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Abstract
Despite being very successful, deep learning models were
shown to be vulnerable to crafted perturbations. Furthermore,
changing the prediction of a network over any image by learn-
ing a single universal adversarial perturbation (UAP) was
shown to be possible. In this work, we propose 3 different
ways of training UAPs that can attain a predefined fooling
rate, while, in association, optimizing L2 or L∞ norms. To
stabilize around a predefined fooling rate, we have integrated
an alternating loss function scheme that changes the current
loss function based on a given condition. In particular, the
loss functions we propose are Batch Alternating Loss, Epoch-
Batch Alternating Loss, and Progressive Alternating Loss. In
addition, we empirically observed that UAPs that are learned
by minimization attacks contain strong image-like features
around the edges; hence we propose integrating a circular
masking operation to the training to alleviate visible perturba-
tions further. The proposed L2 Progressive Alternating Loss
method outperforms the widespread attacks by providing a
higher fooling rate at equal L2 norms. Furthermore, Filtered
Progressive Alternating Loss can further reduce the L2 norm
by 33.3% at the same fooling rate. When optimized with re-
gards to L∞, Progressive Alternating Loss manages to stabi-
lize on the desired fooling rate of 95% with only 1 percentage
point of deviation, despite L∞ norm being particularly sensi-
tive to small updates.

Introduction
Due to their success, deep learning models have been
adopted as standard methods in many visual tasks. On the
other hand, deep neural networks have also been shown to
be vulnerable against purposefully generated data samples
called adversarial examples. The most popular way of gen-
erating adversarial examples is applying an adversarial at-
tack to a benign sample and obtaining a particular perturba-
tion that leads to misclassification when added to this sam-
ple. With this method, generating a whole dataset of ad-
versarial examples involve putting each image through the
same algorithm to calculate an image-dependent perturba-
tion, which results in a significant time overhead. Recently,
it has been shown that a single perturbation can be used to
make any sample an adversarial example; these perturba-
tions are called universal adversarial perturbations (UAP).
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Table 1: Overview of the proposed UAP training methods

Loss
Attack Abbreviation Alteration

Condition
Batch Fooling rate
Alternating B-AL of each batch
Loss
Epoch-Batch Fooling rate of each
Alternating EB-AL batch, if the previous
Loss epoch reached the

fooling rate
Progressive Fooling rate up to
Alternating P-AL the point of processing
Loss the current batch
Filtered Same as P-AL
Progressive FP-AL but after each batch
Alternating the filter in Equation 3
Loss is applied on the UAP

These types of perturbations have distinct properties com-
pared to image-dependent adversarial perturbations, such
as having image-like features by themselves (Zhang et al.
2020), whereas traditional perturbations are perceived as
noise by humans. Another point where image-dependent at-
tacks differ from UAPs is that it is straightforward to fool
a predefined ratio of a target dataset; applying the attacking
algorithm only to several samples can achieve this, as most
image-dependent attacks can achieve fooling rates close to
100%. However, since UAPs tend to form image-like fea-
tures from only a small set of data, it is likely to force mis-
prediction in the rest of the data. Therefore, some regulation
is required in the training procedure of the UAPs to achieve
the target fooling rate exactly.

In this work, we show that UAPs can be trained using al-
ternating loss strategy, which switches the loss function (be-
tween adversarial and Lp norm losses) based on the fooling
rate performance of the current state of the UAP. As the al-
ternating loss scheme is not directly applicable to UAP train-
ing, we propose 3 algorithms (Table 1) adapting this scheme
to UAP training. Furthermore, we show that UAP features
naturally accumulate around the edges of the perturbation
vectors; using this information, we apply a circular mask to



Figure 1: Sample UAPs trained with L2 P-AL (left) and Filtered P-AL (right). The prediction for benign image is the correct
class, band aid, with 98.70% confidence. The adversarial examples yield peacock predictions with 99.90% and 99.97% confi-
dence respectively. The predictions are from ResNet50.

the UAPs during training to eliminate visible distortions on
the actual target object.

