

STREAMINGVLM: REAL-TIME UNDERSTANDING FOR INFINITE VIDEO STREAMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Vision-language models (VLMs) could power real-time assistants and au-
012 tonomous agents, but they face a critical challenge: understanding near-infinite
013 video streams without escalating latency and memory usage. Processing entire
014 videos with full attention leads to quadratic computational costs and poor per-
015 formance on long videos. Meanwhile, simple sliding window methods are also
016 flawed, as they either break coherence or suffer from high latency due to redun-
017 dant recomputation. In this paper, we introduce **StreamingVLM**, a model de-
018 signed for real-time, stable understanding of infinite visual input. Our approach
019 is a unified framework that aligns training with streaming inference. During in-
020 ference, we maintain a compact KV cache by reusing states of attention sinks,
021 a short window of recent vision tokens, and a long window of recent text to-
022 kens. This streaming ability is instilled via a simple supervised fine-tuning (SFT)
023 strategy that applies full attention on short, overlapped video chunks, which effec-
024 tively mimics the inference-time attention pattern without training on prohibitively
025 long contexts. For evaluation, we build **Inf-Streams-Eval**, a new benchmark with
026 videos averaging over two hours that requires dense, per-second alignment be-
027 tween frames and text. On Inf-Streams-Eval, **StreamingVLM** achieves a **66.18%**
028 win rate against GPT-4O mini and maintains stable, real-time performance at up
029 to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances gen-
030 eral VQA abilities without any VQA-specific fine-tuning, improving performance
031 on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code will be
032 released upon publication.

1 INTRODUCTION

033
034 VLMs could power autonomous driving, embodied agents, and real-time assistants, but they face
035 critical challenges: understanding near-infinite video, responding in real time stably. To accept infi-
036 nite input, common ideas are Sliding Window Attention with or without overlapping. As shown in
037 Figure 1: (a) *Full Attention* suffers from heavy memory and latency; (b) *Sliding Window (w/o Over-
038 lapping)* resets context frequently and breaks coherence; (c) *Sliding Window Attention (w/ Overlap-
039 ping)* keeps recent tokens but recomputes attention many times, which hurts efficiency.

040 Aligning training with inference adds further challenges. Real streaming requires taking infinite
041 visual input in real time and replying with very low delay, but training cannot use extremely long
042 videos. Current approaches to KV cache eviction often lack alignment with the training phase.
043 How to train on short videos and still enable the model to reason over very long streams remains
044 underexplored. This leads to our core question: *How can we train VLMs to understand video chunks
045 in real time and reason stably over infinite video, moving toward human-like intelligence?*

046 In this paper, we propose **StreamingVLM**, a unified framework that aligns training with streaming
047 inference and a dataset curation pipeline. The key ideas are: (1) Train the VLM with full attention
048 on short, overlapped video chunks. (2) At inference, use an attention sink and a sliding window with
049 to handle infinite video, aligned with training. (3) Reuse past KV states and use contiguous position
050 IDs to keep inference stable.

051 Using this framework, we build **Inf-Streams-Train**, a sports commentary SFT dataset of over 4000
052 hours and **Inf-Streams-Eval**, a new benchmark with videos averaging over two hours that requires
053 dense, per-second alignment between frames and text. Then, we fine-tune Qwen-2.5-VL-7B-Instruct

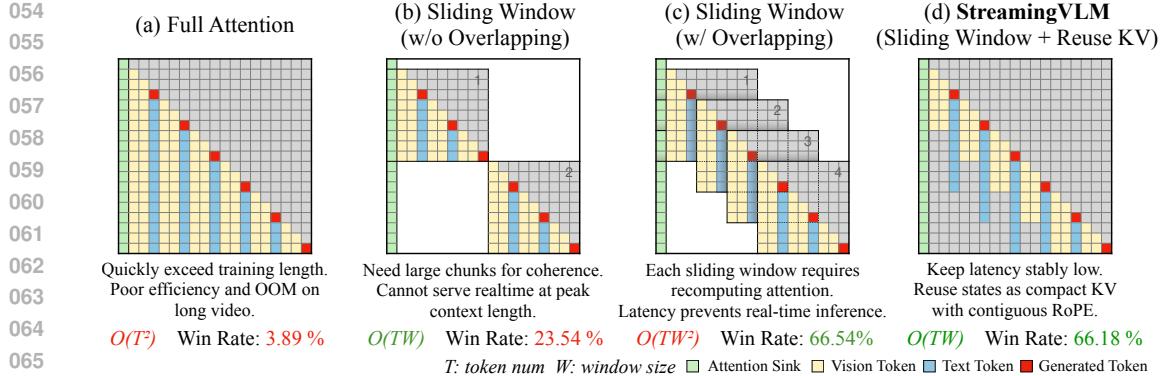


Figure 1: **Illustration of StreamingVLM vs. existing VLMs.** Let T be video length and W the sliding-window size. (a) *Full Attention*: $O(T^2)$ cost; unbounded memory; degrades beyond training length. (b) *Sliding Window (no overlap)*: bounded memory but short chunks break coherence; long chunks raise latency. (c) *Sliding Window (overlap)*: recomputation per window yields high latency. (d) *StreamingVLM* (Sliding Window + Reuse KV): reuses states of attention sinks, a short vision window and long text window, preserving history at low latency. “Win rate” is the pairwise win share vs. GPT-4o mini (judge: GPT-5).

for real-time commentary, yielding StreamingVLM that can understand infinite video and response in real time. We evaluate StreamingVLM on captioning and VQA tasks, including LiveCC-Sports-3K CC and Inf-Streams-Eval for captioning, and LongVideoBench (and related VQA benchmarks) for video understanding (Chen et al., 2025a; Wang et al., 2025a).

