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ABSTRACT

Robotic manipulation with dexterous hands is inherently challenging due to their
high-dimensional action spaces and the lack of large-scale, high-quality demon-
strations. While there are many videos involving interactions between human
hands and objects, the frequent, dynamic occlusions between human hands and
objects complicate the accurate and robust tracking of hand and object poses, mak-
ing it challenging to convert these interactions into high-quality dexterous robotic
demonstrations. To address these challenges, we introduce a novel Training-Free
Hand-Object pose tracking pipeline (TF-HOT) that leverages differentiable ren-
dering and rich priors from pre-trained 2D foundation perception models to per-
form optimization of human hand and object pose trajectories from input videos.
Our method is efficient, allowing us to convert an in-the-wild video to pose trajec-
tories in 1 minute, and we demonstrate state-of-the-art performance of our method
over in-the-wild videos. Finally, we illustrate an application of our method in im-
itation learning by training policies to follow the pose trajectories extracted from
TF-HOT, allowing us to learn dexterous manipulation policies that significantly
outperform reinforcement learning and imitation learning methods that do not uti-
lize hand-object pose trajectory following.

1 INTRODUCTION

Dexterous hand manipulation tasks are crucial in advancing robotics and artificial intelligence, with
significant applications in areas such as virtual reality (VR), teleoperation, and human-robot inter-
action (Qin et al., 2022). These tasks are inherently challenging due to their high-dimensional state
and action spaces, which lead to poor sample efficiency and complex reward designs when using
reinforcement learning (RL) methods (Chen et al., 2022; Wang et al., 2024). Recent advancements
in imitation learning have provided alternative approaches to tackle these challenges by leveraging
demonstrations to guide the learning process (Qin et al., 2023). However, obtaining high-quality
demonstrations for dexterous manipulation is non-trivial. Traditional methods often rely on devices
like VR equipment or exoskeletons for teleoperation (Cheng et al., 2024; Yang et al., 2024b; Fang
et al., 2024), which may not capture natural human hand movements and may be costly for scaling
up to diverse environments and object interactions. Additionally, the discrepancy between human
hand kinematics and robotic hand designs introduces gaps between simulation and reality.

Hand-object pose estimation is a fundamental task in computer vision (Chen et al., 2023; Qi et al.,
2024; Liu et al., 2021; 2022; Yang et al., 2021; 2024a; Hasson et al., 2019) that can bridge this
gap by extracting key information from human demonstrations captured in the wild. Accurate es-
timation of hand and object poses enables robots to learn manipulation skills directly from human
behaviors observed in unstructured environments. However, there are several challenges: 1) Occlu-
sion: Severe occlusions during hand-object interactions degrade the performance of pose estimation
algorithms. 2) Object diversity: Existing datasets are limited in object diversity and are often cap-
tured in controlled environments, limiting the generalizability of trained models to unseen objects
and in-the-wild scenarios. 3) Annotation difficulties: Obtaining precise 3D annotations for hand
and object poses is labor-intensive and impractical at scale, especially in real-world settings.
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Current approaches to hand-object pose estimation can be broadly categorized into learning-based
methods and optimization-based methods. Learning-based methods typically require datasets with
object and hand pose annotations, which are expensive and time-consuming to collect at large scale,
especially for real-world data. Thus, these models often struggle to generalize to unseen objects and
complex environments. On the other hand, optimization-based methods can potentially generalize
better but often rely on multi-camera setups, which limits their use in real-world scenarios.

To address these limitations, we introduce a novel, training-free hand-object pose tracking approach
called TF-HOT (Training-Free Hand-Object Tracking). Our core idea is to perform inference-
time optimization of pose parameters by utilizing both 3D point cloud observations and rich priors
from pre-trained 2D foundation perception models. This method eliminates the need for large-
scale annotated data for training a hand-pose tracking model, thereby reducing training costs and
enhancing our method’s adaptability for real-world applications. Specifically, we parameterize the
optimization variables as a 3D parametric hand model (i.e., MANO (Romero et al., 2022)) and
a 6DoF object pose. We then leverage 2D hand joints, 2D hand and object masks, 3D point cloud
observations, and multiple regularization terms as constraints to guide the optimization process. This
design effectively utilizes the rich knowledge and strong generalization capabilities of pre-trained
2D perception models, resulting in a robust and generalizable hand-object pose tracking system.