Related Work
Adversarial perturbations are traditionally generated specifi-
cally for a single sample. Fast gradient sign method (FGSM)
(Goodfellow, Shlens, and Szegedy 2014) is an adversarial
attack that can be used with L1, L2 and L∞ norms, and de-
spite its simplicity, it is still being widely used. Basic iter-
ative method (Kurakin, Goodfellow, and Bengio 2017), and
projected gradient descent (Madry et al. 2018) algorithms; as
opposed to FGSM, iteratively optimize the perturbation with
fixed-size steps. Different from these Lp bounded attacks,
there are also minimization attacks. DeepFool (Moosavi-
Dezfooli, Fawzi, and Frossard 2016) aims to geometrically
shift the benign image to the closest decision boundary to
force misclassification. Carlini&Wagner attack (Carlini and
Wagner 2017) reformulates a constrained optimization prob-
lem to generate the smallest successful adversarial perturba-
tion. Perceptual Color distance Alternating Loss (Zhao, Liu,
and Larson 2020) is a modified version of Carlini&Wagner
that decouples the norm and adversarial optimization using
the alternating loss method, which is also adopted in our pro-
posed algorithms.

Universal adversarial perturbations were formally intro-
duced in (Moosavi-Dezfooli et al. 2017), which applies
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) al-
gorithm to each sample iteratively, updates the overall uni-
versal perturbation, and projects the perturbation to a Lp

ball. Generative models were also trained to obtain UAPs.
Network for adversary generation (NAG) (Mopuri et al.
2018) is a generative adversarial network framework that
trains a generator, using a frozen target classification net-
work, to generate a UAP, from an input noise vector. On
the other hand, Fast Feature Fool (Mopuri, Garg, and Babu
2017) is a data-free algorithm that trains a UAP that maxi-
mizes the activation values of convolutional layers. This al-
gorithm generally performs worse than data-dependent at-
tacks but is good proof that UAPs can be generated by only
using the properties of the target convolutional network.

Feature-UAP (Zhang et al. 2020) is a Lp constrained attack
that trains a UAP using mini-batch training to achieve state-
of-the-art fooling rates, and the authors provide a detailed
comparison between image-dependent attacks and universal
attacks. High-Pass-UAP (Zhang et al. 2021) is a similar al-
gorithm that also trains UAPs using mini-batches but also
applies a Fourier domain high-pass filter to the current UAP,
after revealing that UAPs tend to perform better when they
contain more high-frequency features while being impercep-
tible to the human eye. In the same work, Universal Secret
Adversarial Perturbation (Zhang et al. 2021) was introduced,
where a UAP not only fools models but also contains ex-
tractable information. Training UAPs to make a network to
perceive a predefined class as another target class was in-
troduced and named ‘Double Targeted UAPs’ (Benz et al.
2020).

In this paper, we propose 3 alternative approaches using
alternating loss for training UAPs: Batch Alternating Loss
(B-AL), Epoch-Batch Alternating Loss (EB-AL), and Pro-
gressive Alternating Loss Training (P-AL). All the universal
attacks in the literature are norm bounded; thus, norm opti-
mization is not a stochastic operation; instead, it is a projec-
tion. Our method is different from these works in this regard.
In addition, we propose integrating filtering to the training
further to reduce the perturbations at the same fooling lev-
els.

Methodology
The universal adversarial attack problem can be formally de-
fined as in Equation 1, where v is the UAP, x is a benign
image sampled from a dataset µ, f is the target model, δ is
the minimum fooling rate, and ϵ is the maximum Lp norm
of v.

Px∼µ(f(x+ v) ̸= f(x)) ≥ δ s.t. ∥ν∥p ≤ ϵ (1)

The norm bounded attack concept is widely used in ad-
versarial machine learning; however, it is also possible to
formulate it as a minimization problem as in Equation 2, by
slight modifications over Equation 1.



