
Under review as submission to TMLR

Cropping outperforms dropout as an augmentation strategy
for training self-supervised text embeddings

Anonymous authors
Paper under double-blind review

Abstract

Text embeddings, i.e. vector representations of entire texts, play an important role in many
NLP applications, such as retrieval-augmented generation, sentiment analysis, clustering, or
visualizing collections of texts for data exploration. Currently, top-performing embedding
models are derived from pre-trained language models via extensive supervised fine-tuning
using curated text pairs. This contrasts with computer vision, where self-supervised training
based on data augmentations has demonstrated remarkable success. Here we systematically
compare the two most well-known augmentation strategies for positive pair generation in
contrastive learning of text embeddings. We assess embedding quality on MTEB and ad-
ditional in-domain evaluations and show that cropping augmentation strongly outperforms
the dropout-based approach. We find that on out-of-domain data, the quality of resulting
embeddings is below the supervised SOTA models, but for in-domain data, self-supervised
fine-tuning produces high-quality text embeddings after very short fine-tuning, sometimes
only marginally below the supervised SOTA. Finally, we show that representation quality
increases towards the last transformer layers, which undergo the largest change during fine-
tuning; and that fine-tuning only those last layers is sufficient to reach similar embedding
quality.

1 Introduction

Representing texts as vectors is important in natural language processing for both supervised (spam de-
tection, sentiment analysis, semantic matching) and unsupervised (clustering, visualization, retrieval) down-
stream tasks. Such representations (or text embeddings) can be obtained with a wide range of methods, from
simple bag-of-words representations such as TF-IDF (Jones, 1972) to transformer-based large language mod-
els (LLMs) (Zhao et al., 2023). These language models are initially trained (pre-trained) with a token-level
loss, and subsequent fine-tuning with a text-level loss is needed to obtain useful text-level representations
(Xu et al., 2023). We refer to models and representations fine-tuned for representing entire texts as sentence
transformers and sentence or text embeddings, following Reimers & Gurevych (2019).

In recent benchmarks such as MTEB (Muennighoff et al., 2023), sentence transformers relying on extensive
supervised contrastive fine-tuning on large curated datasets have typically performed best, whereas self-
supervised contrastive training resulted in worse models. This is in stark contrast to computer vision,
where self-supervised learning (SSL) via data augmentations has been immensely successful in producing
semantically meaningful image representations (Balestriero et al., 2023). Various SSL approaches have been
suggested for sentence-level fine-tuning — such as the ones employed by SimCSE (Gao et al., 2021) or
DeCLUTR (Giorgi et al., 2021) — but it remains unclear how their performance compares between each
other and to the state-of-the-art (SOTA) embedding models.

In this work we address these questions by systematically comparing the two most well-known data augmen-
tation strategies used for training text embeddings, and by comparing them to the state-of-the-art supervised
models. By extensively assessing representation quality on MTEB tasks and additional in-domain evalua-
tions, we show that:
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• using text crops as positive pairs for contrastive learning performs consistently better than the
dropout-based augmentation used by SimCSE, contrary to some claims in the literature (Gao et al.,
2021);

• on out-of-domain data, the quality of resulting embeddings is below the supervised SOTA models,
but for in-domain data, self-supervised fine-tuning produces high-quality sentence embeddings, only
marginally below supervised SOTA;

• self-supervised fine-tuning on a minimal amount of data (as few as 10 000 short input texts) can
already lead to large improvements in sentence embedding quality;

• a large part of the improvement during SSL fine-tuning is due to the generic and domain-independent
sentence adaptation;

• representation quality increases towards the last transformer layers, which undergo the largest change
during fine-tuning; and fine-tuning only those layers leads to similar embedding quality.

Our findings are noteworthy given that dropout augmentations of SimCSE (Gao et al., 2021) represent one
of the most well-cited SSL approaches in the literature on text embeddings. This augmentation strategy has
also been adopted as a self-supervised training component in a recent work on transforming generative LLMs
into text embedding models (BehnamGhader et al., 2024), suggesting that our findings may be relevant for
ongoing work.

2 Related work

Transformer-based language models receive a sequence of text tokens as input and produce a separate latent
representation for each of the tokens as output (Vaswani et al., 2017). The BERT model (Devlin et al., 2019)
and its later variants such as MPNet (Song et al., 2020) include an additional classification token [CLS] to
serve as a global representation of full sentences in downstream tasks. However, only a small fraction of
typical BERT training is dedicated to sentence-level tasks, such that [CLS] sentence representations do not
usually perform well at encoding sentence-level semantics (Thakur et al., 2021; Muennighoff et al., 2023;
Jiang et al., 2022). Likewise, averaging all output tokens to obtain a sentence-level representation does not
perform well either (Muennighoff et al., 2023).

To improve sentence-level representations, more sophisticated pooling strategies (Wang & Kuo, 2020) and
post-processing techniques (Li et al., 2020; Su et al., 2021) have been suggested. Alternatively, a token-level
model can be fine-tuned with a sentence-level objective, typically using contrastive learning (Xu et al., 2023).
Here, pairs of similar texts are used as positive pairs, which are pulled together in the embedding space.
Approaches differ in how similar texts are defined.

