DADM: HALLUCINATION DETECTION IN LLMs VIA DISTANCE-AWARE DISTRIBUTION MODELING

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041

042

043

044

046

047

048

050 051

052

ABSTRACT

Despite the remarkable advancements, large language models (LLMs) still frequently generate outputs that contain factually incorrect or contextually irrelevant information, commonly known as hallucinations. Detecting these hallucinations accurately and efficiently remains an open challenge, especially without relying on labeled datasets. Current methods primarily depend on internal activation or consistency of multiple responses for one prompt, limiting their effectiveness in capturing global semantic and distributional structures of truthful outputs. Besides, methods that estimate latent subspaces directly from mixed-quality data, suffer from noise contamination and imprecise geometric representations. To address these limitations, we propose a novel Distance-Aware Distribution Modeling (DADM) framework that operates in two stages: first, we apply an iterative distancebased process to select consistently truthful samples; second, we model the global distribution using normalizing flows, enabling accurate likelihood estimation by maximizing the likelihood of truthful samples and minimizing the likelihood of hallucinated samples. This two-stage design ensures both robust sample purification and expressive modeling of truthful generations, leading to interpretable confidence scores and more reliable hallucination detection. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms prior unsupervised approaches across multiple LLM settings.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in a variety of natural language processing tasks, including text summarization, translation, and question-answering (Zhao et al., 2023; Cao et al., 2023; Naveed et al., 2023). Despite their widespread success, a critical challenge remains: LLMs frequently generate responses containing factually incorrect or contextually irrelevant information, commonly referred to as hallucinations (Rawte et al., 2023; Bai et al., 2024; Huang et al., 2025). Such hallucinations significantly undermine the trustworthiness and applicability of LLMs, especially in domains like healthcare and scientific research.

However, manual annotation for hallucination detection in LLMs is labor-intensive and often impractical, particularly in rapidly evolving or specialized domains. To overcome this, recent work has explored unsupervised approaches that do not rely on explicit ground-truth labels. Some methods aim to detect inconsistencies between internal model signals and the generated output (Sriramanan et al., 2024). For example, MIND (Su et al., 2024) leverages internal activations of the model during generation to identify hallucinated content without requiring manual supervision. Besides, some research focuses on uncertainty estimation, where semantic entropy across multiple generations is used to flag outputs with high variability (Kuhn et al., 2023). Additionally, contrastive likelihood methods evaluate a model's sensitivity to prompt perturbations as a proxy for factual reliability (Burns et al., 2022). While these methods are scalable and do not require labeled data, they primarily operate at the level of individual examples. This limitation may lead to misclassification of rare but valid outputs or conflation of uncertainty with factual errors.

Another line of work is represented by HaloScope, which estimates hallucination likelihood by projecting LLM outputs onto a subspace constructed from unlabeled generations and measuring their distances to this subspace (Du et al., 2024). However, because the subspace is learned from all prompt-response pairs, including hallucinated samples, it provides a biased and noisy approximation

of the true semantic structure. The bias of the geometric representation subspace grows rapidly with the ratio of hallucinations, so the HaloScope may become degenerate and fail to accurately separate truthful and hallucinated responses, which hampers its reliability in practice.

To overcome the difficulties, we propose a novel two-stage Distance-Aware Distribution Modeling (DADM) framework for hallucination detection. Our key idea is to select a high-confidence truthful subset by utilizing the language model's latent representations and then learn the truthfulness distribution with this subset to distinguish a truthful response and a potentially hallucinated point. In contrast to prior approaches such as HaloScope that rely on noisy subspace estimates, our method leverages a clean subset of truthful responses, which remains stable in the presence of hallucinations.

To be specific, DADM firstly identifies a clean set of truthful examples based on a distance metric with robust estimations in Stage 1. This subset is obtained through an iterative refinement process, similar to prior approaches (Rousseeuw, 1984; Rousseeuw & Driessen, 1999), that progressively filters out likely hallucinations, resulting in a coherent set of high-confidence responses. Notably, our selection procedure is computationally efficient and remains robust as long as the proportion of hallucinated responses is below 50%. Leveraging this curated subset, we then capture the complex distribution of the feature space by training a normalizing flow model in Stage 2. Together, the two stages form a cohesive system: the initial selection provides reliable supervision for the flow model, and the learned likelihoods further refine detection.

Empirical results validate the effectiveness and robustness of DADM. Across a range of benchmark datasets spanning factual verification and commonsense reasoning, our DADM consistently outperforms existing unsupervised baselines. Specifically, we observe improvements of over 6% AUROC on factual tasks such as TriviaQA (Joshi et al., 2017) for OPT-6.7b model, and even larger gains exceeding 10% on more challenging reasoning benchmarks like CommonsenseQA (Talmor et al., 2019) for LLaMA-3.1-8b model. These results highlight the broad generalization capabilities of our method across different LLM architectures and task types, confirming its resilience even under ambiguous prompts and limited supervision.

In summary, we illustrate the full procedure in Figure 1 and highlight our main contributions:

- We propose a novel two-stage distance-aware distribution modeling framework. The central idea is to identify a clean subset of high-confidence truthful responses without relying on any labeled supervision by integrating an iterative distance-based process, which mitigates the effects of hallucinations and serves as a reliable foundation for confidence estimation.
- With the high-confidence truthful set, a distributional modeling based on normalizing flows is adapted to enable flexible and precise likelihood estimation over the hidden feature space and produce calibrated confidence scores to improve the hallucination detection.
- Our DADM framework offers strong practicality and flexibility for real-world applications.
 Extensive experiments across multiple language models and diverse datasets demonstrate the effectiveness and robustness of our method, achieving consistent improvements over state-of-the-art unsupervised baselines.

2 Methodology

2.1 PROBLEM SETUP

We formalize hallucination detection as a binary classification problem over prompt–response pairs produced by a fixed language model. Let $\mathcal P$ and $\mathcal R$ denote the spaces of natural-language prompts and model generations, respectively. We write $\Phi\colon \mathcal P\to \mathcal R$ for the fixed LLM under study, so that each prompt $\mathbf x_p\in \mathcal P$ yields a response $\mathbf x_g=\Phi(\mathbf x_p)\in \mathcal R$. We therefore consider the joint space $\mathcal X=\mathcal P\times\mathcal Q$, where $(\mathbf x_p,\mathbf x_g)$ is a prompt–response pair. Assume there exists an (unknown) "truthful" distribution $\mathcal X_{\rm true}$ over $\mathcal X$ and a "hallucinated" distribution $\mathcal X_{\rm hal}$ capturing ungrounded or fabricated outputs. Our goal is to learn a classifier such that

$$G(\mathbf{x}_{\mathrm{p}}, \mathbf{x}_{\mathrm{g}}) = \begin{cases} 1, & (\mathbf{x}_{\mathrm{p}}, \mathbf{x}_{\mathrm{g}}) \sim \mathcal{X}_{\mathrm{true}}, \\ 0, & (\mathbf{x}_{\mathrm{p}}, \mathbf{x}_{\mathrm{g}}) \sim \mathcal{X}_{\mathrm{hallu}}, \end{cases}$$

which predicts whether a given pair is truthful (1) or hallucinated (0).

