exceeding 10% on more challenging reasoning benchmarks like CommonsenseQA (Talmor et al.,
2019) for LLaMA-3.1-8b model. These results highlight the broad generalization capabilities of
our method across different LLM architectures and task types, confirming its resilience even under
ambiguous prompts and limited supervision.

In summary, we illustrate the full procedure in Figure 1 and highlight our main contributions:

• We propose a novel two-stage distance-aware distribution modeling framework. The central
idea is to identify a clean subset of high-confidence truthful responses without relying on
any labeled supervision by integrating an iterative distance-based process, which mitigates
the effects of hallucinations and serves as a reliable foundation for confidence estimation.

• With the high-confidence truthful set, a distributional modeling based on normalizing flows
is adapted to enable flexible and precise likelihood estimation over the hidden feature space
and produce calibrated confidence scores to improve the hallucination detection.

• Our DADM framework offers strong practicality and flexibility for real-world applications.
Extensive experiments across multiple language models and diverse datasets demonstrate
the effectiveness and robustness of our method, achieving consistent improvements over
state-of-the-art unsupervised baselines.

2 METHODOLOGY

2.1 PROBLEM SETUP

We formalize hallucination detection as a binary classification problem over prompt–response pairs
produced by a fixed language model. Let P andR denote the spaces of natural-language prompts
and model generations, respectively. We write Φ: P → R for the fixed LLM under study, so that
each prompt xp ∈ P yields a response xg = Φ(xp) ∈ R. We therefore consider the joint space
X = P ×Q, where (xp,xg) is a prompt–response pair. Assume there exists an (unknown) “truthful”
distribution Xtrue over X and a “hallucinated” distribution Xhal capturing ungrounded or fabricated
outputs. Our goal is to learn a classifier such that

G(xp,xg) =

{
1, (xp,xg) ∼ Xtrue,

0, (xp,xg) ∼ Xhallu,

which predicts whether a given pair is truthful (1) or hallucinated (0).
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Figure 1: Overview of the DADM framework for hallucination detection. Given prompt-response
pairs, the LLM feature extractor maps inputs into a feature space. In Stage 1, an iterative covariance-
modified distance-based process selects a high-confidence subset of truthful responses. In Stage
2, a normalizing flow model is trained to model the underlying distribution and produce calibrated
likelihood estimates for hallucination detection.

2.2 HIGH-CONFIDENCE SAMPLES VIA DISTANCE-BASED OUTLIER DETECTION

Let {(xp
i ,x

g
i )}ni=1 be the unlabeled prompt–response pairs generated by one fixed LLM. We encode

each prompt-response pair by feeding the entire pair as a prompt into the same LLM and extracting
intermediate representations. Specifically, we denote the feature as fi = ϕ(xp

i ,x
g
i ) ∈ Rd, where

ϕ refers to the intermediate activation obtained from the LLM. Stacking these row-wise yields
F = [f⊤1 ; . . . ; f⊤n ] ∈ Rn×d, and one can expect the feature space to reflect structural differences. It
is quite natural to expect that truthful features will appear relatively similar and form tight clusters,
since they are grounded in consistent factual content and share similar structural patterns. By contrast,
hallucinated responses tend to be more arbitrary, diverse, and semantically inconsistent, which causes
their representations to spread out more widely and lack a coherent structure.

This motivates treating hallucination detection as an outlier detection problem, where hallucinated re-
sponses correspond to potential outliers. Distance-based methods are widely used in high-dimensional
outlier detection to identify samples that deviate from the data distribution in the embedding space
(Knorr et al., 2000; Ro et al., 2015; Lee et al., 2018). These techniques are effective at capturing
distributional deviations without requiring supervision. Inspired by these techniques, we develop an
iterative framework that identifies a cohesive and self-consistent subset of feature indices.

Formally, we denote byH ⊆ [n] an index subset of cardinality m, where [n] = {1, 2, . . . , n} is the
set of all sample indices. Define the center point as c̄H ∈ Rd ofH. The consistency of a sample fi
with respect toH is then quantified by its distance to the center d(fi, c̄H) : Rd × Rd → R+. Smaller
values of d(fi, c̄H) indicate that fi is more closely aligned with the center. The refinement procedure
can be expressed as a two-step iterative update:

1. Center Estimation. Given the current index subsetH0 ⊂ [n], compute its center as

c̄H0
= arg min

y∈Rd

∑
i∈H0

d(fi,y). (1)

2. Subset Update. With the center c̄H0 fixed, update the subset by retaining the m indices
whose feature vectors are closest to the center:

H1 = arg min
S⊆[n]
|S|=m

∑
i∈S

d(fi, c̄H0). (2)

Equivalently, this corresponds to ranking all samples by ascending distance to the center
and selecting the top m samples that are considered most truthful.

