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Abstract

Diffusion models have emerged as effective distribution estimators in vision, lan-
guage, and reinforcement learning, but their use as priors in downstream tasks poses
an intractable posterior inference problem. This paper studies amortized sampling
of the posterior over data, x ∼ 𝑝post (x) ∝ 𝑝(x)𝑟 (x), in a model that consists of
a diffusion generative model prior 𝑝(x) and a black-box constraint or likelihood
function 𝑟 (x). We state and prove the asymptotic correctness of a data-free learning
objective, relative trajectory balance, for training a diffusion model that samples
from this posterior, a problem that existing methods solve only approximately or
in restricted cases. Relative trajectory balance arises from the generative flow net-
work perspective on diffusion models, which allows the use of deep reinforcement
learning techniques to improve mode coverage. We illustrate the broad potential of
unbiased inference of arbitrary posteriors under diffusion priors across a collection
of experiments: in vision (classifier guidance), language (infilling under a discrete
diffusion LLM), and multimodal data (text-to-image generation). Beyond gener-
ative modeling, we apply relative trajectory balance to the problem of continuous
control with a score-based behavior prior, achieving state-of-the-art results on
benchmarks in offline reinforcement learning. Code is available at this link.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/GFNOrg/diffusion-finetuning


Table 1: Sources of diffusion priors and constraints.
Domain Prior 𝑝(x) Constraint 𝑟 (x) Posterior

Conditional image generation (§3.1) Image diffusion model 𝑝(x) Classifier likelihood 𝑝(𝑐 | x) Class-conditional distribution 𝑝(x | 𝑐)
Text-to-image generation (§3.2) Text-to-image foundation model RLHF reward model Aligned text-to-image model
Language infilling (§3.3) Discrete diffusion model Autoregressive completion likelihood Infilling distribution
Offline RL policy extraction (§3.4) Diffusion model as behavior policy Boltzmann dist. of 𝑄-function Optimal KL-constrained policy

1 Introduction

Diffusion models [67, 26, 71] are a powerful class of hierarchical generative models, used to
model complex distributions over images [50, 11, 62], text [4, 12, 39, 23, 22, 42], and actions in
reinforcement learning [29, 82, 31] to name a few. In each of these domains, downstream problems
require sampling product distributions, where a pretrained diffusion model serves as a prior 𝑝(x)
that is multiplied by an auxiliary constraint 𝑟 (x). For example, if 𝑝(x) is a prior over images
defined by a diffusion model, and 𝑟 (x) = 𝑝(𝑐 | x) is the likelihood that an image x belongs to
class 𝑐, then class-conditional image generation requires sampling from the Bayesian posterior
𝑝(x | 𝑐) ∝ 𝑝(x)𝑝(𝑐 | x). In offline reinforcement learning, if 𝜇(𝑎 | 𝑠) is a conditional diffusion
model over actions serving as a behavior policy, KL-constrained policy improvement [54, 43]
requires sampling from the normalized product of 𝜇(𝑎 | 𝑠) with a Boltzmann distribution defined
by a 𝑄-function, 𝜋∗ (𝑎 | 𝑠) ∝ 𝜇(𝑎 | 𝑠) exp(𝛽𝑄(𝑠, 𝑎)). In language modeling, various conditional
generation problems [42, 22, 28] amount to posterior sampling under a discrete diffusion model
prior. Table 1 summarizes four such problems that the proposed method improves upon prior work.

The hierarchical nature of the generative process in diffusion models, which generate samples from
𝑝(x) by a deep chain of stochastic transformations, makes exact sampling from posteriors 𝑝(x)𝑟 (x)
under a black-box function 𝑟 (x) intractable. Common solutions to this problem involve inference
techniques based on linear approximations [72, 32, 30, 10] or stochastic optimization [21, 47]. Others
estimate the ‘guidance’ term – the difference in drift functions between the diffusion models sampling
the prior and posterior – by training a classifier on noised data [11], but when such data is not available,
one must resort to approximations or Monte Carlo estimates [69, 13, 9], which are challenging to scale
to high-dimensional problems. Reinforcement learning methods that have recently been proposed for
this problem [7, 15] are biased and prone to mode collapse (Fig. 1).

Contributions. Inspired by recent techniques in training diffusion models to sample distributions
defined by unnormalized densities [88, 61, 77, 64], we propose an asymptotically unbiased training ob-
jective, called relative trajectory balance (RTB), for training diffusion models that sample from poste-
rior distributions under a diffusion model prior (§2.2). RTB is derived from the perspective of diffusion
models as continuous generative flow networks [37]. This perspective also allows us to freely leverage
off-policy training, when data with high density under the posterior is available (§2.3). RTB can be
applied to iterative generative processes beyond standard diffusion models: our methods generalize
to discrete diffusion models and extend existing methods for autoregressive language models (§2.4).

Our experiments demonstrate the versatility of our approach in a variety of domains:

• In vision, we show that RTB achieves competitive classifier-guided image generation for uncondi-
tional diffusion vision priors (§3.1) and can be used to improve caption-conditioned generation
under text-to-image foundation model priors (§3.2).

• In language modeling, we report strong results for infilling tasks with discrete diffusion language
models (§3.3).

• Finally, we show that RTB achieves state-of-the-art results on continuous control benchmarks that
leverage score-based behavior priors (§3.4).

2 Learning posterior samplers with diffusion priors

We consider the problem of posterior inference under a prior given by a hierarchical generative model.
In this section, we present the mathematical setting (§2.1), our proposed RTB objective (§2.2), and
training methods for RTB (§2.3). We will first discuss the case of a diffusion prior over R𝑑 , and later
discuss how the methods generalize to arbitrary hierarchical priors (§2.4).
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(a) Prior (b) Posterior (c) RTB (ours) (d) RL (KL reg.) (e) RL (no reg.) (f) CG

Figure 1: Sampling densities learned by various posterior inference methods. The prior is a diffusion
model sampling a mixture of 25 Gaussians (a) and the posterior is the product of the prior with a
constraint that masks all but 9 of the modes (b). Our method (RTB) samples close to the true posterior
(c). RL methods with tuned KL regularization yield inaccurate inference (d), while without KL
regularization, they mode-collapse (e). A classifier guidance (CG) approximation (f) results in biased
outcomes. For details, see §C.

2.1 Background and setting: Diffusion models as hierarchical generative models

A denoising diffusion model generates data x1 by a Markovian generative process:

(noise) x0 → xΔ𝑡 → x2Δ𝑡 → . . .→ x1 = x (data), (1)

where Δ𝑡 = 1
𝑇

and 𝑇 is the number of discretization steps.1 The initial distribution 𝑝(x0) is fixed
(typically to N(0, I)) and the transition from x𝑡−1 to x𝑡 is modeled as a Gaussian perturbation with
time-dependent variance:

𝑝(x𝑡+Δ𝑡 | x𝑡 ) = N(x𝑡+Δ𝑡 | x𝑡 + 𝑢𝑡 (x𝑡 )Δ𝑡, 𝜎2
𝑡 Δ𝑡I). (2)

The scaling of the mean and variance by Δ𝑡 is insubstantial for fixed 𝑇 , but ensures that the diffusion
process is well-defined in the limit 𝑇 →∞ assuming regularity conditions on 𝑢𝑡 [52, 63]. The process
given by (1, 2) is then identical to Euler-Maruyama integration of the stochastic differential equation
(SDE) 𝑑x𝑡 = 𝑢𝑡 (x𝑡 ) 𝑑𝑡 + 𝜎𝑡 𝑑w𝑡 .

The likelihood of a denoising trajectory x0 → xΔ𝑡 → · · · → x1 factors as

𝑝(x0, xΔ𝑡 , . . . , x1) = 𝑝(x0)
𝑇∏
𝑖=1

𝑝(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ) (3)

and defines a marginal density over the data space:

𝑝(x1) =
∫

𝑝(x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡 . (4)

A reverse-time process, x1 → x1−Δ𝑡 → · · · → x0, with densities 𝑞, can be defined analogously, and
similarly defines a conditional density over trajectories:

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) =
𝑇∏
𝑖=1

𝑞(x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ). (5)

In the training of diffusion models, as discussed below, the process 𝑞 is typically fixed to a simple
distribution (usually a discretized Ornstein-Uhlenbeck process), and the result of training is that 𝑝
and 𝑞 are close as distributions over trajectories.

Diffusion model training as divergence minimization. Diffusion models parametrize the drift
𝑢𝑡 (x𝑡 ) in (Equation 2) as a neural network 𝑢(x𝑡 , 𝑡; 𝜃) with parameters 𝜃 and taking x𝑡 and 𝑡 as input.
We denote the distributions over trajectories induced by (Equation 3, Equation 4) by 𝑝𝜃 to show their
dependence on the parameter.

In the most common setting, diffusion models are trained to maximize the likelihood of a dataset. In
the notation above, this corresponds to assuming 𝑞(x1) is fixed to an empirical measure (with the

1The time indexing suggestive of an SDE discretization is used for consistency with the diffusion samplers
literature [88, 64]. The indexing x𝑇 → x𝑇−1 → · · · → x0 is often used for diffusion models trained from data.
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points of a training dataset D assumed to be i.i.d. samples from 𝑞(x1)). Training minimizes with
respect to 𝜃 the divergence between the processes 𝑞 and 𝑝𝜃 :

𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)) (6)
= 𝐷KL (𝑞(x1) ∥ 𝑝𝜃 (x1)) + Ex1∼𝑞 (x1 )𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1))
≥ 𝐷KL (𝑞(x1) ∥ 𝑝𝜃 (x1)) = Ex1∼𝑞 (x1 ) [− log 𝑝𝜃 (x1)] + const.

where the inequality – an instance of the data processing inequality for the KL divergence – shows
that minimizing the divergence between distributions over trajectories is equivalent to maximizing a
lower bound on the data log-likelihood under the model 𝑝𝜃 .