On captioning tasks, StreamingVLM, with its infinite video understanding, outperforms existing models such as Livecc-7B-Instruct. As shown in Figure 2, StreamingVLM performs well on practical tasks: it can provide continuous commentary for more than two hours on sports games. On VQA tasks, even without any VQA fine-tuning, StreamingVLM still improves on LongVideoBench by +4.30. In terms of efficiency, StreamingVLM maintains a low and stable latency, making it highly suitable for real-world streaming understanding tasks.

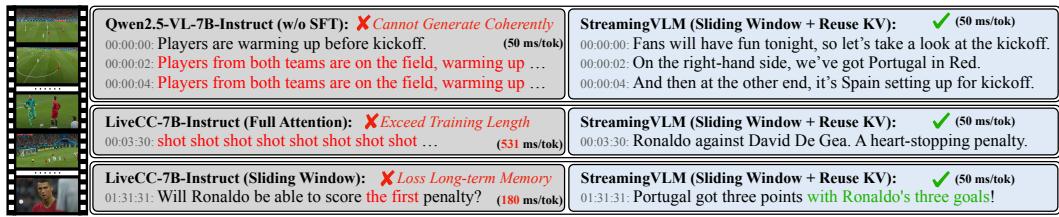


Figure 2: **Issues with existing VLMs.** (1) Without SFT, models cannot generate cross-round content coherently. (2) With full attention, the context exceeds the training length after processing 2–5 minutes of video and latency becomes prohibitive. (3) With a sliding window, models cannot retain enough context to benefit from efficiency. In contrast, StreamingVLM addresses these issues, enabling coherent commentary, real-time generation, and long-term history.

2 METHOD

In this section, we introduce our method for the model and the data. This part has three components: (1) inference scheme for vision–language processing that supports low-latency updates on infinite video used by **StreamingVLM**; (2) a training strategy that equips **StreamingVLM** with streaming inference capability; and (3) the data curation pipelines that provides long-horizon, real-time data for training and a new benchmark, **Inf-Streams**.

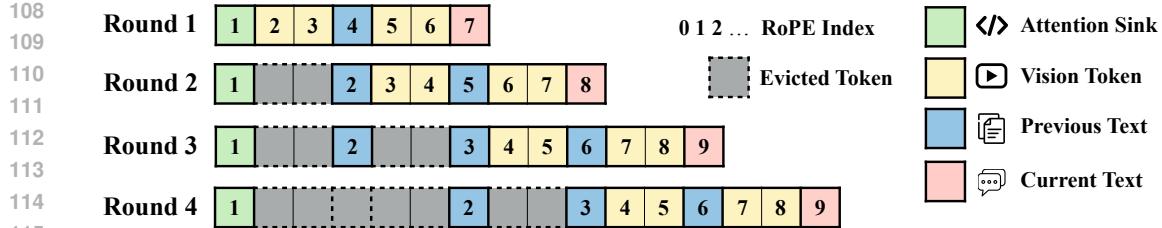


Figure 3: **Inference scheme of StreamingVLM.** We keep 512 attention-sink tokens to stabilize attention, a long text window of 512 recent tokens to preserve long-term memory, and a short vision window covering 16 seconds to track ongoing actions. We use *Contiguous RoPE*: indices are shifted to stay within a fixed range, keeping positions in-distribution and within the training length.

2.1 INFERENCE SCHEME OF STREAMINGVLM

This section describes the StreamingVLM inference structure shown in Figure 3. These design choices reduce the computation in Figure 1(c) while maintaining comparable performance.

Streaming-aware KV Cache The key idea is to maintain a compact and stable KV cache by reusing previous states during streaming inference. As new video frames arrive, we **reuse** the states of (i) a set of sink text tokens — including the system and previous text — of length T_{sink} ; (ii) a long window of the most recent text tokens of length T_{window} ; and (iii) a short window of the most recent vision tokens of length V_{window} . In Figure 3, the cache lengths are $T_{\text{sink}} = 1$, $T_{\text{window}} = 3$, and $V_{\text{window}} = 4$.

With this structure, older vision tokens are evicted first; early text is evicted only when the budget is exceeded. Instead of recomputing previous tokens, this asymmetric retention keep the lowest computation while maintaining sufficient context for coherent generation over time, yielding comparable performance with Sliding Window with Overlapping (Figure 1(c)).

Contiguous RoPE To prevent positional drift after eviction, we apply contiguous rotary positional embeddings (RoPE). When earlier tokens are removed, the RoPE indices of subsequent and incoming tokens are shifted so that their positions remain numerically contiguous with the last retained token. Once the video length surpasses the total window size, the effective RoPE indices stop growing and remain within a bounded range. This keeps positional values in-distribution and stabilizes long-horizon streaming inference.

When applied to the Qwen-VL family, which uses 3D positional embeddings for visual tokens, we use *contiguous 3D RoPE*. The RoPE index is still left-shifted to stay contiguous; for vision tokens, we build 3D indices (time, height, width) and assemble them by the 3D rule, matching the interleaved vision-text layout.

2.2 TRAINING STRATEGY

To endow the model with the ability to follow the streaming inference pattern in Figure 3 while keeping training simple, we adopt an *overlapped-chunk, full-attention* strategy (see Figure 4). The left panel of Figure 4 illustrates the attention at inference time. In this Figure 4, the cache lengths are the same to Figure 3, with $T_{\text{sink}}=1$, $T_{\text{window}}=3$, and $V_{\text{window}}=4$.