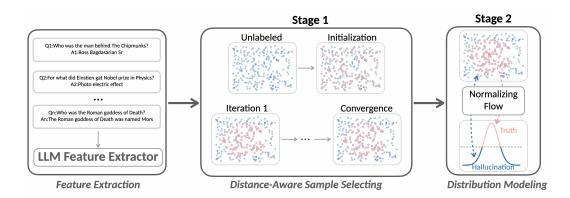


Figure 1: Overview of the DADM framework for hallucination detection. Given prompt-response pairs, the LLM feature extractor maps inputs into a feature space. In Stage 1, an iterative covariance-modified distance-based process selects a high-confidence subset of truthful responses. In Stage 2, a normalizing flow model is trained to model the underlying distribution and produce calibrated likelihood estimates for hallucination detection.

2.2 HIGH-CONFIDENCE SAMPLES VIA DISTANCE-BASED OUTLIER DETECTION

Let $\{(\mathbf{x}_i^{\mathrm{P}}, \mathbf{x}_i^{\mathrm{g}})\}_{i=1}^n$ be the unlabeled prompt–response pairs generated by one fixed LLM. We encode each prompt-response pair by feeding the entire pair as a prompt into the same LLM and extracting intermediate representations. Specifically, we denote the feature as $\mathbf{f}_i = \phi(\mathbf{x}_i^{\mathrm{P}}, \mathbf{x}_i^{\mathrm{g}}) \in \mathbb{R}^d$, where ϕ refers to the intermediate activation obtained from the LLM. Stacking these row-wise yields $\mathbf{F} = [\mathbf{f}_1^{\mathsf{T}}; \dots; \mathbf{f}_n^{\mathsf{T}}] \in \mathbb{R}^{n \times d}$, and one can expect the feature space to reflect structural differences. It is quite natural to expect that truthful features will appear relatively similar and form tight clusters, since they are grounded in consistent factual content and share similar structural patterns. By contrast, hallucinated responses tend to be more arbitrary, diverse, and semantically inconsistent, which causes their representations to spread out more widely and lack a coherent structure.

This motivates treating hallucination detection as an outlier detection problem, where hallucinated responses correspond to potential outliers. Distance-based methods are widely used in high-dimensional outlier detection to identify samples that deviate from the data distribution in the embedding space (Knorr et al., 2000; Ro et al., 2015; Lee et al., 2018). These techniques are effective at capturing distributional deviations without requiring supervision. Inspired by these techniques, we develop an iterative framework that identifies a cohesive and self-consistent subset of feature indices.

Formally, we denote by $\mathcal{H} \subseteq [n]$ an index subset of cardinality m, where $[n] = \{1, 2, \dots, n\}$ is the set of all sample indices. Define the center point as $\bar{\mathbf{c}}_{\mathcal{H}} \in \mathbb{R}^d$ of \mathcal{H} . The consistency of a sample \mathbf{f}_i with respect to \mathcal{H} is then quantified by its distance to the center $d(\mathbf{f}_i, \bar{\mathbf{c}}_{\mathcal{H}}) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$. Smaller values of $d(\mathbf{f}_i, \bar{\mathbf{c}}_{\mathcal{H}})$ indicate that \mathbf{f}_i is more closely aligned with the center. The refinement procedure can be expressed as a two-step iterative update:

1. Center Estimation. Given the current index subset $\mathcal{H}_0 \subset [n]$, compute its center as

$$\bar{\mathbf{c}}_{\mathcal{H}_0} = \arg\min_{\mathbf{y} \in \mathbb{R}^d} \sum_{i \in \mathcal{H}_0} d(\mathbf{f}_i, \mathbf{y}). \tag{1}$$

2. **Subset Update.** With the center $\bar{\mathbf{c}}_{\mathcal{H}_0}$ fixed, update the subset by retaining the m indices whose feature vectors are closest to the center:

$$\mathcal{H}_1 = \arg \min_{\substack{\mathcal{S} \subseteq [n] \\ |\mathcal{S}| = m}} \sum_{i \in \mathcal{S}} d(\mathbf{f}_i, \bar{\mathbf{c}}_{\mathcal{H}_0}). \tag{2}$$

Equivalently, this corresponds to ranking all samples by ascending distance to the center and selecting the top m samples that are considered most truthful.

Starting from an initial random subset \mathcal{H}_0 , the two steps are iterated until the index set stabilizes. The general framework only requires a distance function d, and the center estimation has explicit forms with some commonly-used choice of the distance metric. For example:

- If using Euclidean distance $d(\mathbf{f}_i, \mathbf{y}) = \|\mathbf{f}_i \mathbf{y}\|_2^2$, the center estimation is the *arithmetic mean* $\bar{\mathbf{c}}_{\mathcal{H}_0} = |\mathcal{H}_0|^{-1} \sum_{i \in \mathcal{H}_0} \mathbf{f}_i$.
- If using Manhattan distance $d(\mathbf{f}_i, \mathbf{y}) = ||\mathbf{f}_i \mathbf{y}||_1$, the center estimation corresponds to the *coordinate-wise median*, which is widely used in robust statistics.

In our implementation, we consider a covariance-modified L_2 distance:

$$d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})) = (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0})^{\mathsf{T}} \mathbf{D}_{\mathcal{H}_0}^{-1} (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0}), \tag{3}$$

where we consider $\bar{\mathbf{c}}_{\mathcal{H}_0} = (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})$: $\bar{\mathbf{f}}_{\mathcal{H}_0}$ is the robust estimator of mean and $\mathbf{D}_{\mathcal{H}_0}$ is the robust diagonal covariance matrix. The scale-invariance of this distance ensures that all feature dimensions contribute fairly. Here, the diagonal covariance is employed instead of the classical covariance matrix since the robust estimation of the covariance matrix is unreliable when the sample size n is on the order of the feature dimension d as discussed in (Ro et al., 2015). The diagonal assumption could also reduce both storage and computational complexity from $O(d^2)$ to O(d).