Algorithm 1: Batch Alternating Loss Training(B-AL)
Input: Dataset µ, target class t, target fooling rate δ, epoch
k, model f , norm p
Variables: Counter i, fooling rate fr, prediction out,
adversarial loss function adv, loss L
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: while i < k do
4: for x ∼ µ do
5: out← f (x+ v)
6: fr← # of incorrect predictions / batch size
7: if fr < δ then
8: L← adv(out, t)
9: else

10: L← ||v||p
11: end if
12: backpropagate L
13: update v
14: i← i+ 1
15: end for
16: end while
17: return v

minimize ||v||p s.t. Px∼µ(f(x+ v) = t) ≈ δ (2)

The variable t is the target class, and δ is the target fooling
rate in this equation. Now, the problem becomes finding the
smallest ||v||p, which attains the desired fooling rate. This
problem can be turned into a standard minimization based
UAP problem by setting δ to 1, as then the constraint will
simply become f(x + v) = t. Different from the problem
defined in 1, this problem cannot be solved by only adding
a regularizer (such as clamping the UAP into ϵ norm) to
the training, as the probability constraint requires the whole
dataset to be a part of the regularization. For that, training
a UAP first to fool a large portion of the dataset, then grad-
ually diminishing the norm of the UAP while bringing the
fooling rate down to the desired level is a suitable way. This
theoretical framework can be implemented using alternating
loss functions.

In this work, we introduce 3 UAP training methods
(shown in Table 1), leading to different attacks that take
advantage of the alternating loss strategy. Alternating loss
scheme switches between 2 loss functions depending on the
current state of the training; this strategy is used in image
dependent adversarial attacks (optimize the norm of the per-
turbation if the current image is adversarial, if not, optimize
the adversarial loss); however, it is not directly applicable
to the UAP domain. The first proposed method is Batch Al-
ternating Loss (B-AL), aiming to reach the desired fooling
rate by achieving the same fooling rate for each batch. The
second method is Epoch-Batch Alternating Loss (EB-AL),
which considers the fooling rate achieved over the epoch,
alongside each batch. The final training method is Progres-
sive Alternating Loss (P-AL), which uses the fooling rate

Figure 2: UAP calculated for Peacock target class applied
over a hamster image (left column) and the UAP images
(right column), corresponding to B-AL, EB-AL, P-AL, Fil-
tered P-AL, from top to bottom.

achieved until the current batch to alter the loss function.
We also empirically find that stronger features are generated
around the edges, along with smaller artifacts in the middle;
therefore, we propose applying filtering during training to
alleviate these artifacts. The proposed filtering scheme can
be integrated into any minimization-based UAP training.

The alternating loss scheme requires a decoupled decision
mechanism that will set the current loss function to either
adversarial loss, which changes the prediction of the net-
work, or the norm of the UAP, which is either L2 or L∞.
In image-dependent attacks, alternating loss function can be
iteratively selected based on the current state of the pertur-
bation; when the current perturbation is successful in mak-
ing the image an adversarial example, minimize the norm of
the perturbation, else, optimize the adversarial loss to obtain
an adversarial example (Zhao, Liu, and Larson 2020). How-
ever, training a UAP for several iterations for a single im-
age while changing the loss function at each iteration would
be incompatible with mini-batch training. Instead, we can
use batches to train the UAP while changing the current loss



Algorithm 2: Epoch-Batch Alternating Loss Training (EB-
AL)
Input: Dataset µ, target class t, fooling rate δ, epoch k,
model f , norm p
Variables: Counter i, fooling rate fr, prediction out,
adversarial loss function adv, loss L, optimization mode
m, number of correct predictions correct, image number
counter imcount, fooling rate over the epoch epochfr
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: m← ’epoch’
4: while i < k do
5: correct← 0
6: imcount← 0
7: for x ∼ µ do
8: out← f (x+ v)
9: correct← correct+ # of correct predictions

10: imcount← imcount+ batch size
11: fr← # of incorrect predictions / batch size
12: if (m == ’epoch’) or

(m == ’batch’ and fr < δ) then
13: L← adv(out, t)
14: else
15: L← ||v||p
16: end if
17: backpropagate L
18: update v
19: i← i+ 1
20: end for
21: epochfr ← 1− correct/imcount
22: if epochfr < δ then
23: m← ’epoch’
24: else
25: m← ’batch’
26: end if
27: end while
28: return v

function based on the fooling rate achieved on that batch.
Note that the main parameter in this optimization is the de-
sired fooling rate over the whole training dataset.

