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ABSTRACT

In the pursuit of Artificial General Intelligence, a prevalent approach is to es-
tablish a comprehensive unified foundation model that addresses multiple tasks
concurrently. However, creating such a model that unifies generative and dis-
criminative models presents significant challenges. This paper aims to realize this
unified model aspiration by suggesting the incorporation of a central force field
from physics. More precisely, within the framework of this central force field,
the potential functions governing the data distribution and the joint data-label dis-
tribution become intricately interwoven with a standard discriminative classifier,
rendering them well-suited for handling discriminative tasks. Moreover, the cen-
tral force field exhibits a captivating characteristic: objects located within this
field experience an attractive force that propels them towards the center. This
phenomenon of centripetal motion, orchestrated by the force field, has the re-
markable capability to progressively revert diffused data to its original configura-
tion, thereby facilitating the execution of generative tasks. Our proposed method
adeptly bridges the realms of energy-based and score-based models. Extensive
experimental validation attests to the effectiveness of our approach, showcasing
not only its prowess in image generation benchmarks but also its promising com-
petitiveness in image classification benchmarks.

1 INTRODUCTION

In recent years, significant progress has been made in multi-task large models, offering a glimpse
of the potential for Artificial General Intelligence (AGI) 1. These large models, often referred to as
foundation models (Bommasani et al., 2021), are expected to serve as versatile intelligent agents
capable of handling various general tasks (Di Palo et al., 2023). Examples of such models include
ChatGPT (OpenAI, 2022) and GPT4 (OpenAI, 2023), which excel at addressing diverse language
tasks, as well as INTERN (Shao et al., 2021), specialized in discriminative tasks, and Gato (Reed
et al., 2022) and GITM (Zhu et al., 2023), proficient in various gaming tasks.

While the idea of unified foundation models is appealing, the task of creating a cohesive generative
and discriminative foundation model is indeed quite challenging. Some generative and discrimina-
tive hybrids (Lasserre et al., 2006) have been primarily designed for classification tasks and may
not be suitable for data generation tasks 2. Further, some arts attempted to blend generative and
discriminative tasks (Tu, 2007; Grathwohl et al., 2019; Santurkar et al., 2019; Wang & Torr, 2022;
Lee et al., 2018; Jin et al., 2017; Xie et al., 2016; Du & Mordatch, 2019). These methods have
skillfully integrated insightful techniques, including bonus learning (where discriminative and gen-
erative learning mutually benefit from each other) (Tu, 2007; Lee et al., 2018; Jin et al., 2017),
energy-based models (Grathwohl et al., 2019; Xie et al., 2016; Du & Mordatch, 2019), adversar-
ial training models (Santurkar et al., 2019), and novel sampling (Wang & Torr, 2022). However,
due to their constrained capacity to efficiently model high-dimensional data spaces, these arts face

1It is important to approach this topic with caution and humility, as it is possible that large models may not
represent the ultimate solution for AGI. However, it is undeniable that these foundation models play a pivotal
role in driving AGI development.

2Note that generative models do not necessarily imply proficiency in generation tasks.
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challenges in achieving optimal results in image generation tasks, typically also experiencing issues
related to learning instability and inefficiency.

Figure 1: Example of a center force field,
where the arrow points in the opposite direc-
tion of the force, indicating that the central
force is directed towards the center.

In this paper, we aim to pursue a foundational model that
unifies generative and discriminative models. To accom-
plish this, we draw inspiration from Physics. Many of the
most fundamental forces in the universe, such as gravity
(as described by Newton’s law (Newton, 1687)), electro-
static force (as described by Coulomb’s law (Coulomb,
1785)), and elasticity (as described by Hooke’s law
(Hooke)), are central forces (Taylor & Taylor, 2005),
which have the potential to contribute to achieving this
pursuit. Precisely, a central force field F is a gradient
field of a potential function E, i.e.: F = ∂E

∂x (see a simple
example in Fig. 1). We can leverage the potential func-
tion E to model discriminative tasks: In a central force
field, the potential functions for the data distribution p(x)
and the joint data-label distribution p(x, y) are intricately connected to a standard discriminative
classifier of p(y|x), rendering the potential function suitable for modeling discriminative tasks. Si-
multaneously, we can employ the central force (F) to model generative tasks: A central force field
possesses a truly intriguing property, whereby objects at any point in this field are compelled to move
towards the center by an attractive force impressed upon them, thus facilitating the accomplishment
of generative tasks.