Starting from an initial random subsetH0, the two steps are iterated until the index set stabilizes. The
general framework only requires a distance function d, and the center estimation has explicit forms
with some commonly-used choice of the distance metric. For example:
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• If using Euclidean distance d(fi,y) = ∥fi − y∥22, the center estimation is the arithmetic
mean c̄H0

= |H0|−1
∑
i∈H0

fi.

• If using Manhattan distance d(fi,y) = ∥fi − y∥1, the center estimation corresponds to the
coordinate-wise median, which is widely used in robust statistics.

In our implementation, we consider a covariance-modified L2 distance:

d(fi, (f̄H0
,DH0

)) = (fi − f̄H0
)⊤D−1

H0
(fi − f̄H0

), (3)

where we consider c̄H0 = (f̄H0 ,DH0): f̄H0 is the robust estimator of mean and DH0 is the robust
diagonal covariance matrix. The scale-invariance of this distance ensures that all feature dimensions
contribute fairly. Here, the diagonal covariance is employed instead of the classical covariance matrix
since the robust estimation of the covariance matrix is unreliable when the sample size n is on the
order of the feature dimension d as discussed in (Ro et al., 2015). The diagonal assumption could
also reduce both storage and computational complexity from O(d2) to O(d).

To select the high-confidence truthful set, we adopt a trimmed refinement procedure in a similar spirit
to least-trimmed-squares approaches (Rousseeuw, 1984; Rousseeuw & Driessen, 1999). We start
from an initial random subset of size m, iteratively re-estimate its local mean and diagonal covariance,
and retain the m responses closest to this center. The full procedure is summarized as follows:

1. Initialization. Randomly select an initial truthful index setH0 ⊂ [n] of cardinality m.
2. Center Estimation. Based on formula (1) and distance (3), we first compute the sample

mean f̄H0
and a simplified diagonal covariance matrix DH0

from the current index subset
H0. We omit the factor in the covariance estimation for simplicity:

f̄H0 =
1

m

∑
i∈H0

fi, DH0 = diag
( 1

m

∑
i∈H0

(fi − f̄H0)(fi − f̄H0)
⊤
)
.

3. Subset Update. Form the refined index subset using formula (2) and distance (3):
H1 =

{
π(1), π(2), . . . , π(m)

}
,

where π(1), π(2), . . . , π(n) denote the corresponding indices after ranking.
4. Convergence Check. Replace H0 ← H1 and repeat Steps 2–3 until either H1 = H0 (no

change) or a maximum of T iterations is reached.
5. Selection Across Different Initialization. After completing K independent runs of Steps

1–4 with different initialization, each yielding a coreH0 and its total cumulative distances,
choose the set with the smallest cumulative distances as the final high-confidence setHbest

0 .

Since choosing the subset size m involves a trade-off, smaller values (around 0.1n) tend to produce a
cleaner, safer core but risk missing some truthful samples, whereas larger m may include hallucina-
tions. Therefore, we carefully select m within the range between 0.1n to 0.5n to balance reliability
and coverage. We validate this choice of m in Section 3.3. To mitigate sensitivity to local optima, we
perform multiple random initializations in Step 5, each independently exploring different regions of
the solution space. The configuration with the minimal cumulative distance is selected as the final
high-confidence set, providing a robust foundation for downstream hallucination detection.

The following theorem ensures that the cumulative distance of the iterative procedure monotonically
decreases and converges to a local minimum.
Theorem 1. LetH0 ⊂ [n] be an index subset of size m. Compute the covariance-modified L2 dis-
tances d(fi, (f̄H0

,DH0
)) for all i ∈ [n], where f̄H0

and DH0
are the mean and diagonal covariance

estimated fromH0. LetH1 be the set of indices corresponding to the m smallest distances, i.e.,
H1 = {π(1), π(2), . . . , π(m)},

where π is the ordering of indices such that
d(fπ(1), (f̄H0 ,DH0)) ≤ d(fπ(2), (f̄H0 ,DH0)) ≤ · · · ≤ d(fπ(n), (f̄H0 ,DH0)).

