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Abstract

Interpreting the inference-time behavior of deep neu-
ral networks remains a challenging problem. Exist-
ing approaches to counterfactual explanation typi-
cally ask: What is the closest alternative input that
would alter the model’s prediction in a desired way?
In contrast, we explore counterfactual datasets.
Rather than perturbing the input, our method effi-
ciently finds the closest alternative training dataset,
one that differs from the original dataset by changing
a few labels. Training a new model on this altered
dataset can then lead to a different prediction of
a given test instance. This perspective provides
a new way to assess fairness by directly analyzing
the influence of label bias on training and infer-
ence. Our approach can be characterized as probing
whether a given prediction depends on biased la-
bels. Since exhaustively enumerating all possible
alternate datasets is infeasible, we develop analy-
sis techniques that trace how bias in the training
data may propagate through the learning algorithm
to the trained network. Our method heuristically
ranks and modifies the labels of a bounded number
of training examples to construct a counterfactual
dataset, retrains the model, and checks whether its
prediction on a chosen test case changes. We eval-
uate our approach on feedforward neural networks
across over 1100 test cases from 7 widely-used fair-
ness datasets. Results show that it modifies only a
small subset of training labels, highlighting its abil-
ity to pinpoint the critical training examples that
drive prediction changes. Finally, we demonstrate
how our counterfactual datasets reveal connections
between training examples and test cases, offering
an interpretable way to probe dataset bias.

1 Introduction

As machine learning models are widely deployed
in socially sensitive domains such as healthcare, fi-
nance, and public policy [1-5], reasoning about their
fairness has become critical. For example, an in-
dividual predicted as low-income may suspect that
the model outcome reflects bias against their pro-
tected attribute (e.g., sex or race). A common way
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Figure 1. Our method to efficiently generate counter-
factual dataset (CFD) D’ for an input z, based on the
original dataset D, learning algorithm £, and a bound
m on the number of training label flips.

to address this problem is through inference-only
methods. For example, one can perform fairness
testing [6-11] and verification [12-16]. These ap-
proaches evaluate whether a trained model treats
similar individuals similarly according to various
fairness definitions [17-19]. Another way is through
counterfactual explanations [20-24], which examine
whether the trained model’s prediction would change
if some of the individual’s attributes were altered.

Our work takes a step further by examining the
training dataset itself. It is well-known that bias
in training data, arising from human subjectivity
or historical prejudices, can lead to unfair predic-
tions [25]. While prior work has examined dataset
bias by flipping sensitive attributes across the en-
tire dataset to generate an alternative model and
then perform fairness adjustments [26], our focus
is on the labels instead. By selectively modifying
labels to construct counterfactual datasets, we re-
train a slightly altered model and check whether its
prediction for the same individual changes, thereby
auditing how the original decision may have been
influenced by label bias [27, 28]. While this may
resemble noisy label correction, our goal is not to
improve generalization accuracy, but rather to en-
able individuals to audit how biased labels in the
training data can affect their own outcomes.

A naive solution would be to enumerate all the
alternate training datasets, retrain the model on
each, and check whether the prediction changes.
However, the number of such datasets grows com-
binatorially with the training size, and retraining
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neural networks for each candidate is computation-
ally expensive. Let D be the original dataset with
n = |D|, and let m < n be the maximal number of
examples whose labels may be biased. Then, the
number of alternate datasets (and retrained models)
is (;), resulting in a worse-than-exponential blow-
up.! Our goal is to avoid this explicit enumeration
and instead efficiently find alternate datasets that
can alter predictions.

To this end, we propose to analyze the impact of
label bias on the training and inference of a neural
network and derive heuristics from this analysis
that can guide our search for an alternate dataset.
As shown in Figure 1, our method takes the tuple
(D, L,m,z) and returns a new training dataset D’
as output, where D is the original dataset, £ the
learning algorithm, m the bound on the number
of potentially biased labels, and x the test input.
First, our method follows the standard training and
inference pipeline, where we train a network f =
L(D) and compute a prediction y = f(z). Second,
the method iteratively constructs alternate datasets
D’ based on our analysis techniques, retrains f/ =
L(D"), and computes vy = f'(z). Ify # vy, D’
is returned; otherwise, the process repeats until a
dataset yielding a different prediction is found.

We call this returned D’ a counterfactual dataset
(CFD). If network training and inference are as-
sumed fair, D’ can serve as a counterexample to
that claim. The term counterfactual comes from
mathematical logic, where the assertion if P then
@ can be rephrased as the counterfactual assertion
if =Q then —P, making evidence for -() a coun-
terexample to P. Intuitively, a CFD demonstrates
that the same learning algorithm £ can produce a
different outcome for x when trained on D’ instead
of D (i.e., f'(x) # f(x)).

Our method generates D’ from D using two com-
plementary techniques. First, we use linear regres-
sion as a surrogate model to estimate the impact of
label bias during the training stage. We exploit the
piecewise linearity of ReLLU networks and the closed-
form solution of linear regression to rank which
training labels have the greatest impact on the pre-
diction of test input z. Second, we propose neuron
activation similarity, which measures the distance
between each training example in D and the test
input x based on their neuron activation patterns.
For ReLLU networks, neurons are either active or
inactive along the decision boundary of 0, while
for other activation functions such as sigmoid and
tanh, neuron activation can be approximated simi-
larly via some threshold (i.e., inactive if below the
threshold, or active if above). This similarity allows
ranking examples to account for the network’s infer-
ence behavior. Combining these two rankings, we

f n = 10,000 and m = 10 (i.e., only 0.1% of labels may

be biased), we already have (10i(())00) = 2.74 x 1033 datasets.

heuristically flip the labels of high-ranked training
examples to generate alternate datasets D’'.