In supervised contrastive learning, positive pairs are collected based on some explicit notion of simi-
larity. Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) uses a curated dataset of paired texts such
as question-answer pairs from Stack Exchange; their most recent model (2021) was trained on over 1 billion
of such pairs. Similarly, BGE undergoes contrastive fine-tuning using a curated dataset of text pairs (Xiao
et al., 2024). For academic texts, SPECTER (Cohan et al., 2020) and SciNCL (Ostendorff et al., 2022) use
citing and cited paper abstracts to form positive pairs. Sentence-T5 (ST5) (Ni et al., 2021) and Sentence-
GPT (SGPT) (Muennighoff, 2022) are derived via contrastive fine-tuning of T5 (Raffel et al., 2020) and
GPT (Radford et al., 2018) models.

In self-supervised contrastive learning, positive pairs are generated automatically from unpaired texts,
similar to self-supervised learning in computer vision that relies on data augmentations (Chen et al., 2020).
The unsupervised SimCSE model from Gao et al. (2021) uses two different dropout patterns to form a
positive pair of embeddings. This approach has also been used by Liu et al. (2021) and Yan et al. (2021),
who additionally investigate other data augmentation techniques, such as randomly masking a part of the
input text or shuffling tokens. Outputs of two distinct networks can also be used to generate positive pairs
(Kim et al., 2021; Carlsson et al., 2021). Further, one can use adjacent chunks of a text as positive pairs; this
was applied to train RNN (Logeswaran & Lee, 2018), GPT (Neelakantan et al., 2022), and BERT models
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(Giorgi et al., 2021; Izacard et al., 2022). Recently, synthetic generation of positive pairs has been explored
leveraging generative LLMs (Zhang et al., 2023), but this approach comes with the additional computational
cost of text generation.

In past benchmarks of sentence transformers, models trained in a supervised way have been shown
to outperform the ones trained with self-supervision (Thakur et al., 2021; Muennighoff et al., 2023). For
example, SBERT’s latest all-mpnet-base-v2 achieved top results among all models of BERT-base size. The
BGE-base embedding model (Xiao et al., 2024) and its further modifications are currently best performing
on MTEB among models of BERT-base size. Larger models, such as BGE-large or commercial embed-
ding models like text-embedding-3-large from OpenAI and embed-english-v3 from Cohere, outperform
BERT-base-sized models in some evaluation tasks, but in others are on par with smaller models.

3 Self-supervised contrastive fine-tuning

3.1 Augmentations and loss function

We set out to investigate how effectively sentence representations from a language model can be improved
through self-supervised fine-tuning alone, and how different augmentation choices influence this improvement.
For that, we leveraged a contrastive learning approach analogous to SimCLR (Chen et al., 2020) as our
training strategy and compared various augmentation techniques for generating positive pairs, such as text
crops (Logeswaran & Lee, 2018; Giorgi et al., 2021; Neelakantan et al., 2022), dropout-based augmentation
(Gao et al., 2021), and variations of those (see Section A.1). Importantly, all augmentation approaches in our
comparison were constructed in a self-supervised manner, without relying on external notions of similarity
or annotated data.

The cropping augmentation was set up as follows: for each input text i in a minibatch of size b, we
cropped out all possible chunks of t = 2 consecutive sentences (discarding all sentences under 100 and over
250 characters long) and sampled two chunks, one as the anchor text ai and one as its positive partner pi.
For example, if the abstract of our paper were in the training set, then one positive pair could look like this:

Sentence embeddings, i.e. vector representa-
tions of entire texts, play an important role
in many NLP applications, such as retrieval
augmented generation, sentiment analysis, clus-
tering, or visualizing collections of texts for
data exploration. Currently, top-performing
embedding models are derived from pre-trained
language models via extensive supervised fine-
tuning.

↔

This contrasts with computer vision, where self-
supervised training has demonstrated remark-
able success. Here we study whether good sen-
tence representations can be obtained through
self-supervised fine-tuning alone, assessing em-
bedding quality on MTEB and via additional in-
domain evaluations.

For the dropout-based augmentations, we used the approach of SimCSE (Gao et al., 2021). We split
each input text i into groups of consecutive sentences in the same way as for the cropping augmentation, to
have similar text lengths for both kinds of augmentations. Then, we sampled one single crop and passed it
through the model twice, with two different random dropout patterns applied to it, yielding two different
representations that we used as anchor ai and positive pair pi.

As negative examples for text i we always used the positive partners of all other anchors within the same
minibatch B. Unlike some other recent studies, we did not use any hard negatives (Cohan et al., 2020; Giorgi
et al., 2021; Ostendorff et al., 2022).

During contrastive training, the cosine similarity between the representations of ai and pi is maximized,
while minimizing the cosine similarities between representations of ai and pj for j ̸= i within the same
minibatch B. This can be achieved using the InfoNCE loss function (Oord et al., 2018), also known as the
normalized temperature-scaled cross-entropy loss (NT-Xent) (Chen et al., 2020). For one sample i, the loss
is given by:

ℓi = − log
exp

(
sim(ai, pi)/τ

)∑
j∈B

exp
(
sim(ai, pj)/τ

) , (1)

where sim(a, p) = a⊤p/
(
∥a∥ · ∥p∥

)
is the cosine similarity between a and p, the vector representations of

texts a and p. We set the temperature to τ = 0.05 and the batch size to b = 64, the largest possible batch
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Table 1: MTEB tasks. Row blocks correspond to clustering, reranking, retrieval, and STS tasks. All values
in percent, higher is better. Models in columns 3–4 were fine-tuned on the ICLR dataset.