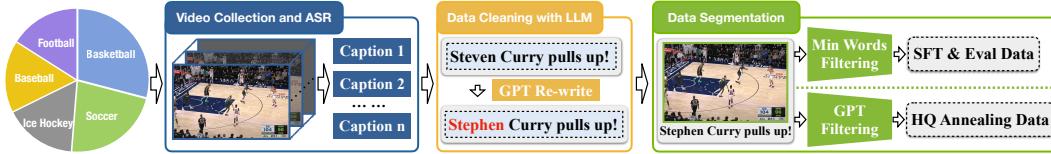
During training (middle panel of Figure 4), rather than replicating the exact sliding-window schedule used at inference, we split a long video stream into consecutive chunks $\{\mathcal{C}_1, \mathcal{C}_2, \dots\}$ of length W frames, with temporal overlap O frames between \mathcal{C}_i and \mathcal{C}_{i+1} ($0 < O < W$). Each chunk is treated as a training instance in which vision and text tokens (V/T) are sampled and interleaved at 1 s intervals. We apply full attention within a chunk, i.e., every token may attend to all tokens inside the same chunk.

As highlighted in the right panel of Figure 4, this overlapped full-attention supervision closely approximates the effective attention pattern at inference — attention sink, a longer window of recent text, and a shorter window of recent vision retained in the compact KV cache. Aligning training

162 supervision with the test-time context teaches the model the intended recency bias and yields stable
 163 streaming behavior without training on prohibitively long, quadratic-cost contexts.
 164

165 Importantly, mirroring the inference-time schedule,
 166 we interleave vision and text tokens within each
 167 training chunk — rather than adopting the com-
 168 mon VLM paradigm that places all vision tokens
 169 before text. We compute loss only on text positions
 170 aligned to the per-second narration; when a sec-
 171 ond has no narration, we insert a placeholder token
 172 "... " in that slot while keeping the interleaved
 173 V/T layout. This supervision teaches the model to
 174 synchronize generation with the stream—learning
 175 when to speak and when to remain silent—and
 176 consequently endows StreamingVLM with reliable
 177 streaming narration behavior at inference.

178 2.3 DATA CURATION PIPELINE



185 **Figure 5: Data Curation Pipeline.** We collect games from five sports—basketball, soccer, Ameri-
 186 can football, ice hockey, and baseball. We use GPT to edit or reject low-quality segments, yielding
 187 2,449 full games. We then build two datasets through separate pipelines: an SFT dataset using
 188 overlapped chunking, and a high-quality annealing dataset focused on real-time actions.

189 2.3.1 VIDEO COLLECTION AND ASR

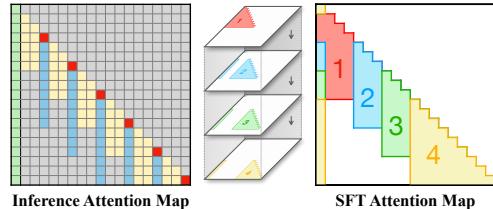
190 As shown in Figure 5, we collected game videos from five sports: basketball, soccer, ice hockey,
 191 baseball, and American football, including 712 basketball games, 544 soccer games, 402 ice hockey
 192 games, 399 baseball games, and 392 American football games. The commentary language is En-
 193 glish. To ensure video quality and read speed, we constrained the video resolution to 360P–720P
 194 with a frame rate of 24 FPS. First, we used the WhisperX model to extract real-time speech (ASR)
 195 from these games, obtaining an initial corpus of videos with a total duration of over 6,000 hours and
 196 their corresponding real-time commentary.

197 2.3.2 DATA CLEANING

198 In complete commentary videos, there are often many useless segments, such as advertisements
 199 and host monologues. These segments have weak connections between visual content and ASR
 200 semantics, making it impossible for the model to infer content from the footage. In addition, the
 201 ASR model sometimes fails to correctly recognize details such as player names and team names.

202 Therefore, we set rules and used GPT to clean these data. We first split a game into 120-second
 203 segments and concatenate the commentary within each segment, then split it into sentences. Using
 204 the segment and the video title (including game time and both teams) as context, we ask the gpt-
 205 5-nano model to make a decision according to the rules, with options “keep,” “delete,” and “edit”
 206 each sentence in one chunk. “Keep” means the content is game commentary and is correct. “Edit”
 207 means it is commentary but needs to modify some details, such as incorrect names, and the corrected
 208 complete sentence is returned. “Delete” means non-compliant content that should not appear in the
 209 training data.

210 For kept sentences, the timestamps are consistent with the ASR results; for edited sentences, we
 211 evenly distribute the original sentence duration over each word of the edited sentence (since a sen-
 212 tence typically lasts about 3–5 seconds, the error is within a tolerable range). In the original ASR
 213 data, 46.32% were kept, 37.89% were edited, and 15.79% were deleted, ultimately forming the raw
 214 video-commentary pairs of our data.



215 **Figure 4: Training Strategy.** We train with
 216 *overlapped full attention* that mimics test-time
 217 attention. (1), (2), (3) and (4) are four training
 218 samples, both keeping the attention sinks and
 219 overlap later in time.

216 2.3.3 SFT AND EVALUATION DATA SEGMENTATION
217

218 **For the train and validation sets**, we build the data as follows. Under the training setup in Section
219 2.2, we split videos with $W = 24$ s and $O = 12$ s. To ensure enough commentary labels per sample,
220 we require at least $2 * W$ words as min words filtering. All commentary before the segment is treated
221 as previous text. During training, we take the first T_{sink} tokens and the last T_{window} tokens from this
222 previous text to match the inference setup.

223 **For evaluation**, we create a new benchmark, Inf-Streams-Eval. It contains 20 full games with an
224 average length of 2.12 hours. We split each game into 100 s segments, selecting those with at
225 least 200 words. Commentaries of these segments are considered as ground truth. For scoring, a
226 larger model (we use gpt-5-nano) votes between two model outputs with access to ground-truth
227 references. The model with more votes (higher win rate) is judged to provide better commentary.

