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The development of neural techniques has opened up new avenues for researchin
machine translation. Today, neural machine translation (NMT) systems can leverage
highly multilingual capacities and even perform zero-shot translation, delivering
promising results in terms of language coverage and quality. However, scaling quality
NMT requires large volumes of parallel bilingual data, which are not equally available
for the 7,000+ languages in the world". Focusing on improving the translation qualities
ofarelatively small group of high-resource languages comes at the expense of directing
research attention to low-resource languages, exacerbating digital inequities in
thelong run. To break this pattern, here we introduce No Language Left Behind—
asingle massively multilingual model that leverages transfer learning across languages.
We developed a conditional computational model based on the Sparsely Gated Mixture
of Experts architecture?”’, which we trained on data obtained with new mining
techniques tailored for low-resource languages. Furthermore, we devised multiple
architectural and training improvements to counteract overfitting while training

on thousands of tasks. We evaluated the performance of our model over 40,000
translation directions using tools created specifically for this purpose—an automatic
benchmark (FLORES-200), a human evaluation metric (XSTS) and a toxicity detector
that covers every language in our model. Compared with the previous state-of-the-art
models, our model achieves an average of 44% improvement in translation quality as
measured by BLEU. By demonstrating how to scale NMT to 200 languages and making

all contributionsin this effort freely available for non-commercial use, our work lays
important groundwork for the development of a universal translation system.

The recent advent of neural machine translation (NMT) has pushed
translation technologies to new frontiers, but its benefits are unevenly
distributed". The vast majority of improvements made have mainly ben-
efited high-resource languages, leaving many low-resource languages
behind. (For the purpose of our research, we define a high-resource
language as alanguage for which we have at least 1 million sentences of
aligned textual data (or bitext) with another language). This disparity
couldlargely be attributed to adatagap: NMT models typically require
large volumes of data to produce quality translations and, by defini-
tion, these volumes are not available for lower-resource languages. The
No Language Left Behind (NLLB-200) project seeks to overcome this
limitation by leveraging previously unknown approaches for building
massively multilingual models with cross-lingual transfer abilities®’,
thereby enabling related languages to learn from each other'*%,

It hasnow been widely acknowledged that multilingual models have
demonstrated promising performance improvement over bilingual
models™. However, the question remains whether massively multilin-
gual models can enable the representation of hundreds of languages
without compromising quality. Our results demonstrate that dou-
bling the number of supported languages in machine translation and
maintaining output quality are not mutually exclusive endeavours.
Our final model—which includes 200 languages and three times as

many low-resource languages as high-resource ones—performs, as a
mean, 44% better than the previous state-of-the-art systems. This paper
presents some of the most important data-gathering, modelling and
evaluation techniques used to achieve this goal.

First, compared with their high-resource counterparts, training data
for low-resource languages are expensive and logistically challenging
to procure ™, Publicly available digital resources are either limited
in volume or difficult for automated systems to detect (particularly
inlarge public web datasets such as CommonCrawl). Regardless of
whether collecting a critical mass of human-translated seed data s
necessary, sufficient dataacquisitionrelies onlarge-scale data mining
and monolingual data pipelines’® ™. The latter techniques are often
affected by noise and biases, thereby making validating the quality
of the datasets they generate tedious®. In NLLB-200, we show that a
distillation-based sentence encoding technique, LASER3 (ref. 21), facili-
tates the effective mining of parallel data for low-resource languages.

Second, onthe modelling side, we use an assemblage of seed, mined,
open-source and back-translated datasets to train multilingual con-
ditional computational models (more specifically, Sparsely Gated
Mixtures-of-Experts models®*” that enable cross-lingual transfer
between related languages without increasing interference between
unrelated languages). We show how we can achieve state-of-the-art

*A list of authors and their affiliations appears at the end of the paper. ®e-mail: costajussa@meta.com
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performance with a more optimal trade-off between cross-lingual
transfer and interference, and improve performance for low-resource
languages.

Finally, for the purpose of quality evaluation, we created FLORES-
200—a massive multilingual benchmark that enables the measure-
ment of translation quality across any of the approximately 40,000
translation directions covered by the NLLB-200 models. Apart from
automatic metrics, we also created Cross-lingual Semantic Text
Similarity (XSTS) and Evaluation of Toxicity (ETOX). XSTS is a human
evaluation protocol that provides consistency across languages;
ETOX s atool to detect added toxicity in translations using toxicity
word lists.

Beyond creating these models, we also reflect on the potential
societal impact of NLLB. To amplify the practical applicability of our
work in service of low-resource-speaking communities, we provide
all the benchmarks, data, code and models described in this effort as
resources freely available for non-commercial use (https://github.com/
facebookresearch/fairseq/tree/nllb) (see Data and Code availability
statements for details).

Automatically creating translation training data

The current techniques used for training translation models are dif*-
ficult to extend to low-resource settings, in which aligned bilingual
textual data (or bitext data) are relatively scarce>. Many low-resource
languages are supported only by small targeted bitext data consisting
primarily of translations of the Christian Bible?*, which provide limited
domain diversity.

Tobuildalarge-scale parallel training dataset that covers hundreds
of languages, our approach centres around extending existing data-
sets by first collecting non-aligned monolingual data. Then, we used a
semantic sentence similarity metric toguide alarge-scale datamining
effortaiming to identify sentences that have a high probability of being
semantically equivalent in different languages'.

Language identification for monolingual data collection
Collecting monolingual data at scalerequires alanguage identification
(LID) system that accurately classifies textual resources for allNLLB-200
languages. Although LID could be seen as a solved problem in some
domains?, itremains an open challenge for web data®?. Specifically,
issues coalesce around domain mismatch?, similar language disam-
biguation? and successful massively multilingual scaling®.