(1) (2) (3) (4) (5) (6) (7)
Model MPNet SimCSE MPNet MPNet SBERT BGE-base BGE-large
Augmentations — — Dropout Crops — — —

ArxivClusteringP2P 27.8 35.4 33.3 38.3 48.1 48.6 48.7
BiorxivClusteringP2P 23.2 30.1 31.1 32.4 39.3 39.7 39.4
MedrxivClusteringP2P 22.5 28.0 29.3 30.8 35.6 32.6 33.2
RedditClusteringP2P 37.4 44.7 49.5 55.9 56.6 64.7 62.7
StackExchangeCl...P2P 26.3 28.8 30.2 31.3 34.3 35.0 35.2

SciDocsRR 56.1 69.5 64.6 73.6 88.7 87.6 87.5
MindSmallReranking 27.5 29.3 28.4 30.2 31.0 32.1 31.2

SCIDOCS 1.4 7.9 6.5 13.0 23.8 22.6 21.7
ArguAna 22.2 41.4 41.9 50.6 46.5 64.5 63.8

STS15 53.5 82.3 63.5 72.5 85.7 88.0 88.0
STS16 50.6 77.7 66.2 76.0 80.0 86.5 85.5
STSBenchmark 52.0 78.6 67.9 71.7 83.4 87.5 86.4

Block average 33.2 46.8 42.8 48.7 55.2 58.7 58.2

size given our GPU memory resources. We trained the network using the Adam optimizer (Kingma & Ba,
2014) with learning rate η = 2 · 10−5, with linear warm-up and linear decay. See Section A.1 for details on
hyperparameter choices.

3.2 MTEB performance after SSL fine-tuning

3.2.1 Setup

As the first evaluation suite to assess the sentence representation quality, we used the Massive Text Em-
bedding Benchmark (MTEB) (Muennighoff et al., 2023). It comprises older benchmarks, such as BEIR
(Thakur et al., 2021) or STS (Agirre et al., 2012); as well as a wide range of downstream tasks from different
modalities, such as clustering, classification, or retrieval.

We fine-tuned a base transformer (i.e., a model primarily pre-trained with a token-level loss) using the SSL
training setup outlined in the previous section and compared two augmentation strategies: cropping and
dropouts. We chose MPNet (Song et al., 2020; mpnet-base) as base model, following SBERT (Reimers &
Gurevych, 2019; model all-mpnet-base-v2 on HuggingFace). This model has bert-base architecture with
110 M parameters and uses 768 embedding dimensions. We used mean pooling over all tokens to obtain
a single 768-dimensional output vector for each input text, but also compared other pooling strategies
(Supplementary Figure S1).

For fine-tuning the base model we used the ICLR dataset (González-Márquez & Kobak, 2024), which consists
of 24,347 scientific abstracts of all papers submitted to the ICLR conference within the years 2017–2024. This
recently assembled dataset is well-suited for our purposes because it is not part of the MTEB benchmark.
Fine-tuning on this dataset therefore enables a fair model comparison and avoids evaluation data leakage,
which can potentially lead to inflated performance estimates.

For simplicity, we did not use all MTEB tasks for evaluation, but focused on a subset of tasks from four
different modalities: clustering, reranking, retrieval, and STS. Clustering tasks assess the K-means clustering
results in the embedding space; retrieval and reranking tasks assess the quality of the nearest neighbors in
the embedding space; STS tasks measure how well the embedding represents not only small but also large
ground-truth pairwise distances (see Section A.2 for details). These evaluation modalities quantify different
aspects of sentence representation and cover the wide range of MTEB tasks.
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3.2.2 Results

Out of the box, MPNet resulted in poor representations with a block average across modalities of 33.2%
(Table 1, column 1). After fine-tuning on the ICLR dataset for a single epoch, the quality of the embeddings
markedly improved. Out of the two augmentation strategies, cropping worked much better than dropout:
cropping-based fine-tuning outperformed dropout-based fine-tuning in all tasks (on average 48.7% vs 42.8%,
Table 1, columns 3–4). Cropping-based fine-tuning yielded an improvement in block average score of 14.8
percentage points, but there were large differences between modalities: STS had the largest improvement
(21.2 p.p.), followed by retrieval (19.4 p.p.), reranking (10.1 p.p.), and clustering (8.6 p.p.).

The off-the-shelf unsupervised SimCSE model (which is based on dropout fine-tuning) performed similarly
to our dropout-based fine-tuned model on all tasks except for the STS, where it was substantially better
(Table 1, column 2 and 3), suggesting that the good performance of SimCSE in STS benchmarks may be
due to some other fine-tuning choices beyond the dropout augmentation. SimCSE yielded worse results
than our cropping-based fine-tuning in the other three modalities, despite having being fine-tuned on two
orders of magnitude more data (1 M Wikipedia sentences for SimCSE vs. 24 k samples in our experiments),
demonstrating that, at least for most tasks, the choice of augmentation has a greater impact on performance
than the amount of training data.

Cropping-based fine-tuned MPNet was 6.5 percentage points below SBERT, which achieved 55.2% perfor-
mance as block average. Fine-tuned MPNet performed closest to SBERT in reranking tasks (3.3 p.p. below
SBERT) and furthest in STS tasks (9.6 p.p. below SBERT). This demonstrates that cropping-based fine-
tuning produced a sentence-level model that showed substantial generalization despite very limited amount
of fine-tuning (∼24 k training samples, ICLR dataset only). Note also that some of the evaluation datasets,
e.g. SCIDOCS, arXiv, and StackExchange, formed part of the training set of SBERT, possibly biasing
SBERT performance estimates upwards.