We have implemented our method in PyTorch [29]
using the Adam optimizer [30] and evaluated it on 7
datasets commonly used in fairness research. Our re-
sults show that our method generates counterfactual
datasets efficiently: for smaller datasets, it quickly
finds ground-truth CFDs, and for larger datasets,
it outperforms baselines by producing CFDs across
more test cases with negligible overhead. It also iden-
tifies training instances that better capture dataset
label bias and remain faithful to the test input, and
it succeeds even for inputs near and far from the
decision boundary.

To summarize our contributions:

1. We propose a method that considers both the
training and inference stages of deep neural
networks to efficiently generate counterfactual
datasets (CFDs), which provide evidence of
potentially unfair predictions due to label bias.

2. We develop two complementary techniques to
assess the impact of dataset label bias on a net-
work’s prediction for a given test input: linear
regression as a surrogate model to analyze the
training stage, and neuron activation similarity
to analyze the inference stage.

3. We implement our method and demonstrate
its effectiveness on diverse fairness datasets,
showing how generated counterfactual datasets
can explain changes in predictions.

2 Problem Setup

Let D = (X,y) be a training dataset with n exam-
ples, and £ be a learning algorithm that trains a
neural network f = £(D). Some labels in y may
be biased due to human subjectivity or historical
prejudices. We denote by m the maximal number of
potentially biased labels. If f is trained on such a
dataset, its prediction for a given test input x may
be biased, an example of dataset label bias [27, 28].
To formalize the scope of counterfactual dataset
(CFD) generation, we define filtering rules ¢ for
test inputs and ¢ for training examples. ¢(x) spec-
ifies the test inputs eligible for CFD search, while
(x4, y;) identifies subset of training examples whose
labels may be altered or are suspected of historical
bias. These rules help ensure that the generated
CFDs are meaningful. For example, ¢ can select
test inputs that appear fair under inference-only
methods (e.g., the network outputs the same label
regardless of the protected attribute of x), and ¢
can limit label changes to training examples similar
to x in protected group and predicted outcome.
Given these rules, we say that D', obtained by
flipping up to m < n labels of (z;,y;) € D, is a



counterfactual dataset (CFD) if its retrained network
/"= L(D’) outputs a different prediction from the
original network f = L£(D) for the given x.

3 Related Work

Fairness Testing and Verification: Prior work
analyzes fairness of machine learning models from
multiple angles. Fairness testing methods [6-11] are
inference-stage-only approaches that systematically
audit whether there exist specific inputs or groups
that the model behaves less equitably. Fairness
verification methods [12-16, 18, 31-33] also operate
at the inference stage, providing formal guarantees of
whether a model satisfies certain fairness constraints.

In contrast, our method looks at both the training
and inference stages to serve as an auditing tool for
individual test inputs, rather than aiming to achieve
global fairness. Instead, it selectively changes a
small number of training labels to generate counter-
factual datasets (CFDs) that reveal potential unfair
behavior for specific test cases. Conceptually, it can
be viewed as a form of fairness testing applied at
the training stage, producing CFDs to expose the
impact of label bias.

Training Data Manipulation and Correction:
Prior work has explored modifying training data
to degrade or improve model behavior. Noisy la-
bel correction methods [34-37] aim to improve a
model’s accuracy by reducing the impact of misla-
beled training data and treating noise as undesirable
randomness. Data-poisoning techniques also manip-
ulate training data, sometimes input features [38—
40] and other times labels [41-46], but all share the
goal of degrading overall model performance.

In contrast, our approach deliberately modifies a
few labels in a targeted manner to generate CFDs
that audit model behavior on specific test inputs.
Rather than improving or degrading overall per-
formance, our method tries to uncover potential
fairness violations at the instance level.

Explaining and Attributing Predictions: In-
dependent of fairness research, there are several ap-
proaches to explain and attribute model outcomes.
Counterfactual explanations [20-24] generate con-
crete examples with minimal changes to test inputs
that would produce different model outputs. These
can be understood as human-interpretable counter-
parts to adversarial examples [47—-49], which also
illustrate how small variations in input features can
change decisions. Feature attribution techniques,
such as LIME [50] and SHAP [51], assign impor-
tance scores to individual input features for a spe-
cific prediction to offer local explanations. While
both are useful for interpretability, these methods

are concerned about changing or scoring specific
features, rather than the impact of labels. Further-
more, they do not manipulate the training dataset
to systematically audit model behavior, which is the
focus of our work.

