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ABSTRACT

We study the phase transition phenomenon inherent in the shuffled (permuted)
regression problem, which has found numerous applications in databases, privacy,
data analysis, etc. For the permuted regression task: Y = Π♮XB♮, the goal is to
recover the permutation matrix Π♮ as well as the coefficient matrix B♮. It has been
empirically observed in prior studies that when recovering Π♮, there exists a phase
transition phenomenon: the error rate drops to zero rapidly once the parameters
reach certain thresholds. In this study, we aim to precisely identify the locations of
the phase transition points by leveraging techniques from message passing (MP).

In our analysis, we first transform the permutation recovery problem into a prob-
abilistic graphical model. Then, we leverage the analytical tools rooted in the
message passing (MP) algorithm and derive an equation to track the convergence
of the MP algorithm. By linking this equation to the branching random walk
process, we are able to characterize the impact of the signal-to-noise-ratio (snr)
on the permutation recovery. Depending on whether the signal is given or not, we
separately investigate the oracle case and the non-oracle case. The bottleneck in
identifying the phase transition regimes lies in deriving closed-form formulas for
the corresponding critical points, but only in rare scenarios can one obtain such pre-
cise expressions. To tackle this challenge, we propose the Gaussian approximation
method, which allows us to obtain the closed-form formulas in almost all scenarios.
In the oracle case, our method can fairly accurately predict the phase transition snr.
In the non-oracle case, our proposed algorithm can predict the maximum allowed
number of permuted rows and uncover its dependency on the sample number.

Numerical experiments reveal that the observed phase transition points are well
aligned with our theoretical predictions. Our study will motivate exploiting MP al-
gorithms (and related techniques) as an effective tool for permuted regression prob-
lems, which have found applications in machine learning, privacy, and databases.

1 INTRODUCTION

In this paper, we consider the following permuted (shuffled) linear regression problem:

Y = Π♮XB♮ + σW, (1)

where Y ∈ Rn×m denotes the matrix of observations, Π♮ ∈ {0, 1}n×n is the permutation matrix,
X ∈ Rn×p is the design matrix, B♮ ∈ Rp×m is the matrix of signals (regressors), W ∈ Rn×m

denotes the additive noise matrix (with unit variance), and σ2 is the noise variance. The task
is to recover both the signal matrix B♮ and the permutation matrix Π♮. The research on this
challenging permuted regression problem dates back at least to 1970s under the name “broken sample
problem” (DeGroot et al., 1971; Goel, 1975; DeGroot & Goel, 1976; 1980; Bai & Hsing, 2005).
Recent years have witnessed a revival of this problem due to its broad spectrum of applications in
(e.g.,) privacy protection, data integration, etc. (Unnikrishnan et al., 2015; Pananjady et al., 2018;
Slawski & Ben-David, 2019; Pananjady et al., 2017; Slawski et al., 2020; Zhang & Li, 2020).

Specifically, this paper will focus on studying the “phase transition” phenomenon in recovering the
whole permutation matrix Π♮: the error rate for the permutation recovery sharply drops to zero once
the parameters reach certain thresholds. In particular, we leverage techniques in the message passing
(MP) algorithm literature to identify the precise positions of the phase transition thresholds. The
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bottleneck in identifying the phase transition regimes lies in deriving closed-form formulas for the
corresponding critical points. This is a highly challenging task because only in rare scenarios can
one obtain such precise expressions. To tackle the difficulty, we propose the Gaussian approximation
method which allows us to obtain the closed-form formula in almost all scenarios. We should mention
that, in previous studies (Slawski et al., 2020; Slawski & Ben-David, 2019; Pananjady et al., 2017;
Zhang et al., 2022; Zhang & Li, 2020), this phase transition phenomenon was empirically observed.

Related work. The problem we study simultaneously touches two distinct areas of research: (A)
permutation recovery, and (B) message passing (MP). In the literature of permuted linear regression,
essentially all existing works used the same setting (1). Pananjady et al. (2018); Slawski & Ben-David
(2019) consider the single observation model (i.e., m = 1) and prove that the signal-to-noise-ratio
(snr) for the correct permutation recovery is OP (n

c), where c > 0 is some positive constant. Slawski
et al. (2020); Zhang & Li (2020); Zhang et al. (2022) investigate the multiple observations model
(i.e., m > 1) and suggest that the snr requirement can be significantly decreased, from OP (n

c)
to OP

(
nc/m

)
. In particular, Zhang & Li (2020) develop an estimator which we will leverage and

analyze for studying the phase transition phenomenon. Compared with the above work, our analysis
can identify the precise locations of the phase transition thresholds. In this February, there comes
a paper (Lufkin et al., 2024) considering the same problem as ours but in a much simpler setting
(single measurement with m = 1). Compared with their work, our framework can easily reproduce
their predicted phase transition points, answer the questions they treat as open, and predict the phase
transition points in a unified framework. A detailed discussion can be found in the main context.