To select the high-confidence truthful set, we adopt a trimmed refinement procedure in a similar spirit to least-trimmed-squares approaches (Rousseeuw, 1984; Rousseeuw & Driessen, 1999). We start from an initial random subset of size m, iteratively re-estimate its local mean and diagonal covariance, and retain the m responses closest to this center. The full procedure is summarized as follows:

- 1. **Initialization.** Randomly select an initial truthful index set $\mathcal{H}_0 \subset [n]$ of cardinality m.
- 2. **Center Estimation.** Based on formula (1) and distance (3), we first compute the sample mean $\bar{\mathbf{f}}_{\mathcal{H}_0}$ and a simplified diagonal covariance matrix $\mathbf{D}_{\mathcal{H}_0}$ from the current index subset \mathcal{H}_0 . We omit the factor in the covariance estimation for simplicity:

$$\bar{\mathbf{f}}_{\mathcal{H}_0} = \frac{1}{m} \sum_{i \in \mathcal{H}_0} \mathbf{f}_i, \qquad \mathbf{D}_{\mathcal{H}_0} = \operatorname{diag} \left(\frac{1}{m} \sum_{i \in \mathcal{H}_0} (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0}) (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0})^{\top} \right).$$

3. Subset Update. Form the refined index subset using formula (2) and distance (3):

$$\mathcal{H}_1 = \{\pi(1), \pi(2), \dots, \pi(m)\},\$$

where $\pi(1), \pi(2), \dots, \pi(n)$ denote the corresponding indices after ranking.

- 4. Convergence Check. Replace $\mathcal{H}_0 \leftarrow \mathcal{H}_1$ and repeat Steps 2–3 until either $\mathcal{H}_1 = \mathcal{H}_0$ (no change) or a maximum of T iterations is reached.
- 5. **Selection Across Different Initialization.** After completing K independent runs of Steps 1–4 with different initialization, each yielding a core \mathcal{H}_0 and its total cumulative distances, choose the set with the smallest cumulative distances as the final high-confidence set $\mathcal{H}_0^{\text{best}}$.

Since choosing the subset size m involves a trade-off, smaller values (around 0.1n) tend to produce a cleaner, safer core but risk missing some truthful samples, whereas larger m may include hallucinations. Therefore, we carefully select m within the range between 0.1n to 0.5n to balance reliability and coverage. We validate this choice of m in Section 3.3. To mitigate sensitivity to local optima, we perform multiple random initializations in Step 5, each independently exploring different regions of the solution space. The configuration with the minimal cumulative distance is selected as the final high-confidence set, providing a robust foundation for downstream hallucination detection.

The following theorem ensures that the cumulative distance of the iterative procedure monotonically decreases and converges to a local minimum.

Theorem 1. Let $\mathcal{H}_0 \subset [n]$ be an index subset of size m. Compute the covariance-modified L_2 distances $d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0}))$ for all $i \in [n]$, where $\bar{\mathbf{f}}_{\mathcal{H}_0}$ and $\mathbf{D}_{\mathcal{H}_0}$ are the mean and diagonal covariance estimated from \mathcal{H}_0 . Let \mathcal{H}_1 be the set of indices corresponding to the m smallest distances, i.e.,

$$\mathcal{H}_1 = \{\pi(1), \pi(2), \dots, \pi(m)\},\$$

where π is the ordering of indices such that

$$d(\mathbf{f}_{\pi(1)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})) \leq d(\mathbf{f}_{\pi(2)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})) \leq \cdots \leq d(\mathbf{f}_{\pi(n)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})).$$

Then, computing the mean and covariance based on \mathcal{H}_1 , the cumulative distance satisfies

$$\sum_{i \in \mathcal{H}_1} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_1}, \mathbf{D}_{\mathcal{H}_1})) \leq \sum_{i \in \mathcal{H}_0} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})),$$

with equality if and only if $\mathcal{H}_1 = \mathcal{H}_0$.

2.3 DISTRIBUTION MODELING FOR HALLUCINATION DETECTION

In Stage 1, we identify a tightly clustered core $\mathcal{H}_0^{\text{best}} \subset [n]$ serving as a high-confidence set of non-hallucinated examples. This stage plays a crucial role in providing a reliable anchor for hallucination detection, offering a principled geometric approach under minimal supervision. While the initial distance-based selection tends to be safe, it may miss certain truthful examples that lie further from the estimated core. Moreover, the method models feature distributions only accounting for mean and diagonal covariance, which may not fully capture more complex structures present in real-world data.

To address these limitations while building upon the strengths of Stage 1, we introduce Stage 2 that further refines the modeling of the feature space. The key idea is to employ distribution learning algorithms to model the distribution of truthful responses on the refined $\mathcal{H}_0^{\text{best}}$. Specifically, normalizing flows achieve precise likelihood estimation and flexible distribution transformation by stacking invertible coupling layers, enabling accurate modeling of complex data distributions for improved uncertainty quantification (Kobyzev et al., 2020; Papamakarios et al., 2021). Therefore, we train a normalizing flow on $\mathcal{H}_0^{\text{best}}$ to flexibly learn the underlying complex distribution and to provide calibrated likelihood estimates for individual samples.

Training Objective. We denote the normalizing flow model as g_{ψ} , which transforms input feature vectors $\mathbf{f} \in \mathcal{F}$ into latent representations $\mathbf{z} = g_{\psi}(\mathbf{f})$, where a standard Gaussian distribution is defined. The log likelihood is computed via the change of variables formula:

$$\log p_{\mathcal{F}}(\mathbf{f}) = \log p_{\mathcal{Z}}(g_{\psi}(\mathbf{f})) + \log \left| \det \left(\frac{\partial g_{\psi}(\mathbf{f})}{\partial \mathbf{f}} \right) \right|.$$

In practice, we implement g_{ψ} using a stack of invertible 1×1 convolutions, affine coupling layers, and activation normalization, following the Glow architecture Kingma & Dhariwal (2018). To emphasize the distinction between hallucinated and truthful samples, the model is trained using a dual-objective loss based on the selected truthful features $\mathcal{H}_0^{\text{best}}$ and its complement $[n] \setminus \mathcal{H}_0^{\text{best}}$ (Zhao et al., 2025):

- **Truthful Objective:** We aim to maximize the log-likelihood over the set $\mathcal{H}_0^{\text{best}}$, thereby encouraging the model to faithfully capture the distribution of truthful features.
- Hallucination Suppression: To mitigate hallucination, we penalize the likelihood assigned to elements in $[n] \setminus \mathcal{H}_0^{\text{best}}$ by minimizing the softplus transformation of their log-likelihoods. The use of the softplus function ensures optimization stability and mitigates numerical instability when likelihood values are close to zero or exceedingly small.