Devoted attention to advancing LID techniques led to a noticeable
increase in both language coverage and accuracy over time. CLD3
(https://github.com/google/cld3) and fasttext® are two readily avail-
able models offering high detection performance for 107 and 187 lan-
guages, respectively. By using numerous public datasets, previous
studies®®*' report even higher coverage—464 and 1,366 languages,
respectively. Another study* scales LID performance up to 1,629 lan-
guages using word lists and self-supervision to bootstrap training data
found onthe web. However, these approaches using found data suffer
from domain imbalance. That is, because the available text domains
vary by language, classifiers conflate different domains with different
languages.

In our work, we curated FLORES-200 to use as a development set
so that our LID system performance® is tuned over a uniform domain
mix. Our approach combines a data-driven fasttext model trained on
FLORES-200 with a small set of handwritten rules to address human
feedback on classification errors. These rules are specifically men-
tionedinsection 5.1.3 of ref. 34 and include linguistic filters to mitigate
the learning of spurious correlations due to noisy training samples
while modelling hundreds of languages.

We compare our LID model with three publicly available models:
CLD3, Langld (https://github.com/saffsd/langid.py) and LangDetect
(https://pypi.org/project/langdetect/). Table1reports the performance
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Table 1| Comparison of publicly available language
identification models with various intersections of labels

FLORES-200n FLORES-200n  FLORES-200n

CLD3nlLangldn CLD3nlangld CLD3

LangDetect
No. of supported 51labels 78 labels 95 labels
languages

F1 FPR F1 FPR F1 FPR
LangDetect 55 97.3 0.0526 64.4 0.4503 531 0.4881
Langld 97 986  0.0200 920 00874 758 0.2196
CLD3 107 98.2  0.0225 97.7 0.0238 970 0.0283
Ours 218 994 0.0084 988 0.0133 985 0.0134

F1is the micro-F1score, and FPR is the micro-false-positive rate.

on three cascading sets of languages intersecting with NLLB-200:
(1) 51 languages also supported by Langld, LangDetect and CLD3;
(2) 78 languages also supported by Langld and CLD3; (3) 95 languages
also supported by CLD3. We also report false-positive rates (FPR) to
reflect the impact of false positives on unseen languages. Our results
show that our modelis equipped to handle all 200 languages found in
FLORES-200 while achieving notably higher performance than Langld,
LangDetect and CLD3. Furthermore, the gainin F1scoreis accompanied
by a notable improvement in FPR, suggesting a much stronger fit for
extracting low-resource languages from web corpora®.

Mining for bitext

Previous work® notes that translation quality generally increases with
the amount of high-quality training data, which s difficult to procure
when working with low-resource languages. Existing parallel corpora
for low-resource languages are often conveniently drawn from known
multilingual collections, such as the Christian Bible or the publica-
tions of multinational organizations, which are limited in quantity
and domain. To overcome this problem, we created training datasets
through global bitext miningin publicly available web content (drawn
fromrepositories suchas CommonCrawl). The underlyingidea of our
bitext mining approachisfirst to learn amultilingual sentence embed-
ding space and use asimilarity measurein thatspace to decide whether
two sentences are parallel. This comparison canbe done for all possible
pairsintwo collections of monolingual texts.

As our mining approach requires a multilingual embedding space,
there are several challenges when scaling this representation to all
NLLB-200 languages. First, we had to ensure that all languages were well
learntand that we accounted for largeimbalances in available training
data. Second, training a massively multilingual sentence encoder from
scratcheachtime anew set oflanguages isintroduced is computation-
ally expensive. Furthermore, the main drawback of this approachis that
thelearntembedding spaces from each new model are not necessarily
mutually compatible. This can make mining intractable as for each
new encoder, the entirety of available monolingual data needs to be
re-embedded (for example, for English alone, this means thousands of
millions of sentences and considerable computational resources). We
solved this problem using a teacher-student approach® that extends
the LASER embedding space® to all NLLB-200 languages. Languages
are trained either as individual students or together with languages
from the same family. The training of students follows the approach
described inref. 21.

Our approach enables us to focus on the specifics of each language
while taking advantage of related languages, whichis crucial for deal-
ing with very low-resource languages. (A language is defined as very
low-resource if it has fewer than 100,000 samples across all pairings
with any other language in our dataset). Using this method, we gener-
ated more than 1,100 million new sentence pairs of training data for 148
languages. This additional training data, paired with back translation
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Table 2 | Improvements from EOM and CL

eng_Latn-xx xx-eng_Latn XX-yy Average
All High Low Very low All High Low Very low All All

(1) Baseline MoE 44.8 54.3 4.4 39.0 56.2 64.0 53.4 52.5 4.9 476

(2) Baseline MoE+ CL 45.2 54.7 1.8 39.5 57.6 64.5 551 55.4 427 48.5

(2) Baseline MoE+CL+EOM 45.4 52.9 41.6 41.2 57.2 61.4 55.1 56.4 44.9 51.0

We report chrF++ scores on FLORES-200 dev set on different types of language pairs. For eng_Latn-xx and xx-eng_Latn, we included all 199 pairs. For xx-yy, we randomly chose 200 directions.
We observe that combining EOM and CL is particularly helpful for low and very low-resource languages. A language is defined as a very low resource if it has fewer than 100,000 samples across
all pairings with any other language in our dataset. The highest score in each column is shown in bold.

(a conventional technique for data augmentation in NMT; ref. 37),
ushered notable improvements in translation quality—specifically,
+12.5chrF++ (ref. 38) for translating very low-resource languages into
English. For more details, see Supplementary Information D.

Modelling

Even with marked data volume increases, the main challenge of
low-resource translation s for training models to adequately represent
200 languages while adjusting to variable data capacity per language
pair. Apart from techniques such as data augmentation (for example,
with back translation) and self-supervision strategies on monolingual
data, we used conditional computational models—more specifically,
Sparsely Gated Mixture of Experts (henceforth MoE)—to minimize
interference between unrelated language directions.

Mok transformer models differ from dense transformer models in
that some of the feed-forward network layers are replaced with MoE
layers in both the encoder and the decoder. An MoE layer consists of
E experts (eachis a feed-forward network) and a gating network to
decide howtorouteinput tokens to experts. The transformer encoder-
decoder model, supplemented with MoE layers and their respective
gating networks, learns to route input tokens to the corresponding
top two experts by optimizing a linearly weighted combination of
label-smoothed cross entropy* and an auxiliary load balancing loss®.