228 Inf-Streams-Eval has two settings: *chunk* and *infinite*, denoted by † and ∞ , respectively in following
229 tables. In Figure 1, the chunk mode is panel (b), and the infinite mode is panel (d). For models that
230 cannot do infinite inference, we cut the video into chunks; the model receives the previous text and
231 the current chunk to produce a caption. For models that support infinite inference, the model runs
232 on the full stream; we keep its past outputs as previous text and continue captioning until the video
233 ends.

234 2.3.4 HIGH-QUALITY ANNEALING DATA
235

236 The above dataset can sft the model’s ability for real-time video understanding. However, it contains
237 a lot of content such as team information and season history; for the human experience of the com-
238 mentary task, we prefer the model to provide real-time commentary on on-field events. Therefore,
239 we created a high-quality annealing data.

240 We first slice all data without overlap, requiring each clip to be 16–64 seconds long with internal
241 silence no longer than 3 seconds; each clip must also contain at least $2 * D$ (duration in seconds)
242 words. Across all games, we obtained 52,530 new samples. Then, we define the standard of “real-
243 time commentary.” For each sample, we use gpt-5-nano to determine whether the proportion of
244 “real-time commentary” exceeds 80% to decide whether to keep it. In the end, only 14,786 samples
245 were retained. Subsequent experiments in Table 6 show that after applying this portion of data for
246 sft, the model’s capability and commentary quality further improved.

247 248 3 EXPERIMENTS
249

250 In this section, we first describe the implementation details, then evaluate on video captioning and
251 VQA against strong baselines. We next test the efficiency of StreamingVLM. Finally, we run abla-
252 tions to better understand its behavior.

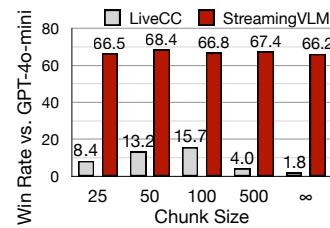
253 254 3.1 EXPERIMENTAL SETUP
255

256 **Training** We fine-tune StreamingVLM from Qwen2.5-VL-Instruct-7B (Bai et al., 2025). Step 1
257 teaches the model the infinite streaming inference pattern. We train on our SFT set (525K streaming
258 samples) and on LiveCC’s Live-WhisperX-526K (526K streaming samples) (Chen et al., 2025a).
259 Step 2 uses our high-quality annealing data (14K streaming samples, each 16–64 s with detailed
260 actions) to boost real-time action commentary and improve human experience. After these two
261 stages, we obtain StreamingVLM. The total compute is about 128 H100-days.

262 **Baselines** We select strong baselines to compare with StreamingVLM. For the captioning task, we
263 use GPT-4o mini to show commentary strength, and Livecc-7B-Instruct, which is trained on 5.5M
264 YouTube video clips (30 – 240 s) and 178K Video-Question-Answer samples, working well on short
265 videos commentary (OpenAI, 2024; Chen et al., 2025a). We also include ReKV, a strong training-
266 free streaming-inference method (Di et al., 2025). Due to design limits, GPT-4o mini is evaluated
267 on Inf-Streams-Eval in the *chunk* setting, not the infinite mode used by StreamingVLM. LiveCC-
268 7B-Instruct is tested in both *chunked* and *infinite* settings. For the VQA task, we use Qwen2.5-VL-
269 7B-Instruct, which is the base model before SFT for StreamingVLM, to show that our SFT pipeline
improves the base ability (Bai et al., 2025).

270
 271
 272
 273
 274
 275
Table 1: Captioning accuracy (win rate vs. baselines). Baselines with/without chunking fall short; StreamingVLM surpasses strong models such as GPT-4o and produces compelling commentary. (Superscripts for Inf-Streams-Eval: ∞ = infinite; \dagger = chunk length 100s. On Livecc-Sports-3K CC, LiveCC has only one mode and cannot be compared against itself, so we show “—”.)

Model A	Model B	Win Rate A vs. B		Inf-Streams-Eval			Livecc-Sports-3K cc		
		Win Rate A vs. B		Inf-Streams-Eval			Livecc-Sports-3K cc		
		GPT-4o \dagger	Livecc \dagger	Livecc ∞	LLaVA	GPT-4o	Gemini	Livecc	
Qwen-2.5-VL-7B-Instruct \dagger	0.01	20.44	95.97	24.50	16.25	28.38	34.11	—	
Livecc-7B-Instruct \dagger	15.73	—	—	—	—	—	—	—	
Livecc-7B-Instruct ∞	1.82	—	—	41.50	40.06	39.73	—	—	
StreamingVLM ∞	66.18	87.81	99.12	47.33	45.59	44.21	56.19	—	



282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
Figure 6: For existing VLMs, balancing cross-chunk coherence with training-length limits is challenging.

293
 294
Benchmark We evaluate real-time captioning and video understanding across a broad set of tasks. For captioning, we use our Inf-Streams-Eval (average length 2.12 hours), which tests long-horizon commentary and the LiveSports3K-CC benchmark (49 sports, 416 clips, each ≥ 10 s) (Chen et al., 2025a). For video understanding, we evaluate StreamingVLM on four public suites. VideoMME: a multi-task set (QA, caption, grounding) covering short and long videos for general comprehension (Fu et al., 2025). MVBench: fine-grained skills on short clips (actions, objects, counting, temporal order) (Li et al., 2024b). LongVideoBench: long-video QA that requires long-term memory and cross-segment reasoning (Wang et al., 2025a). OVOBench: video QA that tests real-time understanding and streaming perception (Li et al., 2025).