As shown in [70], minimization of the KL in (Equation 6) is essentially equivalent to the traditional
approach to training diffusion models via denoising score matching [79, 67, 26]. Such training
exploits that for typical choices of the noising process 𝑞, the optimal 𝑢𝑡 (x𝑡 ) can be expressed in terms
of the Stein score of 𝑞(x1) convolved with a Gaussian, allowing an efficient stochastic regression
objective for 𝑢𝑡 . For full generality of our exposition for arbitrary iterative generative processes, we
prefer to think of (Equation 6) as the primal objective and denoising score matching as an efficient
means of minimizing it.

Trajectory balance and distribution-matching training. From (Equation 6) we also see that
the bound is tight if the conditionals of 𝑝𝜃 and 𝑞 on x1 coincide, i.e., 𝑞 is equal to the posterior
distribution of 𝑝 conditioned on x1. Indeed, the model 𝑝𝜃 minimizes (Equation 6) for a distribution
with continuous density 𝑞(x1) if and only if, for all denoising trajectories,

𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) = 𝑞(x1)𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1). (7)

This was named the trajectory balance (TB) constraint by [37] – by analogy with a constraint for
discrete-space iterative sampling [45] – and is a time-discretized version of a constraint used for
enforcing equality of continuous-time path space measures in [51].

In [60, 37], the constraint (7) was used for the training of diffusion models in a data-free setting,
where instead of i.i.d. samples from 𝑞(x1) one has access to a (possibly unnormalized) density
𝑞(x1) = 𝑒−E(x1 )/𝑍 from which one wishes to sample. These objectives minimize the squared
log-ratio between the two sides of (7), which allows the trajectories x0 → xΔ𝑡 → · · · → x1 used
for training to be sampled from any training distribution, such as ‘exploratory’ modifications of
𝑝𝜃 or trajectories found by local search (MCMC) in the target space. The flexibility of off-policy
exploration that this allows was studied by [64]. Such objectives contrast with on-policy, simulation-
based approaches that require differentiating through the sampling process [e.g., 88, 77, 6, 78].

2.2 Intractable inference under diffusion priors

Consider a diffusion model 𝑝𝜃 , defining a marginal density 𝑝𝜃 (x1), and a positive constraint function
𝑟 : R𝑑 → R>0. We are interested in training a diffusion model 𝑝post

𝜙
, with drift function 𝑢post

𝜙
, that

would sample the product distribution 𝑝post (x1) ∝ 𝑝𝜃 (x1)𝑟 (x1). If 𝑟 (x1) = 𝑝(y | x1) is a conditional
distribution over another variable y, then 𝑝post is the Bayesian posterior 𝑝𝜃 (x1 | y).
Because samples from 𝑝post (x1) are not assumed to be available, one cannot directly train 𝑝 using
the objective (6). Nor can one directly apply objectives for distribution-matching training, such as
those that enforce (7), since the marginal 𝑝𝜃 (x1) is not available. However, we make the following
observation (proof in §A).

Proposition 1 (Relative TB constraint). If 𝑝𝜃 , 𝑝post
𝜙

, and the scalar 𝑍𝜙 jointly satisfy the relative
trajectory balance (RTB) constraint

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1) = 𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) (8)

for every denoising trajectory x0 → xΔ𝑡 → · · · → x1, then 𝑝post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1), i.e., the diffusion

model 𝑝post
𝜙

samples the posterior distribution. Furthermore, if 𝑝𝜃 also satisfies the TB constraint

(7) with respect to the noising process 𝑞 and some target density 𝑞(x1), then 𝑝post
𝜙

satisfies the TB
constraint with respect to the target density 𝑞post (x1) ∝ 𝑞(x1)𝑟 (x1), and 𝑍 =

∫
𝑞(x1)𝑟 (x1) 𝑑x1.

Note that the two joints appearing in (8) are defined as products over transitions, via (3).
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Relative trajectory balance as a loss. Analogously to the conversion of the TB constraint (7) into
a trajectory-dependent training objective in [45, 37], we define the relative trajectory balance loss as
the discrepancy between the two sides of (8), seen as a function of the vector 𝜙 that parametrizes the
posterior diffusion model and the scalar 𝑍𝜙 (parametrized via log 𝑍𝜙 for numerical stability):

LRTB (x0 → xΔ𝑡 → · · · → x1; 𝜙) :=

(
log

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1)

𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)

)2

. (9)

Optimizing this objective to 0 for all trajectories ensures that (8) is satisfied. While the RTB constraint
(8) has a similar form to TB (7), RTB involves the ratio of two denoising processes, while TB involves
the ratio of a forward and a backward process. However, the name ‘relative TB’ is justified by
interpreting the densities in a TB constraint relative to a measure defined by the prior model; see §2.4.

If we assume 𝑝𝜃 (x0) = 𝑝post
𝜙
(x0) are fixed (e.g., to a standard normal), then (9) reduces to(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
𝑝

post
𝜙
(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

)2

. (10)

Notably, the gradient of this objective with respect to 𝜙 does not require differentiation (backpropaga-
tion) into the sampling process that produced a trajectory x0 → · · · → x1. This offers two advantages
over on-policy simulation-based methods: (1) the ability to optimize LRTB as an off-policy objective,
i.e., sampling trajectories for training from a distribution different from 𝑝

post
𝜙

itself, as discussed
further in §2.3; (2) backpropagating only to a subset of the summands in (10), when computing and
storing gradients for all steps in the trajectory is prohibitive for large diffusion models (see §H.1).

Comparison with classifier guidance. It is interesting to contrast the RTB training objective
with the technique of classifier guidance [11] used for some problems of the same form. If
𝑟 (x1) = 𝑝(y | x1) is a conditional likelihood, classifier guidance relies upon writing 𝑢𝑡 (x𝑡 ) −𝑢post

𝑡 (x𝑡 )
explicitly in terms of ∇x𝑡 log 𝑝(y | x𝑡 ), by combining the expression of the optimal drift 𝑢𝑡 in terms
of the score of the target distribution convolved with a Gaussian (cf. §2.1), with the ‘Bayes’ rule’ for
the Stein score: ∇x𝑡 log 𝑝(x𝑡 | y) = ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 log 𝑝(y | x𝑡 ).
Classifier guidance gives the exact solution for the posterior drift when a differentiable classifier on
noisy data, 𝑝(y | x𝑡 ) =

∫
𝑝(y | x1)𝑝(x1 | x𝑡 ) 𝑑x1, is available. Unfortunately, such a classifier is not,

in general, tractable to derive from the classifier on noiseless data, 𝑝(y | x1), and cannot be learned
without access to unbiased data samples. RTB is an asymptotically unbiased objective that recovers
the difference in drifts (and thus the gradient of the log-convolved likelihood) in a data-free manner.

2.3 Training, parametrization, and conditioning

Training and exploration. The choice of which trajectories we use to take gradient steps with
the RTB loss can have a large impact on sample efficiency. In on-policy training, we use the current
policy 𝑝post

𝜙
to generate trajectories 𝜏 = (x0 → . . . → x1), evaluate the reward log 𝑟 (x1) and the

likelihood of 𝜏 under 𝑝𝜃 , and a gradient updates on 𝜙 to minimize LRTB (𝜏; 𝜙).
However, on-policy training may be insufficient to discover the modes of the posterior distribution.
In this case, we can perform off-policy exploration to ensure mode coverage. For instance, given
samples x1 that have high density under the target distribution, we can sample noising trajectories
x1 ← x1−Δ𝑡 ← . . .← x0 starting from these samples and use such trajectories for training. Another
effective off-policy training technique uses replay buffers. We expect the flexibility of mixing on-
policy training with off-policy exploration to be a strength of RTB over on-policy RL methods, as
was shown for distribution-matching training of diffusion models in [64].

Conditional constraints and amortization. Above we derived and proved the correctness of the
RTB objective for an arbitrary positive constraint 𝑟 (x1). If the constraints depend on other variables
y – for example, 𝑟 (x1; y) = 𝑝(y | x1) – then the posterior drift 𝑢post

𝜙
can be conditioned on y and the

learned scalar log 𝑍𝜙 replaced by a model taking y as input. Such conditioning achieves amortized
inference and allows generalization to new y not seen in training. Similarly, all of the preceding
discussion easily generalizes to priors that are conditioned on some context variable.
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Efficient parametrization and Langevin inductive bias. Because the deep features learned by
the prior model 𝑢𝜃 are expected to be useful in expressing the posterior drift 𝑢post

𝜙
, we can choose to

initialize 𝑢post
𝜙

as a copy of 𝑢𝜃 and to fine-tune it, possibly in a parameter-efficient way (as described
in each section of §3). This choice is inspired by the method of amortizing inference in large language
models by fine-tuning a prior model to sample an intractable posterior [28].