Moreover, our method can reconcile energy-based models (LeCun et al., 2006; Teh et al., 2003;
LeCun & Huang, 2005) and score-based models (Sohl-Dickstein et al., 2015; Song et al., 2020). It
aligns with energy-based models in employing potential functions, while differentiating by explicitly
modeling force fields. The innovation lies in our approach’s direct utilization of force fields for
training, effectively circumventing the training hurdles often encountered in traditional energy-based
models. Notably, we have refined LeCun et al. (2006)’s energy definition to ensure compatibility
with discriminative models. This adjustment addresses a specific issue with the original definition
where the lowest-energy point might be inaccessible. Regarding score-based models (e.g., diffusion
models (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021)), our method’s affinity
is discernible through the intrinsic diffusion and denoising mechanisms. The primary distinction
between score-based models and our approach lies in the conceptually different understanding of
gradients. Specifically, score-based approaches require their model (e.g., a U-Net) to output the
derivatives of the data density function, rather than the data density function itself. In contrast, our
approach uses a network to output the data density function / potential function. Consequently,
derivatives of the data density function can naturally be the gradients of a network, which exactly
aligns with the gradient computation in the backpropagation of deep learning. This alignment makes
our method adhere more closely to physical principles.

We conducted comprehensive experiments to validate the effectiveness of our method in both image
classification and generation tasks. The results reveal that our method not only achieves remarkably
favorable results in image generation benchmarks but also demonstrates strong competitiveness in
image classification benchmarks.

In summary, this paper makes three contributions: Firstly, we draw inspiration from physics and
propose a foundation model that unifies generative and discriminative models using the central force
field. The fascinating property of the central force field enables the attainability of this unified model
because the potential function in a central force field can be employed for modeling discriminative
tasks, while the central force can be utilized for modeling generative tasks. Secondly, we provide
a clear and comprehensive explanation of the connections between our method and two mainstream
prior arts, namely energy-based models and score-based models. We highlight the distinctions be-
tween our approach and these arts. Our analytical results demonstrate that our method effectively
harmonizes both energy-based and score-based models.Thirdly, we present extensive experimental
results that showcase the remarkable effectiveness of our method. Our approach not only achieves
highly favorable results in image generation benchmarks but also demonstrates strong competitive-
ness in image classification benchmarks, along with adversarial robustness tasks.
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2 RELATED WORK

Hybrid Discriminative and Generative Models. The pursuit of unified foundation models, capable
of integrating generative and discriminative functionalities, has been an enticing research direction
in recent years. Notably, certain models have primarily been designed for classification tasks and
may not readily translate to data generation tasks (Lasserre et al., 2006). Several studies have ven-
tured into the integration of generative and discriminative tasks, seeking to harness the synergistic
potential of both components. These endeavors have yielded promising results and have introduced
innovative techniques into the field. Noteworthy among these techniques is “bonus learning (Tu,
2007; Lee et al., 2018; Jin et al., 2017),” a paradigm where discriminative and generative models
mutually enhance each other’s performance. Additionally, energy-based models (Grathwohl et al.,
2019; Xie et al., 2016; Du & Mordatch, 2019), adversarial training models (Athalye et al., 2018;
Santurkar et al., 2019; Engstrom et al., 2019; Tsipras et al., 2018; Schott et al., 2018), and insightful
sampling strategies (Wang & Torr, 2022) have been incorporated into these unified models to im-
prove their efficacy. Despite the ingenuity in integrating generative and discriminative tasks, unified
foundation models face challenges when applied to image generation tasks. The inherent limitation
in efficiently modeling high-dimensional data spaces poses significant obstacles. These challenges
manifest in difficulties achieving optimal results in image generation tasks, often accompanied by
issues related to learning instability and inefficiency. In conclusion, while the pursuit of unified
foundation models holds promise for advancing the field, it is essential to recognize the intricate
challenges involved. Understanding the nuances and complexities of creating cohesive generative
and discriminative models is crucial for guiding future research efforts in this evolving domain.