Then, computing the mean and covariance based onH1, the cumulative distance satisfies∑
i∈H1

d(fi, (f̄H1
,DH1

)) ≤
∑
i∈H0

d(fi, (f̄H0
,DH0

)),

with equality if and only ifH1 = H0.
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2.3 DISTRIBUTION MODELING FOR HALLUCINATION DETECTION

In Stage 1, we identify a tightly clustered coreHbest
0 ⊂ [n] serving as a high-confidence set of non-

hallucinated examples. This stage plays a crucial role in providing a reliable anchor for hallucination
detection, offering a principled geometric approach under minimal supervision. While the initial
distance-based selection tends to be safe, it may miss certain truthful examples that lie further from
the estimated core. Moreover, the method models feature distributions only accounting for mean and
diagonal covariance, which may not fully capture more complex structures present in real-world data.

To address these limitations while building upon the strengths of Stage 1, we introduce Stage
2 that further refines the modeling of the feature space. The key idea is to employ distribution
learning algorithms to model the distribution of truthful responses on the refinedHbest

0 . Specifically,
normalizing flows achieve precise likelihood estimation and flexible distribution transformation by
stacking invertible coupling layers, enabling accurate modeling of complex data distributions for
improved uncertainty quantification (Kobyzev et al., 2020; Papamakarios et al., 2021). Therefore, we
train a normalizing flow onHbest

0 to flexibly learn the underlying complex distribution and to provide
calibrated likelihood estimates for individual samples.

Training Objective. We denote the normalizing flow model as gψ , which transforms input feature
vectors f ∈ F into latent representations z = gψ(f), where a standard Gaussian distribution is
defined. The log likelihood is computed via the change of variables formula:

log pF (f) = log pZ(gψ(f)) + log

∣∣∣∣det(∂gψ(f)

∂f

)∣∣∣∣ .
In practice, we implement gψ using a stack of invertible 1×1 convolutions, affine coupling layers, and
activation normalization, following the Glow architecture Kingma & Dhariwal (2018). To emphasize
the distinction between hallucinated and truthful samples, the model is trained using a dual-objective
loss based on the selected truthful featuresHbest

0 and its complement [n] \ Hbest
0 (Zhao et al., 2025):

• Truthful Objective: We aim to maximize the log-likelihood over the set Hbest
0 , thereby

encouraging the model to faithfully capture the distribution of truthful features.
• Hallucination Suppression: To mitigate hallucination, we penalize the likelihood assigned

to elements in [n] \ Hbest
0 by minimizing the softplus transformation of their log-likelihoods.

The use of the softplus function ensures optimization stability and mitigates numerical
instability when likelihood values are close to zero or exceedingly small.

The total loss is defined as:
L = Ltruth + λ · Lhallu

= − 1

m

∑
i∈Hbest

0

log pF (fi) +
λ

n−m

∑
j∈[n]\Hbest

0

log (1 + pF (fj)) ,

where m and n −m are the number of truthful and hallucinated samples respectively, and λ is a
hyperparameter that balances the two objectives. This distribution modeling allows for a smoother
and more adaptive decision boundary, which is particularly beneficial for hallucination detection.

Scoring and Detection. Together, the two stages complement each other: the first determines
approximately dense and reliable samples, while the second provides fine-grained, continuous
likelihood estimates across the feature space. Once trained, the normalizing flow model assigns
a log likelihood score to each feature vector f , providing a continuous measure of confidence for
hallucination detection. A high log likelihood indicates that the sample aligns well with the learned
distribution of truthful samples, while a low score suggests potential hallucination. We define the
scoring function as pF (f), and use it to construct a binary classifier c(f) that labels a feature as
truthful if its score exceeds a threshold τ . Formally,

