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ABSTRACT

Adversarial transferability enables attackers to generate adversarial examples
from the source model to attack the target model, which has raised security con-
cerns about the deployment of DNNs in practice. In this paper, we rethink ad-
versarial transferability from a data distribution perspective and further enhance
transferability by score matching based optimization. We identify that some sam-
ples with injecting small Gaussian noise can fool different target models, and their
adversarial examples under different source models have much stronger transfer-
ability. We hypothesize that these samples are in the low-density region of the
ground truth distribution where models are not well trained. To improve the at-
tack success rate of adversarial examples, we match the adversarial attacks with
the directions which effectively decrease the ground truth density. We propose
Intrinsic Adversarial Attack (IAA), which smooths the activation function and de-
creases the impact of the later layers of a given normal model, to increase the
alignment of adversarial attack and the gradient of joint data distribution. We con-
duct comprehensive transferable attacks against multiple DNNs and show that our
IAA can boost the transferability of the crafted attacks in all cases and go beyond
state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) are widely used in various safety-critical fields, but they are vulnera-
ble to adversarial examples (Szegedy et al., 2013). Adversarial attacks are imperceptible to humans
but catastrophic for the DNNs and can be transferred between different models (Goodfellow et al.,
2015; Liu et al., 2017). Adversarial transferability enables attackers to generate adversarial exam-
ples from the source model to attack unknown target models, which has raised security concerns
about the deployment of DNNs in practice. Understanding the essence of adversarial transferability
is a fundamental problem in deep learning. On the one hand, some works show that the character-
istics of the source model, such as model architecture (Wu et al., 2019), model capacity (Tramèr
et al., 2017), and test accuracy (Wu & Zhu, 2020), influence adversarial examples’ transferability.
On the other hand, some works think that the data-relevant information may be the key factor for
adversarial transferability. Ilyas et al. (2019) explain that adversarial perturbations are non-robust
features and not meaningless bugs, but it is hard to specifically define non-robust features. We want
to further study transferability quantitatively from the data distribution perspective.

It has been empirically observed that DNNs are relatively robust to random noise (Fawzi et al.,
2016). However, in this work we find an intriguing phenomenon: some samples are sensitive to
Gaussian noise, in the sense that injecting small Gaussian noise into these samples can fool dif-
ferent models trained on the same dataset. Furthermore, their adversarial counterparts generated
by different source models have much stronger transferability against different target models than
other samples. We hypothesize that these samples are in the low-density regions of the ground truth
distribution both source and target models are trained on, and models are not well trained in these
regions. Thus predictions of these samples are easy to be perturbed and even not robust to small ran-
dom noises. We denote this kind of data as Low-Density Data (LDD), while others as High-Density
∗This work was done when Yao Zhu was a research intern in Huawei Noah’s Ark Lab.
†Corresponding to: Jiacheng Sun
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Data (HDD). As shown in Fig. 1 (Left), the attack success rate against different target models of
LDD with different strengths of Gaussian noise is much higher than that of HDD. Furthermore,
in Fig. 1 (Right), the adversarial counterparts of LDD have much stronger transferability than the
adversarial counterparts of HDD (see Appendix B for details).

This phenomenon reveals that the location of data plays a vital role in adversarial transferability
and the adversarial examples of samples in the low-density region are strongly transferable. The
most efficient direction towards the low-density region is −∇x log pD(x, y), where pD(x, y) is the
ground truth density of natural data. We name this direction Intrinsic Attack because it doesn’t
depend on the models and only depends on the ground truth distribution. Thus, we propose to match
the adversarial attack with intrinsic attack for generating strong transferable adversarial examples.

Figure 1: (Left) The attack success rate when injecting Gaussian noise into LDD and HDD. See
Appendix L for more corruption experiments. (Right) The attack success rate of the adversarial
examples for LDD and HDD by PGD (`∞, ε=16/255) against different target models (VGG19,
RN152, DN201, SE154).1 The source model is ResNet-50.

We explore the potential of a classifier pθ,Λ(y|x) with parameters θ and structure hyper-parameters
Λ (see Sec. 3.1) to generate more transferable adversarial examples by aligning adversarial attack
with intrinsic attack −∇x log pD(x, y). The adversarial attack of pθ,Λ(y|x) is usually generated by
PGD/FGSM method, and is determined by −∇x log pθ,Λ(y|x). We match the Alignment between

the Adversarial attack and Intrinsic attack (AAI), EpD(x,y)

[
∇x log pθ,Λ(y|x)
‖∇x log pθ,Λ(y|x)‖2 · ∇x log pD(x, y)

]
,

by modifying the structure parameters Λ for a pre-trained network.

In order to maximize AAI, we should make pθ,Λ(y|x) smoother. Otherwise, ∇x log pθ,Λ(y|x) will
oscillate frequently and hard to match∇x log pD(x, y). For the commonly used ReLU network, we
can smooth it by replacing ReLU activation with Softplus (Nair & Hinton, 2010) with little change
of the model’s output. Maennel et al. (2020) show that the early layers of a network learn the local
statistics of the data distribution better than the later layers, which motivates us to decrease the
impact of later layers when generating adversarial examples to utilize the data distribution-relevant
information. We can closely match the adversarial attack with the intrinsic attack−∇x log pD(x, y)
and improve the adversarial transferability by optimizing structure hyper-parameters Λ to maximize
AAI as the objective function. We name our method as Intrinsic Adversarial Attack (IAA).

There are some interesting observations in our IAA experiments. Firstly, we find that the test accu-
racy of the source model may not be important. As shown in Fig 2, the accuracy of the pre-trained
model with Softplusβ=15 is around 60%, but the adversarial transferability of this model is much
stronger than the model with Softplusβ=45. Secondly, although the existing methods (Madry et al.,
2018; Wu et al., 2019) can significantly decrease the top-1 accuracy of the target models, the top-5
accuracy is still high. IAA can both decrease the top-1 accuracy and top-5 accuracy. Furthermore,
the existing methods (Xie et al., 2019; Wu et al., 2019) can just slightly improve the one-step attack
under different strengths, while our IAA surpasses the existing methods by a large margin. These
phenomena verify our hypothesis that IAA pulls examples to the low-density region, which causes
prediction difficulty to the target models. Our main contributions are summarized below:

• We propose an effective metric, AAI, to evaluate the alignment of the model’s adversarial
attack with intrinsic attack −∇x log pD(x, y). Furthermore, we show that AAI is also an
effective metric for adversarial transferability.

1The AAI metric for LDD (0.1264) is much larger than HDD (0.0457), which shows that the direction of
PGD attack on LDD aligns better than that on HDD (The AAI metric on all test samples is 0.052).
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• We propose the Intrinsic Adversarial Attack (IAA) by maximizing AAI to generate more
transferable adversarial examples.
• We conduct comprehensive transfer attack experiments from different source models

against nine naturally trained models and three ensemble secured models, showing that
IAA can significantly improve the state-of-the-art transferability (both targeted and untar-
geted attack) of adversarial examples (even improve 20% under some settings).

2 RELATED WORK

There are two types of adversarial attacks: white-box attacks and black-box attacks. White-box
attacks assume that the attacker can completely access the structure and parameters of the target
model. Typical examples of white-box attacks are FGSM (Goodfellow et al., 2015), PGD (Madry
et al., 2018), and CW (Carlini & Wagner, 2017). The black-box attack assumes that the attacker
only knows the output of the target model (prediction or confidence). Black-box attacks are roughly
divided into two types: estimating gradient with queries to the target model (Papernot et al., 2017;
Su et al., 2019; Yang et al., 2020) and attacking a surrogate model (Xie et al., 2019; Dong et al.,
2018; Wu et al., 2019). Attacking a surrogate model is much more efficient and can reduce the risk
of exposure. Thus, many existing works focused on adversarial transferability.