Energy-Based and Score-Based Models. Score-based generative models (Sohl-Dickstein et al.,
2015; Song et al., 2020; Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021), of-
ten referred to as “likelihood-free” models, estimate the gradient of the log-likelihood with respect
to the data. These models have gained popularity due to their flexibility in handling complex data
distributions and their ability to generate high-quality samples. Energy-based models (EBMs) are
a class of models that associate a scalar energy score with each data sample (LeCun et al., 2006;
Teh et al., 2003; LeCun & Huang, 2005; Nijkamp et al., 2019). Lower energy scores are assigned to
more plausible data points, making EBMs capable of generating samples by finding configurations
with minimal energy. Notable examples of EBMs include Restricted Boltzmann Machines (RBMs)
(Nair & Hinton, 2010; Ackley et al., 1985; Hinton, 2012) and Deep Boltzmann Machines (DBMs)
(Hinton et al., 2006; Salakhutdinov & Hinton, 2009). Score-based and energy-based models are
distinct in generative modeling, with unique features. Combining elements of both has gained in-
terest. Schroder et al. (Schröder et al., 2023) propose a hybrid approach, using score-based models
to improve training stability and generative capabilities for energy-based models. Chao et al. (Chao
et al., 2023) incorporate score-based models as prior distributions in energy-based models to capture
complex data distributions. Nonetheless, the process of integrating energy-based and score-based
models still requires significant work. Furthermore, Section 3.4 highlights the key distinctions be-
tween our approach and both energy-based and score-based models.

Central Force Field. Central forces, as described by Newton’s law (gravity, (Newton, 1687)),
Coulomb’s law (electrostatic force, (Coulomb, 1785)), and Hooke’s law (elasticity, (Hooke)), con-
stitute many of the fundamental forces in the universe (Taylor & Taylor, 2005).

3 METHODOLOGY

In this section, we present our methodology in detail. To begin with, we introduce the physical
meaning of the central force field (Section 3.1). Subsequently, we demonstrate how we utilize the
potential function within a central force field to formulate discriminative models (Sectioin 3.2).
Moving forward, we elaborate on how the central force can be effectively used for formulating
generative models (Section 3.3). Finally, we provide a clear explanation of the connection between
our method and energy-based models as well as score-based models (Section 3.4).

3.1 INTRODUCTION TO CENTRAL FORCE FIELD

In the universe, many of the most fundamental forces, such as gravity (as described by Newton’s
law (Newton, 1687)), electrostatic force (as described by Coulomb’s law (Coulomb, 1785)), and
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elasticity (as described by Hooke’s law (Hooke)), are central forces (Taylor & Taylor, 2005). In
classical mechanics, a central force is a force directed from an object towards a fixed center point,
with magnitude determined solely by the distance between the object and the center point:

F

∥F∥ =
x

∥x∥ , (1)

where F denotes a central force and x is a vector pointing from the object towards the center.
Moreover, the forces in a field can always be mathematically expressed as gradient fields, wherein
they correspond to the gradient of a potential energy function denoted by E(x), i.e.:

F =
∂E(x)

∂x
. (2)

The study of central force fields holds significance in classical mechanics, where a specific category
of problems is devoted to them, known as central-force problems. The central-force problem pertains
to the investigation of a particle’s motion within a central potential field. Solving this problem
holds great significance in classical mechanics for two primary reasons: Firstly, numerous naturally
occurring forces are central forces. Secondly, certain intricate problems in classical physics, like the
two-body problem, can be effectively reduced to a central-force problem.

3.2 POTENTIAL FUNCTION FOR MODELING DISCRIMINATIVE MODELS

In the realm of machine learning, conventionally, each individual data point denoted as x, along
with its corresponding label y, is typically represented by a scalar value, a configuration that is often
modeled using a neural network with parameters θ. Herein, the notation gθ(x, y) is employed to
denote this scalar entity. With this function g, we are able to articulate the distribution p(x, y):

p(x, y) =
gθ(x, y)∫

x

∫
y
gθ(x, y)dydx

, p(x) =

∫
y
gθ(x, y)dy∫

x

∫
y
gθ(x, y)dydx

. (3)

.

