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ABSTRACT

In drug discovery, highly automated high-throughput laboratories are used to
screen a large number of compounds in search of effective drugs. These exper-
iments are expensive, so one might hope to reduce their cost by experimenting
on a subset of the compounds, and predicting the outcomes of the remaining ex-
periments. In this work, we model this scenario as a sequential subset selection
problem: we aim to select the smallest set of candidates in order to achieve some
desired level of accuracy for the system as a whole. Our key observation is that, if
there is heterogeneity in the difficulty of the prediction problem across the input
space, selectively obtaining the labels for the hardest examples in the acquisition
pool will leave only the relatively easy examples to remain in the inference set,
leading to better overall system performance. We call this mechanism inference
set design, and propose the use of an confidence-based active learning solution to
prune out these challenging examples. Our algorithm includes an explicit stop-
ping criterion that stops running the experiments when it is sufficiently confident
that the system has reached the target performance. Our empirical studies on im-
age and molecular datasets, as well as a real-world large-scale biological assay,
show that active learning for inference set design leads to significant reduction in
experimental cost while retaining high system performance.

1 INTRODUCTION

Automated high-throughput screening (HTS) laboratories have enabled scientists to screen large
compound libraries to find effective therapeutic compounds and screen whole-genome CRISPR
knockouts to understand the effects of genes on cell function (Mayr & Bojanic, 2009; Wildey et al.,
2017; Blay et al., 2020; Tom et al., 2024; Fay et al., 2023). However, conducting experiments on
every compound or gene in these vast design spaces remains very resource-intensive. With typical
screening libraries holding on the order of 105 to 106 compounds (Hughes et al., 2011) and the num-
ber of possible small molecules estimated at 1060 (Bohacek et al., 1996), the disparity between our
screening capabilities and all which we could explore is staggering. Reducing experimental costs
without compromising the quality of the generated data would allow us to accelerate biology and
pharmaceutical research and expand the set of molecules considered for testing.

To avoid costs scaling with the number of experiments, we can train a model from a subset of the tar-
get library that has been tested in the lab, and then predict experimental outcomes for the remainder
of the library using the trained model (Naik et al., 2013; Reker & Schneider, 2015; Dara et al., 2022),
thereby building a hybrid screen of the library. This approach entails three interrelated questions:
(1) which subset of the library should we use to maximise the accuracy of the predictions?, (2) how
do we select this subset without access to the experimental outcomes?, and (3) how do we ensure
that we acquire a large enough collection to meet a target level of accuracy for the predictions?

This problem is similar to an active learning problem in that we want to select examples that max-
imize prediction accuracy, but instead of aiming to minimize generalization error, here we focus
solely on prediction on a particular, finite, set of experiments from a library. The fact that the library
is finite introduces an important difference: the learner can influence the set of examples on which
it is evaluated by strategically selecting examples to be acquired. We assume that the difficulty of
predicting outcomes varies among examples. Some experiments outcomes are inherently harder to
predict either due to their complex properties (Bengio et al., 2009), because of the partial observ-
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ability of the system (Saleh et al., 2021; Krenn et al., 2020) or due to noise in the labeling function
(Frénay & Verleysen, 2013; Lukasik et al., 2020). Such disparity allows the learner to select these
harder examples into the training set to avoid having to predict their outcomes. Conversely, if an
example can be reliably predicted by the model, we can save experimental costs by not including
it in the training set. We call this mechanism through which a learner can influence evaluation
performance inference set design.

We propose an active learning-based solution to hybrid screening that uses the model’s confidence to
guide the selection of experiments and leverages the mechanism of inference set design to improve
the system’s performance on the target set. Our algorithm includes a practical stopping criterion that
terminates the acquisition of additional labels once a lower bound on a target accuracy threshold
is exceeded, and show that this bound provides probabilistic guarantee on the performance of the
algorithm as long as the model is weakly calibrated. To validate our method, we conduct a series
of empirical studies on image and molecular datasets, as well as a real-world case study in drug
discovery. The results demonstrate that inference set design significantly reduces experimental costs
while improving overall system performance. Importantly, this is true even when the generalization
benefits of active learning-based acquisition functions are marginal compared to random search.
This has important practical implications for active learning: if a problem is a hybrid screen—in the
sense that one only needs good performance on a fixed, finite set of experiments—then evaluating
generalization error dramatically understates the benefits of active learning. By combining simple
active learning acquisition functions with an appropriate stopping criterion, it is possible to make
large scale screening far more efficient.

2 METHODS

In this section, we present the problem of efficiently evaluating a large, finite set of experimental
designs, such as a screening compound library. We formalize the problem as a subset selection
problem, and show that it can be solved using an active learning strategy. Active learning is effective
in this setting because it essentially selects its own inference set; we call this strategy, inference
set design. We we propose a stopping criterion to monitor the model’s performance and trigger
termination of the acquisition process and show that this algorithm allows to reach provably high
levels of performance on a target set of samples. A pseudo-code is available in Appendix B.