Su et al. (2018) explore the factors influencing the transferability and show the architecture has
greater influence than model capacity. Dong et al. (2018) show that the momentum of gradients can
be used to improve the adversarial transferability. Xie et al. (2019) show the diversity of input data
will enhance the adversarial transferability. Huang et al. (2019) fine-tune the adversarial examples
by increasing perturbation on a pre-specified layer. Wang et al. (2020) propose a loss to decrease
interactions between perturbation units during attacking. Wu et al. (2019) propose that reducing
gradients from the residual modules is effective for improving transferability. Guo et al. (2020) re-
moves ReLU activations in the later layers to get linear backpropagation and decreases the influence
of intermediate layers. They only modify the backpropagation when generating adversarial exam-
ples while keeping the forward prediction as the original model. Based on this, Zhang et al. (2021)
conjecture that backpropagating smoothly might be sufficient for improving transferability.

There are also some works on adversarial attack and defense using generative models. Naseer et al.
(2019) and Yang et al. (2021a) learn adversarial perturbation through a conditional generative at-
tacking model, which needs to be carefully designed for certain classes. Samangouei et al. (2018);
Song et al. (2018) use GANs or autoregressive models to detect and purify adversarial examples. Du
& Mordatch (2019); Hill et al. (2021); Srinivasan et al. (2021); Yoon et al. (2021) purify adversar-
ial examples by EBM or score-based generative models. JEM (Grathwohl et al., 2020) shows that
combining a classifier with EBM can help to obtain some robustness. However, adversarial attacks
or purification based on generative models are computationally costly. We want to modify a normal
classifier with little computation cost to enhance its adversarial transferability by maximizing our
AAI metric.

3 METHODS

3.1 ALIGNMENT BETWEEN THE ADVERSARIAL ATTACK AND INTRINSIC ATTACK

For a classifier fθ,Λ parameterized by θ with structure hyper-parameters Λ (e.g., hyper-parameters
for architecture, activation function, etc.), and data x, label y, total possible classes n, then
fθ,Λ(x)[k] represents the kth output of the last layer. The conditional density pθ,Λ(y|x) can be
expressed as:

pθ,Λ(y|x) =
exp(fθ,Λ(x)[y])∑n
k=1 exp(fθ,Λ(x)[k])

. (1)

The adversarial attack is usually based on−∇x log pθ,Λ(y|x) (Madry et al., 2018; Goodfellow et al.,
2015). The most effective direction towards low-density region is intrinsic attack−∇x log pD(x, y).
To improve the adversarial transferability, we need to match model’s adversarial attack direc-
tion with intrinsic attack. We define the inner product of normalized −∇x log pθ,Λ(y|x) and
−∇x log pD(x, y) to quantify the matching of the direction of adversarial attack and the intrinsic
attack.
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Definition 1 (AAI). For a classifier pθ,Λ(y|x), the Alignment between its Adversarial attack and
the Intrinsic attack is:

AAI , EpD(x,y)

[
∇x log pθ,Λ(y|x)

‖∇x log pθ,Λ(y|x)‖2
· ∇x log pD(x, y)

]
, (2)

where pD(x, y) is the ground truth joint distribution.
Remark. (1) We use the normalized adversarial attack to remove the influence of scaling factor when
comparing different models.
(2) This definition is equivalent with a modified score matching objective as:

1

2
EpD(x,y)

∥∥∥∥ ∇x log pθ,Λ(y|x)

‖∇x log pθ,Λ(y|x)‖2
−∇x log pD(x, y)

∥∥∥∥2

2

= −AAI + CpD ,

where CpD is a constant only depend on the ground truth distribution pD.

As getting the gradient of pD(x, y) is not feasible, we use integration by parts (Hyvärinen & Dayan,
2005) to move the gradient on pD(x, y) to model’s adversarial attack. With the smoothness assump-
tion on ∇xpθ,Λ(y|x), we have the following theorem:
Theorem 1. If ∇xpθ,Λ(y|x) is differentiable almost everywhere, then

AAI = −EpD(x,y)

[
∇x ·

∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
. (3)

Moreover,

AAI = −EpD(x,y)Ep(v)

[
vT∇x

vT∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
, (4)

where p(v) is a distribution of random vector v such that Ep(v)[vv
T] = I (e.g., the multivariate

standard normal N (0, I)).

This theorem makes it possible to calculate AAI without knowing the gradient of ground truth
distribution when the model is smooth, see Appendix E for the proof. Combined with sliced score
matching (Song et al., 2020) we can efficiently approximate AAI on discrete samples. However,
for ReLU networks, the model’s second derivative is not well defined, which prevents us from
using this theorem. Thus, we need to smooth the ReLU models for better modifying the model to
maximize AAI and improve the transferability. One obvious way to improve the smoothness is to
replace ReLU activation with some smooth activation. In this paper, we use Softplus to show that
smoothness can greatly help us to improve transferability.

3.2 INTRINSIC ADVERSARIAL ATTACK FOR NORMAL MODELS

3.2.1 SMOOTHING THE CLASSIFIER BY SOFTPLUS

Srinivas & Fleuret (2021) claim that the input-gradient of a classifier is somewhat aligned with the
gradient of the ground truth data distribution pD(x, y). On the other hand, Dombrowski et al. (2019)
show that the information in gradients may be hidden for that the gradient of the ReLU activation
function is discontinuous and will frequently change when the input closes to zero. Thus better
gradient with less noise can contribute to matching the input-gradients −∇x log pθ,Λ(y|x) and the
gradients of ground truth distribution −∇x log pD(x, y). We provide a simple implementation that
replacing the widely used activation function ReLU with Softplusβ (Nair & Hinton, 2010):

Softplusβ(x) =
1

β
log(1 + exp(βx)), (5)

where β is the shape-related hyper-parameter. The larger β is, the better Softplusβ approximates
ReLU. The Softplusβ can also be expressed as the expectation of ReLU in a neighborhood as fol-
lows:

Softplusβ(x) = Eε∼pβ [ReLU(x− ε)], (6)

where pβ(ε) = β
(eβε/2+e−βε/2)2 (Dombrowski et al., 2019). See Appendix F for a short proof.

Smilkov et al. (2017); Dombrowski et al. (2019) show that the local average of gradient values can
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make the gradient smoother. This means that the gradient obtained with Softplusβ is less noisy
and more meaningful than ReLU. We use Softplusβ as an approximation of the activation function
ReLU in the pre-trained model. As shown in Fig. 2 (Left), AAI first increases then decreases when
decreasing β in Softplusβ (the smaller the β, the smoother the classifiers) and AAI achieves the
largest value at β = 15. Thus there exits a trade-off between AAI and smoothness, and a proper β
is needed.

Figure 2: (Left) AAI and accuracy of the normal ResNet-50 on ImageNet by replacing ReLU with
different Softplusβ . (Right) The attack success rate of adversarial examples generated by the pre-
trained ResNet-50 modified with different Softplusβ . The baseline on each target model is similar
to the success rate at β = 45. See Appendix G for illustration on DenseNet-121.

We conducted an experiment with the PGD attack on the randomly selected 5000 ImageNet vali-
dation images which are correctly classified to investigate how the shape-related hyper-parameter β
affects the adversarial transferability. As shown in Fig. 2 (Right), when the hyper-parameter β is
too small, Softplusβ cannot approximate ReLU well, which reduces the effectiveness of adversarial
perturbation and prediction accuracy. With a proper selection of β = 15 which is also the maximum
of AAI, using Softplusβ as an approximation of ReLU can significantly improve the transferability
of adversarial examples.