Dating back to Lecun et al.’s definition (LeCun et al., 2006), prior arts (Grathwohl et al., 2019; Du
& Mordatch, 2019) typically established a connection between a probability function p(x) and an
energy function E(x) using the following definition:

LeCun et al. (2006)’s energy: p(x, y) =
e−E(x,y)∫

x

∫
y
e−E(x,y)dydx

, p(x) =
e−E(x)∫

x
e−E(x)dx

. (4)

We have encountered an issue with this definition: the lowest-energy point might be inaccessible
(please see Appendix for the principle insight and Sec. 4.4 for the empirical analysis). Therefore,
we propose a refined definition:

Our energy: p(x, y) =
e− logE(x,y)∫

x

∫
y
e− logE(x,y)dydx

, p(x) =
e− logE(x)∫

x
e− logE(x)dx

. (5)

By amalgamating Eqn. 5 with Eqn. 3, the formulation of the energy function can be acquired:

e− logE(x,y) = gθ(x, y), e− logE(x) =

∫
y

gθ(x, y)dy, (6)

which yields:
E(x, y) = e− log gθ(x,y), E(x) = e− log

∫
y gθ(x,y)dy. (7)

In the conventional context, the definition of gθ(x, y) takes the form of:

gθ(x, y) = efθ(x)[y]. (8)

By integrating Eqn. 8 with 7, the conclusive form of the energy function can be readily deduced:

E(x, y) = e− log efθ(x)[y]

= e−fθ(x)[y], E(x) = e
− log

∑
y

efθ(x)[y]

. (9)
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Based on the two formulations presented in Eqn. 3, the derivation of p(y|x) can be acquired:

p(y|x) = p(x, y)

p(x)
=

gθ(x, y)∫
y
gθ(x, y)dy

. (10)

By incorporating Eqn. 8 into Eqn. 10, a conventional expression for p(y|x) emerges:

p(y|x) = efθ(x)[y]∑
y′

efθ(x)[y′]
, (11)

signifying a classical classifier within a discriminative model. Eqn. 11 precisely represents the pre-
eminent expression employed in conventional neural network classifiers, underscoring the inherent
correlation between an energy function and a classification function.

In summary, both the potential energy function and the discriminative model utilize a shared neural
network denoted as fθ. Consequently, the potential function can be effectively employed in the mod-
eling of discriminative models. Additional comparisons with prior energy-based models, including
JEM (Grathwohl et al., 2019), are detailed in Section 3.4.

3.3 CENTRAL FORCE FOR MODELING GENERATIVE MODELS

Upon establishing the definition of the potential function in Eqn. 9, the conventional line of thought
might lead one to consider utilizing energy-based models for the purpose of sample generation,
which may entail inherent limitations as mentioned in Section 3.4. Here, we present a distinct
perspective that enables us to fully capitalize on the inherent strengths of a central force field.

Let x0 denote a center, then Eqn. 1 becomes:

xt − x0

∥xt − x0∥
=

F(xt)

∥F(xt)∥
, (12)

where F(xt) is computed by:

F(xt) =
∂E(xt)

∂xt
. (13)

Let ∥xt−x0∥√
d

= λt where d is a constant denoting the dimension of the data. We can derive the
subsequent expression from Eqn. 12:

xt = x0 + λt

√
d

F(xt)

∥F(xt)∥
. (14)

Eqn. 14 indicates that when an object is moved from x0 to xt, it experiences a central force. Without
loss of generality, the displacement from x0 to xt can be delineated by ϵ:

xt = x0 +

√
1− ᾱt√
ᾱt

ϵ, (15)

where {ᾱt} ∈ (0, 1] are a set of predefined constants adhering to specific monotonically increasing
functions with regard to time t. Let λt =

√
1−ᾱt√
ᾱt

. Upon comparing Eqn. 14 and Eqn. 15, we can
derive the following relationship:

√
d

F(xt)

∥F(xt)∥
= ϵ. (16)

The left side of Eqn. 16 signifies a force with a magnitude of
√
d and an orientation of F(xt)

∥F(xt)∥ .
The right side of Eqn. 16 pertains to the displacement through which the object deviates from the
central point. More precisely, given an object in an initial position xt (e.g., a Gaussian noise image),
it is feasible to systematically shift it towards x0 (e.g., a natural image) in a gradual manner. This
process involves the computation of the force F(xt) upon the object through Eqn. 13, followed by
the application of Eqn. 16 to determine the displacement ϵ. Finally, the object can be re-positioned
towards the central point by utilizing the calculated displacement, thus achieving sample generation.
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3.4 HARMONIZING ENERGY-BASED AND SCORE-BASED MODEL

Our model adeptly reconciles the principles of energy-based and score-based models. The interre-
lation and differentiation of our model from these paradigms are expounded as follows.