The methods most closely related to our approach
are data attribution methods, which estimate the
influence of each training sample on a model’s pre-
diction for a specific test sample. Among these,
influence functions [52, 53] are a popular approach.
Intuitively, they could be used to identify which
training instances to prioritize in our CFD genera-
tion problem. However, unlike our method, they are
not specifically designed to address the label bias
problem. Furthermore, they are computationally
expensive, particularly for nonlinear models such as
multilayer perceptrons (MLPs) or residual networks
(ResNets) [54]. We confirm this later, where our
experiments show that various state-of-the-art influ-
ence functions [53, 55-57] are not only less effective
than our method but also time-consuming, making
them intractable for our setting of CFD generation
for neural networks.

Training Dataset Robustness and Fairness:
One line of work investigates the effect of including
or leaving out a single training instance near the
decision boundary on the newly trained model’s
predictions [58]. While related, our focus is distinct:
we manipulate the labels of a subset of training
examples to probe fairness under label bias, rather
than analyzing the effect of instance removal.

Techniques more closely related to ours certify
robustness and fairness under alternate training
datasets [59-63]; in particular, [27, 28] focus on
handling label-biased datasets. These methods ver-
ify whether the model’s predictions for specific test
inputs remain stable under defined perturbations
of the training data. From this perspective, any
perturbed training dataset that does cause a change
in output can be interpreted as a counterfactual
dataset, making these techniques conceptually re-
lated to our work. However, these approaches are
designed for simpler models, such as decision trees,
KNNs, and linear regression, and are not directly
applicable to neural networks, due to the complex-
ity of training and the high nonlinearity of their
function representations.

Summary: To the best of our knowledge, we
are the first to efficiently generate counterfactual
datasets (CFDs) for deep neural networks that un-
cover the impact of label bias on individual predic-
tions. Unlike prior fairness works, our method audits
both training and inference stages that is targeted to-
wards a specific individual test case. Unlike dataset
manipulation approaches, we do not seek to improve
or degrade overall model performance. Unlike coun-



terfactual explanations or feature attribution, our
focus is on training labels rather than input features
at inference. Finally, while data attribution and
dataset robustness techniques are conceptually re-
lated to our work, they are either computationally
intractable or inapplicable for our setting.

4 Methodology

Our goal is to analyze the impact of label bias on
neural network training and inference and to ef-
ficiently construct counterfactual datasets (CFDs)
that provide interpretable evidence of unfair predic-
tions. We begin with the key insight motivating our
approach, then develop two complementary anal-
ysis techniques, and finally describe the top-level
algorithm that leverages these analyses.

4.1 Key Insight

Let 0y denote the difference between predictions y
and y’ for a given test input, and let 9D denote the
difference between two datasets D and D’. Ideally,
we want to characterize

dy 0Oy

oD oy’

where Oy is the difference between the original labels
y in D and the modified labels y’ in D’. This
derivative represents the impact of label bias on the
prediction y.

Since closed-form analysis of stochastic gradient
descent is intractable, we approximate this relation-
ship via two heuristics:

1. Linear regression surrogate: provides a
closed-form expression to measure the impact
of label flips at the training stage.

2. Neuron activation similarity: measures
closeness between test input and training exam-
ples at the inference stage.

Together, these heuristics guide our search for CFDs.

4.2 Piecewise Linear Approximations

Although neural networks are globally nonlinear,
their inference-stage behavior for a specific input x
may be approximated by a linear function. With
ReLLU activations, a neural network implements a
piecewise linear function:

0/ x, xe Dy
fx)=q
QJX, x € D,,
where {D1,...,D,} partition the input space and
each 0, x is linear for x € D;. For a given x, each

Figure 2. A neural network with ReLU activation for
a given input x. Active neurons are outlined in red.

hidden ReLU is either active (ReLU(2) = z if z > 0)
or inactive (ReLU(z) = 0 otherwise). Thus, the
network f can be restricted to the neurons activated
by X, yielding a local linear model.? As illustrated
in Figure 2, this 6; can be obtained as the product of
active weights along the paths from input to output
layer of the network.

Let W(7) denote the weight matrix from layer
i (with n; neurons) to layer j (with n; neurons).
Let bz = [biI; ey bini}—r and bj = [bjl, ey bjn].] be
the binary activation vectors of layers ¢ and j when
x passes through f, where by = 1 indicates that
neuron k is active and by = 0 otherwise. Then, the
effective weight matrix is

Wi = W) o (bi11mj) ® (1, x1b;),

where ® denotes elementwise multiplication. In
other words, only the rows (columns) correspond-
ing to active neurons in layer i (j) are retained.
Multiplying across [ layers gives

g =wo2 3. . [/i/'(lflﬁl)7
so that the network reduces to the linear model
y=f(x) = 0" x.

This local linearization provides the basis for the
techniques introduced in the following subsections.

4.3 Linear Regression Surrogate

Our first technique is motivated by prior work on
analyzing dataset bias through linear regression [28,
60]. Unlike neural networks trained with stochastic
gradient descent, linear regression admits a closed-
form solution® for its optimal parameters:

=(X"X)"1XTy.
Thus the prediction for x can be written as

y=0"x=x"(X"X)"'XTy =zy = Zziym (1)

i=1

2For sigmoid or tanh activations, we can similarly approx-
imate activations as binary by setting the threshold to some
value (e.g., 0).

3Here, we show least-squares fit for readability, but in
practice, we follow other works and implement ridge regression
for stability: § = (XTX — AI)~1XTy.



where z = xT (XTX)™'XT. Here, z; measures the
contribution of training example (x;,y;) to the pre-
diction y. Sorting training examples by |z;| yields a
ranking of label influence.