Our approach offers several key features: Training-free deployment: TF-HOT requires no model
training. Each trajectory’s hand-object pose optimization process can be completed within 1 minute,
making TF-HOT adaptable to diverse scenarios and enabling scalable data generation for applica-
tions like imitation learning. High accuracy and robustness: By utilizing differentiable rendering-
based joint optimization of hand and object poses and incorporating rich semi-supervisory signals
from existing 2D foundation models, TF-HOT achieves high accuracy across diverse environments
and remains robust to hand-object occlusions. We also demonstrate the superior performance of
TF-HOT on the public DexYCB dataset compared to baseline methods. For imitation learning
applications, we further propose a method named Pose Trajectory Following (PTF) that trains
policies to control the robot to follow the pose demonstration trajectories extracted by TF-HOT. By
doing so, we can effectively learn dexterous manipulation tasks and significantly outperform imi-
tation learning and reinforcement learning methods that do not utilize hand-object pose trajectory
following.

2 RELATED WORKS

Hand and Object Pose Estimation Hand pose estimation has been tackled using various input
modalities, including depth-based, RGB-based, and multimodal approaches. Depth-based methods
have leveraged Principal Component Analysis (PCA), and convolutional neural networks (CNNs)
in works such as (Oberweger et al., 2015; Oberweger & Lepetit, 2017). Additional CNN-based
approaches have been proposed, including (Tompson et al., 2014) and (Madadi et al., 2017), while
(Malik et al., 2018) introduced synthetic depth data for training. Ensemble learning strategies were
also employed (Guo et al., 2017b;a) and are used in some anchor-based methods (Xiong et al.,
2019). A recurrent approach using LSTM was presented in (Deng et al., 2022). For RGB-based
methods, (Ge et al., 2019) proposed a Graph CNN, while (Zimmermann & Brox, 2017) introduced
network-implicit 3D articulation priors. Works such as (Jiang et al., 2023) utilized 3D anchor
points. Furthermore, methods extending MANO (Romero et al., 2022), incorporating partial depth
information, were explored by (Baek et al., 2019).

In terms of object pose estimation, direct inference of 3D poses has been addressed through various
approaches (Xiang et al., 2017). Two-step methods, which first lift 2D keypoints to 3D, have been
explored in works such as (Tekin et al., 2018) and (Kehl et al., 2017), while coarse-to-fine strategies
were employed in (Rad & Lepetit, 2017). Object pose estimation under severe occlusion has also
been investigated by (Peng et al., 2019). (Sun et al., 2022) introduced a non-CAD-based method
for real-time pose tracking. CAD-based methods like (Wen et al., 2024) have shown limitations
when dealing with heavily occluded objects.

Many hand-object interaction methods are based on the MANO model (Liu et al., 2021; Chen et al.,
2023), and several extended approaches have been proposed to improve performance. These ex-
tensions include the use of contact potential fields (Yang et al., 2021; 2024a), biomechanical con-
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Figure 1: Pipeline of TF-HOT. Given an RGB-D video as input, we first use SAM2 and MMPose
for mask prediction and 2D joint localization. We then jointly optimize the MANO hand model pa-
rameters (Romero et al., 2022) and object poses by minimizing a multi-term loss function, incorpo-
rating 2D priors from foundation perception models, 3D point cloud observation, and regularization
to encourage physically-plausible and stable results. Our pipeline enables effective hand-object pose
estimation for in-the-wild scenarios.

straints (Xie et al., 2024), transformer-based architectures (Pavlakos et al., 2024), and signed dis-
tance fields (Qi et al., 2024).

Imitation Learning for Dexterous Manipulation Imitation learning (IL) is a promising paradigm
for learning robot manipulation policies from expert demonstrations. The simplest form, Behavior
Cloning (BC), learns policies to mimic expert actions from offline expert demonstrations and has
been shown effective on a wide range of problems (Bain & Sammut, 1995; Pomerleau, 1988; Flo-
rence et al., 2022). However, BC struggles with out-of-distribution samples (Ross et al., 2011). An-
other approach to imitation is Inverse Reinforcement Learning (IRL) (Abbeel & Ng, 2004; Haldar
et al., 2023), which focuses on learning to estimate expert reward function through online interac-
tions, but it suffers from low sample efficiency (Kostrikov et al., 2018; Shen et al., 2022). Incor-
porating external data into Reinforcement Learning (RL) algorithms provides another approach to
solving dexterous manipulation tasks, such as augmenting the replay buffers of RL (Vecerik et al.,
2017; Radosavovic et al., 2021; Qin et al., 2022), or further incorporating additional behavior cloning
loss terms (Rajeswaran et al., 2017). However, such methods typically rely on state-action demon-
strations, which may not always be feasible when learning directly from human demonstrations
(e.g., videos). Another method of incorporating expert demonstrations into RL is using state-only
demonstrations to shape the reward (Xu et al., 2023; Christen et al., 2022; Wan et al., 2023). In our
work, we utilize pose-only demonstrations from in-the-wild RGBD videos to optimize policies for
dexterous manipulation tasks.