Association with Energy-Based Models. This association becomes evident due to the shared utiliza-
tion of the potential function concept (E(x)) in both models.

Distinction from Energy-Based Models. The distinctions are three-fold.

• Explicit Formulation of Force Field: Our approach explicitly formulates the force field,
a concept that represents the gradient of energy in the physical realm but is surprisingly
often absent within the energy-based model framework.

• Refinement of Lecun et al.’s Energy Definition: We have refined Lecun et al.’s energy
definition to ensure compatibility with discriminative models. This adjustment addresses a
specific issue with the original definition where the lowest-energy point might be inacces-
sible.

• Direct Training vs. Normalization Challenges: Energy-based models encounter a chal-
lenge in directly determining the precise likelihood of a point due to the presence of an
unknown normalization constant (analogous to the denominator in Eqn. 3). As a conse-
quence, training energy-based models necessitates the adoption of techniques such as con-
trastive divergence (LeCun et al., 2006; Lippe, 2022; Grathwohl et al., 2019) that is similar
to adversarial training (Madry et al., 2017). It’s worth noting that, although contrastive
divergence is used to train energy-based models, JEM (Grathwohl et al., 2019) explicitly
acknowledges this as a major limitation in its paper, as well as its counterpart paper (Du &
Mordatch, 2019). They admit that training can be highly unstable and prone to divergence,
despite employing numerous regularization techniques to mitigate this instability. In con-
trast, our method, thanks to its force field modeling, is capable of direct training, avoiding
the challenges associated with normalization constant issues and instability during training.

This tripartite distinction underlines the unique attributes that set our model apart from traditional
energy-based approaches.

Association with Score-Based Models. The connection of our approach to a score-based model is
readily apparent. To elucidate, Eqn. 15 can be elegantly reformulated as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (17)

which coherently aligns with the diffusion process in a score-based model. When it comes to the
denoising process, a score-based model employs a network (ϵθ) to predict and subsequently reduce
noise. This process shares similarities with the centripetal motion mechanism used in our approach:

x0 = xt −
√
1− ᾱt√
ᾱt

ϵθ (for score-based), ,x0 = xt − λt

√
d

F(xt)

∥F(xt)∥
(for ours) . (18)

Distinction from Score-Based Models. The differences manifest as follows:

• Conceptually Different Understanding of Gradients: There are many significant differ-
ences between score-based models and our method, but we would like to highlight the most
significant one here, which is the conceptually different definition of gradients. Specifically,
score-based approaches require their model (e.g., a U-Net ϵθ) to output the derivatives of the
data density function, rather than the data density function itself. In contrast, our approach
uses a network to output the data density function or the potential function. Consequently,
derivatives of the data density function can naturally be the gradients of a network, which
exactly aligns with the gradient computation in the backpropagation of deep learning. This
alignment makes our method adhere more closely to physical principles.

4 EXPERIMENTS

Given our method’s capacity to unify generative and discriminative models, we primarily present
experimental results on datasets empowered with classification annotations, including CIFAR-10
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Table 1: CIFAR-10 hybrid modeling results.
Residual Flow (Chen et al., 2019), Glow (Kingma & Dhariwal, 2018), and IGEBM (Du &

Mordatch, 2019), JEM (Grathwohl et al., 2019).
Model Acc.% ↑ IS↑ FID↓ ↓ Stability ↑ Inference steps

Residual Flow 70.3 3.6 46.4 N/A N/A
Glow 67.6 3.92 48.9 N/A N/A

IGEBM 49.1 8.3 37.9 N/A N/A
JEM p(x|y) factored 30.1 6.36 61.8 N/A N/A

JEM 92.9 8.76 38.4 50% > 1000
Central Force Field (Eqn. 4) N/A N/A N/A 0% N/A
Central Force Field (Eqn. 5) 93.6 9.01 24.9 100% 50

(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and CIFAR100 (Krizhevsky et al., 2009). We
also conduct unconditional image synthesis on the CelebA dataset (Liu et al., 2015).

