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ABSTRACT

Vision-language models (VLMs) could power real-time assistants and au-
tonomous agents, but they face a critical challenge: understanding near-infinite
video streams without escalating latency and memory usage. Processing entire
videos with full attention leads to quadratic computational costs and poor per-
formance on long videos. Meanwhile, simple sliding window methods are also
flawed, as they either break coherence or suffer from high latency due to redun-
dant recomputation. In this paper, we introduce StreamingVLM, a model de-
signed for real-time, stable understanding of infinite visual input. Our approach
is a unified framework that aligns training with streaming inference. During in-
ference, we maintain a compact KV cache by reusing states of attention sinks,
a short window of recent vision tokens, and a long window of recent text to-
kens. This streaming ability is instilled via a simple supervised fine-tuning (SFT)
strategy that applies full attention on short, overlapped video chunks, which effec-
tively mimics the inference-time attention pattern without training on prohibitively
long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with
videos averaging over two hours that requires dense, per-second alignment be-
tween frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18%
win rate against GPT-4O mini and maintains stable, real-time performance at up
to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances gen-
eral VQA abilities without any VQA-specific fine-tuning, improving performance
on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code will be
released upon publication.

1 INTRODUCTION

VLMs could power autonomous driving, embodied agents, and real-time assistants, but they face
critical challenges: understanding near-infinite video, responding in real time stably. To accept infi-
nite input, common ideas are Sliding Window Attention with or without overlapping. As shown in
Figure 1: (a) Full Attention suffers from heavy memory and latency; (b) Sliding Window (w/o Over-
lapping) resets context frequently and breaks coherence; (c) Sliding Window Attention (w/ Overlap-
ping) keeps recent tokens but recomputes attention many times, which hurts efficiency.

Aligning training with inference adds further challenges. Real streaming requires taking infinite
visual input in real time and replying with very low delay, but training cannot use extremely long
videos. Current approaches to KV cache eviction often lack alignment with the training phase.
How to train on short videos and still enable the model to reason over very long streams remains
underexplored. This leads to our core question: How can we train VLMs to understand video chunks
in real time and reason stably over infinite video, moving toward human-like intelligence?

In this paper, we propose StreamingVLM, a unified framework that aligns training with streaming
inference and a dataset curation pipeline. The key ideas are: (1) Train the VLM with full attention
on short, overlapped video chunks. (2) At inference, use an attention sink and a sliding window with
to handle infinite video, aligned with training. (3) Reuse past KV states and use contiguous position
IDs to keep inference stable.

Using this framework, we build Inf-Streams-Train, a sports commentary SFT dataset of over 4000
hours and Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires
dense, per-second alignment between frames and text. Then, we fine-tune Qwen-2.5-VL-7B-Instruct
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Figure 1: Illustration of StreamingVLM vs. existing VLMs. Let T be video length and W the
sliding-window size. (a) Full Attention: O(T 2) cost; unbounded memory; degrades beyond training
length. (b) Sliding Window (no overlap): bounded memory but short chunks break coherence; long
chunks raise latency. (c) Sliding Window (overlap): recomputation per window yields high latency.
(d) StreamingVLM (Sliding Window + Reuse KV): reuses states of attention sinks, a short vision
window and long text window, preserving history at low latency. “Win rate” is the pairwise win
share vs. GPT-4o mini (judge: GPT-5).

for real-time commentary, yielding StreamingVLM that can understand infinite video and response
in real time. We evaluate StreamingVLM on captioning and VQA tasks, including LiveCC-Sports-
3K CC and Inf-Streams-Eval for captioning, and LongVideoBench (and related VQA benchmarks)
for video understanding (Chen et al., 2025a; Wang et al., 2025a).

On captioning tasks, StreamingVLM, with its infinite video understanding, outperforms existing
models such as Livecc-7B-Instruct. As shown in Figure 2, StreamingVLM performs well on practi-
cal tasks: it can provide continuous commentary for more than two hours on sports games. On VQA
tasks, even without any VQA fine-tuning, StreamingVLM still improves on LongVideoBench by
+4.30. In terms of efficiency, StreamingVLM maintains a low and stable latency, making it highly
suitable for real-world streaming understanding tasks.

StreamingVLM (Sliding Window + Reuse KV):

01:31:31: Portugal got three points with Ronaldo's three goals!