3 METHOD

Given an RGB-D video as input, the objective is to estimate the hand and object poses in each frame.
As depicted in Fig. 1, we introduce a Training-Free 3D Hand and Object pose joint optimization
pipeline (TF-HOT).

We use the MANO (Romero et al., 2022) model to represent the 3D hand shape. The MANO model
provides two core functions, J and M, which, given the input parameters of pose θ, shape β, rotation
r, and translation t, yield the hand meshM and 3D hand joints j3d. For brevity, we define the set of
hand-related parameters as γ = {θ, β, r, t}.
For object pose estimation, we assume that the object modelMobj is readily available. In practice,
these models can be obtained through learning-based 3D reconstruction methods from single-view
or multi-view images (Wei et al., 2024; Liu et al., 2024a;b; Xu et al., 2024; Hong et al., 2023).
During the optimization process, the object pose P for each frame is parameterized as a quaternion
and a translation vector.
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The overall goal is to jointly optimize the hand and object pose {γ, P} in a per-frame manner by
minimizing the following loss function:

Ltotal(γ, P ) = λ2dL2d(γ) + λrenderLrender(γ, P )

+ λsurfLsurf(γ, P ) + λsdfLsdf(P ) + λpenetrLpenetr(γ, P )

+ λattrLattr(γ, P ) + λregLreg(γ, P )

(1)

Here, the λ values serve as weighting coefficients for each loss term, and the loss terms are explained
in the subsequent sections.

These loss components can be categorized into three groups: 1) 2D constraints applied in the image
space; 2) 3D information that enhances pose accuracy; and 3) regularization terms that promote
optimization stability and ensure physically plausible results.

3.1 CONSTRAINTS FROM 2D PRIORS

2D Joint Projection Loss L2d We penalize the 2D projection error by measuring the Euclidean
distance between projected 3D hand joints and reference 2D joint locations. This penalty is formu-
lated as follows:

L2d(γ) = w̃∥ΠJ(γ)− j̃2d∥2 (2)

where J(γ) represents the MANO hand 3D joints, and Π is the projection operator, j̃2d is the 2D
joint locations predicted from the RGB images. The term w̃ corresponds to the 2D joint localiza-
tion confidence. which adaptively modulates the loss weights to reflect the reliability of the joint
predictions.

Rendering Loss Lrender To provide denser supervision, we employ a pixel-wise mask loss. Given
the inherent hand-object interaction in our task, we jointly render both the hand and the object to
account for occlusions:

M hand,M obj = π[M(γ), PtMobj], (3)

where π is a differentiable mask renderer (Laine et al., 2020), M(γ) is the MANO hand model,
PtMobj is the transformed object model using the object pose Pt.

We minimize the pixel-wise difference between the rendered masks and reference masks
M̃ hand

t , M̃ obj
t :

Lrender = w1∥M hand − M̃ hand∥2 + w2∥M obj − M̃ obj∥2, (4)

where w1 and w2 are the respective weights for the hand and object.

In our implementation, we employ an off-the-shelf segmentation tracking network, SAM2 (Ravi
et al., 2024), to obtain the reference hand and object masks. The hand masks are converted into
bounding boxes, which are used as prompts for MMPose (Contributors, 2020) to predict 2d hand
joints j̃2d along with their localization confidence w̃.

3.2 LEVERAGING 3D INFORMATION

In addition to the 2D constraints, we incorporate 3D information from the depth images to mitigate
overfitting to the input view.

Surface Loss Lsurf The most widely used surface loss aligns meshes to point clouds by minimiz-
ing distance between point cloud and mesh surfaces such as in (Kwon et al., 2021). However, as
shown in Fig. 2 (b), in single-view setting, we can only capture a partial point cloud, leading to
ambiguity in determining which parts of the 3D model should align with the point cloud.

To address this problem, we introduce a visible-aware surface loss, which restricts alignment to
the visible portion of the mesh surface. Since the visible faces are already computed during the
rendering process, incorporating this loss does not introduce additional computational overhead.