Batch Alternating Loss (B-AL)
Algorithm 1 shows the pseudo-code of B-AL. In this ap-
proach, the loss function is switched according to the fool-
ing rate performance of the current state of the UAP over
the current batch: if UAP can achieve the desired fooling
rate over the current batch, norm loss is selected; otherwise,
adversarial loss is selected, which is chosen to be the cross-
entropy function. This training method can bring the fooling
rate around the desired level in several epochs. However,
when some batches yield the desired fooling rate, the loss
function lowers the adversarial energy to decrease the norm
of the UAP; thus, the overall fooling rate stays below the
target fooling rate since most of the images remain benign.

Algorithm 3: Filtered Progressive Alternating Loss Training
(FP-AL)
Input: Dataset µ, target class t, fooling rate δ, epoch k,
model f , norm p, mask radius D
Variables: Counter i, fooling rate fr, prediction out,
adversarial loss function adv, loss L, number of correct
predictions correct, image number counter imcount,
circlar filter filter
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: filter ← filter in Equation 3 with D
4: while i < k do
5: correct← 0
6: imcount← 0
7: for x ∼ µ do
8: out← f (x+ v)
9: correct← correct + # of correct predictions

10: imcount← imcount + batch size
11: fr ← (imcount− length of correct) / imcount
12: if fr < δ then
13: L← adv(out, t)
14: else
15: L← ||v||p
16: end if
17: backpropagate L
18: update v
19: v ← filter(v)
20: i← i+ 1
21: end for
22: end while
23: return v

To address this problem, the following 2 methods of training
are proposed.

Epoch-Batch Alternating Loss (EB-AL)

Algorithm 2 shows the pseudo-code of EB-AL. This method
ensures that the UAP does not start diminishing the adversar-
ial energy until the desired fooling rate is achieved. Before
reaching the target, the loss function strictly becomes ad-
versarial, regardless of the individual performance of each
batch. At the end of each epoch, we check whether the tar-
get fooling rate was achieved; if it was, then the same loss
function alteration scheme presented in B-AL training is ap-
plied in the next epoch. EB-AL almost always achieves the
desired fooling rate, if it is possible at all. When an epoch is
completed with a successful fooling rate, many batches may
yield fooling rates above the target. This causes the extensive
usage of the norm loss function, which brings the overall
fooling rate down, making the loss function strictly adver-
sarial in the next epoch. This phenomenon makes the fool-
ing rate oscillate around the target, which may cause some
imprecision in attaining the target fool rate.



Table 2: L2 attack results, provided in terms of L2 and L∞ metrics and FR refers to the Fooling Rate. Note that UAP (Moosavi-
Dezfooli et al. 2017) and F-UAP attacks (Zhang et al. 2020) are set to reach the same L2 values as P-AL to allow comparison
of FR at the same level of perturbation. The proposed attacks that cannot reach 95% fooling rate are italicized, and are not
considered while selecting the best results.

Method DenseNet121 ResNet50 GoogleNet VGG16
L2 L∞ FR L2 L∞ FR L2 L∞ FR L2 L∞ FR

B-AL 9.14 0.45 0.93 9.08 0.52 0.93 9.56 0.45 0.91 7.10 0.47 0.95
EB-AL 14.11 0.47 0.98 14.36 0.60 0.98 15.73 0.58 0.98 7.39 0.44 0.95
P-AL 11.16 0.43 0.95 11.66 0.53 0.95 13.01 0.60 0.95 5.52 0.44 0.95
UAP 11.16 0.29 0.33 11.66 0.21 0.34 13.01 0.27 0.43 5.52 0.15 0.30
F-UAP 11.16 0.23 0.90 11.66 0.32 0.93 13.01 0.34 0.91 5.52 0.16 0.70

Table 3: L∞ attack results, provided in terms of L2 and L∞ metrics and FR refers to the Fooling Rate. Note that UAP (Moosavi-
Dezfooli et al. 2017) and F-UAP attacks (Zhang et al. 2020) are set to reach the same L∞ values as P-AL to allow comparison
of FR at the same level of perturbation.