Using this ranking, we can construct y’ by sequen-
tially flipping the top-ranked labels one at a time.
For linear models, this procedure identifies the opti-
mally flipped training label set under the bound m.*
For nonlinear networks, the same reasoning provides
a heuristic that remains effective due to piecewise
linearity.

4.4 Neuron Activation Similarity

At inference, each input x induces a binary activa-
tion vector over hidden neurons, where each element
indicates whether the corresponding neuron is active.
We define the similarity between x and a training
example x’ € X as the inverse Hamming distance
between their activation vectors:

1 d
2 W) £0(x)} (2)
1

k=

Sim(x,x') =1—

where d is the total number of hidden neurons and
b (-) € {0,1} is the activation status of neuron k.
Intuitively, inputs with similar neuron activation
patterns are likely to be governed by the same un-
derlying network logic, as the activation status of
neurons captures much of a feedforward network’s
behavior [64]. This perspective aligns with our dis-
cussion of piecewise linearity; we can expect that
inputs with similar activation patterns lie in similar
linear regions, so their 6 in a linearized model are
very close as well. We rank training examples by
this similarity score to guide the search for labels
that are most likely to affect the prediction of x.”

4.5 Algorithm for CFD Generation

As described in Algorithm 1, our procedure for
generating a counterfactual dataset (CFD) D’ takes
as input: the dataset D = (X,y), a learning algo-
rithm £, a bias budget m, the test input x, and
filtering rules ¢ (for the test input) and ¢ (for train-
ing examples).

The procedure begins by training the baseline
model f = L£(D) and computing the original pre-
diction y = f(x), aborting if ¢(x) is false. The
predicate ¢ allows us to restrict attention to a sub-
set of test inputs of interest. For instance, ¢(x) could
encode that the prediction y is already deemed fair

4The resulting y’ has a nice theoretical property for linear
regressions; it is the optimal label set among the > 7" ; (Z)
possible sets. See [28] for proof.

5In practice, we apply a decay factor of %, assigning higher
weights to neurons closer to the output; i.e., full weight given
to the neurons in the L — 1*® layer (1 if activation matches),
half weight to the L — 2t" layer (0.5 if match), quarter weight
to the L — 3" layer (0.25 if match), and so on.

Algorithm 1 Generating counterfactual dataset.

1: Input: dataset D = (X,y), learning algorithm £, bias
budget m, test input x, filtering rules ¢ and

2: Output: counterfactual dataset D’ = (X,y’)
3: f+ L(D); y+ f(x) {original model & prediction}
4: if not ¢(x) then
5: return {x does not pass filtering by phi}
6: end if
7: yr < LR_ScoriNnG(X,y,x, m) {Section 4.3}
8: ya « AcTiv_SCORING(X, X%, f) {Section 4.4}
9: [y1,..., y"w] < COMBINE_SCORING(y L,y A, %)

{n, = size of training set after filtering by 1}
10: k<1

11: while £k < m do

12:  y’ «+ label set where y1, ...
13: D'+ (X,y")

14: LDy + f(x)
15: if y # ¢’ then

, Yk in y are flipped

{new model & prediction}

16: return D’ {CFD solution found}
17: else

18: k+—k+1 {flip more labels in next iteration}
19:  end if

20: end while

21: return {solution not found}

under standard inference-only checks; in this case,
we only probe further on inputs that would other-
wise pass fairness verification. As another example,
¢ may require that x belongs to a particular demo-
graphic group, enabling targeted analysis.

To guide label modifications, we score the train-
ing examples using two complementary analyses: yr,
from the linear regression surrogate (Section 4.3) and
ya from neuron activation similarity (Section 4.4).
The two scores are then combined and filtered accord-
ing to ¢, producing a ranking of relevant training
labels [y1,...,Yn,], where y is expected to have the
largest effect on the prediction for x.

Iteratively flipping the top-k labels in the ranking,
for k = 1 to m, we create alternate datasets D’
and retrain networks f' = L(D’) to obtain new
predictions 3’ = f/(x). The procedure terminates
as soon as ¥y’ # y and returns the current D’ as a
CFD, or after reaching the budget m without finding
a valid CFD. By leveraging the rankings from our
analyses, the method efficiently targets the label
flips that are most likely to change the prediction.

4.6 Subroutines

Linear Regression Scoring: The LR_SCORING
subroutine sorts training examples by the magnitude
of z; from Equation (1). High-|z;| examples have
the largest effect on x’s prediction.

Activation Scoring: The ACTIV_SCORING sub-
routine sorts training examples by the magnitude of
Sim(x,x’) from Equation (2). High similarity scores
indicate that a training example shares a similar
activation pattern with x, placing it in a similar
decision region in the network and making it more
relevant for potential label flips.



Final Ranking: We normalize and average y,
and y 4 scores to obtain a combined ranking, bal-
ancing each training example’s influence during the
training stage with its proximity to the test input
during the inference stage.