Additionally, we compared the standard transformer models to two state-of-the-art models: BGE-base (109 M
parameters) and BGE-large (335 M parameters) (Xiao et al., 2024) (see Table S1 for the list of all used
models). BGE-base is among the best-performing models in public MTEB leaderboard within models of
its size. BGE-large is the larger version of BGE-base, and is among the top models overall, on par with
text-embedding-3-large from OpenAI. In the MTEB tasks we evaluated, both BGE models performed
slightly better than SBERT (3 p.p. higher in block average) and substantially better than our cropping-
based fine-tuned MPNet (10 p.p. difference). This suggests that additional training modifications, such as
pre-training specifically targeted at sentence embeddings, instruction-based supervised fine-tuning, or hard
negative samples, can bring embedding quality further.

3.2.3 Cropping-based fine-tuning is very fast
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Figure 1: Fine-tuning on ICLR dataset.

We further analyzed the performance improve-
ment within the single fine-tuning epoch. We
found that the MTEB block average was im-
proved by around 15 percentage points within
the first 100 fine-tuning batches (6 400 posi-
tive pairs) (Figure 1). Afterwards, the MTEB
score plateaued for all modalities and did not
improve any further, and fine-tuning for more
than 1 epoch in the same dataset did not bring
further improvements.

These 100 batches of fine-tuning took only
∼1 min of training time on a single GPU
(NVIDIA RTX A6000). In comparison, the
top-performing sentence transformer models
are typically trained on large datasets, with substantial computational costs and training times. For ex-
ample, the all-mpnet-base-v2 SBERT model was trained in a supervised way using over one billion text
pairs. Even though its performance is higher (55.2%), we could bring the same base model (mpnet-base)
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Table 2: Representation of a given dataset. Score is kNN accuracy of the mean pooling representation
in percent (k = 10 with Euclidean distance; we obtained similar values using cosine distance, see Table S2).
We used a 9:1 train/test split for the kNN classifier. Columns 1–2, 5–7: off-the-shelf models. Columns 3–4:
MPNet fine-tuned on each dataset using cropping and dropout augmentations. Reported values should be
interpreted with an error of up to ±1%, corresponding to the binomial standard deviation 100

√
p(1 − p)/n

for test set size n ≈ 2000 (smallest dataset) and accuracy p = 0.5.

(1) (2) (3) (4) (5) (6) (7)
Model MPNet SimCSE MPNet MPNet SBERT BGE-base BGE-large
Augmentations — — Dropout Crops — — —

ICLR 37.4 45.7 46.8 58.9 63.3 63.3 63.5
arXiv 37.8 40.0 39.9 44.2 46.2 46.0 46.0
bioRxiv 58.6 59.0 60.7 61.8 65.2 64.4 65.5
medRxiv 43.5 47.2 47.8 52.4 56.8 55.7 55.3
Reddit 62.6 59.9 57.8 72.0 75.0 79.2 80.0
StackExchange 39.3 40.7 41.6 45.6 50.6 51.4 51.5

Average 46.5 48.8 49.1 55.8 59.5 60.0 60.3

close to SBERT’s performance on some of the tasks in a few minutes of self-supervised training using five
orders of magnitude less data.

3.3 Representation of a dataset for analysis and visualization

3.3.1 Setup

Beyond MTEB, we evaluated the models’ ability to generate meaningful representations of a given dataset
for data analysis and visualization. This application of text embeddings is essential for understanding the
structure of a dataset and identifying outliers or potential data quality issues (González-Márquez et al., 2024;
Anand et al., 2023), yet standard benchmarks often overlook it. Given its practical importance, we included
this evaluation to provide a more comprehensive assessment of sentence representation quality across tasks.

We assessed the dataset representation quality through k-nearest-neighbor (kNN) classification accuracy
in the high-dimensional (d = 768) embedding space. This metric is computed by classifying each point
according to the majority class among its k nearest neighbors, and then comparing predicted class against
the true class. It is a measure of local coherence: it is high if each point’s nearest neighbors belong to the
same class as the point itself. This metric is particularly relevant for data exploration applications, e.g.
visualization or clustering, as many unsupervised learning algorithms for these tasks rely on the kNN graph
of the data. While this metric depends on the quality of the kNN graph similarly to retrieval or reranking
tasks from MTEB, it is simpler to evaluate as it requires only class labels rather than annotated samples or
ranked neighbors.

To evaluate the self-supervised fine-tuning strategy, we fine-tuned the same base model with the same
augmentations and loss as in the previous section, but this time using as training data the same dataset
that is being represented. That means, for each dataset being evaluated, the base model was fine-tuned
separately on that dataset for one single epoch. Note that we purposefully used the entire dataset first
for self-supervised training and later for supervised evaluation. As the self-supervised training does not
have access to class labels, this setting does not present overfitting issues. Also, the augmentations operate
within samples (e.g. two fragments of one sample text are encouraged to be similar), and not across samples
(i.e. two samples from the same class are not encouraged to be similar). We obtained similar results when
conducting the same experiment with a train/test split for both self-supervised training and supervised
evaluation (Supplementary Table S3).

We performed our fine-tuning experiments on six datasets: the arXiv, bioRxiv, medRxiv, Reddit, and
StackExchange datasets from the P2P clustering tasks of the MTEB (Muennighoff et al., 2023), and the
ICLR dataset (González-Márquez & Kobak, 2024). The datasets differed in the number of samples (18–
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Figure 2: t-SNE visualizations of MPNet, SBERT, and cropping-based fine-tuned model embeddings of
different datasets. Color corresponds to class labels. Numbers show kNN accuracy in 768D embedding
space. We used openTSNE with default parameters (Poličar et al., 2024).