The total loss is defined as:

$$\mathcal{L} = \mathcal{L}_{\text{truth}} + \lambda \cdot \mathcal{L}_{\text{hallu}}$$

$$= -\frac{1}{m} \sum_{i \in \mathcal{H}_0^{best}} \log p_{\mathcal{F}}(\mathbf{f}_i) + \frac{\lambda}{n-m} \sum_{j \in [n] \setminus \mathcal{H}_0^{best}} \log \left(1 + p_{\mathcal{F}}(\mathbf{f}_j)\right),$$

where m and n-m are the number of truthful and hallucinated samples respectively, and λ is a hyperparameter that balances the two objectives. This distribution modeling allows for a smoother and more adaptive decision boundary, which is particularly beneficial for hallucination detection.

Scoring and Detection. Together, the two stages complement each other: the first determines approximately dense and reliable samples, while the second provides fine-grained, continuous likelihood estimates across the feature space. Once trained, the normalizing flow model assigns a log likelihood score to each feature vector \mathbf{f} , providing a continuous measure of confidence for hallucination detection. A high log likelihood indicates that the sample aligns well with the learned distribution of truthful samples, while a low score suggests potential hallucination. We define the scoring function as $p_{\mathcal{F}}(\mathbf{f})$, and use it to construct a binary classifier $c(\mathbf{f})$ that labels a feature as truthful if its score exceeds a threshold τ . Formally,

$$c(\mathbf{f}) = \begin{cases} 1, & \text{if } p_{\mathcal{F}}(\mathbf{f}) > \tau \\ 0, & \text{if } p_{\mathcal{F}}(\mathbf{f}) \le \tau \end{cases},$$

where $c(\mathbf{f}) = 1$ denotes a truthful prediction and $c(\mathbf{f}) = 0$ indicates hallucination. For practical deployment, we select the threshold τ based on a criterion, such as the false positive rate (5%). For comparison with experiments, we directly compute the AUROC from the continuous scores.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To rigorously evaluate the performance of our hallucination detection framework DADM, we perform experiments across four diverse benchmark datasets. TruthfulQA (Lin et al., 2021) (817 validation examples) focuses on open-domain QA in conversational contexts. For closed-book question answering, we use a deduplicated validation split of the TriviaQA (rc.nocontext subset) (Joshi et al., 2017), containing 9,960 factoid-style questions. To assess performance in knowledge comprehension, we include the SciQ validation set (Johannes Welbl, 2017) (1,000 examples) and the CommonsenseQA validation set (Talmor et al., 2019) (1,221 examples), involving-choice questions designed to test domain-specific and commonsense reasoning. Each dataset is partitioned into three subsets: a 75% unlabeled train set used for distance-aware distribution learning, a 25% held-out test set for evaluation, and 100-example validation set (randomly sampled from the training split). The template for response generation is as follows: {Answer the question concisely. Q: {question} A:}

We apply our method to two instruction-tuned foundation models: OPT-6.7b (Zhang et al., 2022) and LLaMA-3.1-8b (Grattafiori et al., 2024). These models are selected for their strong open-ended generation capabilities and widespread adoption in downstream applications, making them representative for hallucination detection. Features are obtained from the outputs of each Transformer blocks, allowing us to analyze the effect of different layers on detection performance. To assess the effectiveness of our hallucination detection methods, we adopt the area under the receiver operating characteristic curve (AUROC) as our primary evaluation metric. Following Du et al. (2024), we use BLUERT (Sellam et al., 2020), a learned metric to label the groud-truth of hallucinations. A prompt-response pair is labeled as truthful if its BLUERT score exceeds a threshold of 0.5.

For comprehensive evaluation, we select seven hallucination detection methods that represent three paradigms: (1) probability-based metrics (Perplexity (Ren et al., 2022), Maximum Sequence Probability (MSP) (Fadeeva et al., 2023)) analyzing prediction confidence, (2) distance measures (FisherRao Distance (Darrin et al., 2022), Haloscope (Du et al., 2024)) quantifying hidden state variations, and (3) semantic consistency checks (Lexical Similarity (Fomicheva et al., 2020), Semantic Entropy (Kuhn et al., 2023), EigenScore (Chen et al., 2024)) evaluating conceptual alignment. This selection strategically covers both model-intrinsic signals (probability distributions, hidden states) and model-extrinsic validations (lexical/semantic coherence), enabling a comprehensive comparative analysis of diverse hallucination detection approaches. We reproduce baseline methods using the LM-Polygraph framework to ensure a fair and consistent comparison (Fadeeva et al., 2023).

Implementation Details For Stage 1, we perform K=10 random reinitializations. The subset ratio m/n and the feature extraction layer are tuned according to validation performance. Empirically, m/n is selected within the range [0.1,0.5], and the feature layer is chosen from layers 5 to 16. We employ a normalizing flow architecture based on Glow (Kingma & Dhariwal, 2018), the model processes an input consisting of a 4,096 dimensional feature vector through a series of 8 coupling layers. We set Adam (Kingma & Ba, 2014) optimizer, with hyperparameter set as follows: a learning rate of 2×10^{-4} , batch size of 24, $\beta_1=0.9$, $\beta_2=0.999$, $\epsilon=10^{-8}$, and weight decay of 10^{-5} . We train the normalizing flow model for a maximum of 20 epochs. Additionally, we select $\lambda=1$ due to superior empirical performance. All experiments are implemented on a single NVIDIA Tesla A100 GPU with 80GB of memory. Each experiment was repeated with three different random seeds, and the results are reported as the mean with standard deviation.

3.2 RESULTS

The results in Table 1 clearly demonstrate the superiority of our method across different datasets and LLMs. On OPT-6.7b, our method achieves the best AUROC scores on all four benchmarks, significantly surpassing the best baseline HaloScope, by 9.93, 2.74, 5.05, and 4.67 points respectively. Particularly on challenging commonsense reasoning tasks like CommonsenseQA and SciQ, our method achieves over 79 and 80 AUROC, respectively, highlighting its robustness beyond surface-level fact checking. Similarly, on the LLaMA-3.1-8b model, our method again establishes new state-of-the-art performance, achieving 71.58 on TruthfulQA, 77.06 on TriviaQA, 78.30 on CommonsenseQA, and 80.24 on SciQ. Compared to other methods, our method maintains stable performance

gains, particularly in knowledge-intensive tasks. These substantial margins, especially on complex datasets requiring deeper reasoning, underline the broad effectiveness of our detection method.