5 Experimental Evaluation

As we are the first, to the best of our knowledge,
to consider the problem of generating counterfac-
tual datasets for deep neural networks, there is no
prior technique for direct comparison. Thus, we
use exhaustive enumeration to set the ground truth
for smaller datasets when feasible, and compare our
method against six baselines:

e Random Sampling: A naive approach that se-
lects training instances uniformly at random;

e [, Distance: A proximity-based approach that
ranks training instances based on their Eu-
clidean distance to the test point in the em-
bedding feature space, computed using the
scikit-learn library [65];

e FExplicit [53], Conjugate Gradients (CG) [55],
LiSSA [56], and Arnoldi [57]: Influence func-
tion methods that estimate, and subsequently
rank, the influence of training instances on the
test point via Hessian-based analysis, with Fz-
plicit computing the exact scores and the other
three using various approximations. All four
are available out-of-the-box through the dattri
library [54].

We evaluate our method on seven widely used fair-
ness datasets: Salary [66], Student [67], German [68],
Compeas [69], Default [70], Bank [71], and Adult [72].
Given our focus on fairness, we manually design
the test and training filtering rules as described in
Section 2 and assume up to 0.1% of training labels
may be biased. In general, determining appropriate
filtering rules (¢ and %) and bias budget (m) to
reflect real-world scenarios for auditing label bias
requires domain expertise from the social sciences
and is beyond the scope of this paper. Additional
details of our experimental setup are provided in
Appendix A.

5.1 Main Results

Our experiments were designed to answer the fol-
lowing research questions (RQs):

RQ1. Is our method effective in generating a CFD
for a given test input?

RQ2. Is our method efficient in generating a CFD
for a given test input?

Table 1. Comparison between our method and base-
lines across all datasets. #¢: number of test inputs
passing test input filter ¢ (max 200); ny: number of
training examples passing training filter ¢; GT: number
of ground truth CFDs found by exhaustive enumeration;
CFDs Found: number of CFDs found by Our Method
(in bold) / Random Sampling / Ls Distance.

Dataset #e Ty GT CFDs Found
Smaller Datasets (m =1, t = 0.1 X ny)
Salary 10 [8,9] 3 3/1/3
Student 121 [23,197] 24 20/13/10
German 182 48, 267] 38  38/17/15
Larger Datasets (m = 0.1% x n, t = 10m)
Compas 200 [225, 887] - 27 /10/5
Default 200  [612,8219] - 18 /5 /8
Bank 200  [512,8951] - 24/9/ 11
Adult 200 [5632,11505] - 44 / 15 / 15

RQ3. Does our method generate a CFD D’ for a
given test input that is meaningful?

RQ4. Can our method generate CFDs for test in-
puts near or far from the decision boundary?

5.1.1 Results for RQ1

To answer RQ1 about the effectiveness of our
method, we compare its success rate at finding
valid counterfactual dataset (CFDs) against the base-
lines. Table 1 summarizes our main findings on both
smaller and larger datasets, reporting the number of
test inputs passing ¢, the number of training exam-
ples passing v,% the number of ground-truth CFDs
where exhaustive enumeration is feasible, and the
number of CFDs successfully found by each method.
Across the datasets, we evaluate our methods on
over 1100 test inputs (the sum of Column 2), which
highlights the extensive scope of our evaluation.

We omit the results of the four influence function
methods because all of them were computationally
intractable. For instance, on the Student dataset,
Ezplicit requires roughly 2 hours per test case, CG
3 hours, LiSSA 70 hours, and Arnoldi just under
1 hour, even before accounting for retraining. Mul-
tiplying these costs by the number of test cases to
evaluate (#4) quickly becomes infeasible, especially
given that these runtimes arise on a relatively small
dataset like Student. This computational intractabil-
ity for nonlinear models such as neural networks
aligns with prior findings reported in [54].

Smaller Datasets For the smaller datasets where
only a single label flip is allowed (m = 1), we set the
maximum number of iterations ¢ as 0.1 x ny. As a
result, ¢ = 1 for Salary and ¢ = [2,19] and ¢ = [4, 26]
for Student and German respectively.

6nw is represented as an interval because the number of
training examples that pass 1 vary across the test cases.



We slightly modify our algorithm so that at itera-
tion ¢, the ranking-based methods (i.e., our method
and the Ly distance baseline) flip the label of the top
t-th ranked training example rather than increasing
k. In contrast, random sampling may select any of
the ny candidates at each iteration.

Exhaustive enumeration is feasible here since m
and n, are small. Looking at Columns 4-5, we
observe that our method finds a CFD for nearly
all individuals with ground-truth CFDs, missing
only 4 cases in Student (20/24). Furthermore, our
approach substantially outperforms both random
sampling and Lo distance. For example, in the
German dataset our method identifies all existing
CFDs, while both baselines succeed on less than half
the test cases (17 for random sampling and 15 for
L, distance, out of 38).

Larger Datasets As exhaustive enumeration is
infeasible for the larger datasets, Column 4 is omit-
ted, and we evaluate all the methods under t = 10m
iterations. In other words, there are 10 attempts for
each k < m, where k is the number of labels flipped.

We again slightly modify our algorithm so that
at the first attempt for a given k, the ranking-based
methods (our method and Lo distance) flip the top-
k labels. In the remaining 9 attempts, it samples
among the top-ak labels (for the smallest a with
(“k’?) > 10) to ensure sufficient diversity across at-
tempts.” For a fair comparison, random sampling is
also given 10 independent attempts per k.