StreamingVLM (Sliding Window + Reuse KV): 

00:00:00: Fans will have fun tonight, so let’s take a look at the kickoff.

00:00:02: On the right-hand side, we’ve got Portugal in Red.

00:00:04: And then at the other end, it’s Spain setting up for kickoff.

Qwen2.5-VL-7B-Instruct (w/o SFT):      Cannot Generate Coherently

00:00:00: Players are warming up before kickoff.

00:00:02: Players from both teams are on the field, warming up …

00:00:04: Players from both teams are on the field, warming up …

LiveCC-7B-Instruct (Sliding Window):        Loss Long-term Memory

01:31:31: Will Ronaldo be able to score the first penalty?

StreamingVLM (Sliding Window + Reuse KV):

00:03:30: Ronaldo against David De Gea. A heart-stopping penalty.

LiveCC-7B-Instruct (Full Attention):       Exceed Training Length

00:03:30: shot shot shot shot shot shot shot shot …

(50 ms/tok)

(50 ms/tok)

(531 ms/tok)

(50 ms/tok)

(50 ms/tok)
(180 ms/tok)

Figure 2: Issues with existing VLMs. (1) Without SFT, models cannot generate cross-round con-
tent coherently. (2) With full attention, the context exceeds the training length after processing 2–5
minutes of video and latency becomes prohibitive. (3) With a sliding window, models cannot re-
tain enough context to benefit from efficiency. In contrast, StreamingVLM addresses these issues,
enabling coherent commentary, real-time generation, and long-term history.

2 METHOD

In this section, we introduce our method for the model and the data. This part has three components:
(1) inference scheme for vision–language processing that supports low-latency updates on infinite
video used by StreamingVLM; (2) a training strategy that equips StreamingVLM with streaming
inference capability; and (3) the data curation pipelines that provides long-horizon, real-time data
for training and a new benchmark, Inf-Streams.
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Figure 3: Inference scheme of StreamingVLM. We keep 512 attention-sink tokens to stabilize
attention, a long text window of 512 recent tokens to preserve long-term memory, and a short vision
window covering 16 seconds to track ongoing actions. We use Contiguous RoPE: indices are shifted
to stay within a fixed range, keeping positions in-distribution and within the training length.

2.1 INFERENCE SCHEME OF STREAMINGVLM

This section describes the StreamingVLM inference structure shown in Figure 3. These design
choices reduce the computation in Figure 1(c) while maintaining comparable performance.

Streaming-aware KV Cache The key idea is to maintain a compact and stable KV cache by
reusing previous states during streaming inference. As new video frames arrive, we reuse the states
of (i) a set of sink text tokens — including the system and previous text — of length Tsink; (ii) a
long window of the most recent text tokens of length Twindow; and (iii) a short window of the most
recent vision tokens of length Vwindow. In Figure 3, the cache lengths are Tsink = 1, Twindow = 3, and
Vwindow = 4.

With this structure, older vision tokens are evicted first; early text is evicted only when the budget is
exceeded. Instead of recomputing previous tokens, this asymmetric retention keep the lowest com-
putation while maintaining sufficient context for coherent generation over time, yielding comparable
performance with Sliding Window with Overlapping (Figure 1(c)).

Contiguous RoPE To prevent positional drift after eviction, we apply contiguous rotary positional
embeddings (RoPE). When earlier tokens are removed, the RoPE indices of subsequent and incom-
ing tokens are shifted so that their positions remain numerically contiguous with the last retained
token. Once the video length surpasses the total window size, the effective RoPE indices stop grow-
ing and remain within a bounded range. This keeps positional values in-distribution and stabilizes
long-horizon streaming inference.

When applied to the Qwen-VL family, which uses 3D positional embeddings for visual tokens,
we use contiguous 3D RoPE. The RoPE index is still left-shifted to stay contiguous; for vision
tokens, we build 3D indices (time, height, width) and assemble them by the 3D rule, matching the
interleaved vision–text layout.

2.2 TRAINING STRATEGY

To endow the model with the ability to follow the streaming inference pattern in Figure 3 while
keeping training simple, we adopt an overlapped-chunk, full-attention strategy (see Figure 4). The
left panel of Figure 4 illustrates the attention at inference time. In this Figure 4, the cache lengths
are the same to Figure 3, with Tsink=1, Twindow=3, and Vwindow=4.