Furthermore, if the constraint 𝑟 (x1) is differentiable, we can impose an inductive bias on the posterior
drift similar to the one introduced for diffusion samplers of unnormalized target densities in [88] and
shown to be useful for off-policy methods in [64]. namely, we write

𝑢
post
𝜙
(x𝑡 , 𝑡) = NN1 (x𝑡 , 𝑡; 𝜙) + NN2 (x𝑡 , 𝑡, 𝜙)∇x𝑡 log 𝑟 (x𝑡 ), (11)

where NN1 and NN2 are neural networks outputting a vector and a scalar, respectively. This
parametrization allows the constraint to provide a signal to guide the sampler at intermediate steps.

Stabilizing the loss. We propose two simple design choices for stabilizing RTB training. First,
the loss in (9) can be replaced by the empirical variance over a minibatch of the quantity inside
the square, which removes dependence on log 𝑍𝜙 and is especially useful in conditional settings,
consistent with the findings of [64]. This amounts to a relative variant of the VarGrad objective [60]
(see (23) in §G). Second, we employ loss clipping: to reduce sensitivity to an imperfectly fit prior
model, we do not perform updates on trajectories where the loss is close to 0 (see §E,§F).

2.4 Generative flow networks and extension to other hierarchical processes

RTB as TB under the prior measure. The theoretical foundations for continuous generative flow
networks [37] establish the correctness of enforcing constraints such as trajectory balance (7) for
training sequential samplers, such as diffusion models, to match unnormalized target densities. While
we have considered Gaussian transitions and identified transition kernels with their densities with
respect to the Lebesgue measure over R𝑑 , these foundations generalize to more general reference
measures. In §B, we show how the RTB constraint can be recovered as a special case of the TB
constraint for a certain choice of reference measure derived from the prior.

Extension to arbitrary sequential generation. While our discussion was focused on diffusion
models for continuous spaces, the RTB objective can be applied to any Markovian sequential
generative process, in particular, one that can be formulated as a generative flow network in the sense
of [5, 37]. This includes, in particular, generative models that generate objects by a sequence of
discrete steps, including autoregressive models and discrete diffusion models. In the case of discrete
diffusion, where the intermediate latent variables x𝑡 lie not in R𝑑 but in the space of sequences,
one simply replaces the Gaussian transition densities by transition probability masses in the RTB
constraint (8) and objective (9). In the case of autoregressive models, where only one sequence of
steps can generate any given object, the backward process 𝑞 becomes trivial, and the RTB constraint
for a model 𝑝post

𝜙
to sample a sequence x from a distribution with density 𝑟 (x)𝑝𝜃 (x) is simply

𝑍𝜙𝑝
post
𝜙
(x) = 𝑟 (x)𝑝𝜃 (x) for all sequences x. We note that a sub-trajectory generalization of this

objective was used in [28] to amortize intractable inference in autoregressive language models.

3 Experiments

In this section, we present empirical results to validate the efficacy of relative trajectory balance. Our
experiments are designed to demonstrate the wide applicability of RTB to sample from posteriors for
diffusion priors with arbitrary rewards on vision, language, and continuous control tasks.

3.1 Class-conditional posterior sampling from unconditional diffusion priors

We evaluate RTB in a classifier-guided visual task where we wish to learn a diffusion posterior
𝑝

post
𝜙
(x | 𝑐) ∝ 𝑝𝜃 (x)𝑝(𝑐 | x) given a pretrained diffusion prior 𝑝𝜃 (x) and a classifier 𝑟 (x) = 𝑝(𝑐 | x).

Setup. We consider two 10-class image datasets, MNIST and CIFAR-10, using off-the-shelf
unconditional diffusion priors from [26] and standard classifiers 𝑝(𝑐 | x) for both datasets. We
perform parameter-efficient fine-tuning of 𝑝post

𝜙
, initialized as a copy of the prior 𝑝𝜃 , using the

RTB objective (see §E.1 for details). The RTB objective is optimized on trajectories sampled
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Table 2: Classifier-guided posterior sampling with pretrained unconditional diffusion priors. We
report the mean±std of each metric computed across all relevant classes for each experiment set,
and highlight ±5% from highest/lower experimental value. The FID is computed between learned
posterior samples and the true samples from the class in question. DP and LGD-MC fail to
appropriately model the posterior distribution (high average log 𝑟 (x)) while DDPO mode-collapses.
RTB achieves comparable or superior performance to all other baselines, optimally balancing high
reward and diversity as measured by FID. See Table E.1 for conditional variants.
Dataset→ MNIST MNIST even/odd CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑) E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑) E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑)
DPS −2.1597±0.423 1.2913±0.410 0.1609±0.000 −1.2270±0.202 1.1498±0.182 0.1713±0.000 −3.6025±0.503 0.7371±0.216 0.2738±0.000

LGD−MC −2.1389±0.480 1.2873±0.412 0.1600±0.000 −1.1720±0.199 1.1445±0.184 0.1600±0.000 −3.0988±0.359 0.7402±0.214 0.2743±0.000

DDPO −1.5±4.7×10−3 1.5822±0.583 0.1350±0.005 −8.6±12.3×10−11 1.8024±0.423 0.1314±0.002 −2.7±8.5×10−4 1.7686±0.589 0.1575±0.015

DPOK −0.1379±0.225 1.2063±0.316 0.1442±0.004 −0.0783±0.082 1.2536±0.206 0.1631±0.007 −2.4414±3.266 0.5316±0.157 0.2415±0.024

RTB (ours) −0.1734±0.194 1.1823±0.288 0.1474±0.003 −0.1816±0.175 1.1794±0.171 0.1679±0.004 −2.1625±0.879 0.4717±0.138 0.2440±0.011

Figure 2: Samples from RTB fine-tuned diffusion posteriors.

on-policy from the current posterior model. We compare RTB with two RL-based fine-tuning
techniques derived from DPOK [15] and DDPO [7] and with two classifier guidance baselines,
namely DPS [10], and LGD-MC [69]. We consider three experimental settings: MNIST single-
digit posterior (learning to sample images of each digit class 𝑐), CIFAR-10 single-class posterior
(analogous to the previous), and MNIST multi-digit posterior. The latter is a multimodal posterior, for
which we set 𝑟 (x) = max𝑖∈{0,2,4,6,8} 𝑝(𝑐 = 𝑖 | x) to generate even digits, and similarly for odd digits.

Results. Samples from the RTB-fine-tuned posterior models are shown in Fig. 2. In Table 2 we
report mean±std of various metrics across all trained posteriors. We observe that models fine-tuned
with RTB generate class samples with both the highest diversity (highest mean pairwise cosine
distance in Inceptionv3 feature space) and closeness to true samples of the target classes (FID), while
achieving high expected log 𝑟 (x). Pure RL fine-tuning (no KL regularization) displays mode collapse
characteristics, achieving high rewards in exchange for significantly poorer diversity and FID scores
(see also Fig. E.1). Classifier-guidance-based methods, like DP and LGD-MC, exhibit high diversity,
but fail to appropriately model the posterior distribution (lowest log 𝑟 (x)). Additional results can be
found in §E.2.

3.2 Fine-tuning a text-to-image diffusion model

Diffusion models for text-conditional image generation [e.g. 62] can struggle to consistently generate
images x that adhere to complex prompts z, for example, those that involve composing multiple objects
(e.g., “A cat and a dog”) or specify “unnatural” appearances (e.g., “A green-colored rabbit”). Fine-
tuning pretrained text-to-image diffusion models 𝑝𝜃 (x1 | z) as RL policies to maximize some reward
𝑟 (x1, z) based on human preferences has become the standard approach to tackle this issue [7, 15, 76].
Simply maximizing the reward function can result in mode collapse as well as over-optimization of
the reward. This is typically handled by constraining the fine-tuned model 𝑝 to be close to the prior 𝑝:

argmax
�̃�

E �̃� (x1 |z) [𝑟 (x1, z)], 𝐷KL [𝑝(x1 | z) ∥ 𝑝(x1 | z)] ≤ 𝜖 . (12)

The optimal 𝑝 for (12) is 𝑝(x1 | z) ∝ 𝑝(x1 | z) exp(𝛽𝑟 (x1, z)) for some inverse temperature 𝛽. The
marginal KL is intractable for diffusion models, so methods like DPOK [15] optimize an upper bound
on the marginal KL in the form of a per-step KL penalty −𝛾∑𝑇

𝑖=1 𝐷KL [𝑝(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 , z) | |𝑝(x𝑖Δ𝑡 |
x(𝑖−1)Δ𝑡 , z)] added to the reward. By contrast, RTB can avoid the bias in such an approximation
and directly learn to generate unbiased samples from the posterior 𝑝(x1 | z).
Setup. We demonstrate how RTB can be used to fine-tune pretrained text-to-image diffusion
models. We use the latent diffusion model Stable Diffusion v1-5 [62] as a prior over 512 × 512
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(a) Four roses. (b) A green rabbit. (c) A cat and a dog. (d) Cybernetic man.

Figure 4: Images generated from prior (top row), DPOK (middle row) and RTB (bottom row) for 4
different prompts. Images in the same column share the random DDIM seed. More images in §H.2.

images. Following DPOK [15], we use ImageReward [86], which has been trained to match human
preferences as well as prompt accuracy to attributes such as the number of objects, color, and
compositionality, as the reward log 𝑟 (x1, z). As reference, we present comparisons against DPOK
with the default KL regularization 𝛾 = 0.01 and DPOK with 𝛾 = 0.0, which is equivalent to DDPO [7].
We measure the final average reward and the diversity of the generated image, as measured by the
average pairwise cosine distance between CLIP embeddings [57] of a batch of generated images.
Further details about the experimental setup and ablations are discussed in §H.
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DPOK
RTB (ours)

0.10 0.12 0.14
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A cat and a dog.