Another line of related research comes from the field of statistical physics. For example, using
the replica method, Mézard & Parisi (1985; 1986) study the linear assignment problem (LAP), i.e.,
minΠ

∑
i,j ΠijEij where Π denotes a permutation matrix and Eij is i.i.d random variable uniformly

distributed in [0, 1]. Martin et al. (2005) then generalize LAP to multi-index matching and presented
an investigation based on MP algorithm. Recently, Caracciolo et al. (2017); Malatesta et al. (2019)
extend the distribution of Eij to a broader class. However, all the above works exhibit no phase
transition. Chertkov et al. (2010) extend it to the particle tracking problem and observe a phase
transition phenomenon. Later, Semerjian et al. (2020) modify it to fit the graph matching problem,
which paves way for our work in studying the permuted linear regression problem.

Our contributions. We propose the first framework to identify the precise locations of phase
transition thresholds associated with permuted linear regression. In the oracle case where B♮ is
known, our scheme is able to determine the phase transition snr. In the non-oracle case where B♮ is
not given, our method will predict the maximum allowed number of permuted rows and uncover its
dependence on the ratio p/n. In our analysis, we identify the precise positions of the phase transition
points in the large-system limit, e.g., n, m, p all approach to infinity with m/n → τm, p/n → τp.
Interestingly, numerical results well match predictions even when n,m, p are in the hundreds.

Here, we would also like to briefly mention the technical challenges. Compared with the previous
works (Mezard & Montanari, 2009; Talagrand, 2010; Linusson & Wästlund, 2004; Mézard & Parisi,
1987; 1986; Parisi & Ratiéville, 2002; Semerjian et al., 2020), where the edge weights are relatively
simple, our edge weights usually involve high-order interactions across Gaussian random variables
and are densely correlated. To tackle this issue, our proposed approximation method to compute
the phase transition thresholds consists of three parts: 1) performing Gaussian approximation; 2)
modifying the leave-one-out technique; and 3) performing size correction. A detailed explanation
can be found in Section 4. Hopefully, our approximation method will serve independent technical
interests for researchers in the machine learning community.

Notations. In this paper, a a.s.−→ b denotes a converges almost surely to b. We denote f(n) ≃ g(n)
when limn→∞ f(n)/g(n) = 1, and f(n) = OP (g(n)) if the sequence f(n)/g(n) is bounded in
probability, and f(n) = oP (g(n)) if f(n)/g(n) converges to zero in probability. The inner product
between two vectors (resp. matrices) are denoted as ⟨·, ·⟩. For two distributions d1 and d2, we write
d1 ∼= d2 if they are equal up to normalization. Moreover, Pn denotes the set of all possible permu-
tation matrices: Pn ≜ {Π ∈ {0, 1}n×n,

∑
i Πij = 1,

∑
j Πij = 1}. The signal-to-noise-ratio is

snr =
|||B♮|||2F
m·σ2 , where |||·|||F is the Frobenius norm and σ2 is the variance of the sensing noise.
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2 PERMUTATION RECOVERY USING THE MESSAGE PASSING ALGORITHM

Inspired by Mezard & Montanari (2009); Chertkov et al. (2010); Semerjian et al. (2020), we leverage
tools from the statistical physics to identify the locations of the phase transition threshold. We start
this section with a brief review of the linear assignment problem (LAP), which reads as

Π̂ = argminΠ∈Pn
⟨Π,E⟩ , (2)

where E ∈ Rn×n is a fixed matrix and Pn denotes the set of all possible permutation matrices.

In our work, we first establish the link between the LAP and the permuted linear recovery, to be more
specific, formulating the permutation recovery of (1) in the form of (2). Next, we predict the phase
transition points by studying the matrix E, which is our major contribution.