3.2.2 UTILIZING DISTRIBUTION-RELEVANT INFORMATION FROM EARLY LAYERS

Maennel et al. (2020) and Boopathy & Fiete (2021) show that the early layers can better capture the
local statistics of the inputs than the later layers. This discovery inspires us to observe whether the
gradient of the early layers of the model is better aligned with the gradient of the ground truth data
distribution. The general ResNet consists of four blocks and the residual module (He et al., 2016)
can be expressed as:

zi+1 = zi + F(zi), (7)
where zi+1 is the output of residual modules and zi is the input of residual modules,F is the residual
function. Considering that the information can transfer from shallow layers to deep layers through
the skip connection in ResNet-like neural networks, we decrease the weight for certain residual
modules to reduce the impact of these modules and enhance the impact of the previous modules
from the skip connection. Thus, we modify the residual module as:

zi+1 = zi + λi · F(zi), (8)

where 0 ≤ λi ≤ 1 can reduce the impact of the certain residual modules. We use the λi to relatively
adjust the influence of different layers.

As shown in Fig. 3, when decreasing λ1:4 at the same rate on pre-trained ResNet-50 (Paszke et al.,
2019), the AAI metric first increases then decreases with reaching its maximum at λ1:4 = 0.6.
At the same time, different target models obtain the best attack success rate also at λ1:4 = 0.6
(see Fig. 3 (Middle)). This implies that adjusting the influence of different residual branches can
help to increase AAI as well as transferability. Moreover, we find that decreasing the value of λ4

can significantly improve the transferability a lot (from 53% to 71.32%) (Fig. 3 (Right)). This
shows that the last block does restrict adversarial transferability and reducing the impact of the last
block can greatly improve the transferability. Decreasing λ1,2,3 for Block1, Block2, and Block3 can
slightly improve the adversarial transferability. If we want to achieve the best transferability, we
need carefully tuning the hyper-parameters λ1:4. As our AAI metric can be effectively predict the
transferability, we use Bayesian optimization to search the best λ1:4 to maximize AAI.
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Figure 3: (Left) We illustrate the impact of applying the same λ on all the residual modules of the
normal ResNet-50 (ImageNet). λ1:4 = 0.6 reaches the maximum of AAI while the accuracy of the
modified model is only around 60%. (Middle) We illustrate the attack success rate when applying
the same λ on all the residual modules of the normal ResNet-50. The λ1:4 = 0.6 has the best success
rate, which also has the maximum AAI. (Right) The impact of applying different λi on each block.
The source model is ResNet-50 and the target model is VGG19. The horizontal line shows the attack
success rate when combining the best λi for each block.

Algorithm 1 Intrinsic Adversarial Attack (IAA)
Input: A pre-trained classifier fθ; original im-
age x; `∞ perturbation radius ε; step size α;
iterations N ; the classification loss `;
Output: The modified model fθ,β∗,λ∗ , adver-
sarial perturbation δ.

Solve Eq. (9) to find the modified model
fθ,β∗,λ∗ , replace ReLU with Softplusβ∗ and
apply λ∗i s to residual modules of fθ.
Initialize δ = Uniform(−ε, ε).
for i = 1, 2, ..., N do
δ = δ + α · sign(∇x`(fθ,λ,β(x+ δ), y),
δ = max(min(δ, ε),−ε)

end for
return δ

epoch

-A
AI

Figure 4: The training loss of Eq. (9)
with Bayesian optimization on pre-trained
ResNet-50. The search results are β = 20,
λ1 = 0.98, λ2 = 0.87, λ3 = 0.73, λ4 =
0.19.

We can also make full use of the distribution-relevant information of a given classifier to increase
AAI without skip connections. As shown in Appendix J, there are many other ways that can en-
hance the impact of the early layers to increase AAI and can be applied to models without skip
connection, but this is not the focus of this paper. Our main contribution is to rethink the adversarial
transferability from a novel perspective and reveal that the distribution-relevant information may be
the key for boosting adversarial transferability.

3.2.3 THE ALGORITHM IAA

As analyzed in previous sections, we have verified that the AAI is an effective metric for transfer-
ability. The smoothness and data distribution information from different layers can be important
factors for maximizing AAI. In order to find the best parameters, we use Bayesian optimization to
optimize

min
β,λ

EpD(x,y)Ep(v)

[
vT∇x

vT∇xpθ,β,λ(y|x)

‖∇xpθ,β,λ(y|x)‖2

]
. (9)

We propose Intrinsic Adversarial Attack (IAA) as shown in Alg. 1, which replaces the activation
function ReLU with Softplusβ and applies corresponding decay parameters λi searched by Eq. (9)
to different residual modules. Fig. 4 shows the training curve on pre-trained ResNet-50, see Ap-
pendix C for setting details. The experiments are shown in next section. We analyze the computation
cost in Appendix M and show other optimization methods to find the proper structural parameters
in Appendix O.
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Table 1: Transferability against normal models: the success rates of black-box attacks (untargeted)
crafted on RN50, RN152, DN121 and DN201.

Source Attack VGG19 RN50 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes

RN50

PGD 53.00% 99.94% 61.26% 55.62% 53.56% 24.78% 20.86% 21.96% 17.60%
MI 64.86% 99.72% 73.22% 73.50% 64.33% 47.20% 39.08% 37.35% 25.26%
DI 75.06% 99.78% 81.65% 81.98% 74.80% 52.42% 42.58% 39.30% 27.12%

ILA 83.56% 99.75% 92.46% 88.40% 85.24% 61.44% 49.94% 48.34% 35.74%
SGM 82.72% 99.82% 88.40% 83.56% 80.34% 61.30% 53.72% 49.83% 42.86%

IR 82.46% 99.80% 85.24% 84.35% 82.10% 64.20% 54.60% 51.05% 46.78%
IAA 96.40% 99.88% 98.32% 97.46% 96.64% 84.74% 76.28% 71.38% 64.32%

RN152

PGD 49.32% 72.72% 99.91% 53.44% 51.00% 26.32% 23.50% 22.58% 18.72%
MI 65.42% 83.40% 99.82% 77.60% 75.79% 53.00% 46.50% 43.32% 33.08%
DI 74.01% 88.18% 99.78% 79.46% 77.81% 57.49% 50.28% 47.16% 35.10%

ILA 66.20% 90.44% 99.88% 75.48% 73.80% 50.32% 42.32% 41.30% 29.98%
SGM 80.40% 96.10% 99.87% 85.80% 82.76% 61.90% 53.16% 49.24% 43.30%

IR 73.20% 92.70% 99.84% 83.43% 80.60% 64.00% 53.60% 50.30% 48.00%
IAA 94.46% 99.32% 99.87% 96.58% 95.06% 82.46% 76.34% 71.04% 58.34%

DN121

PGD 56.78% 63.22% 52.76% 99.94% 71.98% 31.46% 24.92% 26.82% 20.64%
MI 68.36% 74.18% 72.88% 99.80% 89.56% 58.58% 52.22% 45.35% 35.24%
DI 73.68% 79.56% 74.72% 99.85% 89.40% 53.34% 53.65% 47.94% 37.72%

ILA 87.76% 90.38% 83.42% 99.82% 95.32% 65.02% 58.64% 57.36% 40.76%
SGM 80.18% 88.54% 80.54% 99.79% 92.70% 64.92% 54.62% 49.82% 37.76%

IR 82.56% 86.14% 85.20% 99.82% 95.30% 72.20% 62.22% 62.10% 56.00%
IAA 96.80% 96.78% 93.90% 99.88% 97.70% 88.34% 88.24% 87.36% 77.18%

DN201

PGD 57.76% 70.68% 59.08% 83.06% 99.89% 40.60% 33.80% 32.46% 23.80%
MI 75.09% 82.46% 76.39% 88.18% 99.84% 64.38% 59.62% 54.85% 39.40%
DI 78.11% 85.34% 78.18% 90.20% 99.81% 61.75% 60.04% 56.15% 40.56%

ILA 88.56% 94.78% 90.02% 98.02% 99.72% 76.34% 67.78% 65.36% 49.50%
SGM 82.72% 91.72% 86.60% 96.40% 99.67% 72.20% 62.34% 56.36% 45.42%

IR 76.74% 90.46% 85.40% 95.39% 99.74% 73.60% 59.80% 63.00% 56.60%
IAA 96.32% 96.98% 93.82% 98.10% 99.78% 87.98% 88.26% 87.02% 79.12%

4 EXPERIMENTS

4.1 IMPLEMENTATION

Attack Setting. We use a black-box threat model to test the adversarial transferability. Adversarial
examples are generated by attacking the source models, and then these examples are applied to attack
target models. The architecture of the source model is different from that of the target model. In
terms of attack strength, we follow the same standard setting for all attack methods (Xie et al., 2019;
Wu et al., 2019). We constrain the adversarial perturbation within the `∞ ball of radius ε = 16/255
with respect to pixel value in [0, 1] and set the step size α to 2/255. The iteration steps in all the
experiments are set to 10. All experiments in this paper are run on Tesla V100. The experiments are
repeated 5 times with different random seeds and we just show the maximum standard deviations in
the caption of tables due to page limitations. See Appendix C for more attack setting.