We employ a Wide Residual Network as described in (Grathwohl et al., 2019) for these four dataset.
This architecture is initially proposed by (Zagoruyko & Komodakis, 2016) and is modified by
(Grathwohl et al., 2019) to enhance stability. To ensure a fair comparison, we borrow the train-
ing hyper-parameters from (Grathwohl et al., 2019).

In our evaluation of discriminative tasks, we utilize classification accuracies as the primary evalu-
ation metric. For the generative tasks, we employ three metrics: Inception Scores (IS) (Salimans
et al., 2016), Frechet Inception Distance (FID) (Heusel et al., 2017), and qualitative visualization.

4.1 COMPARISONS WITH HYBRID MODELS

We began by evaluating the effectiveness of our approach in hybrid modeling tasks involving both
discriminative and generative objectives.

To gauge the performance of our approach, we conducted a comprehensive comparative analysis us-
ing the CIFAR-10 dataset, comparing it against prior arts. Multiple metrics, including classification
accuracy and generation quality scores, were taken into account. The results presented in Table 1
and Fig. 3 indicate that our method surpasses prior hybrid arts, excelling the joint discriminative and
generative tasks. Previous energy-based models have encountered challenges in accurately comput-
ing the likelihood of a data point because of the unknown normalization denominator in Eqn. 3.
To address this issue, they have taken one of two routes: either they neglect this term, albeit at the
expense of theoretical accuracy in discriminative models (Du & Mordatch, 2019; Xie et al., 2016),
or they employ a contrastive divergence technique (LeCun et al., 2006; Lippe, 2022; Grathwohl
et al., 2019), akin to adversarial training (Madry et al., 2017), as a surrogate for optimization (Grath-
wohl et al., 2019). The former approach renders these models less competitive in discriminative
tasks (e.g., 49.1% for IGEBM in Table 1), while the latter results in lower learning instability (see
“Stability”) and inferior performance compared to our method (see JEM in Table 1).

CNN

Adv

JEM

Ours

Figure 2: Feature visualization.

It’s noteworthy that prior hybrid methods have seldom reported re-
sults on the CIFAR-100 and SVHN datasets, except that JEM pro-
vides qualitative visualization results on these two datasets, albeit
lacking numerical quantitative results. Hence, we performed a qual-
itative comparison of our method with JEM, focusing on visualiza-
tion. As demonstrated in Fig. 3, our approach look more promis-
ing than JEM. Besides, we also provide quantitative results for our
method in Table 2.

Stability. JEM (Grathwohl et al., 2019) noted the potential instabil-
ity in training energy-based models, particularly for hybrid classifi-
cation and generation tasks. They conducted experiments involving
various regularization techniques to address this issue but faced challenges in finding suitable regu-
larization methods that could stabilize learning without adversely affecting the performance of both
classification and generation tasks. In our attempts to replicate JEM’s experiments, we indeed ob-
served training instability. Even when using their carefully tuned hyperparameters, our experiments
reproduced their results ten times, with only 5 instances being successful. Conversely, when we ran
our code for ten trials, all of them were successful (refer to Table 1). This demonstrates the stability
of our approach.
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(a) SVHN 

JEM

Central Force Field 

JEM JEM

(b) CIFAR-10
Central Force Field 

(c) CIFAR-100
Central Force Field 

Figure 3: Results of conditional image synthesis on SVHN, CIFAR-10, and CIFAR-100.

Another significant metric is the model’s confidence in classifying nonsensical input. To assess this
metric, we conduct the following experiments: starting with Gaussian noise x, we maximize p(y|x)
to determine if the optimized x visually resembles an image associated with label y (Athalye et al.,
2018; Santurkar et al., 2019; Engstrom et al., 2019; Tsipras et al., 2018; Schott et al., 2018). As
depicted in Fig. 2, energy-based models such as JEM and adversarially trained models can gener-
ate samples that align with human perception, whereas vanilla classifiers cannot. It’s important to
note that when directly maximizing p(y|x), JEM cannot produce samples as meaningful as those
generated through its usual sampling process; the produced samples appear significantly inferior to
those generated by our method. This highlights a weakness in JEM. In fact, to generate meaning-
ful samples, JEM relies on starting with “half-ready” samples stored in a buffer, which introduces
an element of complexity and reduces its elegance. In contrast, our method can directly generate
promising samples, showcasing the superiority of our approach.