During training (middle panel of Figure 4), rather than replicating the exact sliding-window schedule
used at inference, we split a long video stream into consecutive chunks {C1, C2, . . .} of length W
frames, with temporal overlap O frames between Ci and Ci+1 (0 < O < W ). Each chunk is
treated as a training instance in which vision and text tokens (V/T) are sampled and interleaved at
1 s intervals. We apply full attention within a chunk, i.e., every token may attend to all tokens inside
the same chunk.

As highlighted in the right panel of Figure 4, this overlapped full-attention supervision closely ap-
proximates the effective attention pattern at inference — attention sink, a longer window of recent
text, and a shorter window of recent vision retained in the compact KV cache. Aligning training
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supervision with the test-time context teaches the model the intended recency bias and yields stable
streaming behavior without training on prohibitively long, quadratic-cost contexts.

1
2

3
4

Inference Attention Map SFT Attention Map

Figure 4: Training Strategy. We train with
overlapped full attention that mimics test-time
attention. (1), (2), (3) and (4) are four training
samples, both keeping the attention sinks and
overlap later in time.

Importantly, mirroring the inference-time schedule,
we interleave vision and text tokens within each
training chunk — rather than adopting the com-
mon VLM paradigm that places all vision tokens
before text. We compute loss only on text positions
aligned to the per-second narration; when a sec-
ond has no narration, we insert a placeholder token
"..." in that slot while keeping the interleaved
V/T layout. This supervision teaches the model to
synchronize generation with the stream—learning
when to speak and when to remain silent—and
consequently endows StreamingVLM with reliable
streaming narration behavior at inference.

2.3 DATA CURATION PIPELINE

Football

Baseball

Ice Hockey Soccer

Basketball

Video Collection and ASR Data Cleaning with LLM Data Segmentation

Caption 1

Caption 2

Caption n
… …

GPT Re-write

Steven Curry pulls up!

Stephen Curry pulls up!

Min Words

Filtering

Stephen Curry pulls up!

SFT & Eval Data

HQ Annealing DataGPT

Filtering

Figure 5: Data Curation Pipeline. We collect games from five sports—basketball, soccer, Ameri-
can football, ice hockey, and baseball. We use GPT to edit or reject low-quality segments, yielding
2,449 full games. We then build two datasets through separate pipelines: an SFT dataset using
overlapped chunking, and a high-quality annealing dataset focused on real-time actions.

2.3.1 VIDEO COLLECTION AND ASR

As shown in Figure 5, we collected game videos from five sports: basketball, soccer, ice hockey,
baseball, and American football, including 712 basketball games, 544 soccer games, 402 ice hockey
games, 399 baseball games, and 392 American football games. The commentary language is En-
glish. To ensure video quality and read speed, we constrained the video resolution to 360P–720P
with a frame rate of 24 FPS. First, we used the WhisperX model to extract real-time speech (ASR)
from these games, obtaining an initial corpus of videos with a total duration of over 6,000 hours and
their corresponding real-time commentary.

2.3.2 DATA CLEANING

In complete commentary videos, there are often many useless segments, such as advertisements
and host monologues. These segments have weak connections between visual content and ASR
semantics, making it impossible for the model to infer content from the footage. In addition, the
ASR model sometimes fails to correctly recognize details such as player names and team names.

Therefore, we set rules and used GPT to clean these data. We first split a game into 120-second
segments and concatenate the commentary within each segment, then split it into sentences. Using
the segment and the video title (including game time and both teams) as context, we ask the gpt-
5-nano model to make a decision according to the rules, with options “keep,” “delete,” and “edit”
each sentence in one chunk. “Keep” means the content is game commentary and is correct. “Edit”
means it is commentary but needs to modify some details, such as incorrect names, and the corrected
complete sentence is returned. “Delete” means non-compliant content that should not appear in the
training data.