We find that vanillaMoE models with overall dropout are suboptimal
for low-resource languages and significantly overfit on low-resource
pairs. Toremedy thisissue, we designed Expert Output Masking (EOM),
aregularization strategy specific to MoE architectures, and compared
itwith existing regularization strategies, such as Gating Dropout*’. We
find that Gating Dropout performs better than vanillaMoE with overall
dropoutbutis outperformed by EOM.

To further reduce overfitting on low-resource language pairs, we
devised acurriculumlearning thatintroduces language pairsin phases
during model training. Pairs that empirically overfit within Kupdates
areintroduced withKupdates before the end of training. This reduces
overfitting while allowing pairs that benefit from additional training

to continue their learning. Table 2 shows that combining curricu-
lum learning and EOM improves performance, especially on low and
very low-resource language pairs (see section ‘Modelling’ for more
details).

Tounderstand how MoE models are helpful for multilingual machine
translation, we visualize similarities of expertsin the MoE layers using
heat maps (Fig.1a-d). These heat maps demonstrate thatinlate decoder
layers (Fig. 1d), languages are being separated (that is, dispatched to
different sets of experts). Moreover, we observe that languages within
the same family are highly similarin their choice of experts (that s, the
late decoder MoE layers are language-specific). Thisis particularly the
case for the Arabic dialects (the six rows and columns in the top-left
corner), languages in the Benue-Congo subgrouping, as well as lan-
guages in the Devanagari script. By contrast, the early decoder MoE
layers (Fig.1c) seemto be less language-specific. The late encoder MoE
layers are particularly language-agnostic in how they route tokens as
can be attested by the uniform heat map in Fig. 1b.

Combining data (see section ‘Automatically creating translation
training data’) and modelling contributions, Table 3 shows that NLLB-
200 outperforms the nearest state-of-the-art system by almost +7.3
spBLEU (ref. 41) on average, constituting a44% improvement. We then
compared NLLB-200 with a few other state-of-the-art models, such
as Deepnet*? and M2M-100 (ref. 1), to report scores for 87 languages
against FLORES-101. On this smaller subset, NLLB-200 again outper-
forms by +7.0 spBLEU on average. Overall, the results show that NLLB-
200 improves on state-of-the-art systems by anotable margin despite
supporting 200 languages, or twice as many languages (and more than
30,000 additional directions) compared with any previous work. We
alsoshowinadditional experiments that NLLB-200 is a general-purpose
NMT model, transferable to other domains by fine-tuning on small
quantities of high-quality bitexts (see Supplementary InformationE.3).

Evaluations

Among the many aspects of model performance that can be evaluated®,
this section emphasizes three aspects that have a marked impact on

100
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Cosine similarity (%)

25

Fig.1|Cosine similarity scoresbetweenlanguages at different layers of the
encoder-decoder architecture.a-d, Thefirst (a) andlast (b) encoder layers
and thenthe first (c) and last (d) decoder layers. The similarity is measured with

respect tothe gating decisions (expert choice) per language (source side in
theencoderandtargetsideinthe decoder). Lighter colours represent higher
expertssimilarity, hence, alanguage-agnostic processing.
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Table 3 | Comparison of FLORES-101 devtest

eng_Latn-xx  xx-eng_Latn  xx-yy Average
87 languages
M2M-100 -/- -/~ -/~ 13.6/-
Deepnet -/- -/- -/- 18.6/-
NLLB-200 35.4/52.1 42.4/62.1 25.2/43.2 25.5/43.5
101 languages
DeltaLM 26.6/- 33.2/- 16.4/- 16.7/-
NLLB-200 34.0/50.6 41.2/60.9 23.7/M.4 24.0/41.7

We evaluated using FLORES-101 for 10,000 directions. We report both spBLEU and chrF++
scores when available. Scores for DeltaLM are taken from the FLORES-101 leaderboard.
M2M-100 and Deepnet averages only apply to 87 languages that overlap with FLORES-101.
The performance of NLLB-200 was evaluated on this subset of languages. The highest score
in each column and in each grouping of languages is shown in bold.

the overall quality assessment: benchmarks for automatic evaluation,
human evaluation protocols and toxicity evaluation.

Abenchmark for automatic evaluation using FLORES-200

The quality of NMT outputs is typically evaluated by automatic
metrics such as BLEU* or spBLEU*. The computation of automatic
quality scores using these metrics requires benchmark datasets that
provide gold-standard human translations as references. In turn, the
apples-to-apples evaluation of different approaches made possible
by these benchmark datasets gives us a better understanding of what
requires further research and development. For example, creating
benchmark datasets at the Workshop on Machine Translation (WMT)*
led to rapid progress in translation directions such as English to Ger-
man and English to French.

For massively multilingual NMT, the largest benchmark dataset
available was FLORES-101, which supports roughly half the number
oflanguages in NLLB-200. The necessary expansion of FLORES-101to
FLORES-200 constitutes a further challenge in terms of quality assur-
ance, in part because of differences in standardization practices and
limited access to professional translators for all languages involved.
To overcome this challenge, we adapted our workflow to pay particular
attention to quality assurance mechanisms. The FLORES-200 workflow
consists of four phases: (1) alignment; (2) translation, initial quality
assurance and iteration(s); (3) final quality assurance; and (4) com-
pletion. Alanguage FLORES-200 set is considered ready after passing
afinal human quality test with a 90 out of 100 quality score (that is,
independent raters agreed with 90% of the FLORES-200 reference
translations in that direction).

As aresult of this redesigned workflow, we produced a three-split
(dev, devtest, test) data set of parallel human reference translations
for all NLLB-200 languages meeting the 90% quality threshold in a
maximum turnaround time of 287 days (119 days on average, 70 days
minimum). (Note that to avoid leakage with our models, we filtered
data from FLORES and other evaluation benchmarks used (such as
WMT and IWSLT) from our training data. This was done by comparing
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the hashes of training sentences against those of evaluation sen-
tences, using the xxHash algorithm). Please refer to Supplementary
Information C for more details on the evaluation process. Figure 2
shows the quality scores for all languages, some of which are labelled
as examples.

