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ABSTRACT

Deep neural networks (DNN) has shown great capacity of modeling a dynamical
system, but these DNN-based dynamical models usually do not obey conservation
laws. To impose the learned DNN dynamical models with key physical proper-
ties such as conservation laws, this paper proposes a two-step approach to endow
the invariant priors into the simulations. We first establish a contrastive learning
framework to capture the system invariants along the trajectory observations. Dur-
ing the dynamics modeling, we design a projection layer of DNNs to preserve the
system invariance. Through experiments, we show our method consistently out-
performs the baseline in both coordinate error and conservation metrics and can be
further extended to complex and large dynamics by leveraging autoencoder. No-
tably, a byproduct of our framework is the automated conservation law discovery
for dynamical systems with single conservation property.

1 INTRODUCTION

With the quick growth of computational resources and massive prediction power of neural networks,
recent times have seen great success of artificial intelligence in a wide range of applications such
as image classification (He et al., 2016), natural language processing (Vaswani et al., 2017; Devlin
et al., 2018) and reinforcement learning (Mnih et al., 2013). Despite the scalability and diversity of
modern machine learning tasks, extracting the underlying latent mechanism from training data and
deploying the knowledge toward the new occurrence have always been the heart of artificial intelli-
gence. The idea to work with a compressed representation or prior information has been historically
entangled with the development of machine learning, from earlier tools like clustering and principal
component analysis (PCA) to more contemporary autoencoders or embeddings. In recent years,
there is a surge in interest to discover knowledge from larger or even different domains leveraging
techniques like representation learning (Bengio et al., 2013; Chen & He, 2021) and transfer learn-
ing (Weiss et al., 2016) to more general meta-learning (Rusu et al., 2018; Santoro et al., 2016) and
foundation models (Bommasani et al., 2021) which are capable of handling a wide range of tasks.

Many critical discoveries in the world of physics were driven by distilling the invariants from ob-
servations. For instance, the Kepler laws were found by analyzing and fitting parameters for the
astronomical observations, and the mass conservation law was first carried out by a series of exper-
iments. However, such discovery usually requires extensive human insights and customized strate-
gies for specific problems. This naturally raises a question, can we learn certain conservation laws
from real-world data in an automated fashion? On the other hand, data-driven dynamical modeling
is prone to violation of physics laws or instability issues (Greydanus et al., 2019; Kolter & Manek,
2019), since the model only statistically learns the data or system state function without knowing
physics prior.

In this paper, we provide a novel contrastive perspective to find one or more distinguishing features
(i.e. conservation values) of physics-based system trajectories. By comparing the latent space dis-
tance of the system state observations, we aim to learn a low-dimensional representation potentially
serving as the invariant term for the system. With such inspiration, we propose ConCerNet con-
sisting of two neural networks. The first network contrastively learns the trajectory invariants, the
second network captures the nominal system dynamical behavior which will be corrected by the first
network to preserve certain properties of the simulation in the long term prediction. The correction
is implemented by projecting the dynamical neural network output on the learned conservation man-
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Figure 1: Pipeline to learn the dynamical system conservation and enforce it in simulation. A con-
trastive learning framework is proposed to extract the invariants across trajectory observations, then
the dynamical model is projected to the invariant manifold to guarantee the conservation property.

ifold learned by the first module, and therefore enforcing the trajectory conservation for the learned
invariants.

We summarize our main contributions as follows:

• We provide a novel contrastive learning perspective of dynamical system trajectory data
to capture the invariants of dynamical systems. One byproduct of this method is that the
learned invariant functions discover physical conservation laws in certain cases. To the best
of the authors’ knowledge, this is the first work that studies the discovery of conservation
laws for general dynamical systems through contrastive learning.

• We propose a projection layer to impose any invariant function for dynamical system tra-
jectory prediction, guaranteeing the conservation property during simulation.

• Based on the above two components, we establish a generic learning framework for dy-
namical system modeling named ConCerNet (CONtrastive ConsERved Network) which
provides robustness in prediction outcomes and flexibility to be applied to a wide range of
dynamical systems that mandate conservation properties. We conducted extensive experi-
ments to demonstrate the efficacy of ConCerNet, especially its remarkable improvement
over a generic neural network in prediction error and conservation violation metrics.