4
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Figure 2: Illustration of the visible-aware surface loss. (a) Input image; (b) Partial point cloud
back-projected from the depth image (c) Vanilla 3D surface loss. The point cloud incorrectly fits
the invisible surfaces of the hand model; (d) Visible-aware surface loss. The point cloud correctly
aligns with the visible parts of the hand model. In (c) and (d), we only show the hand point cloud.

Formally, denoting the visible surface as S, the visible-aware surface loss is defined as the combi-
nation of point-to-face and face-to-point distances:

f(P,S) = (w3

∑
△i∈S

min
pj∈P

∥pj −△i∥2 + w4
|S|
|P|

∑
pi∈P

min
△j∈S

∥pi −△j∥2), (5)

where pi is the i-th point in the point cloud P ,△j is the j-th triangle of the visible surface, ∥p−△∥2
computes point-to-triangle distance, |S| is the number of triangles in the visible surface, |P| is the
number points in the point cloud, and w3 and w4 are the weights of point-to-face distance and face-
to-point distance.

In our implementation, the hand and object masks are used to extract the respective point clouds,
and the surface losses are computed for the hand and the object separately.

SDF Loss Lsurf The visible surface in the visible-aware surface loss is derived from the estimated
object pose estimation rather than the ground truth. Consequently, if the object pose initialization is
poor, the surface loss might attempt to align the incorrect parts of the surface to the point cloud, as
shown in Fig. 3.

To address this problem, we follow (Chen et al., 2023) to use a Signed Distance Function (SDF) loss
to minimize the distance between the point cloud and the surface defined by the zero-level set of the
SDF field:

Lsdf(P ) =
∑
v∈P
∥ϕ(P−1v)∥2, (6)

where ϕ(x) is the trilinear interpolated SDF value at location x from the object’s SDF volume, P−1v
represents the transformation of point v back to the object’s canonical space.

3.3 REGULARIZATION AND INITIALIZATION

In addition to the aforementioned 2D and 3D objective terms, We introduce several regularization
terms to enhance the stability of the optimization process and ensure physically plausible results.

Penetration Loss Lpenetr A key physical constraint is to prevent hand-object intersection, as in
(Hasson et al., 2019; Chen et al., 2023). This is enforced by penalizing the vertices of the hand that
penetrated the object:

Lpenetr(γ, P ) =
∑

v∈M(γ)

(−1ϕ(P−1v)<0 ϕ(P−1v)). (7)

Instead of applying the maximum penalty as done in (Chen et al., 2023), we sum the penetration
penalties across all hand vertices to impose a stricter non-penetration constraint.

Attraction Loss Lattr Another physical constraint is the attraction loss, as proposed in (Hasson
et al., 2019), which encourages contact between the fingertips and the object. This is achieved by
penalizing the minimum SDF values of the five fingertips that are outside the object:
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Input Image GT w/o ℒsdf

(a) (b) (d)(c)

w/ ℒsdf

Figure 3: Illustration of the SDF loss. (a) Input image; (b) Ground-truth hand and object poses;
(c) Result without the SDF loss. When the visible surface is inaccurate due to poor initialization,
the visible-aware surface loss will guide the optimization in a wrong direction.; (d) Result with the
SDF loss. It helps to converge to a better result with inaccurate initialization. Black points are object
point cloud.

Lattr(γ, P ) =

n=5∑
i=i

min
v∈M(γ)C

(1ϕ(P−1v)>0 ϕ(P−1v)), (8)

where M(γ)Ci is predefined contact region of the i-th finger following (Hasson et al., 2019). We
follow the same strategy as (Chen et al., 2023) to determine when the attraction loss should be ap-
plied: when the maximum penetration (i.e. the maximum of the negative SDF) exceeds a threshold,
the hand is considered to be in contact with the object, and the attraction loss is activated to pull
distant fingers closer.

Regularization Loss Lreg We penalize the difference of j3d
t , tt across frames to stabilize results:

Lreg = w5 max(0, ∥j3d
t − j3d

t−1∥2 − ϵ1) + w6 max(0, ∥Tt − Tt−1∥2 − ϵ2) (9)

where j3dt represents the 3D hand joints at frame t, Tt is the translation component of object pose
P at frame t, w5 and w6 weights hand and object regularization, and ϵ1 and ϵ2 are predefined
thresholds.

Initialization Proper initialization is critical in tackling this high-dimensional optimization prob-
lem. In our implementation, we use different strategies for initializing the first frame and subsequent
frames within a video.