For kept sentences, the timestamps are consistent with the ASR results; for edited sentences, we
evenly distribute the original sentence duration over each word of the edited sentence (since a sen-
tence typically lasts about 3–5 seconds, the error is within a tolerable range). In the original ASR
data, 46.32% were kept, 37.89% were edited, and 15.79% were deleted, ultimately forming the raw
video-commentary pairs of our data.
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2.3.3 SFT AND EVALUATION DATA SEGMENTATION

For the train and validation sets, we build the data as follows. Under the training setup in Section
2.2, we split videos with W = 24 s and O = 12 s. To ensure enough commentary labels per sample,
we require at least 2∗W words as min words filtering. All commentary before the segment is treated
as previous text. During training, we take the first Tsink tokens and the last Twindow tokens from this
previous text to match the inference setup.

For evaluation, we create a new benchmark, Inf-Streams-Eval. It contains 20 full games with an
average length of 2.12 hours. We split each game into 100 s segments, selecting those with at
least 200 words. Commentaries of these segments are considered as ground truth. For scoring, a
larger model (we use gpt-5-nano) votes between two model outputs with access to ground-truth
references. The model with more votes (higher win rate) is judged to provide better commentary.

Inf-Streams-Eval has two settings: chunk and infinite, denoted by † and ∞, respectively in following
tables. In Figure 1, the chunk mode is panel (b), and the infinite mode is panel (d). For models that
cannot do infinite inference, we cut the video into chunks; the model receives the previous text and
the current chunk to produce a caption. For models that support infinite inference, the model runs
on the full stream; we keep its past outputs as previous text and continue captioning until the video
ends.

2.3.4 HIGH-QUALITY ANNEALING DATA

The above dataset can sft the model’s ability for real-time video understanding. However, it contains
a lot of content such as team information and season history; for the human experience of the com-
mentary task, we prefer the model to provide real-time commentary on on-field events. Therefore,
we created a high-quality annealing data.

We first slice all data without overlap, requiring each clip to be 16–64 seconds long with internal
silence no longer than 3 seconds; each clip must also contain at least 2 ∗ D (duration in seconds)
words. Across all games, we obtained 52,530 new samples. Then, we define the standard of “real-
time commentary.” For each sample, we use gpt-5-nano to determine whether the proportion of
“real-time commentary” exceeds 80% to decide whether to keep it. In the end, only 14,786 samples
were retained. Subsequent experiments in Table 6 show that after applying this portion of data for
sft, the model’s capability and commentary quality further improved.

3 EXPERIMENTS

In this section, we first describe the implementation details, then evaluate on video captioning and
VQA against strong baselines. We next test the efficiency of StreamingVLM. Finally, we run abla-
tions to better understand its behavior.

3.1 EXPERIMENTAL SETUP

Training We fine-tune StreamingVLM from Qwen2.5-VL-Instruct-7B (Bai et al., 2025). Step 1
teaches the model the infinite streaming inference pattern. We train on our SFT set (525K streaming
samples) and on LiveCC’s Live-WhisperX-526K (526K streaming samples) (Chen et al., 2025a).
Step 2 uses our high-quality annealing data (14K streaming samples, each 16–64 s with detailed
actions) to boost real-time action commentary and improve human experience. After these two
stages, we obtain StreamingVLM. The total compute is about 128 H100-days.

Baselines We select strong baselines to compare with StreamingVLM. For the captioning task, we
use GPT-4o mini to show commentary strength, and Livecc-7B-Instruct, which is trained on 5.5M
YouTube video clips (30 – 240 s) and 178K Video-Question-Answer samples, working well on short
videos commentary (OpenAI, 2024; Chen et al., 2025a). We also include ReKV, a strong training-
free streaming-inference method (Di et al., 2025). Due to design limits, GPT-4o mini is evaluated
on Inf-Streams-Eval in the chunk setting, not the infinite mode used by StreamingVLM. LiveCC-
7B-Instruct is tested in both chunked and infinite settings. For the VQA task, we use Qwen2.5-VL-
7B-Instruct, which is the base model before SFT for StreamingVLM, to show that our SFT pipeline
improves the base ability (Bai et al., 2025).

5
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Table 1: Captioning accuracy (win rate vs. baselines). Base-
lines with/without chunking fall short; StreamingVLM surpasses
strong models such as GPT-4o and produces compelling commen-
tary.(Superscripts for Inf-Streams-Eval: ∞ = infinite; † = chunk
length 100s. On Livecc-Sports-3K CC, LiveCC has only one mode
and cannot be compared against itself, so we show “–”.