c(f) =

{
1, if pF (f) > τ

0, if pF (f) ≤ τ
,

where c(f) = 1 denotes a truthful prediction and c(f) = 0 indicates hallucination. For practical
deployment, we select the threshold τ based on a criterion, such as the false positive rate (5%). For
comparison with experiments, we directly compute the AUROC from the continuous scores.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To rigorously evaluate the performance of our hallucination detection framework DADM, we perform
experiments across four diverse benchmark datasets. TruthfulQA (Lin et al., 2021) (817 validation
examples) focuses on open-domain QA in conversational contexts. For closed-book question answer-
ing, we use a deduplicated validation split of the TriviaQA (rc.nocontext subset) (Joshi et al., 2017),
containing 9,960 factoid-style questions. To assess performance in knowledge comprehension, we
include the SciQ validation set (Johannes Welbl, 2017) (1,000 examples) and the CommonsenseQA
validation set (Talmor et al., 2019) (1,221 examples), involving-choice questions designed to test
domain-specific and commonsense reasoning. Each dataset is partitioned into three subsets: a 75%
unlabeled train set used for distance-aware distribution learning, a 25% held-out test set for evaluation,
and 100-example validation set (randomly sampled from the training split). The template for response
generation is as follows: {Answer the question concisely. Q: {question} A:}
We apply our method to two instruction-tuned foundation models: OPT-6.7b (Zhang et al., 2022)
and LLaMA-3.1-8b (Grattafiori et al., 2024). These models are selected for their strong open-
ended generation capabilities and widespread adoption in downstream applications, making them
representative for hallucination detection. Features are obtained from the outputs of each Transformer
blocks, allowing us to analyze the effect of different layers on detection performance. To assess the
effectiveness of our hallucination detection methods, we adopt the area under the receiver operating
characteristic curve (AUROC) as our primary evaluation metric. Following Du et al. (2024), we
use BLUERT (Sellam et al., 2020), a learned metric to label the groud-truth of hallucinations. A
prompt-response pair is labeled as truthful if its BLUERT score exceeds a threshold of 0.5.

For comprehensive evaluation, we select seven hallucination detection methods that represent three
paradigms: (1) probability-based metrics (Perplexity (Ren et al., 2022), Maximum Sequence Probabil-
ity (MSP) (Fadeeva et al., 2023)) analyzing prediction confidence, (2) distance measures (FisherRao
Distance (Darrin et al., 2022), Haloscope (Du et al., 2024)) quantifying hidden state variations, and
(3) semantic consistency checks (Lexical Similarity (Fomicheva et al., 2020), Semantic Entropy
(Kuhn et al., 2023), EigenScore (Chen et al., 2024)) evaluating conceptual alignment. This selection
strategically covers both model-intrinsic signals (probability distributions, hidden states) and model-
extrinsic validations (lexical/semantic coherence), enabling a comprehensive comparative analysis of
diverse hallucination detection approaches. We reproduce baseline methods using the LM-Polygraph
framework to ensure a fair and consistent comparison (Fadeeva et al., 2023).

Implementation Details For Stage 1, we perform K = 10 random reinitializations. The subset
ratio m/n and the feature extraction layer are tuned according to validation performance. Empirically,
m/n is selected within the range [0.1, 0.5], and the feature layer is chosen from layers 5 to 16. We
employ a normalizing flow architecture based on Glow (Kingma & Dhariwal, 2018), the model
processes an input consisting of a 4, 096 dimensional feature vector through a series of 8 coupling
layers. We set Adam (Kingma & Ba, 2014) optimizer, with hyperparameter set as follows: a learning
rate of 2× 10−4, batch size of 24, β1 = 0.9, β2 = 0.999, ϵ = 10−8, and weight decay of 10−5. We
train the normalizing flow model for a maximum of 20 epochs. Additionally, we select λ = 1 due to
superior empirical performance. All experiments are implemented on a single NVIDIA Tesla A100
GPU with 80GB of memory. Each experiment was repeated with three different random seeds, and
the results are reported as the mean with standard deviation.

3.2 RESULTS

The results in Table 1 clearly demonstrate the superiority of our method across different datasets
and LLMs. On OPT-6.7b, our method achieves the best AUROC scores on all four benchmarks,
significantly surpassing the best baseline HaloScope, by 9.93, 2.74, 5.05, and 4.67 points respectively.
Particularly on challenging commonsense reasoning tasks like CommonsenseQA and SciQ, our
method achieves over 79 and 80 AUROC, respectively, highlighting its robustness beyond surface-
level fact checking. Similarly, on the LLaMA-3.1-8b model, our method again establishes new
state-of-the-art performance, achieving 71.58 on TruthfulQA, 77.06 on TriviaQA, 78.30 on Common-
senseQA, and 80.24 on SciQ. Compared to other methods, our method maintains stable performance
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gains, particularly in knowledge-intensive tasks. These substantial margins, especially on complex
datasets requiring deeper reasoning, underline the broad effectiveness of our detection method.

Overall, these results confirm that our framework not only outperforms prior single-output halluci-
nation detectors across both open domain (TriviaQA, TruthfulQA) and knowledge comprehension
(CommonsenseQA, SciQ) tasks, but also generalizes well across model scales and question types.
The strong and consistent gains suggest that our method can serve as a robust and versatile solution
for hallucination detection in diverse real world applications.

Table 1: Performance comparison of hallucination detection methods across OPT-6.7b and LLaMA-
3.1-8b models on four datasets. Our distance-aware distribution modeling framework achieves
state-of-the-art results on all datasets. Our experiment was conducted three times with different
random seeds, and the results are presented as the mean and standard deviation.