Reliable human evaluation

State-of-the-art automatic metrics often fail to capture aspects of
language that, while subtle, can have anotable bearing on translation
quality. Human evaluations are, therefore, essential to ensuring mean-
ingful quality assessments*¢. That said, relying on them comes with
two challenges: (1) any large-scale human evaluation of NMT quality,
regardless of the number of translation directionsinvolved, contends
with potentially low inter-evaluator agreement (in the vicinity of 0.5
kappa); and (2) massively multilingual NMT introduces another com-
plexity—that of quality evaluation consistency across language direc-
tions. We address these two issues by developing XSTS*, anew scoring
metric focused on meaning, and by using a protocol that allows for the
calibration of scores across evaluators and language pairs.

XSTSis ahuman evaluation protocol inspired by STS*, emphasizing
meaning preservation over fluency. XSTS uses a five-point scale, in
whichlisthelowestscore,and 3 represents the acceptability threshold.
To ensure consistency not only across languages but also among differ-
ent evaluators of any given language, we included the same subset of
sentence pairsin the full set of sentence pairs given to each evaluator,
making it possible to calibrate results.

We find that automated metrics such as spBLEU and chrF++ correlate
reasonably well with calibrated human evaluations of translation qual-
ity, as shown in Fig. 3. Spearman’s R correlation coefficients between
aggregated XSTS and spBLEU, chrF++ (corpus) and chrF++ (average
sentence-level) are 0.710, 0.687 and 0.694, respectively. Other correla-
tion coefficients (Kendall’s rand Pearson’s R) have the same ordering.
Corpus spBLEU provides the best nominal correlation, followed by
average sentence-level chrF++.

Wealso find that calibrated human evaluation scores correlate more
strongly with automated scores than uncalibrated human evaluation
scores across allautomated metrics and choices of correlation coeffi-
cient. Inparticular, uncalibrated human evaluation scores have aSpear-
man’s R correlation coefficient of 0.625, 0.607 and 0.611 for spBLEU,
chrF++ (corpus) and chrF++ (average sentence-level), respectively.

Overall, asample of 55 language directions were evaluated, including
8 into English, 27 out of English, and 20 other direct language direc-
tions. The overallmean of calibrated XSTS scores was 4.26, with 38/55
directions scoring over 4.0 (that s, high quality) and 52/56 directions
scoring over 3.0.

We hypothesize that added toxicity may be because of the presence
oftoxicity inthe training dataand used our detectors to estimate, more
specifically, unbalanced toxicity in the bitext data. We find that esti-
mated levels of unbalanced toxicity vary from one corpus of bitext
to the next and that unbalanced toxicity can be greatly attributed to
misaligned bitext. In other words, training with this misaligned bitext
could encourage mistranslations with added toxicity.

Central Kanuri
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Fig.2|Quality of FLORES-200. Quality assurance scores for the languages in FLORES-200. The minimum acceptable standard is 90%.
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Fig.3|Correlationsbetween aggregated human quality scores and
automated metrics. a, Therelationship between spBLEU and XSTS. b, The
relationship between chrF++and XSTS. ¢, Therelationship between average
sentence-level chrF++and XSTS. Allautomated scores were computed only on

Tomitigate thisissue, we designed a bitext filtering procedure based
onthedetection of multiple instances of added toxicity (that is, cases
inwhich one sentenceinthe bitext pair contains at least two more toxic
itemsthanthe other sentence inthe pair). (A previous detector quality
analysis showed that a higher precision wasreached in this situation).
We added this toxicity filtering procedure as an option to the filtering
process and experimented with or without it for comparison.

The experimental results on the FLORES-200 dev set for 10 transla-
tiondirections (fromand into English for Somali, Southern Sotho, Twi,
Umbundu and Venetian) show that after filtering an average amount
of around 30% parallel sentences, the translation quality (chrF++)
improves by 5% and added toxicity (ETOX) reduces by the same amount.
Therefore, thefiltering pipeline thatincludes toxicity filtering not only
reduces the number of toxic items in the translation output but also
improves the overall translation performance.

Conclusion

In 2016, the United Nations declared internet access a basic human
right. Although the intent of this declaration was to limit censorship
and allow forinformationandideas to flow without interference, much
of the internet today remains inaccessible to many due to language
barriers. Our effort was designed to contribute one solution to help
alter this status quo.

For many low-resource language communities, NLLB-200 is one of
the first models designed to support translation into or out of their
languages. Although applications of these new translation capabilities
could be found in several domains of everyday life, we believe their
impact would be most significantina domainsuchas education. Infor-
mal educational settings, forinstance, students and educators belong-
ingtolow-resource language groups could, with the help of NLLB-200,
tapinto more books, research articles and archives than before. Within
therealms of informal learning, low-resource language speakers could
experience greater access to information from global news outlets
and social media platforms, as well as online encyclopaedias such as
Wikipedia. Access to machine translation motivates more low-resource
language writers or content creators to share localized knowledge
or various aspects of their culture. Giving individuals access to new
translation tools could thus open up opportunities for bidirectional
learning, thereby also challenging Western-centric modes of knowledge
productionand dissemination, ultimately aiding in revitalizing certain
minority cultures and languages.

Since launching NLLB-200, we can already see the impact of the
model across many directions. Four months after the launch of NLLB-
200, Wikimedia reported that our model was the third most used
machine translation engine used by Wikipedia editors (accounting

thesentences evaluated for agiven model and translation direction (either the
fullFLORES-200 dataset or asubset). NLLB-200 refers to a 55B parameter MoE
model,and NLLB-200 Baseline refers to adense 3.3B parameter model.

for 3.8% of all published translations) (https://web.archive.org/web/
20221107181300/https://nbviewer.org/github/wikimedia-research/
machine-translation-service-analysis-2022/blob/main/mt_service_
comparison_Sept2022_update.ipynb). Compared with other machine
translation services and across all languages, articles translated with
NLLB-200 has the lowest percentage of deletion (0.13%) and highest
percentage of translation modification kept under 10%.