Win Rate A vs. B Inf-Streams-Eval Livecc-Sports-3K cc

Model A
Model B GPT-4o† Livecc† Livecc∞ LLaVA GPT-4o Gemini Livecc

Qwen-2.5-VL-7B-Instruct † 0.01 20.44 95.97 24.50 16.25 28.38 34.11
Livecc-7B-Instruct † 15.73 – – – – – –
Livecc-7B-Instruct ∞ 1.82 – – 41.50 40.06 39.73 –

StreamingVLM ∞ 66.18 87.81 99.12 47.33 45.59 44.21 56.19
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Figure 6: For existing VLMs,
balancing cross-chunk coher-
ence with training-length lim-
its is challenging.

Benchmark We evaluate real-time captioning and video understanding across a broad set of tasks.
For captioning, we use our Inf-Streams-Eval (average length 2.12 hours), which tests long-horizon
commentary and the LiveSports3K-CC benchmark (49 sports, 416 clips, each ≥ 10 s) (Chen et al.,
2025a). For video understanding, we evaluate StreamingVLM on four public suites. VideoMME: a
multi-task set (QA, caption, grounding) covering short and long videos for general comprehension
(Fu et al., 2025). MVBench: fine-grained skills on short clips (actions, objects, counting, temporal
order) (Li et al., 2024b). LongVideoBench: long-video QA that requires long-term memory and
cross-segment reasoning (Wang et al., 2025a). OVOBench: video QA that tests real-time under-
standing and streaming perception (Li et al., 2025).

3.2 ACCURACY RESULTS

3.2.1 CAPTIONING

Table 2: Training–inference consistency
surpasses ReKV. Non–fine-tuned models
lack capability of real-time captioning, while
with fine-tuning models ReKV’s eviction pol-
icy disrupts context, frequently resulting in no
output. (Superscripts for Inf-Streams-Eval: ∞

= infinite; † = chunk length 100s.)
Win Rate Inf-Streams-Eval

Model A
Model B GPT-4o† Livecc† Livecc∞

Qwen (+ ReKV) ∞ 0.00 19.56 63.57
StreamingVLM (+ ReKV) ∞ 0.00 0.00 0.00

StreamingVLM (+ Ours) ∞ 66.18 87.81 99.12

We first compare our inference strategy with ReKV
on the captioning task. We observe a paradox for
training-free ReKV: models without task-specific
fine-tuning perform poorly, yet models that are spe-
cially fine-tuned (e.g., StreamingVLM) rely on a
fixed context format that ReKV’s eviction policy
disrupts, often yielding no output. In contrast,
StreamingVLM ’s training–inference consistent de-
sign resolves this issue.

Then, we evaluate StreamingVLM, Qwen-2.5-VL-
7B-Instruct, and LiveCC-7B-Instruct on LiveCC-
3K-Sports-CC and Inf-Streams-Eval. As shown in
Table 1, on Inf-Streams-Eval, Qwen-2.5-VL-7B-
Instruct cannot keep continuous commentary and
thus performs poorly. LiveCC-7B-Instruct works
better with chunked inference. Figure 6 further shows that short chunks break coherence; these de-
signs do not support infinite inference, and with long chunks they soon exceed the training length
and degrade.

In contrast, StreamingVLM runs in infinite mode; its long-term memory and streaming video percep-
tion give it a clear edge, surpassing GPT-4o mini in commentary quality. Figure 2 (the figure shown)
illustrates a real case where StreamingVLM maintains coherent output, real-time latency, and long-
term memory, addressing the core challenge of real-time perception for infinite video streams. On
LiveCC-3K-Sports-CC, StreamingVLM also performs better than baselines, showing stable stream-
ing captioning on videos of various length.

3.2.2 VQA

We evaluate StreamingVLM and its base model, Qwen-2.5-VL-7B-Instruct, on four VQA tasks. As
shown in Table 3, even without any VQA SFT, StreamingVLM outperforms the base on all tasks,

6
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Table 3: VQA results comparing StreamingVLM with its base model. Without any VQA fine-tuning,
StreamingVLM delivers consistent accuracy gains across all tasks, with the strongest improvements
on long-horizon and real-time settings.