Model Method TruthfulQA TriviaQA CommonSenseQA SciQ

OPT-6.7b

Perplexity 57.41 60.49 57.21 60.75
Fisher Rao 52.76 60.48 60.38 59.23
Lexical Similarity 53.97 61.09 63.32 57.94
MSP 50.11 58.33 52.05 58.24
Semantic Entropy 50.69 64.80 55.33 58.87
EigenScore 50.97 61.42 51.00 64.62
HaloScope 69.64±5.13 62.94±3.55 74.28±2.68 76.01±2.37

DADM (Ours) 79.57±1.10 65.68±1.02 79.33±0.42 80.68±1.83

LLaMA-3.1-8b

Perplexity 61.43 76.32 50.60 64.51
Fisher Rao 56.85 67.14 59.13 55.29
Lexical Similarity 59.45 66.19 50.85 60.84
MSP 57.39 67.29 62.91 68.91
Semantic Entropy 62.48 72.77 61.32 65.97
EigenScore 52.49 70.52 68.32 66.10
HaloScope 70.27±0.92 73.51±0.28 64.66±0.56 76.01±0.03

DADM (Ours) 71.58±0.13 77.06±0.53 78.30±0.41 80.24±0.82

3.3 ABLATION STUDIES

We conduct a series of ablation studies on all datasets to systematically evaluate the key components
and design choices of our distance-aware distribution modeling hallucination detection framework.
Specifically, we analyze (i) the effect of the retained truthful feature size (m) in Stage 1, (ii) the
impact of feature extraction layer selection, (iii) the importance of employing a normalizing flow
architecture for flexible distribution modeling, and (iv) the scalability of our method to larger language
models. These studies provide detailed insights into how each component contributes to the overall
effectiveness and robustness of the framework.

Figure 2: Effect of truthful sample ratio (m/n) on AUROC performance for OPT-6.7b across different
datasets. We vary m/n from 0.1 to 0.7 in the initial stage 1, and the best performance is typically
achieved when m/n lies between 0.1 and 0.5.

Effect of Truthful Features Ratio (m/n). Stage 1 plays a critical role in isolating a reliable core of
truthful responses from unlabeled generations. To assess the impact of the truthful samples ratio, we
vary m/n from 0.1 to 0.7, corresponding to retaining 10% to 70% samples as truthful samples. For
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each setting, we conduct the full iterative distance-based refinement followed by likelihood estimation
with normalizing flows and evaluate performance using AUROC on the test set.

Our analysis reveals a consistent non-monotonic pattern across all datasets (Figure 2) on OPT-6.7b
model. The AUROC scores initially improve with increasing sample ratios, peaking between 0.1 and
0.5 (TruthfulQA achieves 81.2 at 0.4, TriviaQA achieves 65.5 at 0.4 and CommonSenseQA achieves
80.4 at 0.1), followed by a marked performance degradation beyond a 0.5 ratio. This phenomenon
can be attributed to potential hallucination contamination in higher sample ratios, as evidenced
by the steepest decline in TriviaQA and CommonSenseQA from 0.5 to 0.7. This trend suggests
that larger sample ratios (beyond 0.5) may introduce noisy or hallucinated examples, degrading
model reliability. These findings empirically support the importance of identifying a clean set of
high-confidence truthful responses. Such a clean subset serves as the proxy for the subsequent
distribution modeling stage. Consequently, choosing a smaller sample ratio (≤ 0.5) offers a safer
and more robust configuration for hallucination detection.

Figure 3: AUROC performance across different feature extraction layers of OPT-6.7b. Te best
performance is typically achieved when features are extracted from intermediate layers.

Effect of Layer Feature. We investigate how the choice of feature extraction layer influences
hallucination detection performance. For each dataset, we compute AUROC scores by independently
applying the distance-aware high-confidence sample selection and normalizing flow pipeline with
the fixed optimal truthful sample ratio. We report the results on OPT-6.7b across various datasets in
Figure 3, and observe that the detection performance varies substantially across layers. Across all
datasets, AUROC scores typically improve from the earliest layers, reach a peak between layers 8 and
24, and then gradually degrade toward deeper layers. For instance, on CommonSenseQA, AUROC
peaks above 80.4 at layer 15, whereas in other datasets, the best performance is also observed around
middle layers. In contrast, features from very early layers and very late layers consistently yield
lower AUROC scores, often dropping by more than 10 points compared to the optimal middle-layer
performance. Overall, these results suggest that intermediate layer representations are more effective
at capturing rich contextual dependencies that are critical for distinguishing hallucinations from
truthful contents. In contrast, early layers primarily encode shallow lexical or syntactic patterns, while
deeper layers tend to become overly specialized toward next-token prediction, potentially obscuring
the finer distinctions between truthful and hallucinated responses.