Method DenseNet121 ResNet50 GoogleNet VGG16
L∞ L2 FR L∞ L2 FR L∞ L2 FR L∞ L2 FR

B-AL 0.17 24.96 1.00 0.17 26.64 1.00 0.20 26.63 1.00 0.16 19.04 1.00
EB-AL 0.16 24.42 1.00 0.18 29.39 1.00 0.22 33.55 1.00 0.17 25.70 1.00
P-AL 0.11 16.76 0.96 0.13 16.61 0.96 0.16 20.60 0.96 0.11 12.45 0.95
UAP 0.11 25.71 0.52 0.13 29.64 0.60 0.16 35.32 0.79 0.11 25.84 0.75
F-UAP 0.11 25.55 0.99 0.13 26.74 0.99 0.16 31.00 0.99 0.11 24.57 0.99

Progressive Alternating Loss (P-AL)
Algorithm 3 shows the pseudo-code of P-AL. Because of the
nature of the training procedure, it is not trivial to have the
fooling rate completely stabilized over the target; however,
it is possible to minimize the oscillation caused by the phe-
nomena explained in the previous section. In P-AL training,
similar to EB-AL, the adversarial loss is maintained until
the target fooling rate is achieved. Furthermore, after reach-
ing the target, the loss function is altered based on the fool-
ing rate achieved from the beginning of the epoch until the
currently optimized batch. This way, it is possible to main-
tain the overall fooling rate while optimizing the norm when
possible. Although this method cannot completely prevent
the oscillation, it minimizes it to a certain degree.

Masked Training
We empirically found out that when the UAP is not normal-
ized by a norm constraint, perturbations with high intensities
accumulate around the edges and corners. These perturba-
tions also contain more image-like features; thus, they in-
fluence the prediction towards the target. Applying masks
to smooth out perturbations was investigated for image-
dependent attacks (Aksoy and Temizel 2020), and it is a sim-
ple yet efficient way to control the geometry of the pertur-
bations; hence we propose integrating a masking operation
in the UAP training procedure. To reduce the perturbations
around the center of the image (which are also mostly posi-
tioned on top of the target object), we apply a filter (Equation
3) to the UAP after each batch, where (x, y) is the pixel po-
sition, h and w are the height-width values of UAP respec-
tively, and D is the radius of the circle. Algorithm 3 shows
FP-AL training, which is the P-AL training with filtering.

The visual effect of filtered training can be seen in Figure 1.

f(x) =

{
1, if

√
(w2 − x)2 + (h2 − y)2 ≥ D

0, otherwise
(3)

This method can be applied to any minimization-based
UAP training scenario, as for the norm constrained attacks,
the perturbations do not always mitigate towards the edges.
Also, we empirically found that smooth circular filters such
as 2D Gaussian or Butterworth (Butterworth et al. 1930) fil-
ters tend to limit the adversarial capacity of the UAPs, by
slightly smoothing the features around the edges.

Experimental Design
We have trained the UAPs using a sampled ImageNet dataset
containing 10000 images, formed by 10 images from each
class. We have compared our attack with 2 other attacks
which can be trained with small dataset sizes; vanilla UAP
(Moosavi-Dezfooli et al. 2017), and Feature-UAP attacks
(Zhang et al. 2020). We have chosen the target class as
peacock for our attacks and Feature-UAP (vanilla UAP is
strictly an untargeted attack as it is based on DeepFool).
Similar to our attack, vanilla UAP allows a target fooling
rate specification over the training set. Therefore to allow
comparisons on the same ground, we set this parameter to
be the same, specifically, a target fooling rate of 95%. How-
ever, as both of these attacks are norm constrained attacks, a
direct comparison is not possible; therefore, we first trained
UAPs with our attacks, then we set the constraints, i.e., ep-
silons to match our obtained L2 or L∞ values depending on
the type of the norm which was selected to be optimized. To
measure the performance of the attacks, we have used the



Table 4: Comparison between the results of P-AL and FP-AL, in both L2 and L∞. FR signifies the fooling rate over the whole
dataset.