2.1 REDUCING EXPERIMENTAL COSTS VIA HYBRID SCREENS AND INFERENCE SET DESIGN

We are motivated by the problem of efficient data acquisition of compound libraries for drug discov-
ery applications. Each “experimental readout” (or label) y requires us to run an experiment, which
has some associated cost. We assume that we have a predefined target set Xtarget = {xi}

Ntarget
i=1 of

experimental designs for which we want to acquire a readout, where Ntarget represents the number
of samples we wish to obtain labels or predictions for. For example, in drug discovery, a common
set of experimental designs, Xtarget, would be a library of compounds to be tested on some set of cell
types, at different concentrations, etc. For each xi ∈ Xtarget, the associated experimental readout,
yi, would correspond to the drug’s effect on the corresponding cell type. In this section, we assume
a classification problem but also explore extensions to continuous outcomes in Appendix E.1. One
way to reduce the acquisition costs of screening the entire target set is to train a predictive model
p̂(x) on the observation set – the subset of the target set, Xobs ⊆ Xtarget, for which we already have
observed the labels y. We can then use this model’s predictions in place of the real labels on the
remaining samples. Because experiments are typically run in multiple rounds, at each round t, the
target set Xtarget can be partitioned into two mutually exclusive subsets:

• The observation set X t
obs, which contains the union of all experimental designs that have

already been tested in the lab and for which the readouts, Yt
obs, have been observed. We

denote their pairing the observation dataset Dt
obs := (X ,Y)tobs := {(xi, yi)}Nobs

i=1 . At each
step t, a constant number of Nb samples are acquired and added to the observation set,
causing this set to grow over time.

• The inference set X t
inf := Xtarget \ X t

obs, which consists of the remaining experimental de-
signs in the target set that have not yet been tested. This set shrinks over time as samples
are selected from it for acquisition and transfered into the observation set.
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easy examples

difficult examples

Observation Set
(labeled examples: 100% accuracy)

Inference Set
(50% accuracy)

Observation Set
(labeled examples: 100% accuracy)

Inference Set
(100% accuracy)

Random Agent
Randomly selects examples
to be labeled and transferred
to the observation set.

System accuracy: 80%

Active Agent
Actively selects the most
difficult samples to be acquired
and removed from the inference set.

System accuracy: 100%

Observation Set
(initially empty)

Inference Set
(60% accuracy)

Set up
Initially, all the samples are
unlabeled in the Inference Set.

System accuracy: 60%

The agent is tasked to select
samples for labeling.

Figure 1: Hybrid screen employing active learning as an inference set design strategy. The
goal is to produce a “hybrid dataset”, composed of the labels collected in the observation set and
the predictions of the model made on the inference set. The system’s performance is reported as
the “system accuracy”, measured as a combination of observed labels on the observation set and of
predictions made on the inference set. As samples are acquired and added to the observation set,
the contribution of the accuracy of the prediction model gradually decreases. The aim of the active
agent is to select informative examples while pruning out the most difficult ones in order to reach
very high system accuracy without having to acquire all the samples.

Once acquisition is stopped, at timestep t = τ , the output of the system is a hybrid dataset, i.e.
the combination (X ,Y)τobs ∪ (X , Ŷ)τinf of both the labeled pairs from the observation set and the
predicted pairs from the inference set. We call this procedure a hybrid screen, as it provides a hybrid
set of labels for the entire target set – some measured, some predicted. The system’s performance
at each step t is evaluated based on its accuracy µt

sys across the entire target set, which consists of
perfectly accurate labels y from the observation set and the inferred labels ŷ for the inference set:

µt
sys :=

1

|Xtarget|
∑

xi∈Xtarget

1(xi ∈ X t
obs) + 1(ŷi = yi | xi ∈ X t

inf) (1)

In this formulation, acquiring all the labels would yield 100% accuracy, but at significant expense.
We instead seek a system that reaches an accuracy of at least γ, while incurring minimal experimen-
tal costs. This can be formulated as the following combinatorial optimization problem,

min
Xobs⊆Xtarget

|Xobs| such that µt=τ
sys > γ (2)

where |Xobs| denotes the number of samples in the observation set. A natural approach is to treat
this as an active learning problem. Like standard active learning, we can sequentially select subsets
of data from labeling and the system accuracy will benefit from any improvements in generalization
that arise from better selection of training examples. However, this setting has an important differ-
ence: we only ever evaluate p̂ on Xinf, and this set is under the control of the learner because any
example that is selected for labeling is removed from the inference set. As a result, by choosing
acquisition functions that select harder training examples firsts, we make the test-time task of the
learner easier, as the harder examples are effectively pruned out of the inference set. We call this
approach inference set design – by selective label acquisition, the agent actively designs the compo-
sition of the inference set such that it can excel on it. This mechanism is illustrated in Figure 1.

The data selection heuristics for inference set design are similar to standard active learning, but
there are two important differences between the settings. Firstly, if we evaluate performance under
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the standard active learning objective—generalization error measured on a held-out test set—we
risk dramatically understating the performance improvement that result from inference set design.
Instead, evaluating on the target set of interest allows to capture dramatical improvements over a
random sampler even when only marginal improvements in generalization error can be observed.
Secondly, unlike active learning, inference set design requires an explicit stopping criterion in order
to decide when you have collected enough samples to meet the accuracy threshold, which we address
in the following section.