For the first frame, we initialize the object pose using an off-the-shelf object pose estimation network
(Wen et al., 2024). For the hand pose, we uniformly sample N global hand rotations from the SO(3)
manifold and randomly sample N pose and shape parameters. The hand’s global translations are
initialized by aligning the center of the hand model Mhand to the center of the hand point cloud. We
then optimize γi

0 by minimizing Ltotal(γ
i
0, P0) while keeping P0 fixed, and select the optimal hand

parameters γj
0 corresponding to the lowest 2D joint error: j = argmini L2d(γ

i
0).

For subsequent frames, the optimized hand and object poses from the previous frame (γt−1, Pt−1)
are used as the initialization for frame t.

3.4 APPLICATION: POSE TRAJECTORY FOLLOWING (PTF)

In this section, we demonstrate the application of our extracted hand and object poses in robotic dex-
terous hand manipulation tasks. We introduce an imitation learning method named Pose Trajectory
Following (PTF) (Fig. 4), which leverages a single pose-only demonstration to optimize policies for
dexterous hand manipulation tasks.

Given a trajectory of object and hand poses from TF-HOT, we apply inverse kinematics and the re-
targeting algorithm in (Qin et al., 2023) to set the initial robot joints angles such that the robot hand’s
initial pose and finger positions match the first frame of demonstration. To perform imitation learn-
ing using the pose-only demonstration, we design a specific trajectory-following reward (Tao et al.,
2023) for dexterous hand manipulation (see supplementary materials for more details) that measures
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Object PoseHand Pose

Arm Inverse Kinematics 
Hand Pose Retargeting

Figure 4: Pipeline of PTF method. The blue boxes contain the information used to calculate the
final reward, including the poses (p), the original reward (rori), and the trajectory-following reward
(rtf ). The green boxes contain the information provided to the agent for RL training.

the progress of the current robot hand’s state along the target pose trajectory. We subsequently use
PPO (Schulman et al., 2017) to optimize our policy to maximize the the total of trajectory-following
return and origin return.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We conduct hand-object pose estimation experiments on two datasets: the public dataset
DexYCB(Chao et al., 2021), a benchmark for hand-object interaction, and an in-the-wild dataset
that we collected by ourselves using a RealSense D435 RGB-D camera.

DexYCB is a widely used real-world RGB-D dataset designed for hand-object interaction tasks,
particularly object pick-up. It presents significant challenges due to its inclusion of fast hand motions
and a variety of objects. We evaluate our method across four object categories—box, bottle, can,
and bowl—using a total of 384 videos.

In our in-the-wild dataset, we captured 14 videos comprising 1,918 frames and featuring six distinct
objects. Our method is evaluated across all available videos and frames.

For the DexYCB dataset, we use the following metrics for evaluation: 1) Hand pose evaluation: We
report the mean per joint position error (MPJPE) and the pixel distance between projected 2D joints
and their ground-truth locations (J2E). 2) Object pose evaluation: We measure the rotation error rerr
and the translation error terr for object pose estimation.

For the in-the-wild dataset, ground-truth labels are unavailable. Therefore, we evaluate hand and
object pose estimation using the following proxy metrics: 1) Hand pose evaluation: We report the
pixel distance between the projected 2D joints and the 2D joints predicted by MMPose, denoted as
J2E∗. 2) Object pose evaluation: We use the Intersection-over-Union (IoU) between the rendered
object masks and the masks predicted by SAM2, denoted as IoUobj. Additionally, we report the
visible-aware 3D surface distance (defined in Eq. 5) normalized by the number of points in the point
cloud, which we denote as SDobj.

4.2 RESULTS AND ANALYSIS

We evaluate the performance of our method and compare it with two state-of-the-art approaches:
HOTrack (Chen et al., 2023) and HOISDF (Qi et al., 2024). HOTrack utilizes an uncolored point
cloud and 3D hand joints from the previous frame as input. It predicts the hand pose using a neu-
ral network, followed by a separate optimization module for both hand and object pose estima-
tion. Since HOTrack requires the 3D hand joints and object pose from the first frame, we initialize
the method with the first-frame results from our approach during the evaluation on our in-the-wild
dataset. HOISDF only uses RGB images as input and employs a neural network to predict the per-
point SDF value by aggregating image features. A subsequent module is used to estimate object
poses guided by the SDF feature representations.

7
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Table 1: Quantitative results on hand and pose estimation. We report MPJPE (cm), J2D (pixel),
terr (cm), rerr (◦) for DexYCB and J2D∗ (pixel), IoUobj, SDobj (mm) for in-the-wild data. ∗ indicates
that the results are compared with predictions from SAM2 and MMPose, while others are compared
with ground-truth labels.