733 thousand) and classes (26–610; Table S4). Four of them comprised scientific abstracts from different
disciplines, and the other two consisted of internet posts.

3.3.2 Results

We found that, on average across datasets, the base MPNet produced representations with low accuracy
(46.5%, Table 2) and almost no semantic structure visible in 2D visualizations using t-SNE (van der Maaten
& Hinton, 2008) (Figure 2). Fine-tuning MPNet for one epoch for each dataset increased the performance
to 55.8% on average, which was still below SBERT with 59.5%. For some datasets this improvement was
particularly large; e.g., the representation of the ICLR dataset improved by over 20 percentage points.

As in Section 3.3, cropping-based fine-tuning outperformed dropout-based fine-tuning in all datasets (on
average 55.8% vs 49.1%, Table 2, columns 4–5). The off-the-shelf SimCSE model produced similar represen-
tations to our dropout-based fine-tuned model on all datasets.

The difference in performance between the cropping-based fine-tuned MPNet and SBERT (3.7 p.p.) was less
prominent in this task than in the retrieval and reranking MTEB tasks, and their 2D visualizations were
qualitatively similar (Figure 2). This confirmed that cropping-based fine-tuning produced a sentence-level
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model that yielded high-quality representations, despite the limited amount of fine-tuning and the lack of
supervision.

Furthermore, on three scientific datasets (ICLR, arXiv, medRxiv), the cropping-based fine-tuning matched
the performance of SciNCL and SPECTER, two off-the-shelf embedding models specifically designed and
trained to represent scientific abstracts (Table S5, columns 8–9), using scientific citations as positive pairs.
On the non-scientific datasets (Reddit and StackExchange), cropping-based fine-tuning unsurprisingly out-
performed both SciNCL and SPECTER.

Additionally, we evaluated the two state-of-the-art models also used in the previous section: BGE-base
and BGE-large. In this task, their performance was closer to SBERT, only minimally surpassing it. The
difference in performance between BGE and the cropping-based fine-tuned MPNet was smaller here (∼4
p.p.), showing that representation quality after self-supervised fine-tuning highly benefits from in-domain
training data.

3.3.3 Sentence and domain adaptation during fine-tuning

When fine-tuning a token-level base model with a sentence-level contrastive loss on a specific dataset, two
mechanisms can contribute to the performance improvement: the model adapting to represent sentences
(“sentence adaptation”) and the model adapting to the domain of the training data (“domain adaptation”).
To disentangle the contributions of these two potential mechanisms, we performed self-supervised fine-tuning
on one dataset and evaluated the model’s performance on a dataset from a different domain. We used three
MTEB clustering P2P datasets from the previous section (arXiv, bioRxiv, and Reddit) as training datasets,
and ICLR as the evaluation dataset. For comparable training conditions, we used dataset subsets equal to
ICLR’s size. We fine-tuned the base model separately on each dataset and measured the kNN accuracy on
the ICLR dataset. We also fine-tuned and evaluated directly on ICLR for comparison with the setting when
both adaptation mechanisms are present.
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Figure 3: Domain vs. sentence adaptation. kNN ac-
curacy on the ICLR dataset for MPNet fine-tuned sepa-
rately on four different datasets (arXiv, bioRxiv, Reddit,
ICLR). Most of the improvement happens within the first
100 batches.

We found that the ICLR kNN accuracy train-
ing curve had a similar shape for all train-
ing datasets, including the ICLR dataset (Fig-
ure 3). Most of the improvement happened
within the first 100 batches, and after that
the kNN accuracy increased only slightly. This
agrees with what we observed previously using
the MTEB score (Figure 1).

Training on arXiv and bioRxiv yielded better
ICLR performance than training on Reddit,
likely because scientific abstracts of other dis-
ciplines (arXiv and bioRxiv) have greater do-
main similarity with ICLR abstracts than in-
ternet posts (Reddit). This suggests that the
performance of sentence embeddings trained
with self-supervision decreases for out-of-
domain data.

As the domains of Reddit and ICLR datasets
are very different, the improvement in ICLR kNN accuracy obtained when training on the Reddit dataset
must be mostly due to sentence adaptation rather than domain adaptation. This improvement was 14.7
p.p. in our experiment (∆S in Figure 3), which was larger than the difference in final performance between
training on the Reddit and on the ICLR datasets (∆D3 = 5.3 p.p.). Thus, we conjecture that the majority of
the improvement in MTEB score when trained on the ICLR dataset (Table 1) was due to generic sentence-
level adaptation. This may also explain why the gap between our fine-tuned MPNet and SBERT was larger
for MTEB than for the kNN accuracy evaluation, since in the first scenario the model was always evaluated
on out-of-domain data (compared to the data used for contrastive fine-tuning).
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Figure 4: Representation quality across layers. (a) kNN accuracy after fine-tuning MPNet with different
number of initial layers frozen. The embedding layer was frozen in all settings. Zero unfrozen layers cor-
responds to no fine-tuning. (b) kNN accuracy after each layer for MPNet before and after fine-tuning, for
SBERT, for randomly initialized model, and for model trained with cropping augmentations from scratch.
Layer 0 corresponds to the embedding layer.