We follow the approach in Mezard & Montanari (2009); Semerjian et al. (2020) and introduce a
probability measure over the permutation matrix Π, which is written as

µ(Π) = (1/Z)
∏
i

1
(
1−

∑
j

Πij

)∏
j

1
(
1−

∑
i

Πij

)
× exp

(
− β

∑
i,j

ΠijEij

)
, (3)

where 1(·) is the indicator function, Z is the normalization constant of the probability measure µ(Π),
and β > 0 is an auxiliary parameter. It is easy to verify the following two properties, e.g., 1) ML
estimator in (2) can be rewritten as Π̂ = argmaxΠµ(Π)1; and 2) the probability measure µ(Π)

concentrates on Π̂ when letting β → ∞.

Then, we study the impact of {Eij} on the reconstructed permutation Π̂ with the message passing
(MP) algorithm. First, we associate a probabilistic graphical model with the probability measure
defined in (3). Then, we rewrite the solution in (2) in the language of the MP algorithm. Finally, we
derive an equation (7) to track the convergence of the MP algorithm. By exploiting relation of (7) to
the branching random walk (BRW) process, we can identify the phase transition points corresponding
to the LAP in (2).

2.1 CONSTRUCTION OF THE GRAPHICAL MODEL

First, we construct the factor graph associated with the probability measure in (3). Adopting the same
strategy as in Chapter 16 of Mezard & Montanari (2009), we conduct the following operations, e.g.,
1) associating each variable Πij a variable node vij ; 2) associating the variable node vij a function
node representing the term e−βΠijEij ; and 3) linking each constraint

∑
i Πij = 1 to a function node

and similarly for the constraint
∑

j Πij = 1. A graphical representation is available in Figure 1.

!! ""

!"#$%&'(!")

!

!

!

! " #$% &'

Figure 1: The constructed graphical model. Circle
icons denote the variable nodes and square icons de-
note the function nodes: blue squares (green squares
resp.) for the constraints on the rows (columns resp.)
of Π, and red squares for the function e−βπEij .

Now we briefly review the MP algorithm. In-
formally speaking, MP is a local algorithm
to compute the marginal probabilities over
the graphical model. In each iteration, the
variable node v transmits the message to its
incident function node f by multiplying all
incoming messages except the message along
the edge (v, f). The function node f trans-
mits the message to its incident variable node
v by computing the weighted summary of
all incoming messages except the message
along the edge (f, v). For a detailed introduc-
tion to MP, we refer readers to Kschischang
et al. (2001), Chapter 16 in MacKay et al.
(2003), and Chapter 14 in Mezard & Monta-
nari (2009).

It is known that MP can obtain the exact marginals (Mezard & Montanari, 2009) for singly connected
graphical models. For other types of graphs, however, whether MP can obtain the exact solution
still remains an open problem (Cantwell & Newman, 2019; Kirkley et al., 2021). At the same time,

1Notice that the requirement Π ∈ Pn is incorporated in µ(Π) implicitly and thus we do not need an explicit
constraint.
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numerical evidences have been witnessed to show that MP can yield meaningful results for graphs
with loops; particular examples include applications in the coding theory (Chung, 2000; Richardson
& Urbanke, 2001; 2008) and the LAP (which happens to be our case) (Mezard & Montanari, 2009;
Chertkov et al., 2010; Caracciolo et al., 2017; Malatesta et al., 2019; Semerjian et al., 2020).

2.2 THE MESSAGE PASSING (MP) ALGORITHM

Next, we perform permutation recovery via MP. The following derivation follows the standard
procedure, which can be found in the previous works (Mezard & Montanari, 2009; Semerjian et al.,
2020). We denote the message flow from the node iL to the variable node (iL, jR) as m̂iL→(iL,jR)(·)
and that from the edge (iL, jR) to node iL as m(iL,jR)→iL(·). Similarly, we define m̂jR→(iL,jR)(·) and
m(iL,jR)→jR(·) as the message flow transmitted between the functional node jR and the variable
node

(
iL, jR

)
. Here the superscripts L and R are used to indicate the positions of the node (left and

right, respectively). Roughly speaking, these transmitted messages can be viewed as (unnormalized)
conditional probability P(Πi,j = {0, 1}|(·)) with the joint PDF being defined in (3). The message
transmission process is to iteratively compute these conditional probabilities.