DexYCB In-the-wild

MPJPE ↓ J2D ↓ terr ↓ rerr ↓ J2D∗ ↓ IoUobj
∗ ↑ SDobj ↓

HOTrack (Chen et al., 2023) 2.90 24.41 2.61 19.70 27.60 0.735 5.66
HOISDF (Qi et al., 2024) 1.01 5.02 2.92 40.10 25.33 0.258 16.0

Ours 2.56 11.14 2.39 30.12 6.68 0.786 5.59

Both of these two methods require training on large-scale annotated datasets, thus exhibiting worse
generalization ability compared to our method.

Evaluation on the DexYCB dataset We present evaluation results in Tab. 1. For hand pose
estimation, our results outperform the in-the-wild tracking method HOTrack and are more physically
plausible as illustrated in Fig. 5(a). While HOISDF achieves the best performance in terms of
MPJPE and J2D, we argue that its superior results stem from dataset-specific priors embedded in its
training process, which leads to overfitting on the DexYCB dataset and limits its ability to generalize.
For object pose estimation, our method achieves the lowest translation error, which we attribute to
the use of our visible-aware surface loss that enhances object localization accuracy.

Evaluation on in-the-wild dataset When evaluated on the in-the-wild dataset, our method
demonstrates superiority in both quantitative metrics (see Table 1) and qualitative outcomes (see
Fig. 5(b)). HOTrack’s reliance on point cloud input makes it sensitive to the quality of the point
cloud, which, in this case, is derived from masks predicted by SAM2. The instability of the hand
mask predictions negatively impacts HOTrack’s performance. In contrast, HOISDF, which only uti-
lizes RGB input and lacks direct access to 3D information, suffers from overfitting due to its reliance
on learned dataset-specific priors. As a result, HOISDF struggles to generalize when confronted with
data that includes unseen camera poses and objects not present in its training data.

4.3 ABLATION STUDY

We conducted ablation studies to analyze the impact of different loss components on the can cat-
egory of the DexYCB dataset. Specifically, we compare the performance of our full pipeline with
variations where each loss term is omitted. As shown in Tab. 2, the removal of any loss term leads
to performance degradation, with the omission of the visible-aware 3D surface loss leading to par-
ticularly significant deviations.

We illustrate results in Fig. 6. The first row shows the input view and corresponding results, and the
second row shows results from the back view perspective. Our full pipeline produces results that are
both accurate and physically plausible, even in scenarios where the hand is significantly occluded.
In contrast, when the visible-aware 3D surface loss is omitted, substantial misalignment occurs
between the hand and the object. The removal of the penetration loss Lpenetr results in hand-object
penetration when viewed from the back, even though the input view appears correct. The absence
of the attraction loss Lattr produces an unrealistic grasping posture, and without the regularization
loss Lreg, the hand becomes highly susceptible to noise in the depth data, leading to incorrect pose
estimation results.

Table 2: Ablation study on loss terms. We report MPJPE (cm) evaluation results on the DexYCB
can category.

Ours w/o visible w/o Lpenetr w/o Lattr w/o Lreg w/o Lsdf

2.86 4.45 3.71 3.73 3.16 3.60
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Ours HOISDFHOTrackInput Image GT

(a) DexYCB dataset.

Ours HOISDFHOTrackInput Image

(b) In-the-wild dataset.

Figure 5: Qualitative results on hand and object pose estimation.

OursGT w/o visible w/o ℒpenetr w/o ℒattr w/o ℒreg

Input 

View

Back 

View

Figure 6: Visualization of ablation study. The first row shows hand and object estimation from the
input view, the second row shows results from the back view.

4.4 APPLICATION

One of the roles of the demonstrations obtained from TF-HOT is to facilitate solving dexterous hand
manipulation tasks using the PTF method. In this part, we conduct experiments to evaluate PTF
using pose demonstrations obtained from TF-HOT and compare them against pure reinforcement
learning methods and state-only imitation learning methods.

4.4.1 EXPERIMENT SETUP

We focus on pickup tasks, a crucial component of dexterous hand manipulation. We conducted three
tasks in the ManiSkill 3 (Tao et al., 2024). The robotic hand is the Inspire Hand, a 6-DoF robotic
hand with five fingers. The initial states are shown in Fig. 7a. We add Gaussian noise to each joint
of the robot and introduce positional perturbation to the object at the beginning of the task.
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(a) Object models and initial states for the three tasks.
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(b) Key moments during object grasping.
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(c) Success rate curves over sample steps.