2.2 EMPIRICAL STOPPING CRITERION

The key technical challenge of inference set design is deciding when to stop running new experi-
ments. In a production system, the labels for the inference set will remain unavailable, so we need
to estimate the system performance from the collected data only. To avoid unnecessary experimen-
tation, inference set design algorithms must employ an efficient stopping criterion. We address this
by maintaining a probabilistic lower bound on the system accuracy, and stopping once this bound
exceeds the critical threshold, γ. A simple approach to maintaining such a bound is to leverage the
feedback from each round of experimentation.

We consider a multi-class classification problem. Formally, let K := {1, 2, . . . ,K} be the set of K
labels and p̂(x) := (p̂1(x), . . . , p̂K(x)) be the predicted probabilities for x that y = k for all k ∈ K.
We denote yi the true label for a sample xi, ŷi := argmaxk p̂k(xi) the predicted class by the model
and v̂i := maxk p̂k(xi) the predicted probability value for that class. We consider the use of the
commonly employed least-confidence acquisition function:

xselected := argmax
xi∈Xinf\Xb

(
1− v̂i

)
for i = 1, . . . , Nb (3)

where Nb is the number of samples to be acquired, i.e. the acquisition batch-size. The samples xi ∈
Xb are selected one by one by applying the least-confidence criterion in Equation 3 iteratively to the
remaining samples in Xinf that have not yet been transferred to Xb. Because at every round we select
examples that the model regards as challenging, if the model maintains a correct calibration ordering,
the performance on a batch X t

b that we select at round t should lower bound the performance on the
entire inference set. We express this formally in the following lemma:
Lemma 1. Assuming that p̂’s top-predictions are weakly calibrated on the inference set, i.e. that for
any two samples x1 and x2 in Dt−1

inf , v̂1 ≥ v̂2 =⇒ PDt−1
inf

[Y = Ŷ |v̂1] ≥ PDt−1
inf

[Y = Ŷ |v̂2], then

the expected accuracy on a batchDt
b := {(xi, yi)}Nb

i=1 selected by least-confidence fromX t−1
inf is less

or equal than the expected accuracy on the remaining inference set: PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ].

See Appendix A.1 for more details and proof. Lemma 1 shows that although the samples in X t
b are

not independent and identically distributed samples from X t
inf, we can safely use the performance on

Dt
b as a conservative proxy for performance on Dt

inf. We thus leverage the measured performance
on the acquired batch to estimate the performance on the remaining, unobserved inference set.

We can now use this conservative estimate to design an appropriate stopping criterion. Let µ̂t
b :=

1
Nb

∑Nb

i=1 1(yi = ŷi) denote the measured accuracy on the batch Dt
b at acquisition step t. A simple

stopping criterion could consist in picking an accuracy threshold γ for the desired system accuracy,
and to stop acquiring new samples once our system accuracy estimate µ̂t

sys based on µ̂t
b surpasses γ:

τ = argmin
t∈1,...,T

µ̂t
sys > γ , µ̂t

sys =
|X t

obs|+ µ̂t
b|X t

inf|
|Xtarget|

(4)

where τ denotes the stopping time. Optionally, we could augment this criterion with a patience
hyperparameter to make it more robust to the stochasticity introduced by the finite sample size Nb.
A more principled approach however is to directly account for the statistical uncertainty around µ̂t

b
by using it to derive a bound αt on the true inference accuracy µt

inf. Using standard concentration
inequalities (see detailed derivation in Appendix A.2) we have that,

P (µt
inf ≤ αt) ≤ δ with αt = min

{
a ∈ [0, µ̂t

b] : KL(µ̂t
b||a) ≤

log
(
1
δ

)
Nb

}
(5)
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where KL(·||·) denotes the Kullback-Leibler divergence and δ is the failure probability of the bound.
We can thus use the lower-bound value αt in place of µ̂t

b in Equation 4 to ensure achieving our
desired system accuracy threshold γ with probability at least 1− δ.

To summarize, in this section, we presented a framework for hybrid screens leveraging active learn-
ing to perform inference set design by selectively acquiring labels for hard-to-predict examples,
thereby simplifying the inference set for easier prediction, and using a conservative stopping crite-
rion to ensure that the desired level of system accuracy is achieved at stopping time. The pseudo-
code for our algorithm is presented in Appendix B.

3 RELATED WORK

In this work, we apply active learning to the problem of hybrid screens for biological data acquisi-
tion. Warmuth et al. (2003) were among the firsts to apply AL to the field of drug discovery, with an
acquisition function based on support vector machines for binding affinity predictors. AL has since
then been explored as a tool for problems such as virtual screening (Fujiwara et al., 2008), cancer
monitoring (Danziger et al., 2009), protein-protein interaction (Mohamed et al., 2010), compound
classification (Lang et al., 2016) and chemical space exploration (Smith et al., 2018).