First, we consider the message flows transmitted between the functional node iL and the variable
node

(
iL, jR

)
, which are written as

m(iL,jR)→iL(π) ∼= m̂jR→(iL,jR)(π)e
−βπE

iL,jR ,

m̂iL→(iL,jR)(π) ∼=
∑
π
iL,kR

∏
kR ̸=jR

m̂kR→(iL,kR)(πiL,kR)× e−βπ
iL,kREiL,kR

1(π +
∑
k

πiL,kR = 1), (4)

where π ∈ {0, 1} is a binary value. Similarly, we can write the message flows between the functional
node jR and the variable node

(
iL, jR

)
, which are denoted as m(iL,jR)→jR(π) and m̂jR→(iL,jR)(π),

respectively. With the parametrization approach, we define

hiL→(iL,jR) ≜
1

β
log

m̂iL→(iL,jR)(1)

m̂iL→(iL,jR)(0)
, hjR→(iL,jR) ≜

1

β
log

m̂jR→(iL,jR)(1)

m̂jR→(iL,jR)(0)
.

Following the routine derivations in MP, we get the edge selection criteria, i.e., we pick π̂(iL) = jR if

hiL→(iL,jR) + hjR→(iL,jR) > EiL,jR ; (5)

otherwise, we have π̂(iL) ̸= jR. Due to the fact that µ(Π) concentrates on Π̂ when β is sufficiently
large, we can thus rewrite the MP update equation as

hiL→(iL,jR) = min
kR ̸=jR

EiL,kR − hkR→(iL,kR), hjR→(iL,jR) = min
kL ̸=iL

EkL,jR − hkL→(kL,jR), (6)

which is attained by letting β → ∞.

2.3 IDENTIFICATION OF THE PHASE TRANSITION THRESHOLD

To identify the phase transition phenomenon inherent in the MP update equation (6), we follow the
strategy in Semerjian et al. (2020) and divide all edges (iL, jR) into two categories according to
whether the edge (iL, jR) corresponds to the ground-truth permutation matrix Π♮ or not. Within each
category, we assume the edges’ weights and the message flows along them can be represented by
independently identically distributed random variables.

For the edge (iL, π♮(iL)) for the ground-truth correspondence, we represent the random variable
associated with the weight Eij as Ω. The random variable for the message flow along this edge
is denoted H (for both hiL→(iL,jR) and hjR→(iL,jR)). For the rest of edges (iL, jR) (jR ̸= π♮(iL)),
we define the corresponding random variables for the edge weight and message flow as Ω̂ and Ĥ ,
respectively. Then, we can rewrite (6) as

Ĥ(t+1) = min
(
Ω−H(t), H

′(t)
)
, H(t+1) = min

1≤i≤n−1
Ω̂i − Ĥ

(t)
i , (7)

where (·)(t) denotes the update in the t-th iteration, H
′

is an independent copy of H , {H(t)
i }1≤i≤n−1

and {Ω̂i}1≤i≤n−1 denote the i.i.d. copies of random variables H(t)
(·) and Ω̂(·). This equation (7) can

4
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be viewed as the analogous version of the density evolution and state evolution, which are used
to analyze the convergence of the message passing and approximate message passing algorithm,
respectively (Chung, 2000; Richardson & Urbanke, 2001; 2008; Donoho et al., 2009; Maleki, 2010;
Bayati & Montanari, 2011; Rangan, 2011).

Remark 1. We conjecture that the distribution difference in the edges’ weights is a necessary
component in capturing the phase transition. On one hand, according to Mézard & Parisi (1986;
1987); Parisi & Ratiéville (2002); Linusson & Wästlund (2004); Mezard & Montanari (2009);
Talagrand (2010), there is no phase transition phenomenon in LAP if the edges’ weights, i.e., Eij , are
assumed to be i.i.d uniformly distributed in [0, 1]. On the other hand, Semerjian et al. (2020) show a
phase transition phenomenon when assuming the weights Eij follow different distributions among
the edges associated with the ground-truth correspondence

(
iL, π♮(iL)

)
and the rest edges.

Relation to branching random walk (BRW) process. Conditional on the event that the permutation
can be perfectly reconstructed, i.e., H +H

′
> Ω as in (5), we can simplify (7) as

H(t+1) = min
1≤i≤n−1

H
(t)
i + Ξi, (8)

where Ξ is defined as the difference between Ω̂ and Ω, which is written as Ξ ≜ Ω̂ − Ω, and
{H(t)

i }1≤i≤n−1 and {Ξi}1≤i≤n−1 denote the i.i.d. copies of random variables H(t)
(·) and Ξ(·).

Remark 2. We briefly explain why the phase transition points predicted by (7) correspond to the
full permutation recovery (i.e., evaluating the performance in terms of P(Π̂ ̸= Π♮)). This is because
that we regard message flows hiL→(iL,jR) and hjR→(iL,jR) i.i.d. samples from certain distributions
(represented by the random variable H) in the derivation. In other words, we track the behaviors of
all message flows when studying the evolution behavior of the random variable H .