4.2 COMPARISONS WITH DISCRIMINATIVE MODELS

Table 2: CIFAR-10 discriminative results.
WideResNet(Zagoruyko & Komodakis, 2016).

CIFAR-10 CIFAR-100 SVHN
Wide ResNet 95.8% 79.5% 97.7%

Central Force Field 93.6% 73.7% 95.4%

Further, we conduct a comparative analysis of our
method alongside discriminative models. To ensure a
fair assessment, we require that all competing meth-
ods adopt identical neural architectures to ours, thereby
minimizing any variations caused by architectural dif-
ferences. We do not delve into the exploration of alternative architectures, as the primary focus of
this paper is not architecture design. For the CIFAR-10, CIFAR-100, and SVHN datasets, we have
opted to use Wide Residual Networks, as they are widely acknowledged as state-of-the-art models
in these contexts. The results presented in Table 2 demonstrate that our method achieves comparable
accuracies when compared to state-of-the-art discriminative models.

4.3 COMPARISON WITH GENERATIVE MODELS

4.3.1 CONDITIONAL IMAGE SYNTHESIS

Given our focus on training a hybrid model, our model naturally belongs to conditional generative
models, as it leverages label information. Therefore, we will primarily evaluate the performance
of our method in conditional image synthesis tasks, with a specific focus on the CIFAR-10 dataset.
We conducted a comparison of our model with state-of-the-art approaches in conditional image
synthesis tasks using the CIFAR-10 dataset. The results are presented in Table 3. It is evident from
the table that our model achieves competitive performance when compared to leading conventional
conditional generative models, such as GANs and diffusion models.

Beyond CIFAR-10, we also conduct conditional image synthesis on SVHN and CIFAR-100 (see
Fig. 3), which demonstrates the promising results of our method.

4.3.2 UNCONDITIONAL IMAGE SYNTHESIS

Our method can also adapt to unconditional generative tasks by exclusively considering the term
E(x) while omitting E(x, y). To further illustrate this adaptability, we conducted additional uncon-
ditional generation on CIFAR-10, CIFAR-100, SVHN, and CelabA.
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(a) SVHN (b) CIFAR-10 (c) CIFAR-100

Figure 4: Results of unconditional image synthesis on SVHN, CIFAR-10, and CIFAR-100.

(b ) Central Force Field 

(a) DCGAN

Figure 5: Results of unconditional image synthesis on CelebA 32×32.

Table 3: CIFAR10 results. EBM (Du &
Mordatch, 2019), JEM (Grathwohl et al.,
2019), BigGAN(Brock et al., 2018), Style-
GAN2+ADA (v1) (Karras et al., 2020),
Diffusion (original) (Sohl-Dickstein et al.,
2015), Gated PixelCNN (Van den Oord
et al., 2016), Sparse Transformer (Child
et al., 2019), PixelIQN (Ostrovski et al.,
2018), EBM (Du & Mordatch, 2019), NC-
SNv2 (Song & Ermon, 2020), NCSN (Song
& Ermon, 2019), SNGAN (Miyato et al.,
2018), SNGAN-DDLS (Che et al., 2020),
StyleGAN2+ADA (v1) (Karras et al., 2020).