These approaches seek to produce a better model than training on random samples would, and are
to be distinguished from bayesian optimization methods (Graff et al., 2021; Gorantla et al., 2024),
which also fall under the umbrella of “active learning” but instead use the model to seek specific
samples (e.g. with high binding affinity) and often focus on addressing the exploration-exploitation
dilemma which has been widely studied by bandit algorithms (Svensson et al., 2022). For hybrid
screens, we seek a model that can accurately predict the labels of all samples in the inference set,
without preference over particular readouts. Our setting, focusing on a fixed set of data, is sometimes
referred to as pool-based active learning (Wu, 2019; Zhan et al., 2021). A key difference is that most
active learning work (including pool-based AL) tend to focus evaluations on a held-out test set (Atlas
et al., 1989; Cohn et al., 1994; Gal et al., 2017; Margatina et al., 2021; Zhan et al., 2021; Luo et al.,
2023; Li et al., 2024) or restrict the algorithm to very limited acquisition budgets (e.g. only 10% of
the data pool) (Wu, 2019), which generally does not leave enough margin for mechanisms such as
inference set design to dominate.

A closely related problem is that of core set selection (Plutowski & White, 1993; Bachem et al.,
2017; Guo et al., 2022), where the goal is to select the smallest set of samples from a pool of data
such that a model trained on this subset performs on par with a model trained on the entire pool.
The closest works to ours are that of Sener & Savarese (2017) and Li & Rangarajan (2019), which
make an explicit connection between active learning and core set selection and also seek to improve
performance on the unselected examples. In our work however, we focus on uncovering the key
mechanism in action, inference set design, and show empirical validations across a wide variety of
academic and real-life datasets.

4 EXPERIMENTS

In our experiments, we aim at highlighting the key role that inference set design plays into allow-
ing AL agents to reach high levels of performance on the inference set (Section 4.1), validating the
robustness of this mechanism on molecular datasets used for drug discovery (Section 4.2), apply-
ing this method to a challenging real-world case of compound library screening on a large scale
phenotypic assays (Section 4.3) and empirically validating our theoretical assumption and stopping
criterion (Section 4.4). All curves show average metrics across 3 seeds and the shaded area denote
standard error around the mean. Vertical lines denote the average stopping time, with min and max
intervals (left to right). For all modalities, we use vectorized representations as input and our model
p̂ is parameterised using a feed-forward deep neural network with residual connections. Additional
details regarding data pre-processing, network architectures and hyperparameters are presented in
Appendices C and D.1

1The code for all experiments will be made public upon publication of this work. All datasets to reproduce
our results are also publicly available, except one proprietary dataset for the results in Figure 8.
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Figure 2: Performance of least-confidence (LC) and random acquisition functions on variations of
MNIST across 3 seeds. a) Original: MNIST with its naturally ocurring easy and hard examples. b)
Partial Observability: MNIST where the bottom two thirds of the images have been cropped out. c)
Noisy labeling function: MNIST with shuffled labels for 6, 8, and 9 digits.

4.1 VISUALISING INFERENCE SET DESIGN
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Figure 3: Percent of samples with
shuffled labels acquired by each agent
throughout the acquisition steps.

To develop intuition for inference set design we first run
experiments on the MNIST dataset. The whole MNIST
training set is used as an inference set from which agents
can acquire samples. The MNIST test set is split 50-50
into a validation set used for early stopping and a test set
used for measuring model performance on held-out data
inaccessible by agents. In many real-world applications,
data used for training ML models contains samples that
are inherently difficult, only partially observed, or misla-
belled. We investigate these three cases and simulate the
challenge of partial observability by removing the lower
part of the image (Figure 2b) and simulate labeling noise
by shuffling labels for selected digits (see Figure 2c).

In these experiments we study the performance of an
active agent using the least-confidence (LC) acquisition
function of Equation 3 and a random agent, selecting
samples with uniform probability over the inference set.
At every active learning step an agent acquires a batch of 1000 samples from the inference set, adds
them to the training set, and retrains the model from scratch. During the active learning experiment
we monitor the accuracy on the inference set, test set, acquired batch, and the system accuracy as
a whole (see Equation 1). We also record which samples have been acquired at every acquisition
steps. In all three studied settings in Figure 2, we observe the same phenomenon: the generalisation
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Figure 4: Performance of active and random agents on MNIST with increasing number of shuffled
labels. As the task becomes harder, the accuracy gap increases, but the stopping time τ moves back.

accuracy measured on the held-out test set quickly saturates for both agents, but the active agent is
able to obtain significant improvements on the inference set which are also reflected in individual
acquisition batches and on the system’s overall performance. The mechanism at play here stems
from the active design of the inference set by the active agent. We illustrate this for the case of noisy
labeling function in Figure 3. By selectively acquiring the images it tends to mislabel, the active
agent makes predictions on remaining samples in the inference set much easier. Since the majority
of samples acquired by the active agent in the first 20 steps represent these challenging examples,
its accuracy on the acquired batch is significantly lower than a random agent’s (Figure 2c, 3rd row).
However, once the process of removing mislabeled samples from the inference set is complete, the
active agent’s accuracy on the acquired batch drastically increases and surpasses the random agent.
To further explore the tradeoff between task difficulty and efficiency gains, we run experiments with
shuffled labels for increasingly larger subsets of digits (see Figure 4). The results show that with
a higher number of such “noisy” samples, the gap between the active and random agents on the
inference set increases. The active agent is able to achieve 100% accuracy on the inference set
even with shuffled labels for 80% of the data. However, a more corrupted target set also necessitates
more acquisition batches to prune out the difficult examples from the inference set, incurring smaller
experimental budget reductions for highly challenging settings.