Target Models and Source Models. We conduct experiments on both normal target models and
robust target models. For normal target models, we choose 9 models: VGG19 (Simonyan & Zisser-
man, 2015), ResNet-50 (RN50), ResNet-152 (RN152) (He et al., 2016), DenseNet-121 (DN121),
DenseNet-201 (DN201) (Huang et al., 2017), 154 layers Squeeze-and-Excitation network (SE154)
(Hu et al., 2018), Inception V3 (IncV3) (Szegedy et al., 2016), Inception V4 (IncV4), and Inception-
ResNet V2 (IncRes) (Szegedy et al., 2017), and we use the pre-trained models in PyTorch (Paszke
et al., 2019). For robust target models, we consider 3 robustly trained models using ensemble adver-
sarial training (Tramèr et al., 2018): IncV3ens3 (ensemble of 3 IncV3 models), IncV3ens4 (ensem-
ble of 4 IncV3 models) and IncResV2ens3 (ensemble of 3 IncResV2 models). We choose 4 models
as source models: ResNet-50, ResNet-152, DenseNet-121, DenseNet-201. We also choose VGG16,
VGG19 (models without skip connection) as source model in Appendix J.

4.2 TRANSFERABILITY AGAINST NORMAL MODELS

Firstly, we focus on untargeted adversarial attacks. We compare different attack methods on four
source models against nine normal target models. In all transfer scenarios, IAA outperforms existing
methods by a large margin consistently against different target models. The results are reported in
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Tab. 1. For transfer ResNet-50→ VGG19, IAA achieves a success rate of 96.40% which is 43.40%
and 13.68% higher than PGD and SGM respectively. For transfer ResNet-50→ Inception-ResNet
V2, IR performs the best in the existing methods (attack success rate 46.78%) while our IAA can
achieve a new state-of-the-art success rate 64.32%.

In Tab. 1, we show that IAA surpasses the other existing methods when attacking against normal
models under Top-1 accuracy. Top-5 accuracy, which checks if the ground truth label is among the
five predictions with the highest probability, is also an important metric. In Tab. 2, we show the first
five predictions of the target model. For transfer ResNet-50→ Inception V3, the top-5 accuracy on
adversarial examples crafted by PGD is 96.66%. SGM is an efficient method to enhance adversarial
transferability, but the top-5 accuracy is as high as 84.28% for transfer ResNet-50 → Inception
V3. Our IAA drives the examples to the low-density region by matching the adversarial attack and
intrinsic attack. Thus the target models can hardly give a proper prediction, and the top-5 accuracy
is significantly lower than other methods.

Table 2: Top-5 accuracy on different target models when predicting the black-box adversarial exam-
ples crafted (untargeted) on RN50, RN152, DN121 and DN201. The best results are in bold.

Attack VGG19 DN121 DN201 SE154 IncV3 Attack VGG19 RN50 RN152 SE154 IncV3

R
N

50 PGD 83.52 84.16 86.92 93.00 96.66

D
N

12
1 PGD 83.86 82.84 90.70 95.00 95.78

SGM 58.68 63.52 68.46 75.62 84.28 SGM 61.16 55.36 67.18 71.46 81.24
IAA 5.67 4.37 6.60 18.68 29.36 IAA 7.14 7.82 14.04 22.50 24.80

R
N

15
2 PGD 89.68 87.70 89.94 95.18 96.60

D
N

20
1 PGD 79.46 73.36 81.62 87.92 92.94

SGM 62.30 61.62 67.4 74.60 82.00 SGM 60.76 52.46 61.46 68.64 78.78
IAA 8.46 6.32 9.92 25.42 33.4 IAA 10.08 7.10 15.40 24.48 23.82

Table 3: Transferability against normal models: the success rates (%) of black-box attacks crafted
(targeted) on RN50, RN152, DN121 and DN201. The best results are in bold. The results are
averaged on 8 different target classes.

Attack VGG19 RN50 RN152 DN121 DN201 Attack VGG19 RN50 RN152 DN121 DN201

R
N

50 PGD 0.40 98.96 1.18 0.78 0.4

D
N

12
1 PGD 0.12 0.15 0.10 99.64 0.14

SGM 4.48 99.98 6.92 6.50 3.14 SGM 0.55 1.26 0.75 99.73 1.03
IAA 33.68 100 53.72 52.46 38.02 IAA 8.80 14.16 6.58 99.92 16.74

R
N

15
2 PGD 0.24 2.78 99.76 0.74 0.38

D
N

20
1 PGD 0.15 0.10 0.12 0.57 99.75

SGM 1.62 5.14 100 4.28 1.08 SGM 0.63 1.84 1.14 3.68 99.84
IAA 15.04 48.18 99.90 26.70 14.82 IAA 16.34 27.64 17.72 31.94 99.84

Secondly, we focus on targeted attacks. Liu et al. (2017); Yang et al. (2021b) show that generat-
ing transferable targeted adversarial examples is much more difficult than generating transferable
untargeted adversarial examples. As we analyzed before, when crafting the untargeted attack, the
intrinsic adversarial attack can drive adversarial examples to low-density regions. Similarly, when
crafting the targeted attack, IAA can move the adversarial images towards the high-density region of
the target class along the direction of ∇x log pθ(x, ytarget). Thus IAA can also improve the adver-
sarial transferability of targeted examples, and we show the results in Tab. 3. For transfer ResNet-50
→ VGG19 (targeted), IAA achieves a success rate of 33.68% which is 33.28% and 29.20% higher
than PGD and SGM respectively.

We also evaluate the transferability of one-step attacks in Fig. 5. SGM can greatly enhance the
transferability of the multi-step attack, but it can only slightly improve the effect of the one-step
attack. DI performs better in the transferability of the one-step attack than SGM. We think that
diversity inputs may help to reduce the noise in gradient and get better adversarial perturbation. Our
IAA can significantly improve the adversarial transferability of the one-step attack. This is because
that the perturbation crafted by IAA is aligned with the intrinsic attack −∇x log pD(x, y) and can
efficiently drive the examples towards the low-density region. It is difficult for the target models to
predict accurately for examples in the low-density region.

4.3 TRANSFERABILITY AGAINST ROBUSTLY TRAINED MODELS

The success rates of our IAA and other methods against the robust target models (using ensemble
adversarial training) are reported in Tab. 4. TI was originally proposed for the robust models.
Compared with the existing methods, IAA has a large improvement in all scenarios. For transfer
ResNet-50→ IncV 3ens3, IAA achieves a success rate of 38.72% which is 31.2% and 5.91% higher
than PGD and SGM respectively. We think that both the robust model and the normal model are
trained on the same dataset. IAA perturbs the distribution-relevant information, which leads to
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Figure 5: The attack success rate (one-step attack) of different methods against different target
models. The source model is RN50. The horizontal axis represents different attack strengths. (Left)
The target model is DN121. (Middle) The target model is SE154. (Right) The target model is IncV3.

misclassification of the robust models. We show that IAA can also effectively penetrate many other
defense methods in Appendix N.

Table 4: Transferability against robustly trained models: the success rates of black-box attacks
crafted on source models: ResNet-50, ResNet-152, DenseNet121 and DenseNet201.