In many ways, the composition of the NLLB-200 effort speaks to the
centrality of interdisciplinarity in shaping our vision. Machine trans-
lation and Al advancements lie at the intersection of technological,
cultural and societal development, and thus require scholars with
diverse training and standpoints to fully comprehend every angle**°.
Itisour hope thatinfutureiterations, NLLB-200 continues to include
scholars fromfields underrepresented in the world of machine trans-
lation and Al, particularly those from humanities and social sciences
backgrounds. More importantly, we hope that teams developing
these initiatives would come from a wide range of race, gender and
culturalidentities, much like the communities whose lives we seek to
improve.

Finally, we want to emphasize that overcoming the challenges that
prevent the web from being accessible to speakers of all languages
requires a multifaceted approach. At the technical level, NLLB-200
overcomes many data, modelling and evaluation challenges in NMT
research, butitstill hasitslimitations, some of which are documentedin
Supplementary Information G. As asingle technological intervention,
NLLB-200 s all but one piece of amassive puzzle; policy interventions
aimed at more fundamental issues surrounding education, internet
access and digital literacy are imperative to eradicate the structural
problem of language disparities.
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Methods

Data
This section describes the steps taken to design our language identi-
fication system and bitext mining protocol.

Language identification. To train language identification models,
we used fasttext®>!, which has been widely used for text classification
tasks because of its simplicity and speed. We embedded character-level
n-grams from theinput text and leveraged a multiclasslinear classifier
on top. The lightweight nature of fasttext enables our LID models to
handle web-scale data. Furthermore, alinear model has the benefit of
being easily explainable, allowing us to trace any classification error
back to its root cause. This is instrumental in addressing common
pitfalls that arise when detecting language on web corpora®.
Classifier design. We experimented with two different designs. First,
we used acombination of multiple binary classifiersin which the final
decision was obtained by selecting the language with the highest
score after applying a threshold. We applied threshold optimization
so that when the confidence of a classifier is low, the correspond-
ing language is not considered for the final decision. A sentence was
filtered out if none of the classifiers surpassed its threshold. Sec-
ond, we built a multiclass classifier using softmax over all possible
languages. In this case, the threshold optimization is done after the
softmax.

Our results directed us to focus on the second approach, which offers
several advantages. First, changing the threshold for one language did
not affect the performance of the other (which is not true in the first
setting). Second, this approach generalizes better to out-of-domain
data, which is our primary use case (Wikipedia > web data). Finally, a
single classifier has the added benefit of being computationally simpler,
thus streamlining the language identification process.

Training data and handling massive classimbalance. We used pub-
licly available datasets to train our LID system, partially covering our
languages of interest. The public datasets deployed were mostly built
fromweb pages such as CommonCrawl. We then supplemented these
with NLLB-Seed data (Supplementary Information B) for any missing
languages. However, this supplementation is insufficient in ensuring
balance in the raw training data®**°. For example, English alone repre-
sents 10.1% of our training data, whereas Minangkabau (Latin script)
represents only 0.06%. Following ref. 10, we experimented with mul-
tiple settings of temperature upsampling for underrepresented lan-
guages, in which sentences from alanguage [ representing p, per cent
ofthe datasetare sampled proportionally to p}/r. Optimal performance
was obtained at1/7= 0.3 (for more details, see section 5.1 of ref. 34).
Training parameters. Our best-performing model was trained with
softmax loss over two epochs with a learning rate of 0.8 and embed-
dings with 256 dimensions. We discarded words with less thana thou-
sand occurrences after upsampling and selecting a minimum and
maximum character n-gram length of two and five, respectively (which
were assigned aslotinbuckets of size1,000,000). (In fasttext, we refer
to ‘word’ wheniit is separated by spaces. When it is a non-segmenting
language, thereis only one ‘word’ for the whole sentence (and we take
character n-grams)). All hyperparameters were tuned on FLORES-200
dev (see section 5.1.2 of ref. 34).

Improving LID with linguistic analysis. Language identificationisa
challenging task in which numerous failure modes exist, often exac-
erbated by the gaps between the clean data on which LID models are
trained and noisy dataonwhich LID models are applied. In other words,
LID models trained in a supervised manner on fluently written sen-
tences may have difficulty identifying grammatically incorrect and
incomplete strings extracted from the web. Furthermore, models can
easily learn spurious correlations that are not meaningful for the task
itself. Given these challenges, we collaborated closely with a team of
linguists throughout different stages of LID development to identify

proper focus areas, mitigate issues and explore solutions (see section
5.1.3 of ref. 34).

Bitext mining. The overall approach for bitext mining focused on start-
ing with a massively multilingual sentence encoder teacher model
and adapting it to several different low-resource student models.
This approach enabled us to add low-resource languages without
competing with high-resource languages for capacity. Doing so cir-
cumvents the need to retrain the entire model from scratch while
maintaining compatibility with the multilingual embedding spaces
for subsequent mining. Extended data Fig. 1 summarizes the overall
architecture of the teacher-student approach. The teacher, LASER2,
is animproved version of the open-source LASER encoder (https://
github.com/facebookresearch/LASER). The original training proce-
dure* was adapted to include SentencePiece tokenization (including
avocabulary of 7,000 tokens) and the upsampling of low-resource
languages.

Thearchitecture of the five-layer BiLSTM encoder and the max pool-
ing method to obtainsentence embeddings were left unchanged. The
training was then performed on the same 93 languages with public
resources obtained from OPUS*, See ref. 36 for details on the origi-
nal LASER training procedure. Training of the students followed the
approach described in greater detail in ref. 21, summarized below:

« students specialized in one language or several similar languages;

« students were randomly initialized because we wanted to handle
low-resource language for which we did not have a pre-trained
language model;

« students may have a dedicated SentencePiece vocabulary different
from the teacher to better accommodate scripts and tokens in the
student languages;

- aswe used cosine distance for bitext mining (Fig. 1), students learnt
to minimize the cosine loss with the teacher;

« students can have an MLM loss to leverage student language mono-
lingual data (Fig. 1).