4.2 ASSESSING ROBUSTNESS OF THE MECHANISM
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Figure 5: Results on QM9. a) A sample of molecules from the QM9 dataset. b) Performance of
active agents (LC and BALD), heuristic orderings, and random sampler on QM9 across 3 seeds.
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Figure 6: Percent of “hard” examples
acquired by each agent throughout the
acquisition loop on QM9.

In the previous section, we have shown that inference
set design design leads to significantly improved system
performance compared to random sampling, even with
highly corrupted datasets. In this section, we validate
that these observations hold for a wildly different type
of data – molecular datasets. We use the Quantum Ma-
chine 9 (QM9) (Ruddigkeit et al., 2012; Ramakrishnan
et al., 2014). QM9 contains 134k small organic molecules
and their quantum chemical properties computed with
Density Functional Theory (DFT). For inputs, we con-
vert the SMILES strings molecular representations into
their Extended Connectivity Fingerprints (ECFPs). We
predict the HOMO-LUMO gap framed as a classification
task by discetizing the values into two balanced classes
using median as a boundary condition to explore agents’
performance on classification task. Our main active agent
uses the least-confidence acquisition function. We also
explore the use of the BALD acquisition function (Gal
et al., 2017). In addition to active and random agents, for both datasets, we also evaluate the perfor-
mance of heuristic-based acquisition orders (original sorting, smallest to largest molecules, sorted
by SA-score, etc.) as well as diversity sampling (selecting molecules with largest Tanimoto distance
to the acquired set).

The results on QM9 demonstrate that both LC and BALD agents achieve much higher accuracy on
the inference set than the baselines. Furthermore, they reach near 100% accuracy on both system
and inference set after acquiring only 30% of data (see Figure 5). Saturating performance across
all agents on the test set suggests once again that the active agent is able to make gains by pruning
out difficult examples from the inference set rather than by generalizing better. To confirm this
hypothesis, we compiled a list of “hard to predict” molecules by training five models with different
random seeds on a 5-fold cross-validation split of the inference set, and flagged the molecules for
which at least 4 out 5 models made a mistake. The resulting “hard to predict” subset contains 4, 944
molecules (approximately 5% of the inference set). We then tracked the proportion of these samples
that was acquired by each agent in the active learning experiments. Figure 6 shows that the active
agents acquire molecules from the “hard to predict” subset at a much higher rate than the baselines.

In addition to the classification results on QM9 presented here, we extend our method to a regression
task on the much larger Molecules3D dataset in Appendix E.1 and get to a similar conclusion.
Put together, these results on additional datasets spanning both classification and regression tasks
and including 3 different active acquisition functions confirm and extend the observations made on
MNIST in the previous section. They suggest that inference set design is an effective approach to
guide acquisition of molecular compounds, by significantly reducing the cost of acquiring a fixed
set of molecules and ensuring high system performance. In the next section, we apply this method
to real-world biological data.

4.3 INFERENCE SET DESIGN IN THE REAL WORLD

Modern HTS platforms combined with genetic perturbation techniques facilitate large scale cell
microscopy experiments that are designed to capture the effects of biological perturbations (Celik
et al., 2022). In these experiments before taking microscopy images, cells undergo perturbation by
either a CRISPR/Cas9-mediated gene knock-out or injection of a bioactive molecular compound at
given concentration. The obtained cell microscopy images are then processed and passed through a
neural network to obtain embeddings that correspond to a specific perturbation. With data from such
HTS pipeline it is possible to build “Maps of Biology” that contain organized information about
known and new biological relationships (see Figure 7b). Each point on the map corresponds to
the cosine similarity between perturbation embeddings and reveals how strongly two perturbations
are related. Expanding maps of biology might uncover new biological relationships that in turn
could guide the discovery of leads for new medicines. However, even with ultra-HTS platforms,
experimentally acquiring microscopy images of all possible cell perturbations is unfeasible. We aim
to apply inference set design to this problem with the goal of reducing costs associated with building
maps of biology.
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Figure 7: Visualisation of the RxRx3 dataset. a) A microscopy image of perturbed cells. b) A sample
of biological map showing whether each pair of gene-based and compound-based perturbations is
pheno-similar (in red) or not (in white).
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Figure 8: Performance on pheno-similarity classification task on our proprietary phenomics dataset.
The least-confidence agent is shown to be the most effective on this task and reaches the targeted
system accuracy of 98% at around 80% of the acquisition procedure.

For our experiments, we start by using the publicly available RxRx3 dataset (Fay et al., 2023)
which contains the learned embeddings for 17, 063 CRISPR/Cas9-mediated gene knock-out per-
turbations, as well as 1, 674 FDA-approved compound perturbations at 8 concentrations each. We
train our models to predict the cosine similarity between the perturbation embeddings of any gene-
compound pair, and frame this as a classification problem. For each gene-compound pairs, we select
the compound-concentration perturbation that yields the largest cosine-similarity with the target
gene. The cosine-similarities are discretized by computing a gene-specific threshold using the upper
semi-interquartile range (SIQR) with a step-size of 2.5. Finally, we remove genes that have activity
below 25%. The result is a 151 × 1, 674 matrix of labels encoding either pheno-similarity (y = 1)
or an absence of relationship (y = 0) between a gene and a compound perturbation (see Figure 7b).