Hence, we can claim that all correspondence between all pairs is correct if we find the correct
recovery can be obtained for an arbitrary sample H . On the other hand, we can expect some pairs
with wrong correspondence if H leads to incorrect recovery. 2 Thus, we can predict the phase
transition points based on the convergence of (7).

Adopting the same viewpoint of Semerjian et al. (2020), we treat (8) as a branching random walk
(BRW) process, which enjoys the following property.

Theorem 1 (Hammersley (1974); Kingman (1975); Semerjian et al. (2020)). Consider the recursive
distributional equation K(t+1) = min1≤i≤n K

(t)
i +Ξi, where K(t)

i and Ξi are i.i.d copies of random
variables K

(t)
(·) and Ξ(·), we have K(t+1)

t

a.s.−→ − infθ>0
1
θ log

[∑n
i=1 Ee−θΞi

]
, conditional on the

event that limt→∞ K(t) ̸= ∞.

With Theorem 1, we can compute phase transition point for the correct (full) permutation recovery,
i.e., H + H

′
> Ω, by letting infθ>0

1
θ log

[∑n
i=1 Ee−θΞi

]
= 0, since otherwise the condition in

(5) will be violated (see a detailed explanation in Appendix). In practice, directly computing the
infimum of infθ>0

1
θ log

[∑n
i=1 Ee−θΞi

]
is only possible for limited scenarios. In the next section,

we propose an approximate computation method for the phase transition points, which is capable of
covering a broader class of scenarios.

3 ANALYSIS OF THE PHASE TRANSITION POINTS

Recall that, in this paper, we consider the following linear regression problem with permuted labels

Y = Π♮XB♮ + σW,

where Y ∈ Rn×m represents the matrix of observations, Π♮ ∈ Pn denotes the permutation matrix to
be reconstructed, X ∈ Rn×p is the sensing matrix with each entry Xij following the i.i.d standard
normal distribution, B♮ ∈ Rp×m is the matrix of signals, and W ∈ Rn×m represents the additive
noise matrix and its entries Wij are i.i.d standard normal random variables. In addition, we denote h

as the number of permuted rows corresponding to the permutation matrix Π♮.

2It’s noteworthy that the fact H leads to incorrect recovery does not mean the reconstructed correspondences
are simultaneously incorrect. Numerical experiments also confirm this claim.
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In this work, we focus on studying the “phase transition” phenomenon in recovering Π♮ from the
pair (Y,X). That is, the error rate for the permutation recovery sharply drops to zero once certain
parameters reach the thresholds. In particular, our analysis will identify the precise positions of the
phase transition points in the large-system limit, i.e., n, m, p, and h all approach to infinity with
m/n → τm, p/n → τp, h/n → τh. We will separately study the phase transition phenomenon in 1)
the oracle case where B♮ is given as a prior, and 2) the non-oracle case where B♮ is unknown.

In this section, we consider the oracle scenario, as a warm-up example. To reconstruct the permutation
matrix Π♮, we adopt the following maximum-likelihood (ML) estimator:

Π̂
oracle

= argminΠ∈Pn

〈
Π,−YB♮⊤X⊤

〉
. (9)

Denoting the variable Eoracle
ij as −X⊤

π♮(i)B
♮B♮⊤Xj − σW⊤

i B
♮⊤Xj , (1 ≤ i, j ≤ n), we can

transform the objective function in (9) as the canonical form of LAP, i.e.,
∑

i,j ΠijE
oracle
ij .

3.1 THE PHASE TRANSITION THRESHOLD FOR THE ORACLE CASE

In the oracle case where B♮ is known, we define the following random variable Ξ:

Ξ = x⊤B♮B♮⊤ (x− y) + σwB♮⊤ (x− y) , (10)

where x and y follow the distribution N(0, Ip×p), and w follows the distribution N(0, Im×m).

Assumption 1. We ignore the weak correlation across the Eoracle
ij and view the corresponding Ξi as

i.i.d. copies of (10).

Numerical experiments show that we can safely adopt Assumption 1 without much sacrifice in the
prediction accuracy, see Table 1 and 2. Recalling Theorem 1, we predict the critical points by letting

inf
θ>0

1/θ · log
( n∑

i=1

Ee−θΞi

)
= inf

θ>0

1/θ ·
(
logn+ logEe−θΞ

)
= 0. (11)

The computation procedure consists of two stages:

• Stage I. We compute the optimal θ∗, which is written as θ∗ = argminθ>0
1/θ·

(
log n+ logEe−θΞi

)
.