Importance of Normalizing Flow Architecture. A key component of our approach is the use of
normalizing flows for distribution modeling. We compare three modeling settings: (i) directly using
Stage 1, where a class center is learned and scoring is based on the covariance-modified distance to the
center; (ii) adding a 2-layer MLP with ReLU activation, and the first layer maps to 1024 dimension;
and (iii) incorporating a normalizing flow to model the selected feature distribution. As shown in
Figure 4, adding normalizing flows in Stage 2 brings consistent improvements over the stage 1 results,
and outperforms the linear probing baseline across different settings. For OPT-6.7b, results based on
Stage 1 provide the baseline performance, while linear probing leads to only slight gains in AUROC
scores across datasets. The normalizing flow further elevates results by 0.69-7.68 points, achieving
state-of-the-art values. On LLaMA-3.1-8b, AUROC scores based on Stage 1 start with 63.85, 77.38,
76.76, and 78.95, while linear probing contributes moderate improvements of up to 3.78 points. The
normalizing flow again outperforms baselines, adding further gains ranging from 1.88 to 6.96 points.
These results demonstrate that while results in Stage 1 provide initial improvements, the flexible
modeling power of the normalizing flow delivers further substantial enhancements.
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Figure 4: Comparison of hallucination detection AUROC on OPT-6.7b and LLaMA-3.1-8b across
four benchmarks, highlighting the performance gains achieved by incorporating normalizing flow.

Larger Models. To further assess the scalability and robustness of our approach, we conduct
experiments using two larger models, LLaMA-2-13b and OPT-13b (Zhang et al., 2022), which
offer significantly greater capacity compared to OPT-6.7b and LLaMA-3.1-8b. As shown in Ta-
ble 2, our method consistently outperforms the HaloScope baseline across all datasets and models.
On TruthfulQA, our approach achieves AUROC scores of 85.73 and 89.98 for LLaMA-2-13b and
OPT-13b, representing improvements of 5.36 and 7.57 , respectively. On TriviaQA, we observe
even larger gains, with an AUROC of 86.08 on LLaMA-2-13b (18.4-point improvement) and a
3.71-point improvement on OPT-13b, suggesting our method particularly excels at detecting factual
hallucinations in knowledge-intensive tasks. Consistent advantages are also observed on Common-
SenseQA and SciQ datasets, where DADM achieves better performance over the baseline across
both model architectures. These results indicate that as model size increases, our method is able to
more effectively leverage the additional capacity to distinguish between hallucinated and truthful
outputs. The improvements across architectures and datasets further demonstrate that our approach
generalizes well beyond specific model families, highlighting its robustness in more powerful LLMs.

Table 2: Performance comparison between HaloScope and our method on larger models (LLaMA-2-
13b and OPT-13b), demonstrating that our method consistently outperforms HaloScope.

Model Method TruthfulQA TriviaQA CommonSenseQA SciQ

LLaMA-2-13b HaloScope 80.37 67.68 72.66 79.80
DADM (Ours) 85.73 86.08 83.24 84.51

OPT-13b HaloScope 82.41 59.66 77.13 74.34
DADM (Ours) 89.98 63.37 79.51 78.78

4 CONCLUSION

In this work, we proposed a novel distance-aware distribution modeling (DADM) framework for
hallucination detection in large language models. By leveraging distance-aware high-confidence
sample selection via iterative Mahalanobis-distance refinement, followed by expressive probabilistic
modeling using normalizing flows, our method effectively detect hallucinations without relying on
labeled data. Extensive experiments across multiple datasets and LLM models demonstrate that our
approach consistently outperforms state-of-the-art unsupervised baselines. Our results highlight the
importance of modeling global feature distribution properties rather than relying solely on token-level
uncertainty or local activation patterns. The framework is flexible, interpretable, and scalable, offering
a practical solution for hallucination detection in real world LLM deployments.
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A PSEUDOCODE

In this section, we present the detailed pseudocode of the proposed Distance-Aware Sample Selecting
algorithm in Algorithm 1. This stage aims to select a representative subset of m samples from the
full dataset by minimizing the cumulative distance to the subset mean, under a diagonal covariance
assumption. The method performs K random restarts, each with up to T inner refinement steps, to
ensure robustness and convergence toward high-quality selections.