• We draw inferences on the relationship between the contrastively learned function, the ex-
act conservation law, and the logistics of contrastive invariant learning. Further, potential
improvements to the proposed method are illustrated that can improve the automated sci-
entific discovery process.

2 BACKGROUND AND RELATED WORK

2.1 CONTRASTIVE LEARNING

Unlike discriminative models that explicitly learn the data mappings, contrastive learning aims to
extract the data representation implicitly by comparing among examples. The early idea dates back
to the 1990s (Bromley et al., 1993) and has been widely adopted in many areas. One related field to
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our work is metric learning (Chopra et al., 2005; Harwood et al., 2017; Sohn, 2016), where the goal
is to learn a distance function or latent space to cluster similar examples and separate the dis-similar
ones.

Contrastive learning has been a popular choice for self-supervised learning (SSL) tasks recently, as
it demonstrated its performance in many applications such as computer vision (Chen et al., 2020a;
He et al., 2020; Ho & Nvasconcelos, 2020; Tian et al., 2020) and natural language processing (Wu
et al., 2020b; Gao et al.). There are many existing works related to contrastive learning, covering the
design of contrastive loss (Oord et al., 2018a; Chen et al., 2020a;b), memory bank (Wu et al., 2018),
sample bias (Chuang et al., 2020; Arora et al., 2019) and momentum encoder (Chen et al., 2020c;
He et al., 2020).

2.2 DEEP LEARNING BASED DYNAMICAL SYSTEM MODELING

Constructing dynamical system models from observed data is a long-standing research problem with
numerous applications such as forecasting, inference and control. System identification (SYSID)
(Ljung, 1998; Keesman & Keesman, 2011) was introduced a few decades ago and designed to fit
the system input-output behavior with choice of lightweight basis functions. In recent years, neu-
ral networks became increasingly popular in dynamical system modeling due to its representation
power. In this paper, we consider the following neural network based learning task to model an
(autonomous and continuous time) dynamical system:

fθ(x) ∼ ẋ ≡ dx(t)

dt
(1)

where x ∈ Rn is the system state and ẋ is its time derivative. fθ : Rn → Rn denotes the neural
network model f with parameter θ to approximate ground truth dynamics.

The vanilla neural networks learn the physics through data by minimizing the step prediction error,
without a purposely designed feature to honor other metrics such as conservation laws. One path to
address this issue is to include an additional loss in the training (Singh et al., 2021; Wu et al., 2020a;
Richards et al., 2018; Wang et al., 2020); however, the soft Lagrangian treatment does not guarantee
the model performance during testing. Imposing hard constraints upon the neural network structures
is a more desirable approach, where the built-in design naturally respect certain property regardless
of input data. Existing work includes: Kolter & Manek (2019) learns the dynamical system and
a Lyapunov function to ensure the exponential stability of predicted system; Hamiltonian neural
network (HNN, Greydanus et al. (2019)) targets at the Hamiltonian mechanics, directly learns the
Hamiltonian and uses the symplectic vector field to approximate the dynamics; Lagrangian neural
network (LNN, Cranmer et al. (2020)) extends the work of HNN to Lagrangian mechanics. Although
the above models are able to capture certain conservation laws under specific problem formulations,
they are not applicable to general conserved dynamical systems (e.g. mass conservation). This
motivates our work in this paper to propose a contrastive learning framework in a more generic form
that is compatible with arbitrary conservation.

2.3 LEARNING WITH CONSERVED PROPERTIES

Automated scientific discovery from data without prior knowledge has attracted great interest to
both communities in physics and machine learning. Besides the above-mentioned HNN and LNN,
a few recent works (Zhang et al., 2018; Liu & Tegmark, 2021; Ha & Jeong, 2021; Liu et al., 2022)
have explored automated approaches to extract the invariants or conservation laws from data. De-
spite the promising results, the existing methods usually suffer from limitations including poor data
sample efficiency and reliance on artificial pre-processing, and hereby difficult to extend to larger
and more general systems. Note that the aim of our proposed framework is to provide a genuinely
adaptable and highly automated tool for trustworthy data-driven dynamical systems modeling, rather
than simply solving the above limitations. The other line of physics invariant learning focuses on
discovering the hidden symmetries in physical systems (Liu & Tegmark, 2022; Mototake, 2021). To
the best of our knowledge, this is the first time conservation law discovery for general dynamical
systems is studied through the lens of contrastive learning.
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3 PROPOSED METHODS