Source Attack IncV 3ens3 IncV 3ens4 IncResens3 Source Attack IncV 3ens3 IncV 3ens4 IncResens3

RN50

PGD 7.52% 9.50% 5.58%

DN121

PGD 13.80% 13.10% 7.90%
TI 30.06% 23.48% 16.20% TI 28.10% 27.50% 21.20%

SGM 32.81% 26.80% 20.02% SGM 40.20% 36.83% 27.86%
IR 29.56% 22.18% 13.90% IR 26.00% 24.10% 15.90%

IAA 38.72% 33.62% 24.32% IAA 59.52% 43.38% 43.16%

RN152

PGD 12.20% 10.80% 5.70%

DN201

PGD 18.16% 15.30% 10.40%
TI 35.97% 32.81% 20.16% TI 42.76% 42.01% 34.28%

SGM 31.57% 27.77% 20.84% SGM 41.45% 37.85% 29.41%
IR 29.34% 24.33% 13.76% IR 38.90% 38.45% 28.70%

IAA 43.28% 37.88% 26.78% IAA 61.02% 53.80% 46.34%

4.4 ENSEMBLE-BASED ATTACKS

Wu et al. (2019); Wang et al. (2020) show that the ensemble-based strategy (Liu et al., 2017) can
improve the performance of their method. This section, shows the results in Tab. 5, and the attacks
are crafted on an ensemble of ResNet-34, ResNet-152, and DenseNet-201. We show that our IAA
with the ensemble-based strategy can generate more transferable perturbation than other methods.
For transfer Ensemble model→ IncV4, IAA achieves a success rate of 90.70% which is 7.73% and
10.63% higher than SGM and IR respectively.

Table 5: Transferability against different models: the success rates of black-box attacks (untargeted)
crafted on an ensemble of 3 models (RN34, RN152 and DN201). The best results are in bold.

Model Attack VGG16 VGG19 SE154 IncV3 IncV4 IncRes

Ensemble

PGD 86.60% 86.69% 69.65% 69.95% 59.30% 53.91%
TI 85.84% 84.35% 71.67% 67.22% 66.02% 56.83%
DI 96.85% 96.34% 89.72% 87.53% 85.04% 81.11%

SGM 96.84% 97.36% 90.40% 87.86% 82.97% 80.93%
IR 91.50% 91.16% 86.12% 81.69% 80.07% 79.34%

IAA 99.60% 99.68% 95.34% 93.60% 90.70% 81.54%

5 CONCLUSION

In this paper, we rethink the adversarial perturbation from the distribution perspective and show
that the alignment between the adversarial attack and intrinsic attack (AAI) is an effective metric
for predicting the adversarial transferability. Furthermore, we propose a novel algorithm (IAA)
which maximizes AAI for generating adversarial examples in the low-density region by Bayesian
optimization. We have conducted experiments on four source models, nine normal target models
(including untargeted attack and targeted attack) and three robust target models and show that our
methods surpass other existing methods by a large margin. Our findings can motivate new research
into the adversarial transferability and adversarial examples from the perspective of data distribution
and open up further challenges for the defense against black-box attacks. What’s more, IAA can
also fool the image search engines (Google Reverse Image Search and Baidu Reverse Image Search)
as shown in Appendix A.
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ETHICS STATEMENT

In this paper, we propose a novel method IAA to boost adversarial transferability. IAA can craft
stronger adversarial examples from the source model to attack unknown target models than other
existing methods. Our findings can motivate new research into the adversarial transferability and
adversarial examples from the data distribution perspective and open up further challenges for the
defense against black-box attacks. Our goal is to understand current deep learning’s weaknesses and
make deep models more robust and transparent. We did not use crowdsourcing and did not conduct
research with human subjects in our experiments. We cited the creators when using existing assets
(e.g., code, data, models).

REPRODUCIBILITY STATEMENT

We show the proofs of Theorem 1 in Appendix E. Our IAA is an appealingly simple method. We
specify the settings of hyper-parameters and how they were chosen in Appendix C. We repeat exper-
iments 5 times with different random seeds and show the standard deviation in the caption of tables.
We plan to open the source code to reproduce the main experimental results later.
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A FOOLING THE IMAGE SEARCH ENGINES

Figure 6: We show that the adversarial perturbation generated by our IAA is imperceptible to human
observers but can fool the images search engines. The first three lines show the recognition results
of the image Blue Jay in different image search engines. Baidu Reverse Images Search can’t give the
classification results when identifying our adversarial examples, and the similar pictures searched
are not matched with Blue Jay. The last three lines show the recognition results of Red-spotted Toad
in the image search engines. Both Google Reverse Images Search and Baidu Reverse Images Search
give wrong recognition results.

The previous experiment mainly verified the attack effect of IAA on the pre-trained classification
model. In this section we show that IAA can fool the image search engines successfully. As shown
in Fig. 6, the original image can be correctly identified by both Google Reverse Images Search and
Baidu Reverse Images Search. However, the adversarial images generated by our IAA can fool
the image search engines.

B HIGH TRANSFERABLE EXAMPLES

We use a source model RN50 to generate adversarial examples with widely used PGD attack. If
the original image can be correctly classified by different targeted models (VGG19, RN50, RN152,
DN121, DN201 and SE154) and its adversarial counterpart can fool all the target models, we save
this original image. Then, we randomly save 1000 samples from ImageNet evaluation datasets. We
named these samples Low-Density Data (L Data). If the original images can be correctly classified
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by different targeted models (VGG19, RN50, RN152, DN121, DN201 and SE154) and their adver-
sarial counterparts can only fool the source models, we save this original image. Then, we randomly
save 1000 samples from ImageNet evaluation datasets. We named these samples High-Density Data
(H Data). We find an intriguing phenomena: LDD with random noise can fool different target mod-
els, while the attack success rate is much lower when applying the same strength of random noise
to HDD. Specifically when we injecting Gaussian noise (ε=16/255) in LDD, 23.3% of the samples
can fool the target model VGG19. However, when we injecting Gaussian noise (ε=16/255) in HDD,
only 0.7% of the samples can fool the target model VGG19. What’s more, LDD can be correctly
classified by different models but their adversarial counterparts generated by different source models
have strong transferability against different target models (as shown in Fig. 3.1 and Fig. 7). In Fig. 8,
we show some samples of LDD.

Figure 7: The histogram shows the attack success rate of the adversarial examples for LDD and HDD
using PGD (`∞, ε=16/255) against different target models (VGG19, RN152, DN201 and SE154).
The source model is DenseNet-121 (Left) and VGG16 (Right).

Rhodesian ridgeback Otterhound Water hen Bighorn sheep

LighthouseIcecream Bridegroom Cliff

Loggerhead Wolf spider

Photocopier Upright piano

Bulletproof vest Microwave oven

American lobsterWest Highland white terrier Burrito Marmot

Figure 8: Some samples which have high adversarial transferable counterparts. These samples can
be correctly classified by different target models.

C ATTACK SETTING

We choose the baseline attack PGD (Madry et al., 2018) and 5 state-of-the-art transfer attacks: MI
attack (Dong et al., 2018), DI attack (Xie et al., 2019), ILA attack (Huang et al., 2019), SGM attack
(Wu et al., 2019) and IR attack (Wang et al., 2020). And we take TI attack (Dong et al., 2019) which
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is proposed to attack robust model into consideration when attacking against robust models. All the
source models are trained on ImageNet training set.