Algorithm 1: Distance-Aware Sample Selecting
Input: F : full feature set of n samples;
m: subset size;
K: number of random restarts;
T : maximal inner iterations.
Output: Hbest

0 : size-m index set.

1 Hbest
0 ← ∅;

2 min_cum_distances←∞; // initial best objective
3 for k = 1 to K do
4 Randomly initializeH0 ⊂ [n] with m samples;
5 for t = 1 to Tmax do // inner refinement

6 f̄H0
=

1

h

∑
i∈H0

fi;DH0
= diag

(
1
h

∑
i∈H0

(fi− f̄H0
)(fi− f̄H0

)⊤
)
;

7 for i = 1 to n do
8 d(fi, (f̄H0

,DH0
))← (fi − f̄H0

)⊤D−1
H0

(fi − f̄H0
);

9 H1 ← indices of m samples with the smallest d(fi, (f̄H0 ,DH0));
10 ifH1 = H0 then break;
11 else
12 H0 ← H1

13 cum_distances←
∑
i∈H0

d(fi, (f̄H0
,DH0

));

14 if cum_distances < min_cum_distances then
15 Hbest

0 ← H0;
16 min_cum_distances← cum_distances;

17 returnHbest
0

B PROOF OF THEOREM 1

Theorem 1. LetH0 ⊂ [n] be an index subset of size m. Compute the covariance-modified L2 dis-
tances d(fi, (f̄H0

,DH0
)) for all i ∈ [n], where f̄H0

and DH0
are the mean and diagonal covariance

estimated fromH0. LetH1 be the set of indices corresponding to the m smallest distances, i.e.,

H1 = {π(1), π(2), . . . , π(m)},

where π is the ordering of indices such that

d(fπ(1), (f̄H0
,DH0

)) ≤ d(fπ(2), (f̄H0
,DH0

)) ≤ · · · ≤ d(fπ(n), (f̄H0
,DH0

)).

Then, computing the mean and covariance based onH1, the cumulative distance satisfies∑
i∈H1

d(fi, (f̄H1
,DH1

)) ≤
∑
i∈H0

d(fi, (f̄H0
,DH0

)),

with equality if and only ifH1 = H0.

The proof relies on the following lemma.
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Lemma 1. Let H ⊂ [n] be a fixed size-m subset, and define J(f̄ ,D |H) :=
∑
i∈H d(fi, (f̄ ,D)).

Among all diagonal positive-definite matrices D ≻ 0 and all f̄ ∈ Rd, the pair
(
f̄H,DH

)
defined in

Algorithm 1 minimizes J(f̄ ,D |H).

Proof. Let D = diag(σ2
1 , . . . , σ

2
d), f̄ = (µ1, . . . , µd)

⊤, and fij denote the j-th component of fi. The
objective becomes:

J(f̄ ,D |H) =
d∑
j=1

1

σ2
j

∑
i∈H

(fij − µj)
2.

The optimization decouples across dimensions due to diagonal D.
Step 1: Optimal Mean. For fixed σ2

j , set the derivative with respect to µj to zero:

∂

∂µj

∑
i∈H

(fij − µj)
2 = −2

∑
i∈H

(fij − µj) = 0 =⇒ µj =
1

m

∑
i∈H

fij = [f̄H]j .

Step 2: Optimal Variance. For each given j , we consider:

gj(σ
2
j ) :=

1

σ2
j

∑
i∈H

(fij − µj)
2.

Compute the second derivative and we have:

∂2gj
∂(σ2

j )
2
=

2

(σ2
j )

3

∑
i∈H

(fij − µj)
2 > 0.

The unique minimum occurs at:

σ2
j =

1

m

∑
i∈H

(fij − µj)
2 = [DH]jj .

Thus,
(
f̄H,DH

)
attains the minimum.

Proof of Theorem 1. Compute distances using (f̄H0 ,DH0), then select the m smallest distances to
formH1 and we have: ∑

i∈H1

d(fi, (f̄H0
,DH0

)) ≤
∑
i∈H0

d(fi, (f̄H0
,DH0

)). (4)

Next, applying Lemma 1 toH = H1 yields∑
i∈H1

d(fi, (f̄H1
,DH1

)) ≤
∑
i∈H1

d(fi, (f̄H0
,DH0

)).

Combining this with (4) gives
∑
i∈H1

d(fi, (f̄H1
,DH1

)) ≤
∑
i∈H0

d(fi, (f̄H0
,DH0

)).