Overall, these results confirm that our framework not only outperforms prior single-output hallucination detectors across both open domain (TriviaQA, TruthfulQA) and knowledge comprehension (CommonsenseQA, SciQ) tasks, but also generalizes well across model scales and question types. The strong and consistent gains suggest that our method can serve as a robust and versatile solution for hallucination detection in diverse real world applications.

Table 1: Performance comparison of hallucination detection methods across OPT-6.7b and LLaMA-3.1-8b models on four datasets. Our distance-aware distribution modeling framework achieves state-of-the-art results on all datasets. Our experiment was conducted three times with different random seeds, and the results are presented as the mean and standard deviation.

Model	Method	TruthfulQA	TriviaQA	CommonSenseQA	SciQ
	Perplexity	57.41	60.49	57.21	60.75
	Fisher Rao	52.76	60.48	60.38	59.23
OPT-6.7b	Lexical Similarity	53.97	61.09	63.32	57.94
	MSP	50.11	58.33	52.05	58.24
	Semantic Entropy	50.69	64.80	55.33	58.87
	EigenScore	50.97	61.42	51.00	64.62
	HaloScope	$69.64_{\pm 5.13}$	$62.94_{\pm 3.55}$	$74.28_{\pm 2.68}$	$76.01_{\pm 2.37}$
	DADM (Ours)	79.57 $_{\pm 1.10}$	$65.68_{\pm 1.02}$	79.33 $_{\pm 0.42}$	$80.68_{\pm 1.83}$
LLaMA-3.1-8b	Perplexity	61.43	76.32	50.60	64.51
	Fisher Rao	56.85	67.14	59.13	55.29
	Lexical Similarity	59.45	66.19	50.85	60.84
	MSP	57.39	67.29	62.91	68.91
	Semantic Entropy	62.48	72.77	61.32	65.97
	EigenScore	52.49	70.52	68.32	66.10
	HaloScope	$70.27_{\pm 0.92}$	$73.51_{\pm 0.28}$	$64.66_{\pm 0.56}$	$76.01_{\pm 0.03}$
	DADM (Ours)	71.58 $_{\pm0.13}$	77.06 $_{\pm 0.53}$	$78.30_{\pm 0.41}$	$80.24_{\pm 0.82}$

3.3 ABLATION STUDIES

We conduct a series of ablation studies on all datasets to systematically evaluate the key components and design choices of our distance-aware distribution modeling hallucination detection framework. Specifically, we analyze (i) the effect of the retained truthful feature size (m) in Stage 1, (ii) the impact of feature extraction layer selection, (iii) the importance of employing a normalizing flow architecture for flexible distribution modeling, and (iv) the scalability of our method to larger language models. These studies provide detailed insights into how each component contributes to the overall effectiveness and robustness of the framework.

Figure 2: Effect of truthful sample ratio (m/n) on AUROC performance for OPT-6.7b across different datasets. We vary m/n from 0.1 to 0.7 in the initial stage 1, and the best performance is typically achieved when m/n lies between 0.1 and 0.5.

Effect of Truthful Features Ratio (m/n). Stage 1 plays a critical role in isolating a reliable core of truthful responses from unlabeled generations. To assess the impact of the truthful samples ratio, we vary m/n from 0.1 to 0.7, corresponding to retaining 10% to 70% samples as truthful samples. For

each setting, we conduct the full iterative distance-based refinement followed by likelihood estimation with normalizing flows and evaluate performance using AUROC on the test set.

Our analysis reveals a consistent non-monotonic pattern across all datasets (Figure 2) on OPT-6.7b model. The AUROC scores initially improve with increasing sample ratios, peaking between 0.1 and 0.5 (TruthfulQA achieves 81.2 at 0.4, TriviaQA achieves 65.5 at 0.4 and CommonSenseQA achieves 80.4 at 0.1), followed by a marked performance degradation beyond a 0.5 ratio. This phenomenon can be attributed to potential hallucination contamination in higher sample ratios, as evidenced by the steepest decline in TriviaQA and CommonSenseQA from 0.5 to 0.7. This trend suggests that larger sample ratios (beyond 0.5) may introduce noisy or hallucinated examples, degrading model reliability. These findings empirically support the importance of identifying a clean set of high-confidence truthful responses. Such a clean subset serves as the proxy for the subsequent distribution modeling stage. Consequently, choosing a smaller sample ratio (≤ 0.5) offers a safer and more robust configuration for hallucination detection.

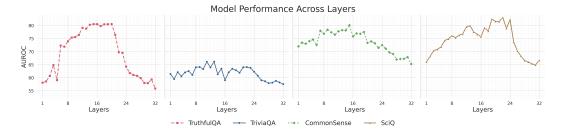


Figure 3: AUROC performance across different feature extraction layers of OPT-6.7b. Te best performance is typically achieved when features are extracted from intermediate layers.

Effect of Layer Feature. We investigate how the choice of feature extraction layer influences hallucination detection performance. For each dataset, we compute AUROC scores by independently applying the distance-aware high-confidence sample selection and normalizing flow pipeline with the fixed optimal truthful sample ratio. We report the results on OPT-6.7b across various datasets in Figure 3, and observe that the detection performance varies substantially across layers. Across all datasets, AUROC scores typically improve from the earliest layers, reach a peak between layers 8 and 24, and then gradually degrade toward deeper layers. For instance, on CommonSenseQA, AUROC peaks above 80.4 at layer 15, whereas in other datasets, the best performance is also observed around middle layers. In contrast, features from very early layers and very late layers consistently yield lower AUROC scores, often dropping by more than 10 points compared to the optimal middle-layer performance. Overall, these results suggest that intermediate layer representations are more effective at capturing rich contextual dependencies that are critical for distinguishing hallucinations from truthful contents. In contrast, early layers primarily encode shallow lexical or syntactic patterns, while deeper layers tend to become overly specialized toward next-token prediction, potentially obscuring the finer distinctions between truthful and hallucinated responses.