The scikit-optimize 1 is a simple and efficient library to minimize black-box functions, which helps
us to search the best structure hyper-parameters for a pre-trained classifier to minimize the Eq. (9).
We use Batesian optimization to optimize the Eq. (9) to search the hyper-parameters β and λi. For
ResNet-50, the search results are β = 20, and λ1 applied to the residual modules in Block1 is 0.98,
λ2 applied to the residual modules in Block1 is 0.87, λ3 applied to the residual modules in Block3
is 0.73, λ4 applied to the residual modules in Block4 is 0.19. For ResNet-152, the search results are
β = 32, and λ1 applied to the residual modules in Block1 is 0.89, λ2 applied to the residual modules
in Block1 is 0.88, λ3 applied to the residual modules in Block3 is 0.70, λ4 applied to the residual
modules in Block4 is 0.20. For DenseNet-121 and DenseNet-201, the search results are β = 35,
and λ1,2,3 applied to the residual modules in Block1, Block2 and Block3 is 0.80, λ4 applied to the
residual modules in Block4 is 0.44.

D SIMILARITY BETWEEN ADVERSARIAL PERTURBATION

We illustrate frequency histogram of cosine similarity between adversarial perturbation generated
by different models in Fig. 9. We also illustrate frequency histogram of Pearson Correlation Coeffi-
cient (PCC) between adversarial perturbation generated by different models in Fig. 10. Perturbation
generated by different models using IAA have stronger correlation than other methods (PGD and
SGM), which means that IAA reduces the dependence on models and generate more distribution
relevant perturbation.

(a) ResNet-34 & ResNet-50 (c) ResNet-50 & ResNet-152 (b) ResNet-34 & ResNet-152 

Figure 9: Frequency histogram of cosine similarity between adversarial perturbations generated by
ResNet-34, ResNet-50 and ResNet-152. The perturbations generated by our IAA methods are closer
to each other with different source model than perturbations generated by PGD and SGM.

(a) ResNet-34 & ResNet-50 (c) ResNet-50 & ResNet-152 (b) ResNet-34 & ResNet-152 

Figure 10: Frequency histogram of Pearson Correlation Coefficient between adversarial perturba-
tions generated by ResNet-34, ResNet-50 and ResNet-152. The perturbations generated by our IAA
methods are closer to each other with different source model than perturbations generated by PGD
and SGM.

1The website of scikit-optimize is https://scikit-optimize.github.io/stable/
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E PROOF: THEOREM 1

The proof is similar as Hyvärinen & Dayan (2005) and Song et al. (2020).

AAI , EpD(x,y)

[
∇x log pθ,Λ(y|x)

‖∇x log pθ,Λ(y|x)‖2
· ∇x log pD(x, y)

]
(I)
=

∫
dy

∫
dx

[
∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2
· ∇x log pD(x, y)

]
pD(x, y)

=

∫
dy

∫
dx

[
∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2
· ∇xpD(x, y)

]
(II)
=

∫
dy

{
lim
R→∞

∫
dSR

n · ∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2
pD(x, y)−

∫
dx

[
∇x ·

∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
pD(x, y)

}
=

∫
dy

{
lim
R→∞

∫
dSR

n · ∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2
pD(x, y)

}
− EpD(x,y)

[
∇x ·

∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
(III)
= −EpD(x,y)

[
∇x ·

∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
.

(10)

The log function can be moved for the equality (I) because the normalized ∇xp(y|x) and
∇x log p(y|x) are the same direction, as:

∇x log p(y|x)

‖∇x log p(y|x)‖2
=

p(y|x)−1∇xp(y|x)

‖p(y|x)−1∇xp(y|x)‖2
=

p(y|x)−1∇xp(y|x)

p(y|x)−1‖∇xp(y|x)‖2
=
∇xp(y|x)

‖∇xp(y|x)‖2
, (11)

where we use the formula: ∇x log f(x) = f(x)−1∇xf(x).

Take 1d case for example, we use integration by part formula for the equality (II):∫ +∞

−∞
f
′
(x)g

′
(x)dx = lim

R→∞
f
′
(x)g(x)|+R−R −

∫ +∞

−∞
f
′′
(x)g(x)dx, (12)

The equality (III) holds by Holder Inequality (Bartle, 2014):∣∣∣∣ ∫ dSR
n · ∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2
pD(x, y)

∣∣∣∣ ≤ [∫ p2
D(x, y)dSR

] 1
2

→ 0, R→∞.

For a distribution of a random vector v such that Ep(v)[vv
T] = I , then we have

AAI = −EpD(x,y)

[
∇x ·

∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
= −EpD(x,y)Ep(v)

[
∇x ·

vvT∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
= −EpD(x,y)Ep(v)

[
vT∇x

vT∇xpθ,Λ(y|x)

‖∇xpθ,Λ(y|x)‖2

]
.

(13)

We use the property that random vector v is independent of (x, y) in Eq. 13, thus we can switch∇x
and v.

F PROOF: SOFTPLUS IS THE EXPECTATION OF RELU

Softplusβ(x) =
1

β
log(1 + exp(βx)), (14)

where β is the shape-related hyper-parameter. The derivative of this function is
d

dx
Softplusβ(x) =

1

1 + exp(−βx)
. (15)
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When the pβ(ε) is implicitly defined, we express Softplusβ(x) as:

Softplusβ(x) =

∫ +∞

−∞
pβ(ε)ReLU(x− ε)dε. (16)

With respect to x, the differential of the equation is:

d

dx
Softplusβ(x) =

∫ +∞

−∞
pβ(ε)Θ(x− ε)dε =

∫ x

−∞
pβ(ε)dε, (17)

where Θ(x) = I(x > 0) is the Heaviside step function. From Eq. (15), the differential of Eq. (17)
is:

β

(eβε/2 + e−βε/2)2
= pβ(ε). (18)

Thus, the Softplusβ can be expressed as the expectation of ReLU in a neighborhood as follows:

Softplusβ(x) = Eε∼pβ [ReLU(x− ε)], (19)

where pβ(ε) = β
(eβε/2+e−βε/2)2 .

G THE INFLUENCE OF STRUCTURE PARAMETERS ON DENSENET-121

We first show the influence of the shape parameter β when we use replace ReLU with Softplusβ
in Fig. 11 (Left). A proper β can improve the adversarial transferability. The general ResNet and
DenseNet consists of four blocks. We illustrate the influence of applying λi on different blocks of
ResNet-50 in paper. Here, we illustrate the influence of applying λi on different blocks of DenseNet-
121 in Fig. 11 (Right). The target model is VGG19. λi applied to Block4 has great influence on
adversarial transferability, and λi=0.4 can improve the attack success rate from 56.78% to 67.70%.
λi applied to Block1, Block2, and Block3 can slightly improve the adversarial transferability. When
we apply the best λi to each block, the attack success rate can reach 85.08%, which has exceeded
state-of-the-art methods SGM (80.18%) and IR (82.56%).
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Figure 11: (Left) The attack success rate of adversarial examples generated by the pre-trained
(DenseNet-121) modified with different Softplusβ . (Right) The influence of applying λ on dif-
ferent blocks. The source model is DenseNet-121 and the target model is VGG19. The green line
with triangle mark shows attack success rate when applying λ to Block4 (the last block), and λ = 0.4
has the best effect. The red line with star mark shows attack success rate when applying λ to Block3,
and λ = 0.8 has the best effect. The purple line with cross mark shows attack success rate when
applying λ to Block2, and λ = 0.8 has the best effect. The blue line with circular mark shows attack
success rate when applying λ to Block1, and λ = 0.8 has the best effect. The horizontal line shows
the attack success rate when we respectively choose the best λ for different blocks.

H ADVERSARIAL EXAMPLES SHOW RECONIZABLE FETURES

We insert and fine-tune classifiers (fully connected layer) after each block of ResNet-50. Attack
Block1 means attacking the classifier after block1. As show in Fig. 12, the perturbation generated
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Original Image Attack Block4Attack Block3Attack Block2Attack Block1 Attack Robust

Figure 12: We visualize the targeted adversarial examples by attacking the classifier deployed af-
ter the different blocks of normally trained ResNet-50 and by attacking the robust ResNet-50. The
perturbation radius ε is 64/255. The target label is tench. Attack Block1 means generating adver-
sarial example by attacking the classifier deployed after the first block. The Block4 is the last block
of ResNet-50 and Attack Block4 means generating adversarial example by attacking the normal
ResNet-50.