MVBench Video MME (w/o sub.) LongVideoBench OVOBench (Realtime)

Qwen-2.5-VL-7B-Instruct 67.34 65.10 54.70 56.00
StreamingVLM 69.16 65.10 59.00 61.96

Table 4: Ablation of RoPE on captioning
(win rate). Native RoPE drops on infi-
nite streams; 100 s chunking partly recov-
ers but hurts long-term memory; contigu-
ous RoPE keeps indices bounded and sus-
tains infinite performance. (Superscripts
for Inf-Streams-Eval: ∞ = infinite; † =
chunk length 100s.)

Win Rate A vs. B Inf-Streams-Eval

Model A
Model B GPT-4o† Livecc† Livecc∞

Native † 63.23 74.00 98.07
Native ∞ 25.09 59.42 60.32

Contiguous ∞ 66.18 87.81 99.12

OOM

Realtime
Not Realtime

Figure 7: Per-token latency vs. video length. Full at-
tention hits OOM; sliding window w/o Overlapping
spikes above real time; sliding window w/ Overlap-
ping remains inefficient; StreamingVLM latency stays
low and stable. The dashed line marks the real-time
threshold (10 tokens/s ⇒≤ 0.1 s per token).

showing that our SFT improves general visual ability. OVOBench Realtime tests understanding of
the immediate, streaming scene. On this streaming perception task, StreamingVLM improves by
5.96%. This highlights the strength of Inf-Streams-Train and our training strategy, which enhances
the model’s core abilities.

3.3 EFFICIENCY TESTS

As shown in Figure 7, we report per-token latency for the three methods in Figure 1 on infinite
commentary: VLMs with full attention, sliding window attention (w/o overlapping), sliding window
attention (w/ overlapping), and the inference strategy of StreamingVLM, respectively correspond to
panels (a), (b), (c), and (d) in the Figure 1.

Real-time replies require latency below a fixed threshold as the dashed line. Full attention soon
exceed the limit and OOM. Sliding window (w/o overlapping) needs large chunks for coherence,
so it shows a periodic latency pattern: at the start of each chunk the model rebuilds context and the
commentary is not coherent with the past; later in the chunk, latency rises sharply and fails to meet
real-time needs. Sliding window (w/ overlapping) remains inefficient for computation redundancy.
StreamingVLM keeps fixed context length and reuses KV, maintains lower and stable latency, and
supports real-time commentary at 8 FPS on a single NVIDIA H100.

3.4 ABLATION STUDY

3.4.1 CONTIGUOUS ROPE

We study the effect of contiguous RoPE indices. Since we train with full attention, training only
uses the native RoPE. At inference, we compare contiguous RoPE with the native version. As
shown in Table 4, native RoPE degrades sharply on infinite streams because its index grows fast and
exceeds the training range. Splitting the video into 100 s chunks can partly recover accuracy, but
it harms long-term conherence. With contiguous RoPE, the position index stays bounded, so the
model supports infinite inference without loss.
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Table 5: Ablation of sliding window and sink size with accuracy on captioning tasks (win rate).
Left: effect of Tsink and Twindow, trained with Vwindow = 16 s. Right: effect of Vwindow, trained with
Tsink = 512 and Twindow = 512. (Superscripts for Inf-Streams-Eval: ∞ = infinite; † = chunk length
100s. )

Infer args SFT args Inf-Streams-Eval (Basketball)

Tsink Twindow Tsink Twindow GPT-4o† Livecc† Livecc∞

512 0 512 512 69.68 89.42 99.19
0 512 512 512 66.76 86.03 98.69

256 256 512 512 70.17 91.79 99.62
1024 1024 512 512 71.43 91.69 99.84

∞ ∞ ∞ ∞ 60.41 72.08 98.55

512 512 512 512 73.64 92.33 99.38

Vwindow Inf-Streams-Eval

Win Rate vs. GPT-4o† Livecc† Livecc∞

0 s 52.90 77.49 97.56
1 s 63.46 83.24 98.18
4 s 66.08 83.86 98.73
8 s 65.66 85.09 99.14

32 s 65.49 85.58 99.06

16 s 66.18 87.81 99.38

Table 6: Ablation of SFT strategy and dataset on captioning and VQA. Overlapped SFT strategy
improves over the Live-WhisperX-526K base, and adding the high-quality annealing data brings
further improvements, especially for infinite streaming task Inf-Streams-Eval. (Superscripts for Inf-
Streams-Eval: ∞ = infinite; † = chunk length 100s.)