• Stage II. We plug the optimal θ∗ into (11) and obtain the phase transition snr accordingly.

The following context illustrates the computation details.

Stage I: Determine θ∗. The key in determining θ∗ lies in the computation of Ee−θΞ, which is
summarized in the following proposition.
Lemma 1. For the random variable Ξ defined in (10), we can write its expectation as

Ee−θΞ =

rank(B♮)∏
i=1

[
1 + 2θλ2

i − θ2λ2
i

(
λ2
i + 2σ2

)]− 1
2 , (12)

provided that

θ2σ2λ2
i < 1 and θ2λ2

i

(
λ2
i + 2σ2

)
≤ 1 + 2θλ2

i (13)

hold for all singular values λi of B♮, 1 ≤ i ≤ rank(B♮).
Remark 3. When the conditions in (13) is violated, we have the expectation Ee−θΞ diverge to
infinity, which suggests the optimal θ∗ for infθ>0

log(n·Ee−θΞ)/θ cannot be achieved.

With (12), we can compute the optimal θ∗ by setting the gradient
∂[log(n·Ee−θΞ)/θ]

∂θ = 0. However, a
closed-form of the exact solution for θ∗ is out of reach. As a mitigation, we resort to approximating
logEe−θΞ by its lower-bound, which reads as

logEe−θΞ ≥ θ2

2

(∣∣∣∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣∣∣∣2

F
+ 2σ2

∣∣∣∣∣∣∣∣∣B♮
∣∣∣∣∣∣∣∣∣2

F

)
− θ

∣∣∣∣∣∣∣∣∣B♮
∣∣∣∣∣∣∣∣∣2

F
.

The corresponding minimum value θ̃∗ is thus obtained by minimizing the lower-bound, which is
written as θ̃∗ = 2 log n/

(∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F + 2σ2
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F

)
.
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Stage II: Compute the phase transition snr. We predict the phase transition point snroracle by
letting the lower bound being zero, which can be written as

log n

θ∗
−
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F +

θ∗

2

(∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F + 2σ2
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F

)
= 0.

With standard algebraic manipulations, we have
Proposition 1. The predicted phase transition for the oracle case in (9) can be computed as

2(log n)snroracle ·
∣∣∣∣∣∣B♮⊤

/|||B♮|||F · B
♮
/|||B♮|||F

∣∣∣∣∣∣2
F
+ 4 logn/m = snroracle. (14)

To evaluate the accuracy of our predicted phase transition threshold, we compare the predicted values
with the numerical values (c.f. Section A). The results are shown in Table 1, from which we can
conclude the phase transition threshold snr can be predicted to a good extent. In addition, we observe
that the gap between the theoretical values and the numerical values keeps shrinking as m increases.

Table 1: Comparison between the predicted value of the phase transition threshold snroracle in
Proposition 1 and its simulated value when n = 500. P denotes the predicted value while S denotes
the simulated value (i.e., mean ± std). S corresponds to the snr when the error rate drops below 0.05.
A detailed description of the numerical method can be found in the appendix (code also included).

m 20 30 40 50 60 70

P 3.283 1.415 0.902 0.662 0.523 0.432
S 2.529± 0.079 1.290± 0.054 0.872± 0.034 0.649± 0.012 0.515± 0.016 0.429± 0.015

m 100 110 120 130 140 150

P 0.284 0.255 0.231 0.211 0.195 0.181
S 0.282± 0.008 0.256± 0.006 0.232± 0.006 0.212± 0.004 0.196± 0.006 0.183± 0.005

3.2 GAUSSIAN APPROXIMATION OF THE PHASE TRANSITION THRESHOLD

From the above analysis, we can see that deriving a closed-form expression of the infimum value θ of
log(nEe−θΞ)/θ can be difficult. In fact, in certain scenarios, even obtaining a closed-form expression of
Ee−θΞ is difficult. To handle such challenge, we propose to approximate random variable Ξ by a
Gaussian N(EΞ,VarΞ), namely,

Ee−θΞ ≈ exp

(
−θEΞ +

θ2

2
VarΞ

)
. (15)

With this approximation, we can express θ∗ ≜ inf log(n·Ee
−θΞ)/θ in a closed form, which is√

2 logn/VarΞ.
Theorem 2. For the random variable Ξ defined in (10), its mean and variance can be computed as