Method DenseNet121 ResNet50 GoogleNet VGG16
L2 L∞ FR L2 L∞ FR L2 L∞ FR L2 L∞ FR

L2 P-AL 11.16 0.43 0.95 11.66 0.53 0.95 13.01 0.60 0.95 5.52 0.44 0.95
L2 FP-AL 8.38 0.41 0.95 10.75 0.60 0.95 10.62 0.52 0.95 8.93 0.43 0.95
L∞ P-AL 16.76 0.11 0.96 16.61 0.13 0.96 20.60 0.16 0.96 12.45 0.11 0.95
L∞ FP-AL 15.57 0.15 0.97 16.42 0.15 0.96 18.80 0.18 0.97 13.28 0.13 0.96

standard ImageNet validation set having 50000 images. For
fast convergence, Adam was selected as the optimizer, and
the UAPs have been trained for 20 epochs. For the experi-
ments where filtering is applied, a radius of 112 is used, as
the dimensions of the input images are 224× 224.

Results
Two different experiments have been conducted by applying
the attacks with L2 and L∞ norms, which are supported by
all attack types in question. The results are then compared
with regards to both L2 and L∞ values.

L2 attacks

Table 2 shows the L2 attack results for B-AL, EB-AL, P-
AL, vanilla UAP and Feature-UAP (F-UAP). For 95% fool-
ing rate constrained attacks, the attack is regarded successful
if it is at or above the target. Despite achieving the smallest
L2 value compared to the other base models, B-AL cannot
attain the target FR for DenseNet121 (Huang et al. 2018),
ResNet50 (He et al. 2015) and GoogleNet (Szegedy et al.
2014). It can only reach the target for VGG16 (Simonyan
and Zisserman 2015) with batch normalization; however, in
that case, its L2 results are comparatively higher. On the
other hand, EB-AL is above the target FR by 3 percentage
points (except for VGG16 where it achieves the target FR),
which renders the attack sub-optimal; furthermore, the L2

values are consistently higher than both B-AL and P-AL. P-
AL, which was introduced to address the inefficiencies of
B-AL and EB-AL, consistently achieves the desired fooling
rate while also having the smallest L2 values. Overall, P-AL
stays inside the desired range; furthermore, by only integrat-
ing a filter during training (Table 4), FP-AL achieves even
lower perturbation levels, both in terms of L2 and distance
from the desired fooling rate. This algorithm consistently
achieves a 95% fooling rate while yielding the smallest -
successful- L2 distance over any given attacks.

It should be noted that both UAP and F-UAP are meant
to be mainly run under L∞ constraints; however, the al-
gorithms are suitable for L2 normalization during train-
ing. As mentioned earlier, both of these attacks are norm-
constrained as opposed to our minimization attacks which
makes it difficult to compare them. However, when the L2

constraints are equalized at the level of our attacks, we see
that both UAP and F-UAP fall below the desired fooling
rate; nonetheless, both reach significantly smaller L∞ val-
ues compared to our attacks.

L∞ attacks
Table 3 shows the results of the L∞ attacks. It should be
noted that while our attacks are mainly designed to mini-
mize L2 norms of the UAPs, they can minimize L∞ as well.
This time, B-AL and EB-AL overshoot the desired fooling
rate, which is not optimal in our constraints; besides, their
L∞ values are comparatively higher. P-AL achieves better
L2 and L∞ values while staying closer to the desired fool-
ing rate. According to the results in Table 4, FP-AL slightly
increases the L∞ values while also getting further from the
target, in exchange for an overall decrease in L2 norm.

As UAP and F-UAP are mainly L∞ bounded attacks,we
can expect better results from them. UAP shows much bet-
ter results than L2 normalized attack. However, still cannot
reach the target fooling rate against either of the networks.
F-UAP achieves a 99% fooling rate for each network type,
albeit yielding comparatively higher L2 values.

Discussion
Altering the loss function based on the progressive fooling
rate gives the best results in both L2 and L∞ attacks. Al-
though our other attacks take a similar approach, because
each batch affects the optimization too much, the alternat-
ing loss scheme causes unstable behavior, thus making it
harder to converge to the desired fooling rate. Another possi-
ble drawback from these attacks is that the batch size plays a
crucial role in how the optimization proceeds. For instance,
the final UAPs trained with batch sizes of 32 and 128 may
have severe performance differences since by increasing the
sample size, we get a better understanding of the perfor-
mance over the whole dataset. P-AL is independent of the
batch size, and it is more stable around the desired fooling
rate.