3.2 ACCURACY RESULTS

3.2.1 CAPTIONING

297
 298
 299
 300
 301
 302
 303
 304
 305
 We first compare our inference strategy with ReKV on the captioning task. We observe a paradox for training-free ReKV: models without task-specific fine-tuning perform poorly, yet models that are specially fine-tuned (e.g., StreamingVLM) rely on a fixed context format that ReKV’s eviction policy disrupts, often yielding no output. In contrast, StreamingVLM’s training–inference consistent design resolves this issue.

306
 307
 308
 309
 310
 311
 312
 313
 Then, we evaluate StreamingVLM, Qwen-2.5-VL-7B-Instruct, and LiveCC-7B-Instruct on LiveCC-3K-Sports-CC and Inf-Streams-Eval. As shown in Table 1, on Inf-Streams-Eval, Qwen-2.5-VL-7B-Instruct cannot keep continuous commentary and thus performs poorly. LiveCC-7B-Instruct works better with *chunked* inference. Figure 6 further shows that short chunks break coherence; these designs do not support infinite inference, and with long chunks they soon exceed the training length and degrade.

314
 315
 316
 317
 318
 319
 In contrast, StreamingVLM runs in infinite mode; its long-term memory and streaming video perception give it a clear edge, surpassing GPT-4o mini in commentary quality. Figure 2 (the figure shown) illustrates a real case where StreamingVLM maintains coherent output, real-time latency, and long-term memory, addressing the core challenge of real-time perception for infinite video streams. On LiveCC-3K-Sports-CC, StreamingVLM also performs better than baselines, showing stable streaming captioning on videos of various length.

3.2.2 VQA

321
 322
 323
 We evaluate StreamingVLM and its base model, Qwen-2.5-VL-7B-Instruct, on four VQA tasks. As shown in Table 3, even without any VQA SFT, StreamingVLM outperforms the base on all tasks,

296
 297
 298
 299
 300
 301
 302
 303
 304
 305
Table 2: Training–inference consistency surpasses ReKV. Non-fine-tuned models lack capability of real-time captioning, while with fine-tuning models ReKV’s eviction policy disrupts context, frequently resulting in no output. (Superscripts for Inf-Streams-Eval: ∞ = infinite; \dagger = chunk length 100s.)

Model A	Model B	Win Rate			Inf-Streams-Eval		
		Win Rate			Inf-Streams-Eval		
		GPT-4o \dagger	Livecc \dagger	Livecc ∞	GPT-4o \dagger	Livecc \dagger	Livecc ∞
Qwen (+ ReKV) ∞	0.00	19.56	63.57	—	—	—	—
StreamingVLM (+ ReKV) ∞	0.00	0.00	0.00	—	—	—	—
StreamingVLM (+ Ours) ∞	66.18	87.81	99.12	—	—	—	—

324
 325 Table 3: VQA results comparing StreamingVLM with its base model. Without any VQA fine-tuning,
 326 StreamingVLM delivers consistent accuracy gains across all tasks, with the strongest improvements
 327 on long-horizon and real-time settings.

	MVBBench	Video MME (w/o sub.)	LongVideoBench	OVOBench (Realtime)
Qwen-2.5-VL-7B-Instruct	67.34	65.10	54.70	56.00
StreamingVLM	69.16	65.10	59.00	61.96

328
 329
 330 Table 4: Ablation of RoPE on captioning
 331 (win rate). Native RoPE drops on infinite
 332 streams; 100 s chunking partly recovers
 333 but hurts long-term memory; contiguous
 334 RoPE keeps indices bounded and sus-
 335 tains infinite performance. (Superscripts
 336 for Inf-Streams-Eval: ∞ = infinite; \dagger =
 337 chunk length 100s.)
 338
 339
 340

Win Rate A vs. B		Inf-Streams-Eval		
Model B		GPT-4o †	Livecc †	Livecc $^\infty$
Model A				
Native †		63.23	74.00	98.07
Native ∞		25.09	59.42	60.32
Contiguous ∞		66.18	87.81	99.12

341
 342
 343
 344
 345
 346
 347 showing that our SFT improves general visual ability. OVOBench Realtime tests understanding of
 348 the immediate, streaming scene. On this streaming perception task, StreamingVLM improves by
 349 **5.96%**. This highlights the strength of Inf-Streams-Train and our training strategy, which enhances
 350 the model’s core abilities.

3.3 EFFICIENCY TESTS

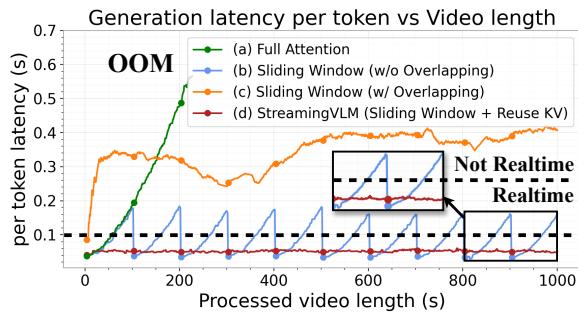
355 As shown in Figure 7, we report per-token latency for the three methods in Figure 1 on infinite
 356 commentary: VLMs with full attention, sliding window attention (w/o overlapping), sliding window
 357 attention (w/ overlapping), and the inference strategy of StreamingVLM, respectively correspond to
 358 panels (a), (b), (c), and (d) in the Figure 1.

359 Real-time replies require latency below a fixed threshold as the dashed line. Full attention soon
 360 exceed the limit and OOM. Sliding window (w/o overlapping) needs large chunks for coherence,
 361 so it shows a periodic latency pattern: at the start of each chunk the model rebuilds context and the
 362 commentary is not coherent with the past; later in the chunk, latency rises sharply and fails to meet
 363 real-time needs. Sliding window (w/ overlapping) remains inefficient for computation redundancy.
 364 StreamingVLM keeps fixed context length and reuses KV, maintains lower and stable latency, and
 365 supports real-time commentary at 8 FPS on a single NVIDIA H100.