(a) Normal 
      Block 1

(b) Normal 
      Block 2

(c) Normal 
      Block 3

(d) Normal
      Block 4

(e) Robust
      Model

Figure 13: We visualize the images generated by the classifiers fine-tuned after different blocks
of a normally trained model. The target label is tench. The early blocks of the model has better
generation capability than the last block, which also reflects that the early blocks has learned some
distribution-relevant information.

by attacking normal ResNet-50 like unrecognizable noise. However the perturbation generated by
attacking the classifiers deployed after block2 and block3 of normal ResNet-50 show recognizable
features of tench. This shows that the normal model has also learned some distribution-relevant
information.

19



Published as a conference paper at ICLR 2022

I CONDITIONAL GENERATING EXPERIMENT

We also show the input-gradients in the normal model are somewhat aligned with the gradient of
the ground truth data distribution pdata(x|y) through a conditional generating experiment using the
method proposed by Santurkar et al. (2019). The general ResNet consists of 4 blocks. We insert
classifiers (fully connected layers) after each block of ResNet-50 to utilize information from differ-
ent layers, then fine-tune these classifiers and use these classifiers to generate images. As shown in
Fig. 13(given the label tench), the classifier on Block4 (the last block) of the model cannot generate
images with recognizable semantic features. The images generated by the classifiers on Block2 and
Block3 are not good enough but can be recognized with high confidence. The generative capabil-
ity of Block1 is poor maybe it does not learn enough class-relevant information. This experiment
intuitively shows that manipulating input-gradients can generate images with the features of target
distribution (tench).

J OTHER METHODS TO ENHANCE THE IMPACT OF EARLY LAYERS

In our paper, IAA gives a appealingly simple implementation on ResNet-like neural networks. There
are many other ways to adjust the impact of different layers to improve the adversarial transferability.
These methods are slightly complex to implement, but they are also effective.

J.1 TAKING ADVANTAGE OF LOW-LEVEL INFORMATION

In our paper, we find that the later layers may reduce the adversarial transferability and we apply
hyper-parameters λi to reduce the influence of the later layers. We can also use the new loss to en-
hance the influence of the early layers. We propose a loss to take advantage of low-level information
during attacking :

`feature =
1

N

N−1∑
i=0

KL(featureadv[i], featureori[i]), (20)

where KL is KL divergence, N is the number of blocks in source model, featureori is the feature
of the natural examples extracted by the block i, and featureadv is the feature of the adversarial
examples extracted by the block i. The general ResNet and DenseNet consists of four blocks. We
optimize the classification loss and the low-level feature loss jointly during attacking:

maximize
‖δ‖p≤ε

[`(fθ(x+ δ), y) + γ`feature], (21)

where ε is a constant of the norm constraint and γ is a constant weight for the low-level feature
loss. We call this method Enhancing the Early Blocks (EEB). As shown in Fig. 14, we show
the influence of the hyper-parameter γ. Increasing the hyper-parameter γ (increasing the weight of
low-level information) tends to improve adversarial transferability until it exceeds a threshold, e.g.,
γ=100. This may due to γ encourages the attack to utilize more transferable low-level information.
However, the attack can be insufficient when just using low-level information and ignoring all high-
level class-relevant information.

EEB can also improve the adversarial transferability of the deep neural networks without skip con-
nection (VGG16, VGG19). As shown in Tab.

Table 6: Transferability against normal models: the success rates of black-box attacks crafted on
VGG16 and VGG19 (DNNs without skip connection). The best results are in bold.

Model Attack RN50 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes

VGG16 PGD 30.76% 18.42% 32.14% 22.46% 22.22% 30.64% 36.80% 19.88%
EEB(ours) 76.02% 59.14% 68.74% 57.82% 64.48% 60.74% 66.74% 41.86%

VGG19 PGD 30.84% 18.40% 32.20% 22.46% 22.26% 17.36% 21.68% 11.74%
EEB(ours) 70.26% 52.48% 70.48% 59.02% 57.98% 43.16% 51.66% 29.89%
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Figure 14: The influence of the hyper-parameter λ for the low-level feature loss. The target models
are VGG19 and SE154. The source model is RN50. The horizontal lines show the success rate
when using normal PGD attack (λ=0) to generate adversarial examples, and the target models are
respectively VGG19 (the purple line) and SE154(the blue line). Optimizing the classification loss
and the low-level feature loss jointly during attacking can improve the adversarial transferability.

J.2 ONLY ATTACK THE EARLY LAYERS

We insert a classifier after the Blocks3 (the penultimate block) of ResNet-50, then fine-tune this
classifier, and attack this classifier to generate adversarial examples. Such a simple operation can
compete with state-of-the-art methods (SGM). We call this method Dropping the Last Block (DLB).

Table 7: Transferability against different models: the success rates of black-box attacks (untargeted)
crafted on ResNet-50 and ResNet-152. The best results are in bold.

Model Attack VGG19 RN50 RN152 DN121 DN201 SE154 IncV3 IncV4 IncRes

RN50

PGD 45.96% 99.96% 57.44% 51.62% 45.7% 19.7% 18.96% 20.96% 14.30%
MI 64.86% 99.92% 73.22% 73.50% 64.33% 47.20% 39.08% 37.35% 25.26%
DI 75.06% 99.96% 81.65% 81.98% 74.80% 52.42% 42.58% 39.30% 27.12%

SGM 81.72% 99.92% 88.40% 83.56% 80.34% 57.30% 46.72% 43.83% 31.86%
DLB(ours) 75.18% 99.94% 81.84% 80.42% 72.12% 46.06% 40.14% 41.60% 28.08%
EEB(ours) 92.34% 99.94% 92.05% 92.46% 88.26% 69.08% 64.35% 60.85% 47.77%

RN152

PGD 39.32% 69.72% 99.96% 48.44% 46.00% 22.20% 21.50% 22.58% 16.72%
MI 65.42% 83.40% 99.92% 77.60% 75.79% 53.00% 46.50% 43.32% 33.08%
DI 74.01% 88.18% 99.96% 79.46% 77.81% 57.49% 50.28% 47.16% 35.10%

SGM 80.40% 96.10% 99.92% 85.80% 82.76% 61.90% 53.16% 49.24% 37.30%
DLB(ours) 73.94% 85.84% 99.94% 76.74% 64.30% 39.62% 43.72% 46.84% 31.56%
EEB(ours) 90.11% 98.46% 99.96% 93.35% 87.26% 70.34% 63.96% 59.06% 47.30%

K IAA UTILIZE THE LOW-LEVEL INFORMATION

Centered kernel alignment (CKA) can reliably identify correspondences between representations in
networks (Kornblith et al., 2019; Nguyen et al., 2020). In order to show the difference between
natural examples and adversarial examples, we show the CKA similarity between the features of
natural examples and adversarial examples extracted by the same normal ResNet-50 (ImageNet).
As shown in Fig. 15 (a), the adversarial examples generated by attacking the normal model using
PGD show more difference from natural examples in features extracted by deep layers. In Fig. 15
(b), the adversarial example generated by attacking the normal model using our IAA are different
from the natural example in the shallow layers. For example, in the shallow layers (layer 20 to layer
30), the CKA similarity between the adversarial examples generated by the normal model using
PGD and the natural example is about 0.9, while the similarity of the adversarial example generated
by IAA with the natural example is about 0.7. That is to say, IAA uses more low-level information
when generating adversarial examples and IAA enhances the influence of the shallow layers on
generating adversarial perturbation.
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(a) PGD Normal ResNet-50 (c) IAA Normal ResNet-50

Figure 15: The CKA similarity between the features of natural image and adversarial images gen-
erated by attacking different models. The horizontal axis represents the features of adversarial ex-
amples extracted by different layers of ResNet-50, and the vertical axis represents the features of
natural image extracted by different layers of the same ResNet-50. (a) Adversarial examples are
generated by attacking normal ResNet-50 with PGD. (b) Adversarial examples are generated by
attacking normal ResNet-50 with our IAA.