3.1 CONTRASTIVE LEARNING FOR CONSERVATION PROPERTY FROM SYSTEM
TRAJECTORIES

In the practice of dynamical system learning, the dynamics data is usually observed as a set of
trajectories of system state {xi

t ∈ Rn}N,T
i=1,t=1, where i denotes the trajectory index of total trajectory

number N and t is the time step with total time step number T . Hθc : Rn → Rm is the neural
network parameterization to map the original state to latent representation with dimension m. We
let the trajectory set {Ci}Ni=1 be the simulation history starting from initial conditions drawn from a
distribution D, and assume the initial conditions have various conservation values. Inspired by the
concept of Neighborhood Component Analysis (NCA, Goldberger et al. (2004)) and Neighborhood
analysis Contrastive loss (NaCl, Ko et al. (2022)), we analogize each trajectory as a neighbor class
where the individual points are drawn from and try to solve a N class classification problem by
comparing the latent representation of every pair of points. Since the invariants are well conserved
along the trajectory and differ among different trajectories, we aim to find the conservation laws
which naturally serve as the latent representation of each class. We consider the nearest neighbor
selection as a random event, where the probability of point xi

t belonging to the trajectory Ck is
defined as p(Ck|xi

t) in the following design:

p(Ck|xi
t) :=

∑T
t2=1 exp(−∥Hθc(x

i
t)−Hθc(x

i
t2)∥

2)1(t2 ̸= t)∑N
j=1

∑T
t2=1 exp(−∥Hθc(x

i
t)−Hθc(x

j
t2)∥2)1(i ̸= j or t ̸= t2)

(2)

By traversing all pairs of points, we formulate the contrastive loss function:

Lcon = E x∼C,C∼D,
x+∈C\x,

x−∈C−,C−∼D\C

− log

∑
k exp(−∥Hθc(x)−Hθc(x

+
k )∥2)∑

k exp(−∥Hθc(x)−Hθc(x
+
k )∥2)

+
∑

k exp(−∥Hθc(x)−Hθc(x
−
k )∥2)

 (3)

≈ 1

NT

N∑
i=1

T∑
t1=1

− log

∑T
t2=1 exp(−∥Hθc(x

i
t1)−Hθc(x

i
t2)∥

2)1(t1 ̸= t2)∑N
j=1

∑T
t2=1 exp(−∥Hθc(x

i
t1)−Hθc(x

j
t2)∥2)1(i ̸= j or t1 ̸= t2)

(4)

Similar to NCA, we choose squared Euclidean norm as the distance metric between point pairs1 and
the Softmax like function, ensuring the nice property of probabilistic distribution. To notice, in com-
mon contrastive learning setting like SimCLR (Chen et al., 2020a) or NCA, the classification target
group only contains one element. In our setup, we consider the classification problem as assigning
one point to a group of points in the same class, therefore we have the additional summation loop
on both denominator and numerator. This setup is similar to the NaCl loss in Ko et al. (2022) with
many positive pairs.

3.2 ENFORCING CONSERVATION LAWS IN DYNAMICAL SYSTEM PREDICTION

After the contrastive learning of the m conservation terms Hθc(x) ∈ Rm, we attempt to enforce the
predicted trajectory along the learned conservation manifold in the simulation stage, s.t. dHθc (x)

dt =
0. In the continuous dynamical system like Equation (1), we can project the nominal neural network
output fθd(x) onto the conservation manifold by eliminating its parallel component to the normal
direction of the invariant planes (i.e. ∇xHθc(x)). We define the projected dynamical model f̃θd(x)
as following:

1Positive pair denotes correlated views of the same example in contrastive learning literature (Chen et al.,
2020a), in this paper we define positive pair as two system states from the same trajectory therefore they are
assumed with same conservation property and considered in the same class.
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f̃θd(x) := Projection (fθd(x), {f : ⟨f,∇xHθc(x)⟩ = 0}) (5)

= fθd(x)−
m∑
i=1

⟨fθd(x), (∇xH
i
θc(x))

⊥⟩(∇xH
i
θc(x))

⊥ (6)

where {(∇xH
i
θc
(x))⊥} denotes the orthonormalized set of vectors from {∇xHθc(x)} by

Gram–Schmidt process. The summation symbol indicates projections to each of the conservation
terms and vanishes if only 1 conservation term is learned (i.e. m = 1). The projected model dy-
namics naturally satisfies ⟨f̃θd(x),∇xHθc(x)⟩ = 0 and therefore guarantees Hθc(x) being constant
along the simulated trajectory. The intuitive diagram of projection is shown in Figure 1.