0.15 0.20 0.25
Diversity

Four roses.

0.10 0.12 0.14 0.16
Diversity

Cybernetic man

Figure 3: Fine-tuning Stable Diffusion with Im-
ageReward. We report mean log 𝑟 (x1, z) and diver-
sity, measured as the mean cosine distance between
CLIP embeddings for a batch of 100 generated im-
ages.2

Results. Fig. 3 plots the diversity versus log re-
ward on a set of prompts from [15, 86]. In terms
of average log 𝑟 (x1, z), RTB either matches or
outperforms DPOK, while generally achieving
lower reward than DDPO. The CLIP diversity
score for RTB and DPOK are on average higher
than DDPO, which is expected since it does not
use KL regularization. For qualitative image
assessments, refer to Fig. 4 and §H.2. Through
this experiment, we show that RTB scales well
to high dimensional, multimodal data, matching
state-of-the-art methods for fine-tuning text-to-
image diffusion models.

3.3 Text infilling with discrete diffusion language models

To evaluate our approach on discrete diffusion models, we consider the problem of text infilling [90],
which involves filling in missing tokens given some context tokens. While discrete diffusion models –
unlike their continuous counterparts – can be challenging to train [4, 8, 48, 73], score entropy discrete
diffusion [SEDD; 42] matches the language modeling performance of autoregressive language models
of similar scale. Non-autoregressive generation in diffusion language models can provide useful
inductive biases for infilling, such as the ability to attend to context on both sides of a target token.

Setup. We use the ROCStories corpus [49], a dataset of short stories containing 5 sentences each.
We adopt the task setup from [28], where the first 3 sentences of a story x and the last sentence y
are given, and the goal is to generate the fourth sentence z such that the overall story is coherent
and consistent. The fourth sentence can involve a turning point in the story and is thus challenging
to fill in. We aim to model the posterior 𝑝post (z | x, y) ∝ 𝑝(z | x)𝑝reward (y | x, z) where 𝑝 is a SEDD
language model prior (a conditional model over z given x) and 𝑝reward is an autoregressive language
model fine-tuned with a maximum likelihood objective on a held-out subset of the dataset. As
baselines, we consider simply prompting the diffusion language model with x (Prompt (x)) and x, y
(Prompt (x, y)). Additionally, to contextualize the performance, we also consider autoregressive
language model baselines from [28], which studied this problem under an autoregressive prior
𝑝(z | x). SFT is trained on 50, 000 examples compared to 1000 for RTB, and serves as an upper
bound on the performance in this task. See §F for further details about the experimental setup.

2Full prompt for “Cybernetic man”: “A half - masked rugged laboratory engineer man with cybernetic
enhancements as seen from a distance, scifi character portrait by greg rutkowski, esuthio, craig mullins.”
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Table 3: Results on the story infilling task with
autoregressive and discrete diffusion language
models. Metrics are computed with respect to
reference infills from the dataset. All metrics are
mean±std over 5 samples for each of the 100 test ex-
amples. RTB with discrete diffusion prior performs
better than best baseline with autoregressive prior.
Model Algorithm ↓Metric→ BLEU-4 GLEU-4 BERTScore

Autoreg.
Prompting 0.010±0.002 0.022±0.001 0.005±0.001
Supervised fine-tuning 0.012±0.001 0.023±0.001 0.013±0.002
GFN fine-tuning [28] 0.019±0.001 0.031±0.002 0.102±0.005

Discrete
diffusion

Prompt (x) 0.011±0.002 0.023±0.002 0.014±0.003
Prompt (x, y) 0.014±0.003 0.027±0.003 0.092±0.004
RTB (ours) 0.022±0.004 0.041±0.003 0.122±0.004
SFT (upper bound) 0.031±0.002 0.057±0.004 0.182±0.005

Results. Following [28], we use three
standard metrics to measure the similarity of
the generated infills with the reference infills
from the dataset: BERTScore [89] (with De-
BERTa [25]), BLEU-4 [53], and GLEU-4 [85].
Table 3 summarizes the results. We observe that
the diffusion language model performs signif-
icantly better than the autoregressive language
model without any fine-tuning. RTB further
improves the performance over prompting, and
even outperforms the strongest autoregressive
baseline of GFlowNet fine-tuning. We provide
some examples of generated text in §F.

3.4 KL-constrained policy search in offline reinforcement learning

The goal of RL algorithms is to learn a policy 𝜋(𝑎 | 𝑠), i.e., a mapping from states 𝑠 to actions 𝑎 in
an environment, that maximizes the expected cumulative discounted reward [74]. In the offline RL
setting [38], the agent has access to a dataset D = {(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1, 𝑟

𝑖
𝑡 )}𝑁𝑖=1 of transitions (where each

sample (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) indicates that an agent taking action 𝑎𝑡 at state 𝑠𝑡 transitioned to the next state
𝑠𝑡+1 and received reward 𝑟𝑡 ). This dataset is assumed to be generated by a behavior policy 𝜇(𝑎 | 𝑠),
which may be a diffusion model trained on D. Offline RL algorithms must learn a new policy 𝜋
which achieves high return using only this dataset without interacting with the environment.

An important problem in offline RL is policy extraction from trained 𝑄-functions [54, 24, 43]. For
reliable extrapolation, one wants the policy to predict actions that have high 𝑄-values, but also have
high density under the behavior policy 𝜇, as naive maximization can result in choosing actions with
low probability under 𝜇 and thus unreliable predictions from the 𝑄-function. This is formulated as a
KL-constrained policy search problem:

argmax
𝜋

E𝑠∼𝑑𝜇 ,𝑎∼𝜋 (𝑎 |𝑠) [𝑄(𝑠, 𝑎)], E𝑠∼𝑑𝜇
[𝐷KL (𝜋(𝑎 | 𝑠) ∥ 𝜇(𝑎 | 𝑠))] ≤ 𝜖, (13)

where 𝑑𝜇 is the distribution over states induced by following the policy 𝜇. The optimal policy 𝜋
in (13) is the product distribution 𝜋∗ (𝑎 | 𝑠) ∝ 𝜇(𝑎 | 𝑠) exp(𝛽𝑄(𝑠, 𝑎)) for some inverse temperature
𝛽. If 𝜇(𝑎 | 𝑠) is a conditional diffusion model over continuous actions 𝑎 conditioned on state 𝑠,
we use RTB to fine-tune a diffusion behavior policy to sample from 𝜋∗, using 𝜇 as the prior and
exp(𝛽𝑄(𝑠, 𝑎)) as the target constraint. We use a 𝑄-function trained using IQL [35].

Setup. We test on continuous control tasks in the D4RL suite [17], which consists of offline datasets
collected using a mixture of SAC policies of varying performance. We evaluate on the halfcheetah,
hopper and walker2d MuJoCo [75] locomotion tasks, each of which contains three datasets of
transitions: “medium” (collected from an early-stopped policy), “medium-expert” (collected from
both an expert and an early-stopped policy) and “medium-replay” (transitions stored in the replay
buffer prior to early stopping). We compare against standard offline RL baselines (Behavior Cloning
(BC), CQL [36], and IQL [35]) and diffusion-based offline RL methods which are currently state-of-
the-art: Diffuser [D; 29], Decision Diffuser [DD; 2], D-QL [82], IDQL [24], and QGPO [43]. For
algorithm implementation details, hyperparameters, and a report of baselines, see §G.

Results. Table 4 shows that RTB matches state-of-the-art results across the D4RL tasks. In
particular, RTB performs strongly in the medium-replay tasks, which contain the most suboptimal
data and consequently the poorest behavior prior. We highlight that our performance is similar to
QGPO [43], which learns intermediate energy densities for diffusion posterior sampling.

4 Other related work

Composing iterative generative processes. Beyond the approximate posterior sampling algorithms
and application-specific techniques discussed in §1 and §3, several recent works have explored the
use of hierarchical models, such as diffusion models, as modular components in generative processes.
Diffusion models can be used to sample product distributions to induce compositional structure in
images [40, 14]. Amortized Bayesian inference [34, 59, 58, 19] is another domain of sampling from
product distributions where diffusion models are now being used [20]. Beyond product models, [18]
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Table 4: Average rewards of trained policies on D4RL locomotion tasks (mean±std over 5 random
seeds). Following past work, numbers within 5% of maximum in every row are highlighted.
Task ↓ Algorithm→ BC CQL IQL D DD D-QL IDQL QGPO RTB (ours)
halfcheetah-medium-expert 55.2 91.6 86.7 79.8 90.6±1.3 96.1±0.3 95.9 93.5±0.3 74.93±1.72
hopper-medium-expert 52.5 105.4 91.5 107.2 111.8±1.8 110.7±1.3 108.6 108.0±2.5 96.71±3.53
walker2d-medium-expert 107.5 108.8 109.6 108.4 108.8±1.7 109.7±0.3 112.7 110.7±0.6 109.52±0.11

halfcheetah-medium 42.6 44.0 47.4 44.2 49.1±1.0 50.6±0.5 51.0 54.1±0.4 53.70±0.33
hopper-medium 52.9 58.5 66.3 58.5 79.3±3.6 82.4±4.6 65.4 98.0±2.6 82.76±7.07
walker2d-medium 75.3 72.5 78.3 79.7 82.5±1.4 85.1±0.9 82.5 86.0±0.7 87.29±3.15

halfcheetah-medium-replay 36.6 45.5 44.2 42.2 39.3±4.1 47.5±0.3 45.8 47.6±1.4 48.11±0.56
hopper-medium-replay 18.1 95.0 94.7 96.8 100.0±0.7 100.7±0.6 92.1 96.9±2.6 100.40±0.21
walker2d-medium-replay 26.0 77.2 73.9 61.2 75.0±4.3 94.3±1.5 85.1 84.4±4.1 93.57±2.63

studies ways to amortize other kinds of compositions of hierarchical processes, including diffusion
models, while [66] proposes methods to sample the product of many iterative processes in application
to federated learning. Finally, models without hierarchical structure, such as normalizing flows, have
been used to amortize intractable inference in pretrained diffusion models [e.g., 16]. In contrast,
our method performs posterior inference by fine-tuning a prior model, developing a direction on
flexible extraction of information from large pretrained models [28].