EΞ =
∣∣∣∣∣∣B♮

∣∣∣∣∣∣2
F, VarΞ = 3

∣∣∣∣∣∣B♮B♮⊤∣∣∣∣∣∣2
F + 2σ2

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F. (16)

Then, we can predict the phase transition point as follows.
Proposition 2. With Gaussian approximation, we can predict the critical point corresponding to the
phase transition in (11) as

2(log n) · VarΞ = (EΞ)2 , (17)
where EΞ and VarΞ can be found in Theorem 2.
Example 1 (Scaled identity matrix). We consider the scenario where B♮ = λIm×m. Then, we have
B♮
/|||B♮|||F = m−1/2I. The phase transition threshold snroracle in (14) is then 4 logn/(m−2 logn), and

the phase transition threshold s̃nroracle in (17) as 4 logn/(m−6 logn). This solution is almost identical
to (14) in the limit as snroracle ≈ s̃nroracle ≈ 4 logn/m ≃ n

4
m − 1.

Moreover, we should mention that 1) our approximation method applies to a general matrix B♮,
not limited to a scaled identity matrix; and 2) our approximation method can also predict the
phase transition thresholds to a good extent when the entries Xij are sub-Gaussian. The numerical
experiments are given in Table 2, from which we can conclude that the predicted values are well
aligned with the simulation results.
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Remark 4. In addition, we want to discuss one newly-released paper (Lufkin et al., 2024), which
studies the same topic but in a much simpler setting (i.e., single measurement with m = 1). Compared
with their work, our framework can easily produce results that the rigorous method in Lufkin et al.
(2024) regards as an open problem. For example, the results (on the oracle case) which we treat as
a warm-up example, are unsolved and specifically mentioned in the last paragraph. In particular,
our framework can derive their proposed conjectured phase transition snr = n4/m. Moreover, our
framework can also tell when the conjecture holds, i.e., B♮ is an identity matrix, and our predictions’
accuracy has been extensively verified by numerical experiments.

Other advantages of our work include 1) our ability to more accurately pinpoint phase transition
points (their work can only obtain the lower bound of the phase transition point, while our work can
predict the precise location); 2) our applicability to a wider array of cases (we cover the case when
m > 1 while their method only works for m = 1); and 3) our consolidation into a more cohesive
framework to predict the phase transition point.

Table 2: Comparison between the predicted value of the phase transition threshold s̃nroracle in
Proposition 2 and its simulated value when n = 600. In (Case 1), half of singular values are with
λ and the other half are with λ/2; while in (Case 2), half of the singular values are with λ and the
other half are with (3·λ)/4. Gauss refers to Xij

i.i.d∼ N(0, 1) and Unif refers to Xij
i.i.d∼ Unif[−1, 1]. P

denotes the predicted value and S denotes the simulated value (i.e., mean ± std). S corresponds to the
snr when the error rate drops below 0.05. Averaged over 20 repetitions.

m 100 110 120 130 140 150

(Case 1) P 0.297 0.266 0.241 0.220 0.203 0.188
(Gauss) S 0.307± 0.009 0.275± 0.005 0.246± 0.006 0.227± 0.007 0.210± 0.005 0.194± 0.004
(Unif) S 0.294± 0.008 0.266± 0.005 0.239± 0.008 0.216± 0.004 0.201± 0.005 0.189± 0.006

(Case 2) P 0.310 0.276 0.249 0.227 0.209 0.193
(Gauss) S 0.294± 0.008 0.266± 0.006 0.241± 0.005 0.220± 0.004 0.204± 0.006 0.190± 0.003
(Unif) S 0.287± 0.007 0.255± .0043 0.234± 0.007 0.213± 0.005 0.197± 0.003 0.185± 0.005

4 EXTENSION TO NON-ORACLE CASE

Having analyzed the oracle case in the previous section, we now extend the analysis to the non-oracle
case, where the value of B♮ is not given. Different from the oracle case, the ML estimator reduces to
a quadratic assignment problem (QAP) as opposed to LAP. As a mitigation, we adopt the estimator
in Zhang & Li (2020), which reconstructs the permutation matrix within the LAP framework, i.e.,

Π̂
non-oracle

= argminΠ∈Pn

〈
Π,−YY⊤XX⊤

〉
. (18)

We expect this estimator can yield good insights of the permuted linear regression since 1) this
estimator can reach the statistical optimality in a broad range of parameters; and 2) estimator exhibits
a phase transition phenomenon, a similar pattern as the oracle case. The technical details of the above
claims can be found in Zhang & Li (2020).