3.4 ABLATION STUDY

3.4.1 CONTIGUOUS ROPE

366 We study the effect of contiguous RoPE indices. Since we train with full attention, training only
 367 uses the native RoPE. At inference, we compare contiguous RoPE with the native version. As
 368 shown in Table 4, native RoPE degrades sharply on infinite streams because its index grows fast and
 369 exceeds the training range. Splitting the video into 100 s chunks can partly recover accuracy, but
 370 it harms long-term coherence. With *contiguous RoPE*, the position index stays bounded, so the
 371 model supports infinite inference without loss.



372 Figure 7: Per-token latency vs. video length. Full attention hits OOM; sliding window w/o Overlapping
 373 spikes above real time; sliding window w/ Overlapping remains inefficient; StreamingVLM latency stays
 374 low and stable. The dashed line marks the real-time
 375 threshold ($10 \text{ tokens/s} \Rightarrow \leq 0.1 \text{ s per token}$).

378 Table 5: Ablation of sliding window and sink size with accuracy on captioning tasks (win rate).
379 **Left:** effect of T_{sink} and T_{window} , trained with $V_{\text{window}} = 16$ s. **Right:** effect of V_{window} , trained with
380 $T_{\text{sink}} = 512$ and $T_{\text{window}} = 512$. (Superscripts for Inf-Streams-Eval: ∞ = infinite; \dagger = chunk length
381 100s.)

Infer args		SFT args		Inf-Streams-Eval (Basketball)			V_{window}	Inf-Streams-Eval			
T_{sink}	T_{window}	T_{sink}	T_{window}	GPT-4o †	Livecc †	Livecc $^{\infty}$		Win Rate vs.	GPT-4o †	Livecc †	Livecc $^{\infty}$
512	0	512	512	69.68	89.42	99.19		0 s	52.90	77.49	97.56
0	512	512	512	66.76	86.03	98.69		1 s	63.46	83.24	98.18
256	256	512	512	70.17	91.79	99.62		4 s	66.08	83.86	98.73
1024	1024	512	512	71.43	91.69	99.84		8 s	65.66	85.09	99.14
∞	∞	∞	∞	60.41	72.08	98.55		32 s	65.49	85.58	99.06
512	512	512	512	73.64	92.33	99.38		16 s	66.18	87.81	99.38

392 Table 6: Ablation of SFT strategy and dataset on captioning and VQA. Overlapped SFT strategy
393 improves over the Live-WhisperX-526K base, and adding the high-quality annealing data brings
394 further improvements, especially for infinite streaming task Inf-Streams-Eval. (Superscripts for Inf-
395 Streams-Eval: ∞ = infinite; \dagger = chunk length 100s.)

	Win Rate A vs. B	Inf-Streams-Eval			Livecc-Sports-3K cc			MVBench	Video MME	LongVideoBench	OVOBench	
		GPT-4o †	Livecc †	Livecc $^{\infty}$	LLaVA	GPT-4o	Gemini					
	Model B											
	Model A											
Qwen-2.5-VL-7B-Instruct †		0.01	20.44	95.97	24.50	16.25	28.38	34.11	67.34	65.10	54.70	56.00
+ Live-WhisperX-526K ∞		32.17	56.52	99.05	42.77	41.86	39.37	47.80	63.71	62.10	54.30	57.69
+ Inf-Streams-Train ∞		63.46	83.82	98.95	46.45	45.48	44.27	53.07	68.66	64.90	59.00	60.55
+ High-Quality Annealing Data ∞		66.18	87.81	99.12	47.33	45.59	44.39	56.19	69.16	65.10	59.00	61.96

3.4.2 SLIDING WINDOW AND SINK

404 We firstly verify the value of evicting text during training. Then we search for the best inference
405 settings of T_{sink} , T_{window} , V_{window} .

406 First, the left table in Table 5 ablates the lengths of the attention sink and text window. Here T_{sink}
407 and T_{window} are the lengths of previous attention sink and text window kept during both training
408 and inference. We take a basketball-only subset of the SFT data and train two models: one with
409 text eviction using $T_{\text{sink}}=512$ and $T_{\text{window}}=512$, and one without eviction. On the Inf-Streams-Eval
410 (basketball subset), we evaluate each model under its matching policy (evict vs. no-evict). The left
411 table in table 5 shows that, for infinite inference, evicting previous text tokens is important and
412 improves performance.

413 Next, we study different choices of V_{window} . The right table in Table 5 shows that a 16 s visual
414 window is a good choice: it is long enough to cover recent actions, yet short enough to stay efficient.
415 In contrast, keeping 0 s of vision context leads to a clear drop, confirming that retaining recent vision
416 tokens for continuous actions is essential.

3.4.3 TRAINING STRATEGY AND DATASET

421 We study the effect of our SFT data and high-quality annealing data. The SFT set teaches the model
422 the infinite streaming inference pattern, while the high-quality annealing data further improves com-
423 mentary quality.

424 **SFT Strategy** As shown in Table 6, with our overlapped training strategy, our SFT subset helps the
425 model adapt to the interleaved vision–text pattern and to understand very long videos. Compared
426 with a model trained only on Live-WhisperX-526K, training on the overlapped SFT data strengthens
427 perception of infinite video, yielding clear gains +31.29 (win rate against GPT-4o-mini) on Inf-
428 Streams-Eval and +3.68 (win rate against LLaVA-Video-72B-Qwen2) on Livecc-Sports-3K cc.

429 **High-quality Annealing Data** Our high-quality annealing data focus on real-time content and fur-
430 ther boosts model ability. As shown in Table 6, we compare training with and without the high-
431 quality annealing data. We can observe significant gains on both captioning and VQA benchmarks.