Training parameters. Our student encoders used a 12-layer trans-
former with a hidden size of 1,024, four attention heads, and around
250 million parameters. All students were trained with available bitexts
in their respective language, complemented by 2 million sentences
of English/English and English/Spanish. The motivation behind this
approach s to anchor the students to the English embedding space,
increasing robustness by including English/Spanish bitexts from
CCMatrix and allowing for the joint learning of new languages. This
technique is particularly useful when only limited amounts of bitexts
are available to train the students. Teacher-student training was
performed on16 GPUs, the ADAM optimizer, alearning rate of 0.0005
and a batch size of 10,000. We trained student encoders for 148
languages and named these models LASER3.

Proxy metric for new encoders. Mined bitexts were subsequently
used to improve translation quality for the languages of NLLB-200.
However, mining and NMT training are computationally expensive,
and it is intractable to perform this evaluation systematically for
many different sentence encoder variants. As an evaluation proxy,
we used a mining-based multilingual similarity search error rate,
referred to here as xsim. In contrast to cosine accuracy, which aligns
embeddings based on the highest cosine score, xsim aligns source
and target embeddings based on the highest margin score, which has
been shown to be beneficial in mining®. The margin-based score is
defined as

score(x,y) = margin

cos(x,y), . cos(x,z) y cos(y,v) m
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wherexandyarethesourceand target sentences, and NN,(x) denotes
the k nearest neighbours of x in the other language. We set k to 4. All
xsim results are calculated on FLORES-200 devtest, using the ratio
margin, where margin(a, b) = a/b. Moreover, all scores are calculated
for translations into English (that is, xxx > eng). English is encoded
by the teacher, and the other language is encoded by the LASER3 stu-
dent. To facilitate further research using xsim, we also provide this
evaluation method as an open-source resource (https://github.com/
facebookresearch/LASER/).

End-to-end encoder evaluation. Once we had identified the best
sentence encoder for each language using the xsim scores, we per-
formed mining, added the mined data to the existing bitexts and
trained a bilingual NMT system. Initial experiments indicated that
a threshold on the margin of 1.06 seems to be the best compro-
mise between precision and recall for most languages. For these
NMT baselines, we do not apply extra filtering on the bitexts and
leave this to the training procedure of our massively multilingual
NMT system.

We did not attempt to optimize the architecture and parameters of
the bilingual NMT systems to the characteristics of each language pair
butused thesamearchitecture for all. Therefore, the reported results
should notbeinterpreted as the best possible ones given the available
resources—they are mainly provided to validate the mined bitexts.
We used a 12-layer encoder and decoder and trained for 100 epochs.
Moreover, we looked for the best performance on the FLORES-200
development set and report detokenized BLEU on the FLORES-200
devtest.

Modelling

In this section, we first describe the multilingual machine translation
task setup, whichincludes tokenization and base model architecture.
Then, we outline how we leveraged conditional computation for mas-
sively multilingual machine translation with EOM regulation and our
Curriculum Learning (CL) strategy for low-resource languages.

Task setup. We modelled multilingual NMT as a sequence-to-sequence
task, in whichwe conditioned on aninput sequence in the source lan-
guage with an encoder and generated the output sequence in the ex-
pected target language with a decoder®*. With the source sentence S,
source language ¢,, and target language ¢,in hand, we trained to maxi-
mize the probability of the translationinthe target language T—that s,
P(T1S, ¢, £).Below, we discuss details of the (1) tokenization of the text
sequencesinthesource and target languages; and (2) model architec-
ture with the input and output designed specifically for multilingual
machine translation. For further details on the task setup, such as the
amount of training data per language pair, please refer to Supplemen-
tary Information F or section 8 of ref. 34.

Segmentation with SentencePiece. To tokenize our text sequences,
we trained a single SentencePiece model (SPM)* for all languages. We
sampled a total of 100 million sentences from primary bitext data. To
ensure low-resource languages are well-represented in the vocabulary,
we downsampled high-resource and upsampled low-resource lan-
guages with asampling temperature of five (ref. 10). Notably, vocabu-
lary size is an important hyperparameter in multilingual translation
models involving low-resource languages*® . The vocabulary size of
our trained SPM model is 256,000. Such a large vocabulary ensures
adequate representation across the wide spectrum of languages we
support.

Model architecture. Our sequence-to-sequence multilingual machine
translation modelis based on the transformer encoder-decoder archi-
tecture®®. The encoder transforms the source token sequence into
asequence of token embeddings. Then, the decoder attends to the
encoder output and autoregressively generates the target sentence
token by token. More precisely, the encoder takes the sequence of
tokens W= (w;, ..., w,) and the source language ¢,, and produces a

sequence of embeddings H = (h,, ..., hs), which are then provided to
the decoder with the target language ¢, to produce the target tokens
V= (v, ..., ;) sequentially. In sum,

H=encoder(W, £), (2)

viell,..., T], yy,=decoder(H, &, vy, ..., U). 3)

Note that we prefixed the source sequence with the source language,
as opposed to the target language, as done in previous work'®°. We
did so because we prioritized optimizing the zero-shot performance
of our model on any pair of 200 languages at a minor cost to super-
vised performance. Empirically, we find zero-shot performance to
be negatively affected when conditioning the encoder on the target
language. When the sourceis conditioned on only the source language,
the encoder generalizes better to pairs of source and target languages
not encountered during training’.

Conditional computation for multilingual machine translation.
A massively multilingual translation (MMT) model uses the same
shared model capacity to train on several translation directions
simultaneously. While doing so can lead to beneficial cross-lingual
transfer between related languages, it can also add to the risk of
interference between unrelated languages"®'. MoE models are a
type of conditional computational models®> that activate a subset
of model parameters per input, as opposed to dense models that
activate all model parameters per input. MoE models unlock marked
representational capacity while maintaining the same inference and
training efficiencies in terms of FLOPs compared with the core dense
architecture.