Diffusion samplers. Several prior works seek to amortize MCMC sampling from unnormalized
densities by training diffusion models for efficient mode-mixing [6, 88, 77, 61, 78, 3]. Our work is
most closely related to continuous GFlowNets [37], which offer an alternative perspective on training
diffusion samplers using off-policy flow consistency objectives [37, 87, 64].

5 Conclusions and future work

Relative trajectory balance provides a new approach to training diffusion models to generate unbiased
posterior samples given a diffusion prior and an arbitrary reward function. Through experiments
on a variety of domains – vision, language, continuous control – we demonstrated the flexibility
and general applicability of RTB. RTB can be optimized with off-policy trajectories, and future work
can explore ways to leverage off-policy training, using techniques such as local search [33, 64] to
improve sample efficiency and mode coverage. Simulation-based objectives in the style of [88] are
also applicable to the amortized sampling problems we consider and should be explored, as should
simulation-free extensions, e.g., through objectives that are local in time [44]. The ability to handle
arbitrary black-box likelihoods also makes RTB a useful candidate for inverse problems in domains
such as 3D object synthesis with likelihood computed via a renderer [e.g., 55, 81], imaging problems
in astronomy [e.g., 1], medical imaging [e.g., 72], and molecular structure prediction [e.g., 83].

Moreover, RTB could facilitate a breakthrough in modeling molecular dynamics—a notoriously
challenging task due to the need to sample rare-event trajectories in chemical simulations—by
converting these problems into posterior inference over amplified distributions of rare-event samples.
Notably, Seong et al. [65] have already explored a preliminary version of this concept by employing
TB with a reward multiplied by the prior likelihood, which is effectively equivalent to RTB.

Limitations. RTB learns the posterior through simulation-based training, which can be slow and
memory-intensive. Additionally, the RTB objective is computed on complete trajectories without any
local credit-assignment signal, which can result in high variance in the gradients.

Broader impact. While our contributions focus on an algorithmic approach for learning posterior
samplers with diffusion priors, we acknowledge that like other advances in generative modelling, our
approach can potentially be used by nefarious actors to train generative models to produce harmful
content and misinformation. At the same time, our approach can be also be used to mitigate biases
captured in pretrained models and applied to various scientific problems.
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A Proofs

Proposition 1 (Relative TB constraint). If 𝑝𝜃 , 𝑝post
𝜙

, and the scalar 𝑍𝜙 jointly satisfy the relative
trajectory balance (RTB) constraint

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1) = 𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) (8)

for every denoising trajectory x0 → xΔ𝑡 → · · · → x1, then 𝑝post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1), i.e., the diffusion

model 𝑝post
𝜙

samples the posterior distribution. Furthermore, if 𝑝𝜃 also satisfies the TB constraint

(7) with respect to the noising process 𝑞 and some target density 𝑞(x1), then 𝑝post
𝜙

satisfies the TB
constraint with respect to the target density 𝑞post (x1) ∝ 𝑞(x1)𝑟 (x1), and 𝑍 =

∫
𝑞(x1)𝑟 (x1) 𝑑x1.

Proof of Prop. 1. Suppose that 𝑝𝜃 , 𝑝post
𝜙

, and 𝑍 jointly satisfy (8). Then necessarily 𝑍 ≠ 0, since the
quantities on the right side are positive. We then have, using (4),

𝑝
post
𝜙
(x1) =

∫
𝑝

post
𝜙
(x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡

=
1
𝑍
𝑟 (x1)

∫
𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡

=
1
𝑍
𝑟 (x1)𝑝𝜃 (x1) ∝ 𝑝𝜃 (x1)𝑟 (x1),

as desired.

Now suppose that 𝑝𝜃 also satisfies the TB constraint (7) with respect to 𝑞(x1). Then, for any
denoising trajectory,

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) =
𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)

𝑞(x1)
=
𝑝

post
𝜙
(x0, xΔ𝑡 , . . . , x1)
𝑞(x1)𝑟 (x1)/𝑍

. (14)

showing that 𝑝post
𝜙

satisfies the TB constraint with respect to the noising process 𝑞 and the (not yet
shown to be normalized) density 1

𝑍
𝑞(x1)𝑟 (x1). We integrate out the variables x0, xΔ𝑡 , . . . , x1−Δ𝑡 in

(14), giving

1 =
𝑝

post
𝜙
(x1)

𝑞(x1)𝑟 (x1)/𝑍
𝑞(x1)𝑟 (x1) = 𝑍𝑝post

𝜙
(x1).

Integrating over x1 shows
∫
𝑞(x1)𝑟 (x1) 𝑑x1 = 𝑍 . □

B Relative TB as TB under the prior measure

The theoretical foundations for continuous generative flow networks [37] establish the correctness
of enforcing constraints such as trajectory balance (7) for training sequential samplers, such as
diffusion models, to match unnormalized target densities. While we have considered Gaussian
transitions and identified transition kernels with their densities with respect to the Lebesgue mea-
sure over R𝑑 , these foundations generalize to more general reference measures. In application to
diffusion samplers, suppose that 𝜋ref (x𝑡 ) is a collection of Lebesgue-absolutely continuous den-
sities over R𝑑 for 𝑡 = 0,Δ𝑡, . . . , 1 and that −→𝜋 ref (x𝑡 | x𝑡−Δ𝑡 ),←−𝜋 ref (x𝑡−Δ𝑡 | x𝑡 ) are collections of
Lebesgue-absolutely continuous transition kernels. If these densities jointly satisfy the detailed
balance condition 𝜋ref (x𝑡 )←−𝜋 ref (x𝑡−Δ𝑡 | x𝑡 ) = 𝜋ref (x𝑡−Δ𝑡 )−→𝜋 ref (x𝑡 | x𝑡−Δ𝑡 ), then they satisfy the con-
ditions to be reference measures. A main result of [37] is that if a pair of forward and backward
processes satisfies the trajectory balance constraint (7) jointly with a reward density 𝑟, then the
forward process 𝑝 samples from the distribution with density 𝑟, with all densities interpreted as
relative to the reference measures 𝜋ref ,

←−𝜋 ref ,
−→𝜋 ref .3

3Recall that the relative density (or Radon-Nikodym derivative) of a distribution with density 𝑝 under the
Lebesgue measure relative to one with density 𝜋 is simply the ratio of densities 𝑝/𝜋.
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If 𝑝𝜃 is a diffusion model that satisfies the TB constraint jointly with some reverse process 𝑞 and
target density 𝑞(x1), then one can take the reference transition kernels −→𝜋 ref ,

←−𝜋 ref to be 𝑝 and 𝑞,
respectively. In this case, the TB constraint for a target density 1

𝑍
𝑟 (x1) and forward transition 𝑝post

𝜙
is

𝑝
post
𝜙
(x0, xΔ𝑡 , . . . , x1)

−→𝜋 ref (x0, xΔ𝑡 , . . . , x1)
=

1
𝑍
𝑟 (x1)(((((((((((

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1)

((((((((((((←−𝜋 ref (x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1)
, (15)

which is identical to the RTB constraint (8). If (15) holds, then 𝑝post
𝜙

samples from the distribution
with density 1

𝑍
𝑟 (x1) relative to 𝜋ref (x1), which is exactly 1

𝑍
𝑝𝜃 (x1)𝑟 (x1). We have thus recovered

RTB as a case of TB for non-Lebesgue reference measures.
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C Posterior inference on two-dimensional Gaussian mixture model

Setup We conduct toy experiments in low-dimensional spaces using samples from a Gaussian
mixture model with multiple modes to visually demonstrate its validity. The prior distribution 𝑝(x1)
is trained on a Gaussian mixture model with 25 evenly weighted modes, while the target posterior
𝑝post (x1) = 𝑟 (x1)𝑝(x1) uses a reward 𝑟 (x1) to select and re-weight 9 modes from 𝑝(x1). More
specifically, the resulting posterior is:

𝑝post (x1) =
1∑
𝑗 �̃� 𝑗

∑︁
𝑖

�̃�𝑖N(x1 | 𝜇𝑖 , I) (16)

{𝜇𝑖} = {(−10,−5), (−5,−10), (−5, 0), (10,−5), (0, 0), (0, 5), (5,−5), (5, 0), (5, 10)} (17)
{�̃�𝑖} = {4, 10, 4, 5, 10, 5, 4, 15, 4} (18)

Our objective is to sample from the posterior 𝑝post (x1). We compare our method with several
baselines, including policy gradient reinforcement learning (RL) with KL constraint and classifier-
guided diffusion models. For RL, we implemented the REINFORCE method with a mean baseline
and a KL constraint, following recent work training diffusion models to optimize a reward function [7].
Sampling according to the RL policy leads to a distribution 𝑞𝜃 (x1), which is trained with the objective:

𝐽 (𝜃) = E𝑞𝜃 (x1 ) [𝑟 (x1)] + 𝛼𝐷KL (𝑞𝜃 (x1)∥𝑝(x1)) (19)

While the exact computation of 𝐾𝐿 (𝑞𝜃 (x1)∥𝑝(x1)) is intractable, we follow the approximation
method introduced by Fan et al. [15], which sums the divergence at every diffusion step. This
approximation optimizes an upper bound of the marginal KL.