432

4 RELATED WORK

433

434 **Vision-Language Models** Early multimodal models start from images and then extend to videos
 435 by adding temporal modules or token schedulers. Recent open models improve video understanding
 436 and transfer across tasks. Examples include LLaVA-OneVision for unified transfer across images,
 437 multi-image inputs, and videos (Li et al., 2024a), Video-LLaMA 2 for spatial-temporal and audio
 438 cues (Cheng et al., 2024), InternVideo2/2.5 for scaling video encoders and long context (Wang et al.,
 439 2024; 2025b), LongVILA for long video training system (Chen et al., 2025b), and Qwen2.5-VL for
 440 strong grounding, document parsing, and long-video skills (Bai et al., 2025). Most systems process
 441 finite clips and often place all vision tokens before text, which can hurt alignment in streaming and
 442 limit real-time interaction in practice. In contrast, we interleave vision and text at 1 s steps to match
 443 real-time commentary and interaction, and we observe gains on both commentary and VQA.

444

445 **Long-Context and Streaming Inference in Text LLMs** To handle near-infinite inputs under fixed
 446 memory and delay, the text community has proposed several lines of work: (1) *Attention sink + sliding*
 447 *window*: StreamingLLM keeps a small set of early “sink” tokens plus a recent window, which
 448 stabilizes very long decoding (Xiao et al., 2024). (2) *RoPE extension and continuity*: YaRN, LongRoPE,
 449 and LongLoRA for efficient fine-tuning improve position embedding extrapolation (Peng
 450 et al., 2023; Ding et al., 2024; Chen et al., 2024b); our contiguous RoPE follows this idea but tar-
 451 gets cross-modal, step-wise updates. (3) *KV cache compression/eviction*: H₂O, SnapKV, and ReKV
 452 reduce KV size by selecting heavy hitters or gating heads (Zhang et al., 2023; Li et al., 2024c; Di
 453 et al., 2025). However, these methods are mostly tested on text, and alignment between streaming
 454 training and inference remains underexplored. We bring the “sink + sliding window + contiguous
 455 position” recipe to cross-modal streaming and introduce a training strategy for streaming inference.

456

457 **Streaming and Online Video LLMs** Several concurrent works target streaming video directly.
 458 VideoLLM-online (LIVE) converts offline data into streaming dialogue for long context and low
 459 latency (Chen et al., 2024a). VideoStreaming uses a fixed video token budget to handle long videos
 460 (Qian et al., 2024). LiveCC aligns large-scale ASR with video frames to push real-time sports
 461 commentary (Chen et al., 2025a). In practice, on videos longer than 5 minutes (at least 200 frames),
 462 these methods show clear performance drops, and their latency is still far from infinite real-time
 463 interaction. Compared with these, we (i) train with *overlapped short chunks and full attention* to
 464 match the *sink + sliding window* test pattern, and (ii) keep *contiguous RoPE* across modalities to
 465 enable real-time understanding over infinite videos.

466

467 **VLMs Benchmarks and Evaluation** VideoMME covers 900 videos (254 hours) with multimodal
 468 inputs and tests both short and long time ranges (Fu et al., 2025). LiveSports-3K-CC compares real-
 469 time commentary quality and often uses the “LLM-as-a-judge” win-rate metric (Wang et al., 2025a).
 470 LVBench targets ultra-long videos and long-term memory (Wang et al., 2025a). However, Current
 471 benchmarks often focus on retrieval or summary over long videos and do not require frame-level un-
 472 derstanding, so even a very low FPS sample may pass. Our Inf-Streams-Eval is built for *near-infinite*
 473 commentary (over 2 hours). It requires second-level alignment between frames and responses and
 474 tests high-FPS, long-video understanding—closer to real-world needs for VLM assistants, robots,
 475 and autonomous driving.

476

477

5 CONCLUSION

478

479 In this paper, we introduce StreamingVLM, a unified training–inference framework that brings real-
 480 time streaming perception to existing VLMs. We first present an efficient strategy for training
 481 streaming VLMs and a data curation pipeline that together boost performance on both streaming
 482 tasks and VQA. We then show on real-world cases that our inference design enables real-time video
 483 understanding, delivering stable commentary for over 3 hours at up to 8 FPS on a single NVIDIA
 484 H100. Finally, we release Inf-Streams, a new SFT dataset and benchmark that tests second-level,
 485 real-time understanding on videos averaging over 2 hours. Taken together, this work paves the way
 for practical deployment in real settings.

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
490 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
491 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
492 URL <https://arxiv.org/abs/2502.13923>.

493 Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
494 Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large lan-
495 guage model for streaming video, 2024a. URL <https://arxiv.org/abs/2406.11816>.

496 Joya Chen, Ziyun Zeng, Yiqi Lin, Wei Li, Zejun Ma, and Mike Zheng Shou. Livecc: Learning video
497 llm with streaming speech transcription at scale, 2025a. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2504.16030)
498 2504.16030.

499 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
500 glora: Efficient fine-tuning of long-context large language models. In *International Conference
501 on Learning Representations*, 2024b.

502 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
503 Tang, Shang Yang, Zhijian Liu, Yihui He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan,
504 Yuke Zhu, Yao Lu, and Song Han. Longvila: Scaling long-context visual language models for
505 long videos. In *International Conference on Learning Representations*, 2025b.

506 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
507 Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
508 modeling and audio understanding in video-llms, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2406.07476)
509 2406.07476.

510 Shangzhe Di, Zhelun Yu, Guanghao Zhang, Haoyuan Li, Tao Zhong, Hao Cheng, Bolin Li, Wanggui
511 He, Fangxun Shu, and Hao Jiang. Streaming video question-answering with in-context video kv-
512 cache retrieval, 2025. URL <https://arxiv.org/abs/2503.00540>.