For this prediction task, we treat all gene embeddings as known and focus only on the much larger
space of compound acquisition. To featurize compounds we use embeddings of MolGPS model
(Sypetkowski et al., 2024). At every active learning step, agents acquire a batch of compounds
from the inference set and uncover their relationships with all genes in the dataset (entire row of
the matrix). The results on RxRx3 dataset show only minor improvements over random agent (see
Appendix E). We believe this is due to high complexity of biological relationships and limited size
of the inference set. Indeed, inferring cellular similarity between gene and compound perturbations
from only a few hundred examples is highly unlikely. To push this analysis further, we rerun the
same experiment but on our proprietary phenomics dataset. It is similar to RxRx3 but much larger. It
contains cell perturbation embeddings for 102,855 compound and 5,580 gene perturbations, leading
a 2, 000 times larger relationship matrix. Using inference set design, the active agent is again able to
outperform the baselines on this task, as shown in Figure 8. These experiments represent promising
results for large scale applications of active learning to hybrid screens for early drug discovery.
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Figure 9: Model calibration evaluation on the inference set in our QM9 experiment for the least-
confidence acquisition function. The models tend to be underconfident early in the acquisition loop,
and overconfident later on, but remains weakly calibrated (monotonic ordering). At stopping time
t = τ , the model is both highly confident and highly accurate on the remaining samples in the
inference set.

4.4 ANALYSIS OF MODEL CALIBRATION

In this last experimental section, we validate the theoretical claims made in Section 2.2. The pro-
posed stopping criterion assumes weak calibration i.e. that the true accuracy of the model does not
need to be exactly equal to its confidence (perfect calibration), but that the ordering is conserved,
i.e. that the true accuracy is a monotonically increasing function of the model’s confidence. Fig-
ure 9 shows that this assumption is empirically verified in our QM9 experiments and Figure 13 in
Appendix F.1 confirms the same observation in our phenomics and MNIST experiments, support-
ing the claim that weak calibration can be achieved in practice. We also empirically validate (see
Figure ??, Appendix F.2) that the proposed stopping criterion making use of the bound presented in
Equation 5 does indeed cause the agent to stop acquiring new labels at a system accuracy superior
to the targeted threshold (see Equation 4).

5 DISCUSSION

While active learning has undergone significant theoretical development and experimentation over
the past 30 years, its widespread adoption in the industry remains a challenge (Reker, 2019). Active
learning is often framed as a means to improve generalization performance on held-out test sets,
which is a goal made difficult by real-world challenges such as noise in labeling functions, high
diversity, and partial observability of the input space. However, we believe that a shift in perspective
can help unlock the full potential of active learning. By focusing on optimizing performance on a
target set of samples and allowing the model to decide which examples to label and which to predict,
active learning can become a more powerful tool for real-world applications.

We applied this perspective to the problem of hybrid screens in drug discovery, where the goal
is to acquire readouts for only a subset of compounds while making accurate predictions for the
remaining ones. Our approach makes use of a confidence-based acquisition function and leverages
the concept of inference set design, a strategy where the model selects the most challenging examples
for labeling, leaving easier cases for prediction. Our empirical results, across image and chemical
datasets, as well as a real world biological application, show that this approach leads to consistent
and significant improvements. Moreover, our results highlight that heuristic-based orderings, often
used in real-world data acquisition efforts, are highly suboptimal. They can lead to drastically
different results across tasks and datasets and often end up harming the performance by introducing
unjustified biases in the acquisition ordering. Importantly, this bias then prevents the experimenter
from using the performance on the acquisition batch as an indication of the performance on the
remaining examples in the inference set. A confidence-based agent also introduces a bias in sample
selection, but assuming weak calibration, this bias is directional and still allows the acquisition batch
to be used as a lower bound for the performance on the remaining examples (see Lemma 1). It then
compensates for the conservativeness of its stopping criterion by designing its own inference set,
leading to overall earlier stopping time and greater budget reductions.

An important limitation of our work is the assumption that observed labels are deterministic and
constitute perfect accuracy. Many real-world biological experiments however produce noisy obser-
vations. Combining the inference set design framework with aleatoric uncertainty modeling to better
address cases of weak supervision represents a promising direction for future work.
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A THEORETICAL SUPPLEMENTS

A.1 PROOF OF LEMMA 1

For completeness, we start by re-stating Lemma 1 in more detail.

We consider a multi-class classification problem, with K := {1, 2, . . . ,K} the set of K labels and
p̂(x) := (p̂1(x), . . . , p̂K(x)) the predicted probabilities for x that y = k for all k ∈ K. We denote
yi the true label for a sample xi, ŷi := argmaxk p̂k(xi) the predicted class by the model and
v̂i := maxk∈K p̂k(xi) the predicted probability value for that class. In the context of sequential
label acquisition, we denote X t−1

inf := {xi}Ni=1 the inference set containing N samples at acquisition
step t− 1, and Dt−1

inf := {(xi, yi)}Ni=1 the same set with the associated labels yi. Stepping forward,
at time t, an acquisition batch of Nb samples and their labels Dt

b := {(xi, yi)}Nb
i=1 are selected from

the inference dataset of the previous step Dt−1
inf .