Win Rate A vs. B Inf-Streams-Eval Livecc-Sports-3K cc MVBench Video MME LongVideoBench OVOBench

Model A
Model B GPT-4o† Livecc† Livecc∞ LLaVA GPT-4o Gemini Livecc Score w/o sub. Realtime

Qwen-2.5-VL-7B-Instruct † 0.01 20.44 95.97 24.50 16.25 28.38 34.11 67.34 65.10 54.70 56.00
+ Live-WhisperX-526K ∞ 32.17 56.52 99.05 42.77 41.86 39.37 47.80 63.71 62.10 54.30 57.69

+ Inf-Streams-Train ∞ 63.46 83.82 98.95 46.45 45.48 44.27 53.07 68.66 64.90 59.00 60.55
+ High-Quality Annealing Data ∞ 66.18 87.81 99.12 47.33 45.59 44.39 56.19 69.16 65.10 59.00 61.96

3.4.2 SLIDING WINDOW AND SINK

We firstly verify the value of evicting text during training. Then we search for the best inference
settings of Tsink, Twindow, Vwindow.

First, the left table in Table 5 ablates the lengths of the attention sink and text window. Here Tsink
and Twindow are the lengths of previous attention sink and text window kept during both training
and inference. We take a basketball-only subset of the SFT data and train two models: one with
text eviction using Tsink=512 and Twindow=512, and one without eviction. On the Inf-Streams-Eval
(basketball subset), we evaluate each model under its matching policy (evict vs. no-evict). The left
table in table 5 shows that, for infinite inference, evicting previous text tokens is important and
improves performance.

Next, we study different choices of Vwindow. The right table in Table 5 shows that a 16 s visual
window is a good choice: it is long enough to cover recent actions, yet short enough to stay efficient.
In contrast, keeping 0 s of vision context leads to a clear drop, confirming that retaining recent vision
tokens for continuous actions is essential.

3.4.3 TRAINING STRATEGY AND DATASET

We study the effect of our SFT data and high-quality annealing data. The SFT set teaches the model
the infinite streaming inference pattern, while the high-quality annealing data further improves com-
mentary quality.

SFT Strategy As shown in Table 6, with our overlapped training strategy, our SFT subset helps the
model adapt to the interleaved vision–text pattern and to understand very long videos. Compared
with a model trained only on Live-WhisperX-526K, training on the overlapped SFT data strengthens
perception of infinite video, yielding clear gains +31.29 (win rate against GPT-4o-mini) on Inf-
Streams-Eval and +3.68 (win rate against LLaVA-Video-72B-Qwen2) on Livecc-Sports-3K cc.

High-quality Annealing Data Our high-quality annealing data focus on real-time content and fur-
ther boosts model ability. As shown in Table 6, we compare training with and without the high-
quality annealing data. We can observe significant gains on both captioning and VQA benchmarks.
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4 RELATED WORK

Vision–Language Models Early multimodal models start from images and then extend to videos
by adding temporal modules or token schedulers. Recent open models improve video understanding
and transfer across tasks. Examples include LLaVA-OneVision for unified transfer across images,
multi-image inputs, and videos (Li et al., 2024a), Video-LLaMA 2 for spatial–temporal and audio
cues (Cheng et al., 2024), InternVideo2/2.5 for scaling video encoders and long context (Wang et al.,
2024; 2025b), LongVILA for long video training system (Chen et al., 2025b), and Qwen2.5-VL for
strong grounding, document parsing, and long-video skills (Bai et al., 2025). Most systems process
finite clips and often place all vision tokens before text, which can hurt alignment in streaming and
limit real-time interaction in practice. In contrast, we interleave vision and text at 1 s steps to match
real-time commentary and interaction, and we observe gains on both commentary and VQA.

Long-Context and Streaming Inference in Text LLMs To handle near-infinite inputs under fixed
memory and delay, the text community has proposed several lines of work: (1) Attention sink + slid-
ing window: StreamingLLM keeps a small set of early “sink” tokens plus a recent window, which
stabilizes very long decoding (Xiao et al., 2024). (2) RoPE extension and continuity: YaRN, Lon-
gRoPE, and LongLoRA for efficient fine-tuning improve position embedding extrapolation (Peng
et al., 2023; Ding et al., 2024; Chen et al., 2024b); our contiguous RoPE follows this idea but tar-
gets cross-modal, step-wise updates. (3) KV cache compression/eviction: H2O, SnapKV, and ReKV
reduce KV size by selecting heavy hitters or gating heads (Zhang et al., 2023; Li et al., 2024c; Di
et al., 2025). However, these methods are mostly tested on text, and alignment between streaming
training and inference remains underexplored. We bring the “sink + sliding window + contiguous
position” recipe to cross-modal streaming and introduce a training strategy for streaming inference.