Importance of Normalizing Flow Architecture. A key component of our approach is the use of normalizing flows for distribution modeling. We compare three modeling settings: (i) directly using Stage 1, where a class center is learned and scoring is based on the covariance-modified distance to the center; (ii) adding a 2-layer MLP with ReLU activation, and the first layer maps to 1024 dimension; and (iii) incorporating a normalizing flow to model the selected feature distribution. As shown in Figure 4, adding normalizing flows in Stage 2 brings consistent improvements over the stage 1 results, and outperforms the linear probing baseline across different settings. For OPT-6.7b, results based on Stage 1 provide the baseline performance, while linear probing leads to only slight gains in AUROC scores across datasets. The normalizing flow further elevates results by 0.69-7.68 points, achieving state-of-the-art values. On LLaMA-3.1-8b, AUROC scores based on Stage 1 start with 63.85, 77.38, 76.76, and 78.95, while linear probing contributes moderate improvements of up to 3.78 points. The normalizing flow again outperforms baselines, adding further gains ranging from 1.88 to 6.96 points. These results demonstrate that while results in Stage 1 provide initial improvements, the flexible modeling power of the normalizing flow delivers further substantial enhancements.

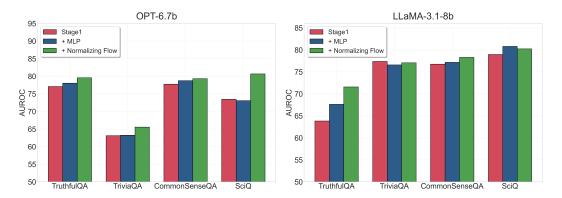


Figure 4: Comparison of hallucination detection AUROC on OPT-6.7b and LLaMA-3.1-8b across four benchmarks, highlighting the performance gains achieved by incorporating normalizing flow.

Larger Models. To further assess the scalability and robustness of our approach, we conduct experiments using two larger models, LLaMA-2-13b and OPT-13b (Zhang et al., 2022), which offer significantly greater capacity compared to OPT-6.7b and LLaMA-3.1-8b. As shown in Table 2, our method consistently outperforms the HaloScope baseline across all datasets and models. On TruthfulQA, our approach achieves AUROC scores of 85.73 and 89.98 for LLaMA-2-13b and OPT-13b, representing improvements of 5.36 and 7.57, respectively. On TriviaQA, we observe even larger gains, with an AUROC of 86.08 on LLaMA-2-13b (18.4-point improvement) and a 3.71-point improvement on OPT-13b, suggesting our method particularly excels at detecting factual hallucinations in knowledge-intensive tasks. Consistent advantages are also observed on Common-SenseQA and SciQ datasets, where DADM achieves better performance over the baseline across both model architectures. These results indicate that as model size increases, our method is able to more effectively leverage the additional capacity to distinguish between hallucinated and truthful outputs. The improvements across architectures and datasets further demonstrate that our approach generalizes well beyond specific model families, highlighting its robustness in more powerful LLMs.

Table 2: Performance comparison between HaloScope and our method on larger models (LLaMA-2-13b and OPT-13b), demonstrating that our method consistently outperforms HaloScope.

Model	Method	TruthfulQA	TriviaQA	CommonSenseQA	SciQ
LLaMA-2-13b	HaloScope	80.37	67.68	72.66	79.80
	DADM (Ours)	85.73	86.08	83.24	84.51
OPT-13b	HaloScope	82.41	59.66	77.13	74.34
	DADM (Ours)	89.98	63.37	79.51	78.78

4 Conclusion

In this work, we proposed a novel distance-aware distribution modeling (DADM) framework for hallucination detection in large language models. By leveraging distance-aware high-confidence sample selection via iterative Mahalanobis-distance refinement, followed by expressive probabilistic modeling using normalizing flows, our method effectively detect hallucinations without relying on labeled data. Extensive experiments across multiple datasets and LLM models demonstrate that our approach consistently outperforms state-of-the-art unsupervised baselines. Our results highlight the importance of modeling global feature distribution properties rather than relying solely on token-level uncertainty or local activation patterns. The framework is flexible, interpretable, and scalable, offering a practical solution for hallucination detection in real world LLM deployments.

REFERENCES

- Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*, 2024.
 - Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language models without supervision. *arXiv preprint arXiv:2212.03827*, 2022.
 - Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. *arXiv* preprint arXiv:2303.04226, 2023.
 - Yifan Chen, Yifan Zhang, Xinyu Wang, Yichao Zhang, Yixuan Liu, Zhiwei Zhang, Yifan Liu, and Zhiwei Zhang. Inside: Llms' internal states retain the power of hallucination detection. *arXiv* preprint arXiv:2402.03744, 2024.
 - Maxime Darrin, Pablo Piantanida, and Pierre Colombo. Rainproof: An umbrella to shield text generators from out-of-distribution data. *arXiv preprint arXiv:2212.09171*, 2022.
 - Xuefeng Du, Chaowei Xiao, and Sharon Li. Haloscope: Harnessing unlabeled llm generations for hallucination detection. *Advances in Neural Information Processing Systems*, 37:102948–102972, 2024.
 - Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev, Sergey Petrakov, Kirill Fedyanin, Daniil Vasilev, Elizaveta Goncharova, Alexander Panchenko, Maxim Panov, Timothy Baldwin, and Artem Shelmanov. LM-polygraph: Uncertainty estimation for language models. In Yansong Feng and Els Lefever (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 446–461, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-demo.41. URL https://aclanthology.org/2023.emnlp-demo.41.
 - Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8: 539–555, 2020.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information Systems*, 43(2):1–55, 2025.
 - Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions. 2017.
 - Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint* arXiv:1412.6980, 2014.
- Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in neural information processing systems*, 31, 2018.
 - Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms and applications. *The VLDB Journal*, 8(3):237–253, 2000.
 - Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43 (11):3964–3979, 2020.

- Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=VD-AYtPOdve.
 - Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. *Advances in neural information processing systems*, 31, 2018.
 - Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.
 - Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. *arXiv preprint arXiv:2307.06435*, 2023.
 - George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine Learning Research*, 22(57):1–64, 2021.
 - Vipula Rawte, Amit Sheth, and Amitava Das. A survey of hallucination in large foundation models. *arXiv preprint arXiv:2309.05922*, 2023.
 - Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, and Peter J Liu. Out-of-distribution detection and selective generation for conditional language models. *arXiv preprint arXiv:2209.15558*, 2022.
 - Kwangil Ro, Changliang Zou, Zhaojun Wang, and Guosheng Yin. Outlier detection for high-dimensional data. *Biometrika*, 102(3):589–599, 2015.
 - Peter J Rousseeuw. Least median of squares regression. *Journal of the American statistical association*, 79(388):871–880, 1984.
 - Peter J Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum covariance determinant estimator. *Technometrics*, 41(3):212–223, 1999.
 - Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text generation. In *Proceedings of ACL*, 2020.
 - Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda, and Soheil Feizi. LLM-check: Investigating detection of hallucinations in large language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=LYx4w3CAgy.
 - Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu, Zhijing Wu, Yujia Zhou, and Yiqun Liu. Unsupervised real-time hallucination detection based on the internal states of large language models. *arXiv preprint arXiv:2403.06448*, 2024.
 - Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.
 - Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. *arXiv preprint arXiv:2205.01068*, 2022.
 - Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv* preprint arXiv:2303.18223, 1(2), 2023.
 - Yuzhong Zhao, Qiaoqiao Ding, and Xiaoqun Zhang. Correcting the bias of normalizing flows by synthetic outliers for improving out-of-distribution detection, 2025. URL https://openreview.net/forum?id=yuymgwkjjl.