For dynamical system learning, the loss function is simply the mean square loss between the neural
network prediction and the observed system time derivative.

Ldyn = Ex∼C∼D

[
∥f̃θd(x)− ẋ∥2

]
(7)

4 EXPERIMENTS

To demonstrate the power of our method, we first illustrate the procedure through two simple conser-
vation examples, then we show technical details to overcome a more complex problem. In the end,
we highlight the method is extendable to high-dimensional problems by leveraging an autoencoder.
All the system and experiment details are listed in Appendix A.

Figure 2: Learned conservation function vs ground truth, left: ideal spring mass, right: chemical
kinetics

4.1 SIMPLE CONSERVATION EXAMPLES

In this section, we introduce two simple examples: Ideal spring mass system under energy conser-
vation (x[1]2 + x[2]2) and Chemical reaction under mass conservation (x[1] + x[2]). Both systems
have 2D state space for easier visualization of the learned conservation function. Figure 2 shows
the learned conservation compared with ground truth. The contrastive learning process captures
the quadratic and linear functions, as the contour lines are drawn in circles and affine functions.
To notice, the learned conservation here is approximately the exact conservation differing by some
constant coefficient, as the conservation is a relative quantify instead of an absolute value. For
further relationship between contrastively learning invariants and actual conservation, we delay the
discussion to Section 5.1. In Figure 3, we compare the two methods by showing the trajectory, con-
servation and coordinate error to the ground truth. The vanilla neural network is likely to quickly
diverge from the conserved trajectory, and the error grows faster than our proposed method.
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Figure 3: Simulation comparisons of two simple examples: upper row: ideal spring mass system,
lower row: chemical kinematics. 1st column: state trajectories, 2nd column: violation of conserva-
tion laws to ground truth, 3rd column: mean square error to ground truth.

Figure 4: Kepler system results: First rows (contrastive learning) learned invariants for 6 sampled
trajectories. Last row (dynamics simulation): state trajectories, violation of conservation laws to
ground truth, mean square error to ground truth.

4.2 COMPLEX CONSERVATION FUNCTIONS

In this section, we tackle a more complex system with more than one conservation laws with com-
plicated representations. The Kepler system describes a planet orbiting around a star with ellip-
tical trajectories. The planet has four dimensional states, including both coordinates in the 2D
plane and the corresponding velocity. The system has two conservation terms (energy conservation
x[3]2+x[4]2

2 − 1√
x[1]2+x[2]2

and angular momentum conservation x[1]x[4]− x[2]x[3]).

The major challenge for Kepler system conservation learning is data requirement and the repre-
sentation power of the simple neural network to capture the complex energy conservation function
including the square root on the denominator. Besides, if we use the standard contrastive loss from
Equation (3), we found it is possible that the learned conservation might converge to a trivial solution
as the loss function might encourage more of “similarity” within trajectories than “discrepancy” be-
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tween trajectories. To address this issue, we propose to use batch normalized latent function during
training by replacing Hθc(x) with Hθc(x) with

Hθc(xj) =
Hθc(x)− µbatch

σbatch
(8)

where µbatch = 1
n

∑n
i Hθc(xi) and σbatch =

√
1
n

∑n
i (Hθc(xi)− µbatch)2 are the element-wise

mean and standard deviation of the mini-batch.

From Figure 4, we use different dimensions (dim= 2 and 1) for the latent space and plot the learned
conservation along 6 trajectories. We found that for both dimensions, the learned conservations are
distinguishable but struggling to follow the flat line, where the periodic pattern from the orbit loops
challenges the prediction power of the neural network to find the correct law. In terms of the rela-
tionship between learned and actual conservation, it is difficult to draw any conclusions other than
the ordering of the trajectories. Despite not learning the exact conservation law, in the simulation
stage, our method still outperforms the vanilla neural network by a large margin in both metrics with
the learned invariant. Interestingly, the conservation laws are better enforced with dim(Hθc(x)) = 2
comparing to dim(Hθc(x)) = 1, indicating the system naturally follows 2 conservation laws.