Streaming and Online Video LLMs Several concurrent works target streaming video directly.
VideoLLM-online (LIVE) converts offline data into streaming dialogue for long context and low
latency (Chen et al., 2024a). VideoStreaming uses a fixed video token budget to handle long videos
(Qian et al., 2024). LiveCC aligns large-scale ASR with video frames to push real-time sports
commentary (Chen et al., 2025a). In practice, on videos longer than 5 minutes (at least 200 frames),
these methods show clear performance drops, and their latency is still far from infinite real-time
interaction. Compared with these, we (i) train with overlapped short chunks and full attention to
match the sink + sliding window test pattern, and (ii) keep contiguous RoPE across modalities to
enable real-time understanding over infinite videos.

VLMs Benchmarks and Evaluation VideoMME covers 900 videos (254 hours) with multimodal
inputs and tests both short and long time ranges (Fu et al., 2025). LiveSports-3K-CC compares real-
time commentary quality and often uses the “LLM-as-a-judge” win-rate metric (Wang et al., 2025a).
LVBench targets ultra-long videos and long-term memory (Wang et al., 2025a). However, Current
benchmarks often focus on retrieval or summary over long videos and do not require frame-level un-
derstanding, so even a very low FPS sample may pass. Our Inf-Streams-Eval is built for near-infinite
commentary (over 2 hours). It requires second-level alignment between frames and responses and
tests high-FPS, long-video understanding—closer to real-world needs for VLM assistants, robots,
and autonomous driving.

5 CONCLUSION

In this paper, we introduce StreamingVLM, a unified training–inference framework that brings real-
time streaming perception to existing VLMs. We first present an efficient strategy for training
streaming VLMs and a data curation pipeline that together boost performance on both streaming
tasks and VQA. We then show on real-world cases that our inference design enables real-time video
understanding, delivering stable commentary for over 3 hours at up to 8 FPS on a single NVIDIA
H100. Finally, we release Inf-Streams, a new SFT dataset and benchmark that tests second-level,
real-time understanding on videos averaging over 2 hours. Taken together, this work paves the way
for practical deployment in real settings.
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A APPENDIX

A.1 LLM USAGE STATEMENT

We acknowledge the use of Large Language Models (specifically Claude and GPT-5) in the prepa-
ration of this manuscript. The LLMs were used exclusively as writing assistants to:

• Polish and refine the language for clarity and conciseness
• Improve grammar and sentence structure
• Suggest alternative phrasings for technical descriptions
• Help organize and structure sections for better flow

All research ideas, experimental design, theoretical derivations, and scientific contributions are en-
tirely our own. The LLMs did not contribute to research ideation, hypothesis formulation, or any
core scientific aspects of this work. We used LLMs in a manner similar to grammar-checking tools,
but with more sophisticated language capabilities. All content, including any LLM-assisted text, has
been carefully reviewed and verified by the authors. We take full responsibility for all contents of
this paper, including their accuracy and originality.

A.2 STABILITY OVER TIME

We split each video into five segments at 20% intervals and evaluate on the 2-hour test set. As
shown in Figure 8, StreamingVLM does not degrade across later segments and reaches performance
close to Sliding-Window w/ Overlap. This indicates that StreamingVLM maintains quality as videos
grow and effectively supports unbounded inference.
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Figure 8: Stability over time. Each test video is split into five segments at 20% intervals. Stream-
ingVLM (Sliding Window + Reuse KV) maintains nearly constant win rate across segments and
matches the performance of Sliding Window w/ Overlap, while Full Attention and Sliding Window
w/o Overlap degrade or remain far lower.

A.3 DEMO

We provide a demonstration video in the supplementary materials that showcases the commentary
performance of StreamingVLM after nearly 100 minutes of continuous inference. Please refer to
the supplementary materials for details.
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