The other baseline is classifier (energy) guidance, which given a diffusion prior, samples using a
posterior score function estimate:

∇x𝑡 log 𝑝post (x𝑡 ) ≈ ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 log 𝑟 (x𝑡 ) (20)

Note that this is a biased approximation of the true intractable score:
∇x𝑡 log 𝑝post (x𝑡 ) = ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 logE𝑝 (x1 |x𝑡 ) [𝑟 (x1)] [43] (21)

For our experiments, we follow the source code4 provided in recent diffusion sampler benchmarks [64].
We utilize a batch size of 500, with finetuning at 5,000 training iterations, a learning rate of 0.0001,
a diffusion time scale of 5.0, 100 steps, and a log variance range of 4.0. The neural architecture
employed is identical to that used in [64]. For pretraining the prior model, we use the same hyperpa-
rameters as above, but with 10,000 training iterations using maximum likelihood estimation with true
samples.

Results. As we reported in the main text, in Fig. 1, we present illustrative results. The classifier-
guided diffusion model shows biased posterior sampling (Fig. 1f), failing to provide accurate inference.
RL with a per step KL constraint cannot exactly optimize for the posterior distribution, making
the tuning of the KL weight 𝛼 crucial to achieving desirable output Fig. C.1. RTB asymptotically
achieves the true posterior without introducing a balancing hyperparameter 𝛼. Another advantage
of our approach is off-policy exploration for efficient mode coverage. RL methods for fine-tuning
diffusion models (e.g., DPOK [15], DDPO [7]) typically use policy gradient style methods that are
on-policy. By using a simple off-policy trick introduced by [46, 37] and demonstrated by Sendera
et al. [64], we can introduce randomness into the exploration process in diffusion by adding 𝜖 2

𝑇
,

where 𝜖 is a noise hyperparameter and 𝑇 is the diffusion timestep, into the variances and annealing it
to zero over training iterations. We set 𝜖 = 0.5 for off-policy exploration. As shown in Fig. C.2, RTB
with off-policy exploration gives very close posterior inferences, whereas off-policy exploration in
RL with 𝛼 = 0.5 (which is a carefully selected hyperparameter) does not improve performance due to
its on-policy nature.

D Code

Code for all experiments is available at https://github.com/GFNOrg/diffusion-finetuning
and will continue to be maintained and extended.

4https://github.com/GFNOrg/gfn-diffusion
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(a) Prior (b) Posterior (c) 𝛼 = 1.0 (d) 𝛼 = 0.8 (e) 𝛼 = 0.7 (f) 𝛼 = 0.5 (g) 𝛼 = 0.3

Figure C.1: Tuning the KL weight 𝛼 in reinforcement learning: influences the balance between
sticking to the prior distribution and moving towards the modes of the reward density. A higher 𝛼
value maintains closer adherence to the prior, while a lower 𝛼 allows a gradual shift towards high
values of 𝑟 (x). Setting 𝛼 below 0.3 tends to cause mode collapse, moving too far from the prior and
focusing on maximizing rewards for single modes. 𝛼 = 0.5 gives us samples that closest resembles
the posterior.

(a) Prior (b) Posterior (c) RTB (on) (d) RTB (off) (e) RL (on) (f) RL (off)

Figure C.2: Off-policy exploration benefits for RTB training. RTB, with simple off-policy exploration
techniques that increase randomness in the diffusion process, significantly improves mode coverage.
On the other hand, policy gradient RL methods which are typically used to finetune diffusion models
are on-policy, and hence prone to mode collapse.

E On classifier guidance and RTB posterior sampling

Figure E.1: Samples from a posterior model fine-tuned with RL (no KL). We observe early mode
collapse, showcasing high-reward samples with minimal diversity.

E.1 Experimental Details

In our experiments, we fine-tune pretrained unconditional diffusion models with our RTB objective,
to sample from a posterior distribution in the form 𝑝post (𝑥 | 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥). In this section, we
detail the experimental settings for RTB as well as the compared baselines.

Experiments setting. For MNIST, we pretrain a noise-predicting diffusion model on 28 × 28
(upscaled to 32 × 32) single channel images of digits from the MNIST datasets. We discretize the
forward and backward processes into 200 steps and train our model until convergence. For CIFAR-10,
we use a pretrained model from [26], trained to generate 32×32 3-channel images from the CIFAR-10
dataset, while discretizing the noising/denoising processes into 1000 steps. For fine-tuning the prior,
we parametrize the posterior with LoRA weights [27], with the number of parameters equal to about
3% of the prior model’s parameter count. We train our models on a single NVIDA V100 GPU.

We compute FID as a similarity score estimate of the true posterior distribution from the data. As
such, the computation is limited to the total number of per-class-samples present in the data, (between
5k and 6k for CIFAR-10 and MNIST digits, and 30k for the even/odd task).
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RTB. For RTB fine-tuning, we finetune a diffusion model following the objective in Equation 9. We
impose the objective while sampling denoising paths following a DDPM sampling scheme, with only
20% to 50% of the original trained steps. We employ loss clipping at 0.1, to account for imperfect
constraints in the pretrained prior, and train each of our models for 1500 training iterations, well into
convergence trends.

RL [15]. We implement two RL-based fine-tuning techniques derived from DPOK [15] and
DDPO [7], respectively with and without KL regularization. These implementations use a reinforce-
ment learning baseline similar to the one in our experiments described in §3.2. By following the
same sampling scheme as in our RTB experiments, we enable a direct comparison with RTB. To
fine-tune the KL weight, we perform a search over 𝛼 ∈ {0.01, 0.1, 1.0}.
DP [10]. We implement and adapt the Gaussian version of the posterior sampling scheme in
[10], originally devised for noisy inverse problems. This method relaxes some of our experimental
constraints, as it requires a differentiable reward 𝑟 (x). We perform a sweep over ten values of the
suggest parameter range for the step size 𝜁 ∈ [.1, 1.] on MNIST single-digit sampling, and choose
𝜁 = 0.1 for our experiments.

LGD-MC [69]. We adapt the implementation of the algorithm in [69] to sample from the classifier-
based posteriors in CIFAR-10 and MNIST. Similarly to the DP baseline, we use our pretrained
classifier to perform measurements at each sampling step, and use a Monte Carlo estimate of the
gradient correction to guide the denoising process. We choose 𝜁 = 0.1 following the DP experiments
and default the number of particles to 10 as per the authors’ guidelines.

E.2 Additional findings.

Classifier-guidance baselines. We find that the DP and LGD-MC classifier-guidance based base-
lines struggle to sample from the true posterior distribution in our experimental settings. The baselines
achieve the lowers classifier average rewards in all tested settings. Despite choosing 𝜁 = 0.1 as the
validate best performing hyperparameter, we also also observe the posterior samples from DP and
LGD-MC to be close to the prior. As such, DP and LGD-MC score high in diversity, and low in FID
for the Even/Odd experimental scenario, as expected from prior sampling benchmarks, but failing to
appropriately model the posterior distribution.

RL and mode collapse. In the pure Reinforcement Learning objective imposed for the experiments
in §3.1 (no KL), we observe a significantly higher reward than other baseline methods, while
showcasing increased FID and lower diversity. In Fig. E.1 we show a random set of 16 samples for
posterior models trained on 4 different classes of the CIFAR-10 datasets, as well as the Even objective
from the MNIST dataset, after 500 training iterations. In the figure, we observe early mode collapse
and reward exploitation, visually evident from the little to no variation amongst samples for each
class class, and single-digit collapse in the multi-modal even digits objective (see samples in Fig. 2
for comparison with our RTB-finetuned models).

Table E.1: Conditional experiment for MNIST
even/odd posterior. Note that the posterior model
in the conditional experiment is different from that
in the baselines because it uses a different archi-
tecture that includes an additional input channel.
Dataset→ MNIST even/odd

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) FID (↓)
DPS −1.2270±0.202 1.1498±0.182

LGD−MC −1.1720±0.199 1.1445±0.184

DDPO −8.6±12.3×10−11 1.8024±0.423

DPOK −0.0783±0.082 1.2536±0.206

RTB (unconditional) −0.1816±0.175 1.1794±0.171

RTB (conditional) -0.1236 0.9112

Conditional architectures. We repeat the
even/odd posterior sampling experiment of §3.1
in a conditional setting, where the condition is
an input to the posterior model. For the posterior
architecture, we use a naive modification of the
prior with an extra input channel, which is pop-
ulated a full mask of 0 or 1 for conditioning on
the even and odd classes, respectively. The re-
sults are shown in Table E.1. We look forward to
future work which develops more specialized ar-
chitectures for handling conditional constraints.