Following the least-confidence acquisition function, at time-step t, the samples in Dt−1
inf are ordered

by confidence where x1 has the predicted class with the lowest confidence and xN has the predicted
class with the highest confidence:

v̂1 ≤ v̂2 ≤ · · · ≤ v̂Nb︸ ︷︷ ︸
first Nb samples

≤ v̂Nb+1 ≤ · · · ≤ v̂N︸ ︷︷ ︸
last N−Nb samples

(6)

and the selected batch consists of the first Nb samples. The remaining inference set is composed of
the remaining N −Nb samples, i.e. Dt

inf := D
t−1
inf \ Dt

b = {(xi, yi)}Ni=1+Nb
.

The practical utility of this ordering depends on the calibration of the model. Calibration reflects
the correctness of the model’s confidence compared to its true performance. A perfectly calibrated
model p̂ would output confidence levels that perfectly match the true probability of correct classifi-
cation. We extend the notation of Guo et al. (2017) to be dataset-specific, and denote PD[Y = Ŷ ]
the probability of p̂ producing the correct class prediction for any sample from a dataset D, which
can equivalently be thought of as p̂’s accuracy on that dataset:

PD[Y = Ŷ ] := E(xi,yi)∼D[1(yi = ŷi)] (7)

Similarly, PD[Y = Ŷ |ṽ] denotes the confidence-conditional accuracy of the model for ṽ, a specific
confidence level2:

PD[Y = Ŷ |ṽ] := E(xi,yi)∼D[1(yi = ŷi)|v̂i = ṽ] (8)
Perfect calibration on the inference set would thus imply that for any confidence level ṽ ∈ [0, 1], we
have PDt−1

inf
[Y = Ŷ |ṽ] = ṽ. Instead, in Lemma 1, we only assume weak calibration of the model

on the predicted class, i.e. that the confidence ordering of the model’s top predictions reflects the
ordering of probabilities of correct classification. Formally, weak calibration on Dt−1

inf implies that
for any pair of samples xi and xj in our dataset Dt−1

inf , we have:

v̂i ≤ v̂j =⇒ PDt−1
inf

[Y = Ŷ |v̂i] ≤ PDt−1
inf

[Y = Ŷ |v̂j ] (9)

We aim to prove that, assuming weak calibration on the inference set, the expected accuracy on the
least-confidence batch is bounded by the expected accuracy over the remaining inference set:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (10)

Proof. The expected accuracy from Equation 7 can be rewritten in terms of its confidence-
conditional form in Equation 8:

PD[Y = Ŷ ] =
1

|D|

|D|∑
i=1

PD[Y = Ŷ |v̂i] (11)

2In practice such confidence levels would be binned together such that PD[Y = Ŷ |ṽ] represents the accu-
racy over all samples in D for which the model’s confidence is in [ṽ − ϵ, ṽ + ϵ], see (Guo et al., 2017).
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From the weak calibration assumption in Equation 9, it follows that the model’s confidence-
conditional accuracy is a non-decreasing function of its confidence. Combined with the acquisition
mechanism of Equation 6, we obtain an ordering of the probability that the model obtains the correct
label along the entire inference set at step t− 1:

PDt−1
inf

[Y = Ŷ |v̂1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂Nb
]︸ ︷︷ ︸

Nbfirst terms

≤ PDt−1
inf

[Y = Ŷ |v̂Nb+1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂N ]︸ ︷︷ ︸
N−Nb remaining terms

(12)
The empirical average of a set of numbers that are inferior or equal to those of a second set has to
be inferior or equal to the empirical average of the second set:

1

Nb

Nb∑
i=1

PDt−1
inf

[Y = Ŷ |v̂i] ≤
1

N −Nb

N∑
i=1+Nb

PDt−1
inf

[Y = Ŷ |v̂i] (13)

By definition, Dt
inf := D

t−1
inf \ Dt

b, the left-hand side from Equation 13 thus captures all the terms
from Dt

b and the right-hand side those from Dt
inf. Rewriting each side using Equation 11, we obtain:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (14)

This concludes the proof.

A.2 BOUND DERIVATION

Here we derive the bound presented in Equation 5. The Chernoff bound (Chernoff, 1952) for
Bernouilli random variables provides an exponential tail bound for the true mean µ of a sequence
of Bernouilli distributed random variables Z1, Z2, . . . , Zn. It can be expressed using the Kullback-
Leibler Divergence (KL) for Bernouilli distributions (Lattimore & Szepesvári, 2020, page 135, Cor-
rollary 10.4):

P (µ ≤ a) ≤ exp
(
− n · KL(µ̂||a)

)
∀ a ∈ [0, µ̂] (15)

with KL(µ̂||a) := µ̂ log
µ̂

a
+ (1− µ̂) log

1− µ̂

1− a
(16)

It quantifies the probability that the true mean µ is smaller or equal to some bound a given the
observed sample mean µ̂ and sample size n. For us, the value {0, 1} of a variable Zi indicates
whether a particular sample xi was correctly classified i.e. Zi := 1(yi = ŷi). In the context of
inference set design and following the notation from Section 2, µ̂t

b represents the observed accu-
racy on the acquired batch at time-step t, with acquisition batch-size Nb, and µt

inf represents the
(unknown) accuracy of the model on the remaining inference set. Note that the Chernoff bound
usually assumes that µ̂t

b is an unbiased estimator of µt
inf. In our case, µ̂t

b is a biased estimator due
to the active selection mechanism of the batch. However, in Lemma 1, we show that this estimator
is actually a conservative estimate of the true accuracy, and thus in turn contributes to making the
bound presented in Equation 15 even more conservative, and preserves its validity.