A PSEUDOCODE

 In this section, we present the detailed pseudocode of the proposed Distance-Aware Sample Selecting algorithm in Algorithm 1. This stage aims to select a representative subset of m samples from the full dataset by minimizing the cumulative distance to the subset mean, under a diagonal covariance assumption. The method performs K random restarts, each with up to T inner refinement steps, to ensure robustness and convergence toward high-quality selections.

Algorithm 1: Distance-Aware Sample Selecting

```
603
                 Input: \mathcal{F}: full feature set of n samples;
604
                 m: subset size;
605
                 K: number of random restarts;
606
                 T: maximal inner iterations.
607
                 Output: \mathcal{H}_0^{\text{best}}: size-m index set.
608
             1 \mathcal{H}_0^{\text{best}} \leftarrow \emptyset;
609
             2 min\_cum\_distances \leftarrow \infty;
                                                                                                                                      // initial best objective
610
             s for k=1 to K do
611
                         Randomly initialize \mathcal{H}_0 \subset [n] with m samples;
612
                         for t=1 to T_{\rm max} do
                                                                                                                                                         // inner refinement
             5
                               \bar{\mathbf{f}}_{\mathcal{H}_0} = \frac{1}{h} \sum_{i \in \mathcal{H}_0} \mathbf{f}_i; \mathbf{D}_{\mathcal{H}_0} = \operatorname{diag} \left( \frac{1}{h} \sum_{i \in \mathcal{H}_0} (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0}) (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0})^{\mathsf{T}} \right);
613
614
615
616
                                   | d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})) \leftarrow (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0})^{\mathsf{T}} \mathbf{D}_{\mathcal{H}_0}^{-1} (\mathbf{f}_i - \bar{\mathbf{f}}_{\mathcal{H}_0}); 
617
                                \mathcal{H}_1 \leftarrow \text{indices of } m \text{ samples with the smallest } d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0}));
618
                                if \mathcal{H}_1 = \mathcal{H}_0 then break;
            10
619
            11
620
                            \mathcal{L} \mathcal{H}_0 \leftarrow \mathcal{H}_1
            12
621
622
                         cum\_distances \leftarrow \sum_{i \in \mathcal{H}_0} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0}));
623
624
                         if \ cum\_distances < min\_cum\_distances \ then
            14
                               \mathcal{H}_0^{\text{best}} \leftarrow \mathcal{H}_0;
min\_cum\_distances \leftarrow cum\_distances;
625
            15
627
           17 return \mathcal{H}_0^{best}
```

B Proof of Theorem 1

Theorem 1. Let $\mathcal{H}_0 \subset [n]$ be an index subset of size m. Compute the covariance-modified L_2 distances $d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0}))$ for all $i \in [n]$, where $\bar{\mathbf{f}}_{\mathcal{H}_0}$ and $\mathbf{D}_{\mathcal{H}_0}$ are the mean and diagonal covariance estimated from \mathcal{H}_0 . Let \mathcal{H}_1 be the set of indices corresponding to the m smallest distances, i.e.,

$$\mathcal{H}_1 = \{\pi(1), \pi(2), \dots, \pi(m)\},\$$

where π is the ordering of indices such that

$$d(\mathbf{f}_{\pi(1)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})) \leq d(\mathbf{f}_{\pi(2)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})) \leq \cdots \leq d(\mathbf{f}_{\pi(n)},(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})).$$

Then, computing the mean and covariance based on \mathcal{H}_1 , the cumulative distance satisfies

$$\sum_{i\in\mathcal{H}_1}d(\mathbf{f}_i,(\bar{\mathbf{f}}_{\mathcal{H}_1},\mathbf{D}_{\mathcal{H}_1}))\leq \sum_{i\in\mathcal{H}_0}d(\mathbf{f}_i,(\bar{\mathbf{f}}_{\mathcal{H}_0},\mathbf{D}_{\mathcal{H}_0})),$$

with equality if and only if $\mathcal{H}_1 = \mathcal{H}_0$.

The proof relies on the following lemma.

Lemma 1. Let $\mathcal{H} \subset [n]$ be a fixed size-m subset, and define $J(\bar{\mathbf{f}}, \mathbf{D} \mid \mathcal{H}) := \sum_{i \in \mathcal{H}} d(\mathbf{f}_i, (\bar{\mathbf{f}}, \mathbf{D}))$. Among all diagonal positive-definite matrices $\mathbf{D} \succ 0$ and all $\bar{\mathbf{f}} \in \mathbb{R}^d$, the pair $(\bar{\mathbf{f}}_{\mathcal{H}}, \mathbf{D}_{\mathcal{H}})$ defined in Algorithm 1 minimizes $J(\bar{\mathbf{f}}, \mathbf{D} \mid \mathcal{H})$.

Proof. Let $\mathbf{D} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_d^2)$, $\bar{\mathbf{f}} = (\mu_1, \dots, \mu_d)^{\top}$, and \mathbf{f}_{ij} denote the *j*-th component of \mathbf{f}_i . The objective becomes:

$$J(\bar{\mathbf{f}}, \mathbf{D} \mid \mathcal{H}) = \sum_{j=1}^{d} \frac{1}{\sigma_j^2} \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j)^2.$$

The optimization decouples across dimensions due to diagonal D.