However, as we increase the model capacity and the computational
cost per update, the propensity for low or very low-resource languages
to overfit increases, thus causing performance to deteriorate. In this
section, we examine how we can use Sparsely Gated Mixture of Experts
models®” to achieve a more optimal trade-off between cross-lingual
transfer and interference and improve performance for low-resource
languages.

Sparsely gated mixture of experts. To build our MoE models, we
substitute a quarter of the encoder and decoder feed-forward net-
work layers with MoE layers, each with Edistinct experts. We followed
the Top-k-Gating algorithm in ref. 4 and dispatched each token to at
most k =2 experts. For more details on the training of MoE models, see
Supplementary InformationE.

Expert output masking. In this proposed regularization strategy,
we masked the expert output for arandom fraction (p,,,,) of the input
tokens. For input tokens with dropped expert outputs, the first and/
or second expert is effectively skipped. As shown in the second panel
of Extended data Fig. 2, we masked both experts for the first token
(x,inred), chose not to mask any of the expert outputs for the second
token (x,inblue) and in the final scenario, masked only one expert for
thelast token (x;in green).

Curriculum learning for MMT. Orthogonal to model-side regulariza-
tion methods such as dropout, we explored regularizing MMT models
by means of CL. We proposed starting training with high-resource pairs
first, then introducing low-resource pairs—prone to overfitting—in
later phases. To derive the phases of the curriculum, we first trained a
vanilla MoE model (without CL), followed by partitioning the transla-
tiondirectionsintonbins {b,, ..., b,}.If Tis the total number of training
updates, weintroduced each bin b;after T - k;updates. We based when
(k); and what(b,); directions to add at every phase of the step when we
observed alanguage pair starting to overfit. Review the step-based CL
algorithm in ref. 64 for more on how the directions are partitioned.
See Supplementary Information E.2 for the list of directions added at
each stage.
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Evaluations

Automatic evaluation. Many automatic translation quality assess-
ment metrics exist, including model-based ones suchas COMET® and
BLEURT®®. Although model-based metrics have shown better correla-
tion with humanjudgementinrecent metrics shared tasks of the WMT*,
they require training and are not easily extendable to a large set of
low-resource languages. In this work, we rely on BLEU (and a variant
ofit) and chrF++. Both measures draw ontheideathat translation qual-
ity canbe quantified based on how similar amachine translation output
is compared with that produced by a human translator.

BLEU and spBLEU. The BLEU score** has been the standard metric for
machine translation evaluation since its inception two decades ago.
It measures the overlap between machine and human translations by
combiningthe precision of 1-grams to 4-grams with a brevity penalty.
The main disadvantage of BLEU is that it is tokenization-dependent.
Efforts such as sacrebleu®” have taken strides towards standardiza-
tion, supporting the use of community-standard tokenizers under the
hood. However, these tokenizers do not extend to many languages.
Reference 41 proposes spBLEU, aBLEU metric based on astandardized
SentencePiece model (SPM) covering 101 languages, released alongside
FLORES-101. Inthis work, we provide SPM-200 along with FLORES-200
to enable the measurement of spBLEU. (Our analyses demonstrate
that there are minor differences between SPM-200 from FLORES-200
and SPM-100 from FLORES-101 when measuring on the FLORES-101
languages. The major advantage of SPM-200 is that it covers 200 lan-
guages. More details on SPM-200 are reported insection 8.1.1of ref. 34).
chrF++, The chrF++score® overcomes the limitation of the BLEU score,
which requires that a sentence can be broken up into word tokens.
However, some languages, such as Chinese or Thai, do not use spaces
to separate words, and word segmentation tools may not be readily
available. Thereis alsoaconcernabout highly agglutinative languages
in which BLEU fails to assign any credit to morphological variants.
chrF++ overcomes these weaknesses by basing the overlap calcula-
tion on character-level n-grams F-score (n ranging from 1to 6) and
complementing with word unigrams and bi-grams. In this work, we
primarily evaluated using chrF++ using the settings from sacrebleu.
However, when comparing with other published work, we used BLEU
and spBLEU where appropriate.

Human evaluation methodology. When building machine translation
systems for thousands of different language pairs, a core question is
which pairsreach certainlevels of quality. Therefore, we needed mean-
ingful scores that are comparable across language pairs.

XSTS evaluation protocol. We adapted the recently proposed XSTS
methodology*®. Inshort, XSTS is ahuman evaluation protocol focusing
onmeaning preservation above fluency. See details on this protocolin
Supplementary Information F. For low-resource languages, translations
are usually of poorer quality, and so we focused more on usable (that
is, meaning-preserving) translations, even if they are not fully fluent.
Compared with Direct Assessment® with a 5-point scale (the original
direct assessment uses a100-point scale), it is found that XSTS yields
higher inter-annotator agreement*. XSTS rates each source sentence
and its machine translation on a 5-point scale, in which 1is the lowest
and 5is the highest.

Calibrationset. To enable meaningful scores comparable across lan-
guage pairs, we asked each evaluator to provide assessments using
the XSTS scale on precisely the same set of sentence pairs. This aims to
identify annotators who have asystematic tendency to be more harsh
orgenerousintheirscoring and correct for this effect. The calibration
set consists of the machine translation output paired with the reference
translation only in English. Based on how evaluators used the XSTS
scale onthis calibration set, we adjusted their raw scores on the actual
evaluation task to ensure consistency across evaluators. Although this
monolingual calibration task does not precisely mimic the bilingual

XSTS task, it is a reasonable first approximation and has been shown
to increase the correlation between human and automatic metrics
primarily by reducing one source of ‘noise’in the human evaluations—
thelack of score calibration between annotators.