L OTHER CORRUPTION CASES FOR THE MOTIVATION EXAMPLE

As shown in Tab. 8, we added other types of corruption like CIFAR-10-C and ImageNet-C
(Hendrycks & Dietterich, 2019), including noise, blur, weather, etc. Consistent with the observations
in Fig. 1, the target models are more likely to misclassify corrupted LDD data. We hypothesize that
these samples are in the low-density region of the ground truth distribution where both source and
target models are not well trained on. Moreover, we find that the adversarial counterparts of LDD
have stronger adversarial transferability than that of HDD, which inspires us to match the direction
of adversarial perturbation and the direction towards the low-density region to generate adversarial
examples with high transferability.

Table 8: The attack success rate when applying different types of corruption on the LDD and HDD
against different target models (VGG19, RN50, DN121). The best results are in bold.

Target Data Gaussian noise Shot noise Impulse noise Defocus blur Glass blur Zoom blur Fog Saturate

VGG19 HDD 6.2% 6.5% 6.0% 8.0% 7.2% 14.3% 6.3% 6.2%
LDD 48.1% 46.5% 47.5% 34.4% 31.5% 45.9% 37.9% 37.6%

RN50 HDD 4.1% 4.1% 1.8% 4.7% 4.4% 9.0% 6.0% 6.0%
LDD 37.6% 36.1% 26.2% 24.8% 23.4% 33.8% 39.4% 34.9%

DN121 HDD 1.5% 1.7% 1.1% 3.8% 3.5% 7.6% 3.1% 1.7%
LDD 29.4% 27.2% 23.5% 21.7% 20.1% 31.4% 27.7% 24.5%

M COMPUTATION COST

Our proposed method includes two steps. The first step is adjusting the pre-trained source model to
match the adversarial attack with the ground truth density decreasing direction by optimizing AAI,
and the second step is generating adversarial samples by the modified model similar to the normal
PGD attack.

Optimizing AAI to get a strong source model by Bayesian optimization on the pre-trained model
needs some extra computation. As shown in Eq. 4, the computation cost for AAI can be reduced
to O(d) from O(d2) by using ideas from sliced score matching (Song et al., 2020), where d is the
dimension of data. The computation cost of AAI optimization is 10 hours on Tesla-V100 using
ResNet-50.

However, the cost of generating adversarial examples is more important than the cost of adjusting
the source model in practice. Once we get the modified model, generating different adversarial
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Table 9: Top-1/Top-5 accuracy on different defense models when predicting the black-box adver-
sarial examples crafted by different methods on RN50. We consider two strengths of adversarial
perturbation (ε = 16 and ε = 24). The best results are in bold.
ε Attack NRP SIN SIN-IN AugMix `2 ε=0.05 `2 ε=0.1 `∞ ε=0.5 `∞ ε=1.0

24
PGD 1.32 / 26.48 61.66 / 87.48 9.66 / 56.60 51.04 / 88.00 66.06 / 94.70 81.42 / 97.96 94.24 / 99.40 95.82 / 99.84
SGM 0.20 / 15.86 41.50 / 77.08 1.06 / 31.62 15.28 / 61.20 22.68 / 71.76 42.76 / 84.38 82.32 / 97.48 90.82 / 98.76
IAA 0.00 / 0.02 16.18 / 27.64 0.00 / 0.04 0.84 / 2.44 1.82 / 4.78 10.40 / 19.96 63.10 / 80.18 83.42 / 94.36

16
PGD 3.40 / 35.78 65.56 / 89.54 15.68 / 64.34 60.36 / 91.90 75.62 / 97.00 87.26 / 98.80 96.36 / 99.60 97.12 / 99.50
SGM 1.54 / 28.98 50.28 / 82.22 3.82 / 43.64 27.42 / 73.00 41.88 / 84.68 62.98 / 93.10 90.66 / 99.24 94.60 / 99.42
IAA 0.48 / 0.98 27.76 / 44.00 0.18 / 0.54 5.96 / 10.98 14.08 / 26.60 39.56 / 59.52 84.8 / 95.1 92.98 / 98.32

examples by the modified model shares the same computation with normal PGD adversarial attacks.
That is to say, it is very efficient to use our modified model to generate adversarial examples.

N ATTACK OTHER DEFENSE METHODS

In Tab. 4, we evaluate that our IAA can fool the robust model by ensemble adversarial training
(Tramèr et al., 2018). Moreover, we show that the adversarial examples generated by IAA can also
effectively penetrate many other defense methods in Tab. 9. We further add neural representation
purifier (NRP) (Naseer et al., 2020) which is a state-of-the-art input processing defense method,
and some other robust training methods, including training with AugMix (Hendrycks et al., 2020),
Styled ImageNet (SIN) (Geirhos et al., 2019), the mixture of Styled and natural ImageNet (SIN-IN),
and adversarial examples (Salman et al., 2020) as defense models. In Tab. 9, we show the top-1
accuracy and top-5 accuracy (ACC1/ACC5) on different defense models when predicting the black-
box adversarial examples crafted by different methods. We use the ResNet-50 as the source model.
IAA surpasses other attacks in different cases. Our IAA drives the examples to the low-density
region by matching the adversarial attack and intrinsic attack. Thus the target models can hardly
give a correct prediction on IAA examples, and both the top-1 accuracy and the top-5 accuracy are
lower than other methods.

O FURTHER DISCUSSION ON DIRECTLY OPTIMIZING THE TRANSFERABILITY.

In our paper, we used the method of optimizing AAI to choose hyperparameters for two reasons.
On the one hand, we hope to verify the effectiveness of the metric we proposed. On the other hand,
we think that using the transferability for a certain target model to optimize may overfit the target
model. Interestingly, Fig.2 and Fig.3 show that the attack success rate among all the target models
seems like aligns well under different structural hyperparameters. Maybe it won’t be so over-fitted to
the target model that it is difficult to select the proper hyperparameters. We conduct experiments on
the source model ResNet-50. We use four methods to choose the proper hyperparameters, including
using the AAI as the optimization objective (”optimize-AAI”), using the transferability against the
target model VGG19 as the optimization objective (”optimize-vgg19”), using transferability against
the target model SE154 as the optimization objective (”optimize-senet154”), and using transferabil-
ity against the ensemble of VGG19 and SE154 as the optimization objective (”optimize-ensemble”).
The following table represents the top-1 accuracy and top-5 accuracy (ACC1/ACC5) when predict-
ing the adversarial examples crafted by different methods. Lower accuracy indicates better adversar-
ial transferability. We found that directly using the transferability as the optimization objective can
also find proper structural hyperparameters and outperforms the existing methods PGD and SGM.
The ensemble-based strategy can slightly improve the adversarial transferability. The computation
cost of directly optimizing transferability is half that of optimizing AAI.

Table 10: The attack success rate when using different optimizing methods to choose structural
hyperparameters. The best results are in bold.

Vgg19 DN121 DN201 SE154 IncV3 IncV4
PGD 47.00/83.52 44.38/84.16 46.44/86.92 50.44/93.00 79.14/96.66 78.04/95.68
SGM 17.28/58.68 16.44/63.52 19.66/68.46 38.7/75.62 46.28/84.28 50.17/85.95

optimize-AAI 3.60/5.67 2.54/4.37 3.36/6.60 15.26/18.68 23.72/29.36 28.62/33.72
optimize-senet154 3.96/6.20 3.14/4.50 4.04/6.34 14.60/18.98 21.14/28.86 24.72/30.32

optimize-vgg19 3.02/4.70 2.68/3.94 3.78/5.56 16.64/20.36 23.16/31.36 28.28/32.45
optimize-ensemble 3.20/4.80 2.42/3.06 3.26/4.70 14.86/17.00 19.56/26.86 23.30/28.14
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