F Infilling with discrete diffusion

Additional details. We illustrate some examples from the ROC Stories dataset used for training
in Table F.1. For the prior we use the sedd-small5 model, which uses an absorbing noising
process [4] with a log linear noise schedule, as the diffusion prior 𝑝(z | x). The posterior model is

5https://huggingface.co/louaaron/sedd-small

21

https://huggingface.co/louaaron/sedd-small


Table F.1: Examples of training samples for the language infilling task.
Beginning (x) Middle (z) End (y)

I was going to a Halloween party. I
looked through my clothes but could not
find a costume. I cut up my old clothes
and constructed a costume.

I put my costume on and
went to the party.

My friends loved my cos-
tume.

Allen thought he was a very talented
poet. He attended college to study cre-
ative writing. In college, he met a boy
named Carl.

Carl told him that he
wasn’t very good.

Because of this, Allen
swore off poetry forever.

parameterized as a copy of the prior. To condition the diffusion model on the beginning x we set the
tokens at the appropriate location in the state in the initial time step, i.e.𝑡 = 0. Our implementation
is based on the original SEDD codebase 6. Training this model is computationally expensive (in
terms of memory and speed) so we utilize the stochastic TB trick, only propagating the gradients
through a subset of the steps of the trajectory. We also use the loss clipping trick as discussed in
§2.3. Specifically, we clip the loss below a certain threshold to 0, resulting in updates only when
the loss is larger. This threshold – referred to as the loss clipping coefficient – is a hyperparameter.
As this is a conditional problem we also use the relative VarGrad objective. We also use some
tempering on the reward likelihood which helps in learning (i.e., 𝑝reward (y | x, z)𝛽) where 𝛽 is the
inverse temperature parameter. We perform all experiments on an NVIDIA A100-Large GPU. Note
that we also tried a baseline of simply fine-tuning the diffusion model on the data but encountered
some training instabilities that we could not fix. The hyperparameters used for training RTB in our
experiments are detailed in Table F.2.

Reward. For training 𝑝reward we follow the training procedure and implementation from [28]7.
Specifically, we fine-tune a GPT-2 Large model [56] on the stories dataset with full parameter
fine-tuning using the trl library [80]. We trained for 20 epochs with a batch size of 64 and 32
gradient accumulation steps and a learning rate of 0.0005.

Baselines. For the baselines, we adopt the implementations from [28]. A critical difference in our
experiments compared to [28] is that the posterior model is not initialized with a base model that is
fine-tuned on the stories dataset. To condition the model on 𝑋 and 𝑌 , as well as for the prompting
baseline, we use the following prompt:

"Beginning: {X}\n End: {Y}\n Middle: "

During training for the autoregressive GFlowNet fine-tuning, a (x, y) pair is sampled from the dataset
and then sample (batch size) xs for every (𝑋,𝑌 ), and 𝑝reward (𝑋𝑍𝑌 ) is used as the reward. Both the
GFlowNet fine-tuning and supervised fine-tuning baseline use LoRA fine-tuning. We use the default
hyperparamteres from [28]. At test time, we sample 100 infills for each example in the test set from
all the models at temperature 0.9, and average over 5 such draws.

Additional results. Table F.3, Table F.4 and Table F.5 illustrates some examples of the infills
generated by the diffusion models. We note that the general quality of the samples is poor, due
to a relatively weak prior. At the same time we can observe that the prompting baselines often
generate infills that are unrelated to the current story. We also note that the RTB fine-tuned model can
sometimes generate repitions as the reward model tends to assign high likelihood to repititions [84].
We also attempted a LLMEval [41] for evaluating the coherence of the stories but did not obtain
statistically significant results.

6https://github.com/louaaron/Score-Entropy-Discrete-Diffusion
7https://github.com/GFNOrg/gfn-lm-tuning

22

https://github.com/louaaron/Score-Entropy-Discrete-Diffusion
https://github.com/GFNOrg/gfn-lm-tuning


Table F.2: Hyperparameters for the story infilling task.
Batch size 16
Gradient accumulation steps 8
Learning rate 1e-5
Warmup Step 20
Optimizer AdamW
Reward temperature start 1.2
Reward inverse temperature end 0.9
Reward inverse temperature horizon 5000
Number of training steps 1500
Loss clipping coefficient 0.1
Discretization steps 𝑇 15

Table F.3: Examples of infills generated by the posterior trained with RTB along with reference
infills for the stories infilling task.

Beginning (x) Middle (z) End (y)

David noticed he had put on a
lot of weight recently. He
examined his habits to try and
figure out the reason. He
realized he’d been eating too
much fast food lately.

He stopped going to burger places and
started a vegetarian diet. After a few weeks,

he started to feel
much better.

He reviewed his habits to try to figure
out how to change
He asked he thought try to cut down on
the amount amount.
He examined his habits to try and figure
out the reason.
He realized he had been eating too much
fast food recently.

Robbie was competing in a
cross country meet. He was
halfway through when his leg
cramped up. Robbie wasn’t
sure he could go on.

He stopped for a minute and stretched
his bad leg. Robbie began to run

again and finished
the race in second
place.

Robbie was sure he could go on. Robbie
was sure.
He was floating and twisting his leg in
half then.
His body just caught up with his legs.
Robbie was.
He held his leg forward as he went
through and his

G Offline RL

G.1 Training details

Our method requires first training a diffusion-based behavior policy 𝜋𝜃 and a Q-function 𝑄𝜓 . Once
𝜋𝜃 and 𝑄𝜓 are trained, The posterior policy 𝜋𝛾 is trained using RTB, with its weights initialized to
the trained behavior policy weights 𝜃.

The behavior policy 𝜋𝜃 is parametrized as a state-conditioned noise-predicting denoising diffusion
probabilistic model (DDPM) [26] with a linear schedule, and 75 denoising steps. The diffusion model
takes as input a state 𝑠, a noised action 𝑎𝑡 and a noise level 𝑡 and predicts the source noise 𝜖 . The state
𝑠 and noised action 𝑎𝑡 are concatenated with Fourier features computed on the noise level 𝑡, which
are then fed through a 3-layer MLP of hidden dimensionality 256, with layer normalization and a
GeLU activation after each hidden layer. The behavior policy is trained using the Adam optimizer
with batch size 512 and learning rate 5e-4 for 10000 epochs. The Q-function 𝑄𝜓 is trained using IQL.
We use the same IQL experimental configurations and training hyperparameters as in [35]. That is,
we set 𝜏 = 0.7. The architecture for 𝑄𝜓 is a 3-layer MLP with hidden dimensionality 256 and ReLU
activations, which is trained using the Adam optimizer with a learning rate 3e-4 and batch size 256 for
750000 gradient steps. The task rewards are normalized as in [35] and the target network is updated
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Table F.4: Examples of infills generated by Prompt (x, y) along with reference infills for the stories
infilling task.

Beginning (x) Middle (z) End (y)

David noticed he had put on a
lot of weight recently. He
examined his habits to try and
figure out the reason. He
realized he’d been eating too
much fast food lately.

He stopped going to burger places and
started a vegetarian diet. After a few weeks,

he started to feel
much better.

He’d had less opportunities to eat prop-
erly all of last.
Doctors made the note of the situation.
He was treated.
He told him the guy for a mic
replacement.\n\n
He felt empty for one reason and new
fresh, too.

Robbie was competing in a
cross country meet. He was
halfway through when his leg
cramped up. Robbie wasn’t
sure he could go on.

He stopped for a minute and stretched
his bad leg. Robbie began to run

again and finished
the race in second
place.

Robbie wasn’t sure Robbie’s fuel tank
was full.
Robbie took a photograph with a close
friend.\n\n
Only Stacey Ebers and Rand were out
there.
Robbie got bigger as the position got
better.\n\n

Table F.5: Examples of infills generated by Prompt (x) along with reference infills for the stories
infilling task.

Beginning (x) Middle (z) End (y)

David noticed he had put on a
lot of weight recently. He
examined his habits to try and
figure out the reason. He
realized he’d been eating too
much fast food lately.

He stopped going to burger places and
started a vegetarian diet. After a few weeks,

he started to feel
much better.

David, "All I had told eat was a problem.
He got the backside what about that and
he made the,
He made just good of fast food and
spliced it down.
He explained everything to them,
reached them out, the problem.

Robbie was competing in a
cross country meet. He was
halfway through when his leg
cramped up. Robbie wasn’t
sure he could go on.

He stopped for a minute and stretched
his bad leg. Robbie began to run

again and finished
the race in second
place.