Obtaining aggregated human quality metrics from multiple
studies. To obtain an aggregate human quality metric for each lan-
guage direction in an evaluation study, we take the majority XSTS
score (that is, mean-median score) for each sentence and average
these majority scores over all evaluated sentences. In a given study,
the aggregate human evaluation score for any translation direction
[~ Lis
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where [, and [, denote the source language and the target language,
respectively; X; ., ,(S, T) denotes the XSTS score of the ith evaluator
who evaluates sentences in a given translation direction [, > [, for a
sourcesentence Sand atargetsentence T; M, ,, denotes the total num-
ber of evaluators who evaluate the (source, translation) sentence pair
(S, 7) for translation direction [, > I; 7, ={(S; 5y o T ISk <N}
isthe set ofN,ﬁ,t (source, translation) sentence pairs being evaluated
for translation direction [, > [..

Every evaluatorinagivenstudysis also asked to provide ratings for
all or parts of a calibration set—C,=1{(S; , T x) 11 < k< K}. S, denotes
the kth source sentence in the calibration set for an evaluation study;
s, T, denotes the translated sentence corresponding to S, ;; and K, = |Cy|
isthe number of sentence pairsinthe calibration set for an evaluation
study.

For each language direction evaluated in a study, we obtained the
majority score on the calibration set as follows:
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where X{(S, T) denotes the XSTS score provided by the ith evaluator,
forthelanguage direction/; »> [, instudy s, for a given source sentence
Sandatranslated sentence T, in the calibration set C; of the study.

Toobtain aggregated calibrated XSTS scores on the language direc-
tion level, we explored several different calibration methodologies.
None of the calibration methods we investigated showed a marked
difference in correlation with automated scores, and all calibration
methodologies we explored provided superior correlation compared
with uncalibrated XSTS scores. For more details on these calibration
methodologies, see section 7.2 of ref. 34.

Added toxicity detection for 200 languages. To enable toxicity det-
ection at scale, we used a detector based on word lists. In this section,
we provide more details about our toxicity definition and describe the
detector (ETOX) and associated word lists.

Toxic content. Owing to the subjective nature of toxicity, definitions of
toxic language canvary. Weincluded items that are commonly referred
toasvulgar or profane language. (Note that vulgar or profane language
is not always necessarily toxic. Some common slang, for instance, may
be considered vulgar but is not necessarily toxic). Moreover, we also
included items associated with depictions of pornographic content
or sexual acts, some frequently used hate speech expressions and
some expressions tied to bullying. We also included items, vulgar or
not, referring to body parts that are commonly associated with sexual
practices.

The ETOX detector. We started with the assumption that general-
purpose machine translation systems should remain faithful to the
source contentand notadd any toxic elements during the translation
process. We define toxic elements as word tokens or short phrases pre-
sentinour lists. ETOX identifies added toxicity using the following two
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criteria: number of toxic items and matched or non-matched toxicity.
Atoxicitemis considered detectedifitis presentinaline and surroun-
ded by spaces or the start or end of aline. ETOX tracks the number of
uniquetoxicitemsfoundinalinebut does not countaphrase againifit
has multiple occurrences. Matched toxicity indicates that the number
of toxicitemsis the samein both the source and the translated content
(thatis,noaddedtoxicity). Added toxicityisaninstance of non-matched
toxicity in whichmore toxicitemsare foundin the translation output
thaninthe source. For non-segmenting languages or some languages
thatuse complex diacritics, space tokenizationis insufficient to distin-
guish words from one another. In those cases, we used SentencePiece
tokenization of both the sentence and toxicity word list.
Toxicity-200 lists. Lists are based on professional translations from
English, which were then heuristically adapted by linguists to better
serve the target language. As toxicity is culturally sensitive, attempting
to find equivalentsin a largely multilingual setting constitutes a chal-
lenge when starting from one source language. To address this issue,
translators were allowed to forgo translating some of the source items
and add more culturally relevantitems.

Intheinitial release of the Toxicity-200 lists, the average number of
items in a toxicity detection list was 271 entries, whereas the median
number of entries was 143. The latter may be a better measure of cen-
tral tendency than the mean average, given that languages with arich
inflectional morphology constitute extreme outliers (for example, the
Czechlisthad 2,534 entries and the Polish list 2,004). The shortest list
had 36 entries, and the longest 6,078.

Data availability

All data generated and described in the Article and its Supplemen-
tary Information are available at GitHub (https://github.com/face-
bookresearch/fairseq/tree/nllb)*’ as follows. The FLORES-200 dataset
contains human-translated evaluation data in 204 languages. The
NLLB-Seed database contains human-translation seed training data
in 39 languages (Supplementary Information I). The NLLB-MD data-
base contains human-translated seed data in different domains in six
languages to assess generalization (Supplementary Information J).
The Toxicity-200 database contains wordlists to detect toxicity in200
languages. Mined bitext database contains publicly available web data
for 148 English-centric and 1,465 non-English-centric language pairs.
Publicly available data used to train NLLB models with references to
download the data are listed in Supplementary Table 2.

Code availability

To make our work available to the community, we provide the fol-
lowing models and supporting code as resources freely available
for non-commercial use, available at GitHub (https://github.com/
facebookresearch/fairseq/tree/nllb)®® as follows. The translation
models cover 200 languages; the NLLB models come in multiple sizes
(54.5B MoE, 3.3B and 1.3B Dense, and 1.3B and 600M distilled). The
language identification models contain more than 200 languages.
LASER3 comprises sentence encoders for identifying aligned bitext
for148languages. Stopes consists of a data-mininglibrary that can be
used to process and clean monolingual data, followed by the creation
of aligned bitext. Scripts to recreate our training data and training
and generation scripts to reproduce our models are also included.
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Extended DataFig.1|Architecture of the LASER3 teacher-student approach. See” for more details.
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Extended DataFig. 2 |Illustration of EOM (panel c) in contrast to overall dropout (panel b) for MoE layers. A color represents atoken, and each tokenis
dispatched to two experts (Top-2-Gating) depending on the gating decision (panel a). Faded colors correspond to dropped units or masked outputs.
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