Figure 7: Experiment results in Pickup tasks. (a) shows the initial state of each task, (b) renders
the results of the policy acting in the environment, and (c) plots the success rate curves over sample
steps.

We compare PTF against two baseline methods: Proximal Policy Optimization (PPO) without the
trajectory-following reward in PTF (but with the same robot initialization as PTF at the beginning
of each episode), along with State-Only Imitation Learning (SOIL) (Radosavovic et al., 2021). We
carefully design sparse and dense environment rewards for the baselines, with details in the supple-
mentary material.

4.4.2 RESULTS

For each algorithm and task, we run four independent trials and report the average performance.
The results are shown in Fig. 7c, where the solid line represents the average performance, and the
shaded area indicates the variance across different random seeds.

As the results show, pure PPO with sparse rewards completely fails to pick up both the banana and
the elephant. Although PPO with dense rewards perform better than those with sparse rewards,
it also fails to successfully pick up the banana. For SOIL, the one-shot demonstration does not
significantly improve its performance, as it achieves results similar to PPO. In contrast, our PTF
method effectively utilizes the demonstrations, solving these tasks with a higher success rate and
requiring fewer samples.

5 CONCLUSION

In this work, we proposed a Training-Free Hand and Object pose tracking framework (TF-HOT).
Our method leverages differentiable rendering and rich priors from pre-trained 2D perception mod-
els for efficient optimization of human hand and object pose trajectories from input videos. We
demonstrate that TF-HOT achieves superior performance over baseline methods on in-the-wild
videos. Additionally, we showcase the application of our method in learning dexterous robotic
tasks by introducing a Pose Trajectory Following (PTF) algorithm that trains a policy to follow the
pose demonstrations extracted by TF-HOT from videos. Experiments demonstrate that our approach
facilitates better and easier dexterous policy learning compared to reinforcement learning and imi-
tation learning methods that do not utilize hand-object pose trajectory following.
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A IMPLEMENTATION DETAILS

We use Adam as the optimizer with a learning rate of lr = 0.01. For the initial frame, we initialize
N = 20 pars of {θi0, βi

0, r
i
0, t

i
0} hand parameters, optimize 500 iterations and choose the one with

the best 2D Joint Project Loss. For the following frames, we optimize 250 iterations and set early
stopping when the absolute difference of two sequential frames is less than 0.02 for DexYCB and
0.01 for in-the-wild data. We use (Wei et al., 2024; Liu et al., 2024b) to obtain object mesh from a
single view image for in-the-wild data.

For DexYCB dataset, we use the same data processing process as HOTrack and use ground-truth
segmentation masks as reference masks. For in-the-wild data, we use SAM(Kirillov et al., 2023) to
manually segment the first frame hand and object mask. Additionally, we use per-frame object pose
results from FoundationPose(Wen et al., 2024) as the initial pose estimation on in-the-wild data.

Hyper-parameters for hand-object pose estimation is as below:

L2D Lrender Lsurf Lsdf Lpenetr Lattr Lreg

DexYCB 10000 100 1 1 1 1 100
in-the-wild 300 100 0.1 0.1 0.1 1 100

w1 w2 w3 w4 w5 w6 ϵ1 ϵ2

DexYCB 1 1 1 1 1 1 0.02 0.03
in-the-wild 1 1 1 1 1 1 0.02 0.04

Table 3: Hyperparameters for experiments of hand-object pose estimation. Note that in the real
implementation of L2D, projected 2D joints are normalized by image size.

B DETAIL OF POSE TRAJECTORY-FOLLOWING REWARD

In our method, two key trajectories need to be tracked: one is the pose of the hand’s fingertips
relative to the manipulated object, and the other is the absolute pose of the object in the world
frame. The difference between two poses is measured by a function d(p1, p2), where p denotes
the pose, consisting of both position and quaternion. We consider two poses to be matched when
d(p1, p2) is smaller than a constant ϵ. At each step of the environment state, the trajectory-following
reward is a metric that evaluates how much progress the state has made toward matching the given
demonstration. Algorithms for computation of the trajectory-following reward during one episode
rollout are described in Alg. 1. This reward function encourages the hand to achieve the correct
posture relative to the object, while simultaneously guiding the object to the desired pose.

C APPLICATION EXPERIMENT DETAIL

C.1 OBJECT RANDOMIZATION

To increase task difficulty, we introduce positional perturbations to the object in each task. Specifi-
cally, we apply a 5 cm perturbation to the banana in both directions in Pickup Banana, and a 1
cm perturbation in Pickup Easy-Open Can and Pickup Elephant.