Robbie and Robbie was piling. Robbie
and Robbie fistfight.
I said goodbye. Robbie at dinner. Rob-
bie agreed with.
He cut away a little to Robbie’s pace
fleetingly.
He held off all the police and place. Rob-
bie.
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Table G.1: Mixed vs. online training on DR4L Tasks. We report mean±std over 5 random seeds.
Task RTB (Online) RTB (Mixed)

halfcheetah-medium-replay 46.88±0.51 48.11±0.56
hopper-medium-replay 99.23±3.22 100.40±0.21
walker2d-medium-replay 94.01±0.28 93.57±2.63

Table G.2: Temperature 𝛼 = 1
𝛽

for D4RL tasks

Task 𝛼

halfcheetah-medium-expert 0.1
hopper-medium-expert 0.5
walker2d-medium-expert 0.1
halfcheetah-medium 0.05
hopper-medium 0.1
walker2d-medium 0.05
halfcheetah-medium-replay 0.05
hopper-medium-replay 0.05
walker2d-medium-replay 0.1

with soft updates of 𝑚 = 0.005. The posterior policy 𝜋𝛾 is trained using the relative trajectory balance
objective. 𝜋𝛾 is also parametrized as a state-conditioned noise-predicting DDPM, initialized as a copy
of the prior. We additionally use the Langevin dynamics inductive bias (11), and learn an additional
MLP for the energy scaling network. The posterior noise prediction network also outputs an additive
correction to the output of the prior noise prediction network. That is, the predicted noise of the
posterior diffusion model is defined as 𝜖 (𝑠, 𝑎𝑡 , 𝑡) := 𝜖 (𝑠, 𝑎𝑡 , 𝑡; 𝜃) + 𝜖 (𝑠, 𝑎𝑡 , 𝑡; 𝛾), where 𝜖 (·; 𝜃) is the
output of the prior noise prediction network and 𝜖 (·; 𝛾) is the output of the posterior noise prediction
network. We train all models on a single NVIDIA A100-Large GPU. The only hyperparameter tuned
per task is the temperature 𝛼 which we show in Table G.2.

Note that in these experiments both the prior and constraint are conditioned on the state s. To prevent
having to learn a neural network for log 𝑍𝜙 (s), we employ a variant of VarGrad objective [60]. For
each state s sampled in the minibatch, we further generate 𝑘 = 64 on-policy trajectories 𝜏 (𝑖) 𝑘𝑖=1 with
𝜋𝛾 . Each of these trajectories can be used to implicitly estimate log 𝑍 (s):

ˆlog 𝑍 (s) (𝑖) = log 𝜋𝜃 (𝜏 (𝑖) | s) +𝑄𝜓 (s, a(𝑖)1 ) − log 𝜋𝛾 (𝜏 (𝑖) | s) (22)

We then minimize the sample variance across the batch:

LVarGrad
RTB (𝛾) = 1

𝑘

𝑘∑︁
𝑖=1

(
ˆlog 𝑍 (s) (𝑖) − 1

𝑘

𝑘∑︁
𝑗=1

ˆlog 𝑍 (s) ( 𝑗 )
)2

(23)

RTB allows off-policy training so we are not restricted to train with samples generated on-policy.
We thus also leverage the offline dataset, which are samples from the prior and noise them with the
DDPM noising process to generate off-policy trajectories with high density under the prior. Since
there are actions in the replay buffer from high reward episodes in the tasks, this can help training
efficiency compared to purely online training. We ran 5 seeds of training each with mixed training
(off-policy and on-policy) and pure on-policy training on the medium-replay tasks, with results shown
in Table G.1, where mixed training outperforms pure online training on two of the three tasks.

G.2 Baseline details

As is standard in offline RL, we use the reported performance numbers from the previous papers.
CQL, IQL are reported from the IQL paper. Diffuser (D), DD, D-QL and QGPO are reported from
the QGPO paper. Their implementation improved the performance of D and D-QL compared to their
original papers. IDQL results are reported from the IDQL paper. We follow the evaluation protocol
of previous work, and report the mean performance over 10 episodes, averaged across 5 random
seeds at the end of training (150k training steps).
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H Fine-tuning text-to-image diffusion models

We build off the DPOK implementation8, which fine-tunes stable-diffusion-v1-5 with ImageReward
function. The posterior model to be fine-tuned is initialized as a copy of the prior model. We use
LoRA [27] since it is significantly more efficient than fine-tuning the entire model. Sampling of
images is done with 50 steps of DDIM [68]. Even with LoRA, it is still difficult to fit gradients of
all steps in the diffusion trajectory in memory. To help with this, we use a “stochastic subsampling”
trick (§H.1).

We train all models on a single NVIDIA A100-Large GPU. For the main experiments, we use the
default parameters for DPOK of reward weight 𝛽 = 10 and KL weight = 0.01. For RTB we fix
𝛽 = 1.0 for all prompts. We next perform an ablation over different values of 𝛽.

We plot in Table H.1 the final average reward and diversity score for models trained with different
values of reward weight 𝛽 for the prompt “A green colored rabbit.”. As expected, we find that
increasing 𝛽 increases reward at the cost of diversity for RTB and DPOK. The exception is 𝛽 = 10
for RTB which has slightly lower final reward than 𝛽 = 1, which we could attribute to more difficult
optimization due to the peaky distribution associated with higher reward weight.

Table H.1: Ablation of reward weights 𝛽 for “A green colored rabbit.”.
Model ↓ 𝛽 ↓Metric→ Reward (↑) diversity (↑)
Prior - -0.113 0.597

DPOK (KL weight=0.01)

𝛽 = 0.01 -0.27 0.1488
𝛽 = 0.1 -0.06 0.1486
𝛽 = 1.0 0.638 0.1362
𝛽 = 10.0 1.492 0.076

DDPO (KL weight=0.0) 𝛽 = 10.0 1.795 0.0493

RTB

𝛽 = 0.01 0.485 0.1431
𝛽 = 0.1 1.525 0.0721
𝛽 = 1.0 1.756 0.0436
𝛽 = 10.0 1.568 0.0689

H.1 Memory-efficient learning

We propose two methods to reduce the memory requirement of RTB fine-tuning.

Stochastic subsampling. The expected gradient of the RTB objective (9) is unaffected by propagat-
ing gradient to a randomly sampled subset of the timesteps in a trajectory and rescaling by the inverse
proportion of timesteps sampled. Stochastically subsampling timesteps for gradient propagation
in this way can significantly decrease memory consumption because computation graphs for the
remaining timesteps do not need to be maintained; however, such subsampling increases gradient
variance, so it is preferable to keep gradients for as many timesteps as possible to fit in memory.
For our text-to-image experiments, we found sampling 8 timesteps out of 50 to keep gradients was
sufficient.

Batched gradient computation. An important property of the RTB objective is that computing its
gradient does not require storing the computation graph of all timesteps. The gradient of the RTB
objective for a single trajectory is just the sum of per-step log-likelihood gradients scaled by the RTB
residual:

∇𝜙LRTB (𝜏; 𝜙) = 2

(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
𝑝
𝑝𝑜𝑠𝑡

𝜙
(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

)
· ∇𝜙

𝑇∑︁
𝑖=1

log 𝑝post
𝜙
(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ).

Because the likelihood gradients can be accumulated during the forward pass, this allows for a
batched gradient accumulation version of the update. For trajectory length (number of diffusion steps)
𝑇 and accumulation batch size (number of time steps receiving a gradient signal in each backward
pass) 𝐵, the number of batched forward passes required scales as 𝑇

𝐵
.

8https://github.com/google-research/google-research/tree/master/dpok
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Only the accumulation batch size 𝐵, not the trajectory length 𝑇 , is constrained by the memory budget.
This means we can easily scale training with large number of diffusion steps without increasing the
variance of the gradient through stochastic subsampling, with training time growing linearly with
number of time steps under a fixed memory budget. Although this method is not used in the main
experiments presented here, preliminary experiments confirm these observations.

We highlight that both methods are not applicable to diffusion samplers based on differentiable
simulation (e.g., PIS and DDS), which need to store the entire computation graph of SDE integration.
For these methods, the memory requirement scales linearly with the trajectory length.
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H.2 Generated images

H.2.1 A green-colored rabbit

Figure H.1: Prior

Figure H.2: DDPO

Figure H.3: DPOK

Figure H.4: RTB
H.2.2 Four roses

Figure H.5: Prior

Figure H.6: DDPO

Figure H.7: DPOK

Figure H.8: RTB
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H.2.3 A cat and a dog

Figure H.9: Prior

Figure H.10: DDPO

Figure H.11: DPOK

Figure H.12: RTB

H.2.4 A half - masked rugged laboratory engineer man with cybernetic enhancements as seen
from a distance, scifi character portrait by greg rutkowski, esuthio, craig mullins.

Figure H.13: Prior

Figure H.14: DDPO

Figure H.15: DPOK

Figure H.16: RTB

I Compute resources

For classifier guidance experiments §3.1 we use train on a single NVIDIA V100 GPU. For text-
conditional image generation §3.2, text infilling §F and offline §G, we use a single NVIDIA A100
large GPU. The total estimated compute time for all our experiments is 3000 hours.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss our theoretical claims about the RTB ojective in §2, and report
experimental results in §3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our proposed method in §5.
Guidelines:

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See §A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided code to reproduce our experiments in §D, and described
training details in §C, §E, §F, §G and §H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is provided in §D and can be used to reproduce our main results. We
will be releasing our code publicly..
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details are outlined in §C, §E, §F, and §G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results have error bars, except the Stable Diffusion finetuning
experiment §3.2 which was only trained on one seed per prompt due to compute constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources used in experiments is outlined in §E, §F, §G, §H and
summarised in §I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the stated ethics guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact of the work in §5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models that have risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Creaters of code we use are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have any crowdsourcing experiments or research with human
subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have any experiments with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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