Under this setting, our method uncovers CFDs
for 9-22% of test inputs, compared to only 2.5-7.5%
for random sampling and Lo distance. For reference,
the ground truth on smaller datasets shows CFDs for
16-30% of test inputs, suggesting that our results for
larger datasets represent conservative lower bounds.

Answer to RQ1: Our results demonstrate that
our analysis-guided search is significantly more
effective at discovering CFDs than the baselines.

5.1.2 Results for RQ2

To answer RQ2 on the computational efficiency of
our method, we report and compare runtimes (in
seconds) across methods in Table 2. Column 2 re-
ports the average runtime per test case. Column 3
captures the average runtime per training iteration,
enabling a fair comparison across methods with dif-
ferent iteration counts. Column 4 isolates the non-
training overhead, highlighting the computational
efficiency of each method independent of retraining.

Per-test and per-iteration times (Columns 2-3)
are nearly identical across methods (within 0.3s

"The condition (“kk) > 10 guarantees that there are at
least 10 distinct ways to choose k from the top-ak labels.
Without this, sampling could collapse to only a handful of
options, limiting diversity and making the comparison unfair.

Table 2. Runtime comparison between our method and
baselines across all datasets, in order of: Our Method
/ Random Sampling / Lo Distance. Per-test Time:
average runtime per test case; Per-iter Time: average
runtime per training iteration per test case; Overhead:
average non-training overhead runtime per test case.

Dataset Per-test Time (s) Per-iter Time (s)  Overhead (s)
Smaller Datasets
Salary 0.35 /0.31 / 0.32 0.35/0.31 /032  0.04 /0.00 /0.01
Student 419/ 4.35 / 4.52 0.32/0.31/032 007 /0.02/0.03
German 2.33 / 2.56 / 2.62 0.16 /0.15 / 0.16  0.08 / 0.02 / 0.04
Larger Datasets
Compas 14.83 / 17.03 / 17.18 0.40 / 0.44 / 0.44 0.28 / 0.12 / 0.24
Default  133.82 / 134.34 / 122.55 0.80 / 0.76 / 0.73 2.91 /1.52 / 4.32
Bank 123.53 / 143.85 / 142.38 0.73 / 0.79 / 0.82 3.22 /1.72 / 5.04
Adult 195.81 / 206.90 / 206.32 0.96 / 0.79 / 1.00 5.73 / 3.26 / 9.35

and 0.04s, respectively, on smaller datasets). On
larger datasets, our runtimes remain on par with
the baselines and can even be lower than random
sampling (e.g., Compas and Bank). This advantage
grows with dataset size, where longer retraining
times and higher iteration budgets (t) make early
CFED discovery especially beneficial. By succeeding
on more test cases, our method often terminates
earlier, reducing total runtime.

Our method does introduce some overhead (Col-
umn 4) relative to random sampling. However,
this overhead remains small (within 0.1s on small
datasets and 1-6s on large datasets) and becomes
comparable to, or even lower than, Ly distance as
dataset size increases. Since the ranking analysis in
Algorithm 1 is executed only once before retraining
begins, its one-time upfront cost does not compound
across iterations. Overall, these results suggest that
our ranking analysis is not a bottleneck and that
retraining remains the dominant runtime component
across all methods and datasets.

Answer to RQ2: Our method matches the
baselines in per-test and per-iteration runtime.
The minor overhead introduced is minor and
remains negligible relative to model retraining.

5.1.3 Results for RQ3

To answer RQ3 on the meaningfulness of the gen-
erated CFDs, we compare the training examples
selected by our method and the baselines against
their test inputs. While Lo-distance ranking seems a
reasonable heuristic for prioritizing nearby examples
in the embedding space, our results show otherwise.
Representative results are shown in Figure B.1.
The green line represents the test input; blue indi-
cates the training examples selected by our method;
orange and pink correspond to random sampling
and Ly distance, respectively; and red highlights
any additional viable CFDs discovered through ex-
haustive enumeration. The z-axis presents the input
attributes, and the y-axis presents their values.



In Figure B.1(a), random sampling fails to find any
CFD, while our method (as well as Lo distance) cor-
rectly selects the top-ranked training example, which
matches all categorical features and is numerically
closer than the alternative found by exhaustive enu-
meration. Figure B.1(b) shows that both methods
find CFDs, but our method selects an example that
is substantially closer on the numerical attributes.
The L baseline selects an example that matches
well on the categorical features but significantly di-
verges on the numerical features, identifying a less
representative example.

In Figure B.1(c), all methods find a valid CFD, but
our method’s example aligns more closely with the
test input across numerical and categorical features.
Specifically, all categorical features match with the
test input, and the only differences are in age and
hours-per-week. Even for these two, our example
is as close as, if not closer to, the test input than
the ones chosen by the baselines. Figure B.1(d)
shows random sampling’s chosen training example,
whereas our method selects two examples within the
budget that together form a CFD and more faithfully
represent the test input. One of our chosen examples
is identical to the test input (in light blue) and and
the other differs only in having 2 fewer priors_count
(in blue). In contrast, the random sampling example
differs in age_cat and has 0 priors_count, making it
less representative of the test input.