Model IS FID

Conditional
EBM 8.30 37.9
JEM 8.76 38.4
BigGAN 9.22 14.73
StyleGAN2+ADA(v1) 10.06 2.67
Central Force Field 9.01 24.9

Unconditional
Diffusion (original)
Gated PixelCNN 4.60 65.93
Sparse Transformer
PixelIQN 5.29 49.46
EBM 6.78 38.2
NCSNv2 31.75
NCSN 8.87±0.12 25.32
SNGAN 8.22±0.05 21.7
SNGAN-DDLS 9.09±0.10 15.42
StyleGAN2+ADA(v1) 9.74± 0.05 3.26
DDPM (Lsimple) 9.46±0.11 3.17
Central Force Field 8.53±0.18 32.68
JEM 7.79
Central Force Field 8.53±0.18 32.68

We extended our comparative analysis to evaluate our
method against state-of-the-art approaches in this task us-
ing CIFAR-10. The results, detailed in Table 3, reveal
that our method achieves promising performance. Addi-
tionally, we present the results for the CelebA dataset in
Fig. 4 and Fig. 5, which further demonstrate the promis-
ing performance achieved by our method. Specifically,
on CelebA, our method shows comparable performance
with DCGAN Radford et al. (2015).

4.4 ABLATION STUDY

Unlike previous energy-based models that require ex-
tensive hyperparameter tuning, involving techniques like
small learning rates, additional restarting, and numerous
SGLD steps, along with the addition of essential modules
such as buffers for storing “half-ready” samples for ini-
tialization, our method is streamlined. It comprises only a
gradient field loss and a classification component, making
it simpler and more efficient. Consequently, conducting
an ablation study on our method is straightforward. One
aspect we need to investigate in our ablation study is our
proposed energy definition in Eqn. 5, which differs from
Lecun et al.’s definition in Eqn. 4. To explore this, we
substitute our energy with Eqn. 4 and rerun the experi-
ment on CIFAR-10. The results are presented in Table 1,
indicating that our new definition enhances learning sta-
bility. A detailed analysis is provided in the appendix.

5 CONCLUSION

In summary, this paper integrate a central force field from
physics. Within this framework, the interconnection of
potential functions governing data and joint data-label
distributions with a standard discriminative classifier en-
ables effective handling of discriminative tasks. Moreover, the central force field exhibits an at-
tractive force, facilitating the progressive reversion of diffused data to its original configuration for
generative tasks. Our method successfully bridges energy-based and score-based models, as demon-
strated through extensive experiments, highlighting its efficacy in image generation benchmarks and
its promising competitiveness in image classification benchmarks.

9



Under review as a conference paper at ICLR 2024

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284–293. PMLR, 2018.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Chen-Hao Chao, Wei-Fang Sun, Yen-Chang Hsu, Zsolt Kira, and Chun-Yi Lee. Training energy-
based normalizing flow with score-matching objectives. arXiv preprint arXiv:2305.15267, 2023.

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, and
Yoshua Bengio. Your gan is secretly an energy-based model and you should use discriminator
driven latent sampling. Advances in Neural Information Processing Systems, 33:12275–12287,
2020.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.
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Figure 6: Example of a force field where the lowest-energy point might be inaccessible.

A ANALYSIS OF THE REFINED DEFINITION OF THE ENERGY (EQN. 5)

If we do not refine the energy definition from LeCun et al. (2006), Eqn. 9 will take the following
form:

E(x, y) = − log efθ(x)[y] = −fθ(x)[y], E(x) = − log
∑
y

efθ(x)[y]. (19)

In energy-based models, generating a sample involves minimizing the energy. Ideally, we prefer an
energy function resembling Fig. 1, where the lowest-energy point is easily accessible.

However, considering the classifier in Eqn. 11, we observe that fθ(x)[y] represents the pre-softmax
logits for a specific class. In discriminative tasks, we aim for fθ(x)[y] to be as large as possible. This
requirement could pose a problem for Eqn. 19 because it implies the lowest-energy point might be
inaccessible, linearly approaching −∞. An example of such a central force field is illustrated in Fig.
6. With this kind of force field, convergence to an optimally low energy is unachievable—wherever
you reach, there is always another point with even lower energy. This unbounded nature of the
optimization leads to practical issues, often causing numerical instability during training.

With our refined definition of energy, the convergence of Eqn. 9 becomes more manageable as the
energy converges to zero. By setting a sufficiently small constant c as the convergence condition,
we can easily achieve this condition by maximizing the pre-softmax logits fθ(x)[y].

B COMPUTATIONAL COST

Similar to DDIM, our method can utilize as few as 50 steps for sampling during the inference stage,
while in JEM, a minimum of 1,000 SGLD steps is typically required (as indicated in Table 1), and
their recommendation is to use as many steps as possible. This comparison validates the efficiency
of our method.
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