3.3.4 Self-supervised training without pre-training

To determine whether the token-level pre-training was necessary to achieve good sentence representations
of a given dataset, we performed cropping-based contrastive training of the bert-base architecture from
scratch, without using pre-trained MPNet weights (Table S5, column 10). Here, the performance did not
saturate after one epoch, so we continued training for 10 epochs. On average across datasets, the resulting
performance was 2.6 percentage points below the one we obtained from fine-tuning the pre-trained MPNet,
and for some of the datasets there was no noticeable performance difference at all. However, when training
the model on ICLR and evaluating on MTEB (setup from Section 3.2) the results were much worse compared
to using the pre-trained MPNet (18.9 p.p. difference).

As an additional ablation, we performed the same cropping-based contrastive training of a bare, randomly
initialized, embedding layer. This is a direct token embedding model without any transformer architecture
whatsoever. Training it for 10 epochs, we obtained dataset embeddings that on average were 3.5 percentage
points below the ones obtained from fine-tuning the pre-trained MPNet (Table S5, column 11). Again, when
trained on ICLR and evaluated on MTEB, the results were very poor, with the block average much worse
compared to using the pre-trained MPNet (13.4 p.p. difference).

These results highlight that even the simple token embedding layer can achieve a reasonable embedding
of a given dataset, when trained with cropping augmentations (dropout augmentation worked much worse;
Table S5). However, the transformer architecture and pre-training knowledge are clearly necessary when
generalizing to other tasks and domains.

4 Representation quality across layers

To investigate whether fine-tuning the full MPNet model was needed to obtain high-quality sentence repre-
sentations, we performed cropping-based fine-tuning on the ICLR dataset while freezing the embedding layer
and various numbers of initial layers. We observed that the performance rapidly improved with the number
of unfrozen layers, and fine-tuning only the last two out of 12 layers for one epoch was sufficient to reach
almost the same value of kNN classification accuracy as fine-tuning the full model (Figure 4a). Unfreezing
additional layers led only to minor further improvements.

When all layers were unfrozen, the last few layers underwent the largest change during fine-tuning, while
the early layers barely changed, in agreement with previous findings in supervised setting (Merchant et al.,
2020; Mosbach et al., 2020). To quantify this, we measured the representation quality after each hidden
layer before and after fine-tuning (Figure 4b). The gap between them was close to zero for early layers and
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increased towards the last layers. We observed the same effect when fine-tuning MPNet on other datasets
(Figure S2).

Intriguingly, the representation quality across layers in our fine-tuned model as well as in out-of-the-box
SBERT formed a U-shaped curve (Figure 4b): before fine-tuning the embedding layer representation had
the highest accuracy, and after fine-tuning it was surpassed by only the last two layers. Across other datasets,
the shape was different and not always U-shaped (Figure S2), but fine-tuned models always exhibited a steep
rise in performance towards layer 12. The randomly initialized models did not exhibit this shape: after SSL
training, the performance monotonically increased and plateaued half-way through the layers (Figure 4b).

Consistently across all datasets and fine-tuned models, the last layer always gave the best representation
(Figures 4b and S2). This differs from what has been observed in computer vision, where the top performance
after SSL training typically occurs in one of the hidden layers. Indeed, a common practice in computer
vision is to have several fully-connected layers (projection head) between the output representation and the
contrastive loss (Chen et al., 2020), which are discarded after SSL training (guillotine regularization) (Bordes
et al., 2023). We experimented with adding a one-hidden-layer (768 → 512 → 128) projection head after the
average pooling, but this did not consistently affect the representation quality, in agreement with Figure 4b.

5 Discussion

We showed that self-supervised fine-tuning is a powerful strategy for producing high-quality text embeddings
with minimal training on in-domain data. To this end, we systematically compared different self-supervised
augmentation techniques under the exact same training setup and showed that cropping augmentations were
much better than dropout augmentations in all evaluations. This finding is noteworthy because dropout
augmentations of SimCSE have been claimed to be superior (Gao et al., 2021) and are one of the most
well-cited SSL approaches in the literature on text embeddings.

While we showed that the cropping augmentation can greatly enhance text representations of multi-sentence
texts, we believe that there is still a large room for improvement. The lesson from computer vision (Balestriero
et al., 2023) as well as from our work is that good data augmentations are crucial for the success of self-
supervised learning. Combining cropping augmentation with more powerful semantic augmentations such
as reformulations using generative language models (Jiang et al., 2022; Wang & Dou, 2023; Abaskohi et al.,
2023) can offer an interesting avenue for future research.

Despite self-supervised fine-tuning substantially improving text embedding quality, there was still a gap until
SOTA supervised models. It is unclear whether this gap stems from supervision itself or from the much larger
and more diverse datasets on which SOTA supervised models are trained. Such models typically leverage
diverse data spanning multiple domains, minimizing out-of-domain scenarios — in contrast to our limited
self-supervised training on a single dataset. It remains an open question whether this gap can be bridged
with extensive self-supervised training on diverse data or whether supervision is a key element to achieve
better performance.

One challenge in model evaluation is the overlap between training and evaluation data across models and
benchmarks. Supervised models often construct fine-tuning pairs using the same external notion of similarity
(class labels, citation relationships, etc.) that evaluation benchmarks use. For instance, the MTEB Scidoc-
sRR task uses citation relationships to determine relevant texts, while SBERT used citation pairs from the
same SCIDOCS dataset for fine-tuning, artificially inflating its performance on that task. Although MTEB
attempts to address this by removing certain tasks and introducing “zero-shot” scores, they do not give
details on which datasets and tasks are problematic for which models. We believe that greater transparency
is needed in training and evaluation procedures, to facilitate comparisons between existing models. Our
work avoids this problem by comparing different augmentation strategies (crops vs. dropouts) in identical
and controlled settings.
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A Appendix

A.1 Augmentation and hyperparameter choices for self-supervised fine-tuning

To select the optimal hyperparameters for our self-supervised fine-tuning, we performed a detailed hyperpa-
rameter study using the ICLR dataset. We ran the fine-tuning of MPNet for one epoch, and assessed the
final kNN classification accuracy (Figure S1). In each experiment, all other parameters were kept at their
default values described in Section 3.1.