C.2 POSE DISTANCE FUNCTION

Although the pose distance function can be defined in various ways, we provide our specific defini-
tion here. We define the distance as

d(p1, p2) = ω1||pos1 − pos2||2 + ω2 · diff rad(quat1, quat2), (10)

where ω1 and ω2 are constants. diff rad is a function that computes the angular difference
between two quaternions.
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Algorithm 1 Pose Trajectory-Following Reward

Input: A sequence of poses D with length n as a demonstration (Df1∼5

i , Do
i represent the pose

of fingertips and object in the i-th frame, respectively).
Output: Trajectory-following reward rtf in the episode.
# Reset the environment and set the prefix tracking index to 0.
env.reset()
PTobj, PThand ← 0
repeat
S ← Current environment poses.
# p1 − p2 represents the pose of the first object relative to the second one.
Thand ← The largest i that

∑5
j=1 d(D

fj
i −Do

i , S
fj − So) < ϵ

Tobj ← The largest i that d(Do
i , S

o) < ϵ
# Compute the trajectory-following reward, β and w are constants.
rhand, robj ← 0
if PThand < Thand then

rhand ← (1 + β · Thand) · (1− tanh(w ·
∑5

j=1 d(D
fj
Thand
−Do

Thand
, Sfj − So)))

end if
if PTobj = n or Tobj = n then

robj ← 1− tanh(w · d(Do
n, S

o))
else if PTobj < Tobj then
robj ← (1 + β · Tobj) · (1− tanh(w · d(Do

Tobj
, So))

end if
rtf ← rhand + robj
# Update the prefix tracking index.
PTobj, PThand ← max(PTobj, Tobj),max(PThand, Thand)

until environment is terminal

C.3 REWARD DESIGN

We design two types of environment rewards: sparse and dense. The sparse reward is a two-stage
reward, where the agent receives 0.4 when the object is lifted and 1 when the object reaches the goal.
The dense reward extends the sparse reward by adding terms for reaching. It can be written as:

r = max {Normalize (w1rhand reaching + w2robj reaching + w3Ilifting) , Isuccess} , (11)

where rhand reaching = (1 − tanh(c1 · d(hand, obj))), robj reaching = 1 − tanh(c2 · d(obj, goal)), and
w1, w2, w3, c1, c2 are constants. These terms are designed to encourage the hand to reach the object
and lift it to the goal position.

C.4 DEMONSTRATION COLLECTING

We recorded one video of a human hand picking up each object for each task. The video is then
preprocessed by TFHO to extract the pose demonstrations for both the hand and the object. These
demonstrations are used in the training of PTF and SOIL.

C.5 HYPER-PARAMETERS

Here we provide the PTH method hyper-parameters for each task in Tab. 4.

D ADDITIONAL EXPERIMENTS OF THE MANIPULATION TASKS.

Trajectory-Following Reward vs. Reaching Reward. To visualize the impact of the trajectory-
following reward on training, we selected the Pickup Banana and Pickup Elephant tasks
and rendered one episode showing how policies trained with trajectory-following reward (PTF
method) and reaching reward (PPO method with dense reward) behave in the environment. We
captured the moments of object grasping, as shown in Fig. 7b.
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Banana Easy-Open Can Elephant
num envs 512 512 512

episode length 120 120 120
sim freq 300 300 300

origin reward scale 5 5 5
total reward scale 0.01 0.01 0.01

ϵ 0.04 0.04 0.04
β 0.1 0.1 0.1
w 2 2 2

Table 4: Training hyper-parameters for PTF method.

We observed that policies trained with the reaching reward don’t focus much on the hand’s relative
position to the object during grasping. For instance, in the banana pickup task, the hand curls its
fingers before fully approaching the object, which hinders successful grasping. Similarly, in the
elephant pickup task, the hand grasps the toy elephant by the ear, deviating from the intended goal
of grabbing the body. In contrast, when training with the trajectory-following reward, the hand
consistently moves into the desired pose, making it much more effective for picking up objects.
This explains why the PTF method outperforms other algorithms in these tasks.

E LIMITATIONS

Despite the strengths of our method, it encounters limitations in scenarios where the hand is com-
pletely occluded or absent in the point cloud, as it lacks sufficient 3D priors to estimate accurate po-
sitions. However, these challenges could be mitigated by extending our framework to a multi-camera
setup, which would improve accuracy through the aggregation of losses from multiple viewpoints.
Additionally, our method has the potential to be utilized for automatic data annotation, offering a
valuable tool for future research and applications.
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