Answer to RQ3: Our method generates CFDs
that are not only valid but also more meaning-
ful, selecting training examples that are closer
and more representative of the test input than
alternatives chosen by the baselines.

5.1.4 Results for RQ4

To answer RQ4 on how our method performs relative
to a test input’s distance from the decision boundary,
we analyze the distribution of original network logits
y (i.e., values before the sigmoid for binary labels)
for test inputs with CFDs found by our method
and the baselines. As shown in Figure B.2, boxes
represent the first, second, and third quartiles, and
whiskers show the minimum and maximum values.
Test inputs with y values near 0 lie close to the de-
cision boundary, whereas those with larger absolute
y values are farther from it. Intuitively, generating a
CFD is easier for inputs near the decision boundary.
Figure B.2 demonstrates that our method can find
CFDs even for harder test inputs, those farther from
the boundary more reliably than random sampling
and Lo distance. This reinforces that our method
not only is more effective, efficient, and produces
more meaningful CFDs, but also succeeds on test
inputs that are challenging for baseline methods.

Answer to RQ4: Our method reliably gener-
ates CFDs even for test inputs that are far from
the decision boundary, outperforming random
sampling on these more challenging cases.

5.2 Additional Results

We refer the readers to Appendix E for a detailed ab-
lation study, which sheds light on how different com-
ponents of our method contribute to performance.
Our results show that incorporating both training
(Section 4.3) and inference (Section 4.4) allows our
method to more effectively rank influential training
labels than either ablation alone.

Looking at our results closely, Appendix D high-
lights that our method not only finds a large number
of CFDs overall, but also captures nearly all CFDs
discovered by baseline approaches while identifying
many additional cases unique to our method, which
underscores the comprehensive coverage of our ap-
proach. Complementing this, Appendix C shows
that our method often succeeds in a single iteration
t = 1, unlike the baselines. This one-shot success
demonstrates the effectiveness of our rankings in
prioritizing impactful labels.

Importantly, changing a single training label can
be sufficient to flip an individual’s prediction, high-
lighting the sensitivity of model decisions to even
minimal bias in the training labels. This raises a
key concern for fairness-sensitive applications: small
labeling biases or inaccuracies before training time
can propagate into disproportionately large conse-
quences at inference time. Beyond serving as a way
to measure efficiency, the prevalence of one-shot
CFDs illustrates how fragile decision boundaries can
be, and why methods that can reliably surface such
cases are critical for auditing model fairness.

6 Conclusion

We present a method for analyzing how biased train-
ing labels can affect neural network predictions by
generating counterfactual datasets (CFDs). Our ap-
proach targets specific training labels to audit the
network’s fairness on individual test inputs. To avoid
exhaustively enumeration and repeated retraining,
it leverages a linear regression surrogate and neuron
activation similarity to rank training examples for
CFED generation. By considering both the training
stage (via linear regression) and the inference stage
(via activation similarity), our method prioritizes
the training examples most likely to influence a test
input’s prediction. Experimental evaluation on a
diverse set of fairness datasets demonstrates that
our method is both effective and efficient, generating
meaningful CFDs with minimal modifications to the
original data.
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A Experimental Details

Table A.1. Statistics of the fairness research datasets
and training setup used in our experiments. PA = pro-
tected attribute; #£ Tr, Va, Te = numbers of training,
validation, and test instances; m = bound; Input =
number of attributes/neurons in the input layer; Arch
= network architecture (number of hidden layers x neu-
rons).

Dataset PA # Tr, Va, Te m Input Arch
Salary [66] Sex 30, 11, 11 1 5 2% 4
Student [67] Sex 389, 130, 130 1 36 2 % 32
German [68] Sex 600, 200, 200 1 36 2 x 32
Compas [69] Race 3702, 1235, 1235 4 13 2 x 16
Default [70] Sex 18000, 6000, 6000 18 27 2 x 32
Bank [71] Marital 18292, 6098, 6098 19 35 2 x 32
Adult [72] Sex 27132, 9045, 9045 28 28 2 x 32

We have implemented our method as a Python
tool and conducted all experiments on a computer
with Intel Xeon W-2245 8-core CPU, NVIDIA RTX
A5000 GPU, and 128GB RAM, running the Ubuntu
20.04 operating system.

As summarized in Table A.1, we use seven
datasets widely used in fairness research for evalu-
ation.® The top half shows three smaller datasets
(Salary, Student, and German), while the bottom
half shows four larger datasets (Compas, Default,
Bank, and Adult). Each dataset is split into 60%
training, 20% validation, and 20% test sets, as shown
in Column 3. We set the bias budget m is set to
0.1% of the training set size, as shown in Column 4,
assuming that up to 0.1% of the training data may
be biased. We preprocess the datasets by removing
empty values, normalizing numerical features, and
embedding categorical features, with the resulting
input sizes shown in Column 5.

We train binary classifiers using PyTorch [29] with
the Adam optimizer [30], fixing random seeds for
determinism, which lets us isolate the effects of CFD
generation under a fixed learning algorithm £. We
also allow early stopping for best validation loss,
with a patience value of 10, learning rate of 0.005,
and the number of epochs set to 100 (200) for smaller
(larger) datasets. For network architecture, there
are two hidden layers with layer sizes chosen relative
to input dimensionality, as shown in Column 6.