4.3 LARGER SYSTEM: HEAT EQUATION

To further extend our model to larger systems, we test our method on solving the Heat Equation
on a 1D rod. The 1D rod is given some initial temperature distribution and insulated boundary
condition on both ends. The temperature U(y, t), as a function of coordinate and time, gradually
evens up following the heat equation ∂U

∂t = ∂2U
∂y2 . The total internal energy along the rod does not

vary because the heat flow is blocked by the boundary. We use system state x consisting of overall
101 nodes to discretize y ∈ [−5, 5] and compress system states to a 9 dimension latent space with
an autoencoder pair (EθE , DθD ). For both contrastive conservation learning and dynamical system
learning, original space state and time derivative (x, ẋ) are mapped to the autoencoder latent space
(z, ż) by

z = EθE (x) (9)

ż =
∂EθE (x)

∂x
× ẋ (10)

where × denotes the matrix multiplication by chain rule, the partial derivative from latent space to
original space can be calculated by auto-differentiation package. After simulation, the latent space
trajectory will be mapped back to the original space by DθD .

Figure 5: Heat Equation Simulation. Left column: vanilla neural network coordinate error and
conservation violation to ground truth. Mid-column: our method. Right column: initial and final
temperature distribution

Figure 5 shows the simulation result and conservation metric comparison between vanilla neural
network and our method. For both methods, the initial conservation violation error was introduced
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by autoencoder. In general, our method conforms to ground truth trajectory and conservation laws
much better than the vanilla method.

We generalize the quantitative results for all the experiments above in Table 1. Each of the experi-
ments is performed over three random seeds. During testing, we integrate the trajectory with Runge-
Kutta method and compare the trajectory state coordinate and conservation error to the ground truth.
Our method outperforms the baseline neural network by a large margin, and the error is often multi-
ple times smaller. One may notice that the standard deviation is comparable with the error metric in
the experiments, this is due to the instability of the dynamical system. The trajectory tracking error
will exponentially grow as a function of time, and the cases with outlier initialization are likely to
dominate the averaged results and lead to large variance. We append the same results in log scale in
Appendix A to help clarification. In practice, our method is capable to control the tracking deviation
better than the baseline method across almost all the cases.

Table 1: Simulation error over the tasks
Task Mean square error Violation of conservation laws

Baseline NN ConCerNet Baseline NN ConCerNet
Ideal spring mass system 0.209 ± 0.172 0.076 ± 0.063 0.096 ± 0.080 0.002 ± 0.002

Chemical kinematics 0.064 ± 0.006 0.031 ± 0.033 0.025 ± 0.012 0.003 ± 0.001
Kepler system 0.854 ± 0.103 0.328 ± 0.026 0.060 ± 0.011 0.009 ± 0.012
Heat equation 0.133 ± 0.054 0.098 ± 0.073 0.686 ± 0.546 0.178 ± 0.045

5 DISCUSSIONS

5.1 LEARNED INVARIANTS VS EXACT CONSERVATION LAWS

To notice, the learned invariants are different from exact physics conservation laws. From Figure 2,
we can tell the learned quantity is approximately a linear function of the conserved quantity. We will
give a glimpse of the intuition of why linear function reaches the minimal loss with one-dimensional
conservation assumption in Section 5.2. In fact, the linear coefficient is not always positive, therefore
the sign of the conservation function is not guaranteed. This is the natural result for a perfectly
conserved system, lacking of time evolution information for conservation quantities. In real world
cases, many systems are dissipative, with directional time derivative on nominal conservation. We
design a ranking loss function to utilize the directional information and encourage the correct sign
of the learn invariants, the result is delayed to Appendix B.

Despite the similarity between learned invariants and conservation laws for the above cases, for a
general system with more than one conservation terms, the learned invariant can be a non-linear
function of the conservation terms. Therefore, it might not preserve the linear relationship. In this
paper, we focus on improving the conservation performance for dynamical modeling and leave the
task to find the multiple conservation laws to future work. Regardless of the mapping between the
learned function and the exact conservation function, the simulation is guaranteed to preserve the
conservation property if the mapping is bijection.