C VISUALIZATION OF FEATURE DISTRIBUTION

To gain deeper insights into the geometric characteristics of the features extracted by the LLM,
we apply t-SNE to visualize the feature embeddings across four datasets in Figure 5. In each plot,
truthful samples are shown in red and hallucinated samples in blue. The visualizations are based on
projected features into two dimensions using t-SNE. Across all datasets, we observe a consistent
trend: truthful samples tend to form compact and coherent clusters, while hallucinated samples appear
more scattered. This property supports the core intuition behind Stage 1 of our method: truthful
generations tend to occupy dense regions of the embedding space, whereas hallucinated outputs can
be treated as outliers.

Besides, we perform a t-SNE visualization of the selected truthful features, comprising approximately
10% of the total samples, based on features extracted from LLaMA-3-8.1b and OPT-6.7b on the
TruthfulQA and TriviaQA datasets (Figure 6). These visualizations correspond to the output of Stage
1 in our framework. The results show that our method effectively identifies predominantly truthful
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Figure 5: T-SNE visualization of feature distributions extracted by OPT-6.7b across different datasets.
Truthful samples (red) form compact clusters, while hallucinated samples (blue) are more dispersed,
illustrating the geometric intuition behind Stage 1 of our method.

samples and substantially reduces the proportion of hallucinations. Notably, the samples selected
from LLaMA-3 exhibit a clearer separation between truthful and hallucinated samples, reflecting
the stronger discriminative capacity of its representations. While the selected samples are largely
composed of truthful samples, a small number of hallucinated samples still remain. This observation
motivates Stage 2 of our approach, where we further improve the results by modeling the truthful
distribution with a more flexible normalizing flow model.

Figure 6: T-SNE visualization of subsets selected using Algorithm 1 (10% of total samples) from
representations generated by LLaMA-3-8.1b (left) and OPT-6.7b (right). The selection algorithm
effectively prioritizes truthful samples, especially when applied to stronger LLaMA-3-8.1b model.

D COMPUTATIONAL TIME

We provide a detailed comparison of the computational time of our method DADM against several key
baselines: HaloScope, EigenScore and Semantic Entropy. DADM and HaloScope are training-based
models that require a training phase, whereas EigenScore and Semantic Entropy do not involve a
separate training stage but instead compute scores based on pre-trained model features.

We benchmarked the total end-to-end wall-clock time for each method, where for DADM and
HaloScope, the time includes feature extraction, training, and inference. For EigenScore and Semantic
Entropy, the time includes feature extraction and the scoring process. All experiments were conducted
on a single NVIDIA H100 GPU.

Table 3: End-to-end wall-clock time for different methods.

Method Requires Training Total Time (hour)
HaloScope Yes 0.28
DADM (Ours) Yes 0.57
EigenScore No 1.04
Semantic Entropy No 1.09

The results of this comparison are summarized in Table 3. As shown in the table, DADM is
significantly faster than both EigenScore and Semantic Entropy, which do not require training and
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rely on pre-trained features. It is slightly slower than HaloScope, another training-based method.
Moreover, the computational time of DADM can be further reduced by decreasing the dimensionality
of the intermediate layers within the normalizing flows.

E LIMITATION

Our proposed DADM framework demonstrates strong empirical performance but has some limitations.
In the first stage, it relies on selecting a high-quality subset of truthful samples through an iterative
covariance-modified distance-based filtering process, retaining only 10%–30% of the unlabeled data.
This conservative approach may underrepresent the true data distribution, potentially weakening
generalization in the second stage. Additionally, using BLEURT to label hallucinations may introduce
inaccuracies into the ground truth. Finally, although the normalizing flows used in the second
stage offer flexibility in modeling complex distributions, we currently evaluate them primarily in
comparison to the initial sample selection and a simple linear probing baseline. Exploring alternative
density estimators or classification strategies could improve performance and is a promising direction
for future research.

F BROADER IMPACTS

The proposed hallucination detection method has the potential to significantly improve the reliability
and trustworthiness of LLMs in real world by identifying misleading or fabricated content. This
advancement could be especially impactful in domains such as education, healthcare, and scientific
communication. However, caution is necessary when applying this method to specialized contexts, as
some hallucinations may still go undetected.

G THE USE OF LARGE LANGUAGE MODELS

We clearly describe the usage of large language model as a core component of the proposed halluci-
nation detection method, detailing how they are integrated and utilized within the research. We also
used the LLM to assist in improving the coherence of the manuscript.
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