Following the same procedure as in Section 3, we identify the phase transition threshold snr with
Theorem 1. First, we rewrite the random variable Ξ as

Ξ ∼= YiY
⊤X

(
Xπ♮(i) −Xj

)⊤
, (19)

where i and j are uniformly distributed among the set {1, 2, · · · , n}. Afterwards, we adopt the
Gaussian approximation scheme illustrated in Subsection 3.2 and determine the phase transition
points by first computing EΞ and VarΞ, respectively.
Theorem 3. For the random variable Ξ defined in (19), its mean EΞ and variance VarΞ are

EΞ ≃ n (1− τh)
[
(1 + τp)

∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F +mτpσ
2
]
,

VarΞ ≃ n2τh (1− τh) τ
2
p

[∣∣∣∣∣∣B♮
∣∣∣∣∣∣2

F +mσ2
]2

+ n2
[
2τp + 3 (1− τh)

2
] ∣∣∣∣∣∣B♮⊤B♮

∣∣∣∣∣∣2
F

+ n2
[
6τp (1− τh)

2
+ (3− τh) τ

2
p

] ∣∣∣∣∣∣B♮⊤B♮
∣∣∣∣∣∣2

F,

respectively, where the definitions of τp and τh can be found in Section 3.

The proof of Theorem 3 is quite complicated, involving Wick’s theorem, Stein’s lemma, the condi-
tional technique, and the leave-one-out technique, etc. We defer the technical details to Section C.
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4.1 AN ILLUSTRATING EXAMPLE

Afterwards, we predict the phase transition points. Unlike the oracle case, we notice the edge weights
Eij are strongly correlated, especially when j = π♮(j), which corresponds to the non-permuted rows.
To factor out these dependencies, we only take the permuted rows into account and correct the sample
size from n to τhn.
Proposition 3. The predicted snrnon-oracle for the non-oracle case in (18) can be computed by solving

2 log(nτh)VarΞ = (EΞ)2 ,
where EΞ and VarΞ are in Theorem 3.

To illustrate the prediction accuracy, we consider the case where B♮’s singular values are of the same
order, i.e., λi(B

♮)
λj(B♮)

= O(1), 1 ≤ i, j ≤ m, where λi(·) denotes the i-th singular value. Then, we
obtain the snrnon-oracle, which is written as

snrnon-oracle ≈ η1/η2. (20)
Here, η1 and η2 are defined as

η1 ≜ 2τhτ
2
p log (nτh)− τp(τp + 1) (1− τh) + τp

√
2(1− τh)τh · log (nτh),

η2 ≜ (1− τh) (τp + 1) 2 − 2τhτ
2
p log(nτh).
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Figure 2: (Upper panel) Predicted phase transition points snrnon-oralce. (Lower panel) Plot of the
recovery rate under the noiseless setting, i.e., snr = ∞. Gaussian: B♮

ij
i.i.d∼ N(0, 1); Identity:

B♮ = Ip×p; Block-diagonal: B♮ = diag {1, · · · , 1, 0.5, · · · , 0.5}. We observe that the correct
recovery rates drop sharply within the regions of our predicted value.

Note that the predicted snrnon-oracle varies for different τh and τp. Viewing snrnon-oracle as a function of
τh, we observe a singularity point of τh, which corresponds to the case when η2 = 0. This suggests a
potential phase transition phenomenon w.r.t. τh. To validate the predicted phenomenon, we consider
the noiseless case, i.e., snr = ∞, and reconstruct the permutation matrix Π♮ with (2). Numerical
experiments in Figure 2 confirm our prediction.

Due to the space limit, this section only presents a glimpse of our results in the non-oracle case. The
technical details along with the additional numerical experiments can be found in Section C.

5 CONCLUSIONS

This is the first work that can identify the precise location of phase transition thresholds of permuted
linear regressions. For the oracle case where the signal B♮ is given as a prior, our analysis can
predict the phase transition threshold snroracle to a good extent. For the non-oracle case where
B♮ is not given, we modified the leave-one-out technique to approximately compute the phase
critical snrnon-oracle value for the phase transition, as the precise computation becomes significantly
complicated as the high-order interaction between Gaussian random variables is involved. Moreover,
we associated the singularity point in snrnon-oracle with a phase transition point w.r.t the allowed
number of permuted rows. Moreover, we present numerous numerical experiments to confirm the
accuracy of our theoretical predictions.
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