5.2 CONTRASTIVELY LEARNED LATENT SPACE FOR CONTINUOUS LABELS

As the original contrastive learning framework is designed for discrete labels, we would like to in-
vestigate how the learned latent space looks like when a continuous conservation function implicitly
labels the observations. Let a system with state x has distribution D on a compact set X ⊂ Rn,
there exists a continuous scalar function g : Rn → R denoting the unknown conservation function
mapping X to another compact set Z = {z|z = g(x), x ∈ X}. Consider Z as a continuous label
space, where close examples in the Z space are considered noisy observations to each other and
belong to the same class. Formally, (x, x′) ∈ {positive pairs},∀|g(x′) − g(x)| ≤ ϵ. Then we can
write the “continuous” version of the contrastive loss function Equation (3).

Lcontinuous = −
∫
X

pD(x)log(

∫
{x′||g(x′)−g(x)|≤ϵ} pD(x′)exp(−(hθ(x)− hθ(x

′))2)dx′∫
X pD(x′′)exp(−(hθ(x)− hθ(x′′))2)dx′′ )dx (11)
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where hθ() is the parameterized conservation function and pD() is the probability over the distribu-
tion D. The numerator traverses the similarity on the neighborhood x′ assumed in the same class of
x, the denominator calculates the same integral over the entire space. As we attempt to analytically
solve the optimization problem for Equation (11) but only come up with a trivial maximum solution,
we conduct numerical experiments and make the following conjecture:

Conjecture 1. Let D be a uniform distribution, optimize Lcontinuous over a bounded set of θ, then
hθ(x) is an affine function of g(x) (e.g. hθ(x) = c1g(x) + c2 ) when Lcontinuous achieves a minimum
point.

We illustrate the conjecture through the following numerical example. We consider a 1D uniform
distribution of x over the set X = [−1, 1] and g(x) = x for simplicity. We parameterize hθ(x) with
a quadratic function and show the numerical results of Lcontinuous in Figure 6. The trivial maximum
point is when hθ(x) being constant (blue). The minimum point reaches when hθ(x) is a linear
function with the largest absolute coefficient (green). Interestingly, the red solution performs worse
than green with the same starting and ending points, indicating a deviation from the linear transform
will increase Lcontinuous. For more generality, we provide another numerical experiments with g(x) =
x2 without bijection relationship between X and Z in Appendix C, the result is consistent with our
conjecture.

Figure 6: Right: hθ(x) = ax2 + bx+ c on different parameterization. Left: Contrastive loss on 1D
continuous label space as function of (a, b) ∈ [−10, 10]2, ϵ = 0.05.

5.3 CONTRASTIVE LEARNING TRAINING LOGISTICS

During the training of trajectory invariants with contrastive learning, we observe certain interesting
phenomenon and would like to involve the discussion here for readers’ reference. We use the linear
regression error to the exact conservation function as metric and delay the experiment results under
different hyper-parameters to Appendix D. We found the fitting error decays with O(N−1/2), where
N is the training trajectory number. This echoes with the supervised deep learning generalization
bound in literature (Yehudai & Shamir, 2019; Cao & Gu, 2019; 2020). In practical contrastive
training, we also use small sizes (10-50) as large sizes slightly compromise the performance. Our
intuitive explanation is that a large batch is likely to involve similar but less distinguishable trajec-
tories.

6 CONCLUSION

In this paper, we propose ConCerNet, a generic framework to learn the dynamical system with de-
signed features to preserve the invariant properties along the simulation trajectory. We firstly learn
the conservation manifold in the state space with contrastive view over the trajectory observation,
then purposely enforce the dynamical system to stay in the desired subspace by appending a projec-
tion layer after the nominal neural network. We show the advantage of our proposed method in both
simulation error and conservation metrics and extendibility to be incorporated into larger models.
Despite the paper presents an end-to-end approach, both contrastive learning on system invariants
and projected dynamical system learning can be seen as an independent procedure and open up a
different direction. We believe these ideas represent a promising route in automated system property
discovery and practical dynamical system modeling.
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