Step 1: Optimal Mean. For fixed σ_i^2 , set the derivative with respect to μ_i to zero:

$$\frac{\partial}{\partial \mu_j} \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j)^2 = -2 \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j) = 0 \quad \Longrightarrow \quad \mu_j = \frac{1}{m} \sum_{i \in \mathcal{H}} \mathbf{f}_{ij} = [\bar{\mathbf{f}}_{\mathcal{H}}]_j.$$

Step 2: Optimal Variance. For each given j, we consider:

$$g_j(\sigma_j^2) := \frac{1}{\sigma_j^2} \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j)^2.$$

Compute the second derivative and we have:

$$\frac{\partial^2 g_j}{\partial (\sigma_j^2)^2} = \frac{2}{(\sigma_j^2)^3} \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j)^2 > 0.$$

The unique minimum occurs at:

$$\sigma_j^2 = \frac{1}{m} \sum_{i \in \mathcal{H}} (\mathbf{f}_{ij} - \mu_j)^2 = [\mathbf{D}_{\mathcal{H}}]_{jj}.$$

Thus, $(\bar{\mathbf{f}}_{\mathcal{H}}, \mathbf{D}_{\mathcal{H}})$ attains the minimum.

Proof of Theorem 1. Compute distances using $(\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})$, then select the m smallest distances to form \mathcal{H}_1 and we have:

$$\sum_{i \in \mathcal{H}_1} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})) \le \sum_{i \in \mathcal{H}_0} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})). \tag{4}$$

Next, applying Lemma 1 to $\mathcal{H} = \mathcal{H}_1$ yields

$$\sum_{i\in\mathcal{H}_1} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_1}, \mathbf{D}_{\mathcal{H}_1})) \leq \sum_{i\in\mathcal{H}_1} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})).$$

Combining this with (4) gives $\sum_{i \in \mathcal{H}_1} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_1}, \mathbf{D}_{\mathcal{H}_1})) \leq \sum_{i \in \mathcal{H}_0} d(\mathbf{f}_i, (\bar{\mathbf{f}}_{\mathcal{H}_0}, \mathbf{D}_{\mathcal{H}_0})).$

C VISUALIZATION OF FEATURE DISTRIBUTION

To gain deeper insights into the geometric characteristics of the features extracted by the LLM, we apply t-SNE to visualize the feature embeddings across four datasets in Figure 5. In each plot, truthful samples are shown in red and hallucinated samples in blue. The visualizations are based on projected features into two dimensions using t-SNE. Across all datasets, we observe a consistent trend: truthful samples tend to form compact and coherent clusters, while hallucinated samples appear more scattered. This property supports the core intuition behind Stage 1 of our method: truthful generations tend to occupy dense regions of the embedding space, whereas hallucinated outputs can be treated as outliers.

Besides, we perform a t-SNE visualization of the selected truthful features, comprising approximately 10% of the total samples, based on features extracted from LLaMA-3-8.1b and OPT-6.7b on the TruthfulQA and TriviaQA datasets (Figure 6). These visualizations correspond to the output of Stage 1 in our framework. The results show that our method effectively identifies predominantly truthful

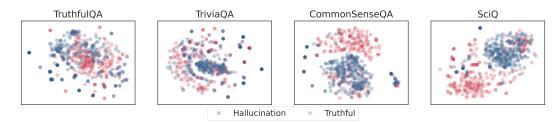


Figure 5: T-SNE visualization of feature distributions extracted by OPT-6.7b across different datasets. Truthful samples (red) form compact clusters, while hallucinated samples (blue) are more dispersed, illustrating the geometric intuition behind Stage 1 of our method.

samples and substantially reduces the proportion of hallucinations. Notably, the samples selected from LLaMA-3 exhibit a clearer separation between truthful and hallucinated samples, reflecting the stronger discriminative capacity of its representations. While the selected samples are largely composed of truthful samples, a small number of hallucinated samples still remain. This observation motivates Stage 2 of our approach, where we further improve the results by modeling the truthful distribution with a more flexible normalizing flow model.

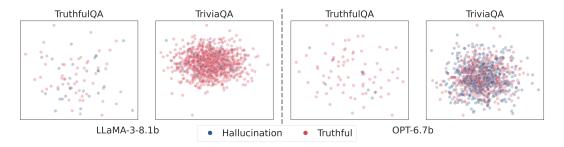


Figure 6: T-SNE visualization of subsets selected using Algorithm 1 (10% of total samples) from representations generated by LLaMA-3-8.1b (left) and OPT-6.7b (right). The selection algorithm effectively prioritizes truthful samples, especially when applied to stronger LLaMA-3-8.1b model.

D COMPUTATIONAL TIME

We provide a detailed comparison of the computational time of our method DADM against several key baselines: HaloScope, EigenScore and Semantic Entropy. DADM and HaloScope are training-based models that require a training phase, whereas EigenScore and Semantic Entropy do not involve a separate training stage but instead compute scores based on pre-trained model features.

We benchmarked the total end-to-end wall-clock time for each method, where for DADM and HaloScope, the time includes feature extraction, training, and inference. For EigenScore and Semantic Entropy, the time includes feature extraction and the scoring process. All experiments were conducted on a single NVIDIA H100 GPU.

Table 3: End-to-end wall-clock time for different methods.

Method	Requires Training	Total Time (hour)	
HaloScope	Yes	0.28	
DADM (Ours)	Yes	0.57	
EigenScore	No	1.04	
Semantic Entropy	No	1.09	

The results of this comparison are summarized in Table 3. As shown in the table, DADM is significantly faster than both EigenScore and Semantic Entropy, which do not require training and

rely on pre-trained features. It is slightly slower than HaloScope, another training-based method. Moreover, the computational time of DADM can be further reduced by decreasing the dimensionality of the intermediate layers within the normalizing flows.

E LIMITATION

Our proposed DADM framework demonstrates strong empirical performance but has some limitations. In the first stage, it relies on selecting a high-quality subset of truthful samples through an iterative covariance-modified distance-based filtering process, retaining only 10%–30% of the unlabeled data. This conservative approach may underrepresent the true data distribution, potentially weakening generalization in the second stage. Additionally, using BLEURT to label hallucinations may introduce inaccuracies into the ground truth. Finally, although the normalizing flows used in the second stage offer flexibility in modeling complex distributions, we currently evaluate them primarily in comparison to the initial sample selection and a simple linear probing baseline. Exploring alternative density estimators or classification strategies could improve performance and is a promising direction for future research.

F BROADER IMPACTS

The proposed hallucination detection method has the potential to significantly improve the reliability and trustworthiness of LLMs in real world by identifying misleading or fabricated content. This advancement could be especially impactful in domains such as education, healthcare, and scientific communication. However, caution is necessary when applying this method to specialized contexts, as some hallucinations may still go undetected.

G THE USE OF LARGE LANGUAGE MODELS

We clearly describe the usage of large language model as a core component of the proposed hallucination detection method, detailing how they are integrated and utilized within the research. We also used the LLM to assist in improving the coherence of the manuscript.