8Refer to [4] for a survey of fairness datasets.
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Figure B.1. Comparison of training examples selected
by our method and baseline approaches for CFD gener-
ation. Each plot shows feature values of the test input
alongside the chosen training examples.
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C One-Shot CFD Comparison

Table C.1. One-shot comparison (¢t = 1) between our
method and baselines across datasets. #¢: number of
test inputs passing the filter ¢; CFDs Found: number of
CFDs found by Our Method in bold / Random Sampling
/ L2 Distance; One-Shot CFDs: subset of CFDs Found
that require exactly ¢t = 1 iteration.

Dataset #,; CFDs Found One-Shot CFDs
Smaller Datasets
Salary 10 3/1/3 3/1/3
Student 121 20 /13 /10 9/1/3
German 182 38 /17/15 20/4/0
Larger Datasets
Compas 200 27/10/5 3/0/0
Default 200 18/5/8 1/1/1
Bank 200 24/9/11 4/3/2
Adult 200 44 /15/15 7/3/4

Table C.1 provides the per-dataset statistics on one-
shot success (i.e., the number of test inputs for which
a CFD is found in the very first iteration) of our
method against the baselines. Our method con-
sistently identifies more CFDs overall and does so
in fewer iterations than the baselines, demonstrat-
ing both efficiency and effectiveness. Notably, the
prevalence of one-shot CFDs illustrates that even
minimal changes to a single training label can flip
model predictions, highlighting the sensitivity of
decision boundaries. This reinforces the need for
methods that can reliably surface such cases, as they
are crucial for auditing model fairness and ensuring
robust model behavior.
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Figure D.1. Venn diagrams showing overlap of CFDs
found by Our Method (filled), Random Sampling, and
Lo Distance across datasets. Numbers inside each region
indicate the total CFDs found, as reported in Table 1.

As shown in Figure D.1, our method identifies many
CFDs that it uniquely finds; in contrast, CFDs
found exclusively by Random Sampling or Lo dis-
tance are extremely rare, typically only one or two
instances. This indicates that almost all CFDs dis-
covered by these baseline methods are also captured
by our method. This pattern is consistent across all
datasets, demonstrating that our method not only
finds more CFDs overall, but also covers the solution
space of other approaches.



E Ablation Study

Table E.1. Ablation study on smaller datasets (m =
1). #4: number of test inputs passing the filter ¢;
CFDs Found: number of CFDs found by Our Method
in bold / yr-score only / ya-score only; One-Shot
CFDs: subset of CFDs Found that require exactly
t = 1 iteration.

Dataset #, CFDs Found One-Shot CFDs
Salary 10 3/3/1 3/3/1
Student 121 20 /18 /15 9/8/5
German 182 38 /38 /34 20 /20 /18
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& @
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Figure E.1. Venn diagrams showing overlap of CFDs
found by Our Method (filled), yr only, and ya only
across smaller datasets. Numbers inside each region
indicate the total CFDs found, as reported in Table E.1.

Table E.1 shows the results of an ablation study on
the smaller datasets. Column 2 shows that combin-
ing our two proposed techniques consistently finds
more CFDs than using either the linear regression
surrogate (yp-score) or neuron activation similar-
ity (ya-score) alone. Column 3 further confirms
this advantage in terms of one-shot success (i.e., the
number of test inputs for which a CFD is found in
the very first iteration).

The overlap analysis in Figure E.1 further illus-
trates this trend. Our combined method misses only
a single test case with a CFD (in Student), whereas
vy misses 3 (also in Student) and y 4 misses 12 in
total across datasets. This demonstrates that inte-
grating both components provides broader and more
reliable coverage.

For a detailed comparison, Figure E.2 presents a
heatmap-style bar chart showing the number of test
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Figure E.2. Number of test cases with CFDs found
by the three variants of our method for Student and
German datasets. Red (purple) colors mean that the
CFDs were found at earlier (later) ¢-th iteration.

inputs with CFDs found (one per test input) by the
three ablation methods. The total height of each
stacked bar corresponds to the values in Column 2
of Table E.1, while the color shading reflects the
training iteration ¢ (red for earlier and purple for
later iterations). Since these smaller datasets have
m = 1, flipping the ¢-th ranked training label at
iteration ¢ directly indicates whether the method is
prioritizing impactful labels in its ranking. Thus, a
larger number of CFDs identified in earlier iterations
signals greater efficiency.

As expected, our method (leftmost bar), which
combines the two scores, consistently finds the most
CFDs across t values. For German dataset, for ex-
ample, both our method and yp-score only find 20
CFDs in t = 1, but by ¢t = 2, our method pulls
ahead and identifies 12 new test inputs with CFDs
compared to 7. This illustrates that by jointly con-
sidering training and inference, our method more
effectively identifies influential training labels than
the ablation variants.



	Introduction
	Problem Setup
	Related Work
	Methodology
	Key Insight
	Piecewise Linear Approximations
	Linear Regression Surrogate
	Neuron Activation Similarity
	Algorithm for CFD Generation
	Subroutines

	Experimental Evaluation
	Main Results
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4

	Additional Results

	Conclusion
	Experimental Details
	Experimental Figures
	One-Shot CFD Comparison
	Overlap of CFDs
	Ablation Study