We should also point out that P-AL addresses the prob-
lem of obtaining a fooling rate around the target level, not
exceeding it to obtain even a better fooling rate. If the target
is to maximize the fooling rate as much as possible, our at-
tacks will likely be less optimal. For instance, if we set the
target fooling rate as 100%, the UAP will be trained only
with the adversarial loss function, therefore never minimiz-
ing the Lp norm. EB-AL may be the better choice to maxi-
mize the fooling rate since it will first bring the fooling rate
to 100% if possible; then, it will try to minimize the norm.
Table 2 and 3 shows that higher fooling rates can be achieved
by EB-AL, although the Lp norms are slightly higher. On
that note, using the L∞ norm to optimize the fooling rate
can be another way of maximizing the fooling rate, along



Figure 3: Vertical axes show the mean gradient value, horizontal axes show the distance between the pixel containing the
corresponding mean gradient, and the center of the image. The scatter plots are extracted from UAP states after iteration
number 1, 30, 150 and 300.

with B-AL and EB-AL. Using L∞ usually makes the opti-
mization converge faster at high fooling rate targets; since
L∞ norm is in s scale [0-1], the adversarial loss function
(cross-entropy) takes much higher values, thus updates the
perturbation values more drastically. In those cases, while
optimizing the UAP in a strong adversarial manner, a small
norm optimization is also done, yielding a UAP with a very
high fooling rate.

Perturbation Features
Figure 2 shows sample UAPs trained with different meth-
ods. The UAPs on the first 3 rows (obtained without a filter)
exhibit perturbations with visible image feature accumulated
around the edges. However, this phenomenon is not caused
by the alternating loss; rather, it is a consequence of perform-
ing targeted universal attacks that minimize the target stan-
dard loss. The gradients on the perturbation are high over
the edges after only a few iterations, which causes the image
features to concentrate on these regions. Figure 3 shows the
scatter plots of the mean gradient values when a UAP is ap-
plied on the whole dataset versus the distance of each pixel
containing the gradient. The scatter plots are generated using
a state of a trained UAP; from left to right, top to bottom, the
UAP is taken from iterations 1, 30, 150 and 300 of the train-
ing. The gradients flow to the pixels far from the center of
the images. We speculate that, since usually the main objects
of the images are located around the center, the magnitudes
of gradients with respect to a loss function whose objective
class is different from the original class become relatively
higher where features from the original object are absent,
hence the edges and corners. On the other hand, it is also
possible to see small feature-full perturbations that are gen-
erated around the center of the image, such as the green dots
that can be seen in Figure 2. It is known that universal pertur-
bations take advantage of image features that outweigh the
original image features; hence, it can be possible to under-
stand the target class by only looking at the universal per-
turbations; yet, the small accumulations around the center
defy these assumptions. For that reason, our filtered training
scheme not only makes the center of attention clean of per-
turbations but also quantitatively yields better Lp norms and
stable fooling rates.

Conclusion
This work proposes and evaluates alternative approaches for
training a UAP that can achieve target fooling rates for a

dataset while being a minimization optimization, rather than
being Lp bounded. We have integrated ‘alternating loss,’ an
image-dependent attack strategy, into the universal adversar-
ial domain. As it was not directly possible to incorporate this
strategy into a training procedure, we came up with 3 differ-
ent approaches for its utilization. B-AL training altered the
loss function based solely on the currently processed batch.
EB-AL training also took the performance of the UAP over
the whole dataset before changing the loss function. Finally,
P-AL training considered the fooling rate up to the point
where a batch is processed. We achieved remarkable L2

distances using P-AL while maintaining the desired fooling
rates. On top of P-AL, we have also applied circular filtering
to mitigate the small perturbations that appear in the center
of the UAP to the edges. In this way, we obtain perceptu-
ally better UAPs, by not having perturbations in the center
of the image while achieving even smaller L2 distances. On
the other hand, this work can further be improved by regular-
izing the altered loss functions to achieve better Lp norms.
Also, investigating the mitigation of the image-features on
the UAPs can also be helpful for understanding not only the
existence of these perturbations, but also the behaviour of
the deep neural networks.
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