Pooling We compared four different pooling strategies for forming the final sentence representation: aver-
age pooling, the classification token [CLS], the separation token [SEP] (appended at the end of each input
text), and the seventh token (as an example of an arbitrary token number). We obtained the best results
using the average pooling and [SEP] token, with the other two options performing less well (Figure S1a).

When evaluating off-the-shelf models, we always used the mean pooling. On the ICLR dataset, some off-the-
shelf models showed slightly higher kNN accuracy in the [SEP] token representation than using the [CLS]
token or average pooling, but the difference was small (Table S6). It has recently been shown in a computer
vision setting that additional tokens can be used by the transformer model as ‘registers’ to store high-level
features (Darcet et al., 2023). Our results suggest that the same can happen with language models, since
the [SEP] token often serves as a good sentence representation despite not being explicitly used for training.

Temperature We compared several values of temperature from 0.005 to 5.0, and found that the per-
formance decreased with increasing temperature, with τ = 0.005 and τ = 0.05 yielding similar results
(Figure S1a). The value τ = 0.5 used in SimCLR (Chen et al., 2020) performed less well.

Cropping augmentation Our data augmentation consisted of ‘cropping out’ t consecutive sentences. We
varied the number of consecutive sentences (decreasing the batch size accordingly, to make it fit into the
GPU memory) and found that the performance generally decreased with t, with the optimal number being
t = 2 (Figure S1b). Note that in our sampling it was possible for the positive pair of text chunks to overlap
(but not to coincide exactly).

Masking augmentation We also experimented with a masking augmentation that replaced a certain
fraction of tokens in each input chunk with the BERT’s special [MASK] token. This was done on top of the
cropping augmentation. We found that masking led to deterioration of performance (Figure S1c). Using
masking augmentation without cropping (i.e. forming positive pairs by applying two different masking
patterns to the entire abstract) did not produce competitive results either.

Learning rate The performance increased with increasing the Adam’s learning rate (Figure S1d), until
it became too large and the training diverged (η ≥ 5 · 10−4). For the bare embedding layer training, the
optimal learning rate was η = 5 · 10−1.

A.2 Description of MTEB tasks

Here we provide a brief description of the MTEB tasks that we used for evaluation. We used the MTEB
library (https://github.com/embeddings-benchmark/mteb) for evaluation. Please see Muennighoff et al.
(2023) and references therein for further details.

Clustering Each of the used datasets consists of texts and ground-truth class labels for each text. The
texts are embedded using the model, and the embedding vectors are clustered using a mini-batch K-means
algorithm with batch size b = 32 and K equal to the true number of classes. The evaluation score is the so
called V -measure of agreement between cluster labels and class labels, which is invariant to the permutation
of cluster labels. The whole procedure is done separately on several non-overlapping batches and the results
are averaged.
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Retrieval Each of the used datasets consists of a corpus of documents, queries, and a mapping from each
query to the relevant documents. The documents and queries are embedded using the model, and the aim is
to find the relevant documents within the neighborhood of the query in the embedding space. Neighbors are
determined using cosine similarity, and after ranking them, normalized discounted cumulative gain (NDCG)
at k = 10 nearest neighbors serves as the performance metric. NDCG is obtained by normalizing discounted
cumulative gain (DCG), which is defined as:

DCG@K =
K∑

i=1

reli
log2(i + 1) ,

where reli is the relevance score of the item at position i (which can be either binary or graded), and K is
the number of top results considered. The Ideal DCG (IDCG) is then calculated by sorting the results in
the optimal order (most relevant first). Finally, NDCG is obtained by normalizing DCG with IDCG:

NDCG@K = DCG@K

IDCG@K
· 100%.

Reranking Each of the used datasets consists of query texts and a list of relevant and irrelevant reference
texts for each query. They are all embedded with the model, and for each query, the text embeddings
are ranked based on the cosine similarity to the query embedding. The resulting ranking is compared to
the ground-truth ranking, scored for each query via average precision (AP) metric, and averaged across all
queries (MAP). Average precision is defined as:

AP =
n∑

k=1

P (k) · rel(k)
number of relevant documents ,

where P (k) is the precision at rank k, rel(k) is the relevance of the item at rank k (in this case only binary;
1 if it is relevant and 0 otherwise), and n is the number of retrieved items. Precision at rank k is defined as:

P (k) = k

Number of relevant items in top k results ,

with values going from 0 to 1. MAP values also go from 0 to 1, with higher values being better.

STS Each of the used datasets consists of a set of sentence pairs, each pair with a numerical score from
0 to 5 indicating similarity between the two sentences (5 being most similar, and 0 most dissimilar). All
sentences are embedded with the model, and for each pair, the embedding similarity is computed using
cosine similarity. These embedding similarities are then compared against ground-truth similarities using
Spearman correlation.