513 Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
514 Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024.
515 URL <https://arxiv.org/abs/2402.13753>.

516 Chaoyou Fu, Yuhua Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
517 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
518 Tong Xu, Xiawu Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme: The
519 first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis, 2025. URL
520 <https://arxiv.org/abs/2405.21075>.

521 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
522 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer,
523 2024a. URL <https://arxiv.org/abs/2408.03326>.

524 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
525 Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video under-
526 standing benchmark, 2024b. URL <https://arxiv.org/abs/2311.17005>.

527 Yifei Li, Junbo Niu, Ziyang Miao, Chunjiang Ge, Yuanhang Zhou, Qihao He, Xiaoyi Dong,
528 Haodong Duan, Shuangrui Ding, Rui Qian, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
529 He, and Jiaqi Wang. Ovo-bench: How far is your video-llms from real-world online video under-
530 standing?, 2025. URL <https://arxiv.org/abs/2501.05510>.

531 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
532 Cai, Patrick Lewis, and Deming Chen. Snappy: Llm knows what you are looking for before
533 generation, 2024c. URL <https://arxiv.org/abs/2404.14469>.

534 OpenAI. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

540 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
541 extension of large language models, 2023. URL <https://arxiv.org/abs/2309.00071>.
542

543 Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Shuangrui Ding, Dahua Lin, and Jiaqi Wang.
544 Streaming long video understanding with large language models, 2024. URL <https://arxiv.org/abs/2405.16009>.
545

546 Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
547 Huang, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Lvbench: An extreme long video
548 understanding benchmark, 2025a. URL <https://arxiv.org/abs/2406.08035>.
549

550 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Chenting Wang, Guo Chen, Baoqi Pei,
551 Ziang Yan, Rongkun Zheng, Jilan Xu, Zun Wang, Yansong Shi, Tianxiang Jiang, Songze Li,
552 Hongjie Zhang, Yifei Huang, Yu Qiao, Yali Wang, and Limin Wang. Internvideo2: Scaling
553 foundation models for multimodal video understanding, 2024. URL <https://arxiv.org/abs/2403.15377>.
554

555 Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
556 Ma, Haian Huang, Jianfei Gao, Min Dou, Kai Chen, Wenhui Wang, Yu Qiao, Yali Wang, and
557 Limin Wang. Internvideo2.5: Empowering video mllms with long and rich context modeling,
558 2025b. URL <https://arxiv.org/abs/2501.12386>.
559

560 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
561 guage models with attention sinks, 2024. URL <https://arxiv.org/abs/2309.17453>.
562

563 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
564 Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H₂O: Heavy-
565 hitter oracle for efficient generative inference of large language models, 2023. URL <https://arxiv.org/abs/2306.14048>.
566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

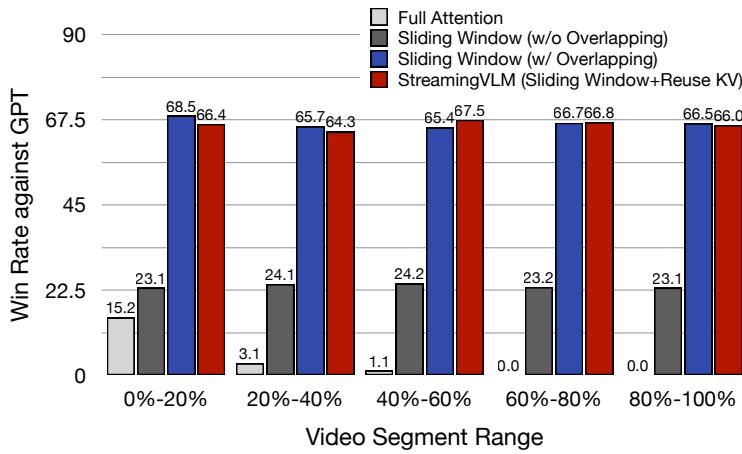
591

592

593

594 **A APPENDIX**
595596 **A.1 LLM USAGE STATEMENT**
597598 We acknowledge the use of Large Language Models (specifically Claude and GPT-5) in the preparation
599 of this manuscript. The LLMs were used exclusively as writing assistants to:
600601

- Polish and refine the language for clarity and conciseness
- Improve grammar and sentence structure
- Suggest alternative phrasings for technical descriptions
- Help organize and structure sections for better flow

602603 All research ideas, experimental design, theoretical derivations, and scientific contributions are entirely
604 our own. The LLMs did not contribute to research ideation, hypothesis formulation, or any
605 core scientific aspects of this work. We used LLMs in a manner similar to grammar-checking tools,
606 but with more sophisticated language capabilities. All content, including any LLM-assisted text, has
607 been carefully reviewed and verified by the authors. We take full responsibility for all contents of
608 this paper, including their accuracy and originality.
609610 **A.2 STABILITY OVER TIME**
611612 We split each video into five segments at 20% intervals and evaluate on the 2-hour test set. As
613 shown in Figure 8, StreamingVLM does not degrade across later segments and reaches performance
614 close to Sliding-Window w/ Overlap. This indicates that StreamingVLM maintains quality as videos
615 grow and effectively supports unbounded inference.
616617 **Figure 8: Stability over time.** Each test video is split into five segments at 20% intervals. StreamingVLM (Sliding Window + Reuse KV) maintains nearly constant win rate across segments and matches the performance of Sliding Window w/ Overlap, while Full Attention and Sliding Window w/o Overlap degrade or remain far lower.
618634 **A.3 DEMO**
635636 We provide a demonstration video in the supplementary materials that showcases the commentary
637 performance of StreamingVLM after nearly 100 minutes of continuous inference. Please refer to
638 the supplementary materials for details.
639