A.3 Software and Data

The analysis code is available at URL.
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B Supplementary tables and figures

Table S1: Details of used models. Model name, HuggingFace URL, citation, and year.
Name Hugging Face Citation Year

MPNet microsoft/mpnet-base (Song et al., 2020) 2020
BERT bert-base-uncased (Devlin et al., 2019) 2018
SimCSE princeton-nlp/unsup-simcse-bert-base-uncased (Gao et al., 2021) 2021
SciNCL malteos/scincl (Ostendorff et al., 2022) 2022
SPECTER allenai/specter (Cohan et al., 2020) 2020
SBERT sentence-transformers/all-mpnet-base-v2 (Reimers & Gurevych, 2019) 2021
BGE-base BAAI/bge-base-en-v1.5 (Xiao et al., 2024) 2024
BGE-large BAAI/bge-large-en-v1.5 (Xiao et al., 2024) 2024

Table S2: Effect of post-processing transformations. kNN accuracy on the ICLR dataset using different
post-processing transformations of the MPNet mean pooling representation, obtained via the Euclidean and
the cosine metrics for finding nearest neighbors, before and after fine-tuning the model on the ICLR dataset.
Whitening MPNet’s representation increased the performance before fine-tuning when using the cosine metric
for NN search, but it did not when using Euclidean metric. Whitening did not bring any further improvement
to the representation after fine-tuning, with any of the metrics.

Euclidean Cosine
Before fine-tuning

Raw 37.4% 39.6%
Centered 37.4% 37.0%
Whitened 17.6% 46.9%

After fine-tuning
Raw 58.9% 59.3%
Centered 58.9% 58.9%
Whitened 36.2% 56.5%

Table S3: Representation of a given dataset; SSL with train/test split. Score is kNN accuracy of
the mean pooling representation in percent. Unlike in Table 2, here self-supervised training was only done
on the train set; then the classifier was trained on the train set and evaluated on the test set (we used a 9:1
train/test split).

Model MPNet MPNet
Pre-trained yes yes
Augmentations Dropout Crops

ICLR 46.7 56.8
arXiv 38.9 44.1
bioRxiv 60.9 61.6
medRxiv 47.8 52.3
Reddit 59.6 71.8
StackExchange 41.3 45.1

Average 49.2 55.3
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Table S4: Dataset statistics. Statistics of the datasets used in the experiments of Table 2. The arXiv,
bioRxiv, medRxiv, Reddit, and StackExchange datasets are from the P2P clustering tasks of the Massive
Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023), and the ICLR dataset is taken from
González-Márquez & Kobak (2024). Length refers to the number of characters in each sample text. For the
arXiv dataset, we used secondary paper categories (e.g., “cs.AI”) as labels.

Dataset Samples Classes Mean length Std length
ICLR 24 347 46 1248 316
arXiv 732 723 180 1010 432
bioRxiv 53 787 26 1664 542
medRxiv 17 647 51 1985 843
Reddit 459 399 450 728 710
StackExchange 75 000 610 1091 809

Table S5: Representation of a given dataset, additional models. This is an extension of Table 2.
Columns 3–4: MPNet fine-tuned on each dataset using dropout and cropping augmentations, identical to
columns 3–4 from Table 2. Columns 8–9: off-the-shelf models. Columns 10–11: Full BERT model and
embedding layer (Emb.) trained from scratch for 10 epochs using cropping augmentations.

(3) (4) (8) (9) (10) (11)
Model MPNet MPNet SPECTER SciNCL BERT Emb.
Pre-trained yes yes yes yes no no
Augmentations Dropout Crops — — Crops Crops

ICLR 46.8 58.9 56.8 57.0 57.1 57.3
arXiv 39.9 44.2 44.2 45.2 44.3 43.4
bioRxiv 60.7 61.8 64.8 66.4 60.6 60.7
medRxiv 47.8 52.4 52.6 52.8 44.9 49.1
Reddit 57.8 72.0 55.2 57.3 61.8 63.6
StackExchange 41.6 45.6 41.5 42.9 45.4 45.2

Average 49.1 55.8 52.5 53.6 52.3 53.2

Table S6: Comparison of pooling strategies. kNN accuracy on the ICLR dataset of different of-the-
shelf models using mean pooling, [CLS] token, and [SEP] token as sentence representations. DeCLUTR and
SBERT were originally fine-tuned using mean pooling. SimCSE, SciNCL, and SPECTER were originally
fine-tuned using the [CLS] token. Best representation is in bold, best representation for each model is
underlined.

Average [CLS] [SEP]

MPNet 37.4% 31.8% 36.3%
BERT 40.6% 28.2% 33.1%
SimCSE 45.7% 43.5% 46.4%
DeCLUTR 50.3% 45.0% 34.8%
SciNCL 57.0% 56.8% 57.8%
SPECTER 56.8% 54.1% 58.5%
SBERT 63.3% 56.8% 59.8%
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Figure S1: Hyperparameter tuning using the ICLR dataset for self-supervised training and kNN evaluation.
(a) Temperature τ used to scale the similarities in the loss function. (b) Number of consecutive sentences
t used in the cropping augmentation. The minibatch size b was adapted depending on t to make it fit into
our GPU memory: we used b = 128 for t = 1; b = 64 for t = 2, 3, 4; b = 32 for t = 5, 6, 7, 8, 9; and b = 16 for
t = 10. (c) Fraction of masked tokens used in addition of the cropping augmentation. (d) Learning rate η
used by the Adam optimizer.
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Figure S2: Representation quality across layers. kNN accuracy after each layer for MPNet before and after
fine-tuning in the (a) medRxiv, (b) Reddit, and (c) StackExchange datasets. Evaluation is also done on
the respective dataset.
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