To establish a confidence level on that bound, we can lower-bound the right-hand side itself to the
desired bound-failure probability δ, which after rearranging yields:

KL(µ̂||a) ≥
log( 1δ )

Nb
(17)

At time t, we thus seek the maximum bound value a = αt for µt
inf such that the inequality on

Equation 17 holds by finding the value of a that satisfies the following condition:

αt = min
a

{
a ∈ [0, µ̂t

b] : KL(µ̂||a) ≤
log( 1δ )

Nb

}
(18)

Since this is a scalar optimization problem from closed-form expressions, computing αt can be done
easily and efficiently using a grid-search. With this choice for a, we obtain the desired probabilistic
bound P (µt

inf < αt) ≤ δ summarized in Equation 5.
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B ALGORITHM

Algorithm 1 Hybrid Screen using Inference Set Design
1: Input: Acquisition batch-size Nb, threshold γ, margin δ
2: Initialize Step t=0, observation set X t=0

obs ← ∅, inference set X t=0
inf ← Xtarget, predictor p̂.

3: repeat
4: Train the predictor p̂ on (X ,Y)tobs (if not empty)
5: Obtain the predictions on the inference set P̂t

inf ← {p̂(xi) ∀xi ∈ Xinf}
6: Run acquisition function to obtain scores Stinf ← g

(
P̂t

inf

)
7: Select a batch of Nb inputs with the highest scores Stinf to form X t

b

8: Remove the acquired batch from the inference set X t
inf ← X

t−1
inf \ X t

b
9: Obtain the true labels Yt

b for the acquisition batch
10: Append the acquired batch to the observation set (X ,Y)tobs ← (X ,Y)t−1

obs ∪ (X ,Y)tb
11: Compute α on (X ,Y)tb from Equation 5
12: until

|X t
obs|+ α|X t

inf|
|Xtarget|

> γ or X t
inf = ∅

13: Return hybrid screen readouts: (X ,Y)t=τ
obs ∪ (X , Ŷ)t=τ

inf

C ADDITIONAL DETAILS ON DATASETS AND PREPROCESSING

C.1 MOLECULAR DATASET PREPROCESSING

In many practical applications exact geometries of screened molecules are unknown as they require
computationally expensive DFT calculations. As a first data processing step, we use RDKit li-
brary (Landrum et al., 2024) to convert molecular structures into SMILES strings and compute their
Extended Connectivity Fingerprints (ECFPs). The SMILES representation provides complete infor-
mation about molecule’s composition and atomic connectivity, however, it removes all information
about 3D atomic positions. Using SMILES representation is a common solution that simplifies gen-
eration of candidate molecules for screening but makes property prediction a more challenging task
as many properties vary depending on specific 3D conformation of a molecule.

Both molecular datasets are cleaned by removing duplicated SMILES and fingerprints as well as
single-atom structures. For total energies in Molecules3D dataset we use reference correction tech-
nique where atomic energies are calculated using linear model fitted to the counts of atoms in a
molecule of each element present in the dataset (obtained atomic energies are presented in Table
1). For reference correction a randomly selected sample of 100k molecules is used. The atomic
energies are then subtracted from the total energies of all molecules in the dataset. The obtained
referenced-corrected energies are normally distributed with mean around 0 eV. A small number of
outliers with reference-corrected energy values above 10 standard deviations are removed from the
dataset as well as 100k samples that were used for reference correction to avoid data leakage.

The final QM9 and Molecule3D datasets contain 133, 885 and 3, 453, 538 molecules respectively.
Both datasets are split into inference, validation, and test sets with 80%, 5%, 15% fractions. The
QM9 HOMO-LUMO gap values are discretized into 2 balanced classes using median as a boundary
condition to explore agents’ performance on classification task.
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Atomic Number Energy (eV) Atomic Number Energy (eV)
1 -26.765 14 -7922.180
5 -673.550 15 -9313.610
6 -1054.411 16 -10810.329
7 -1483.001 17 -12474.680
8 -2034.056 32 -56538.647
9 -2687.455 33 -60828.588

12 -5367.759 34 -65296.349
13 -6657.476 35 -69980.303

Table 1: Atomic energies used for reference correction on Molecules3D dataset.

C.2 RXRX3 DATASET PREPROCESSING

The RxRx3 dataset contains one embedding for each well. Each perturbation type (gene-guide
pair or compound-concentration pair) has several replicates across wells, plates and experiments.
Each plate also contains unperturbed control cells which are used to keep track of and eliminate
a portion of the batch effects (Sypetkowski et al., 2023). These raw embeddings thus need to be
aligned and aggregated. We align them by centering and scaling each perturbation embedding to
the embeddings of the experiment-level unperturbed control wells. The embeddings are then aggre-
gated through a multi-stage averaging procedure, across wells, plates, experiments and guides (for
CRISPR perturbations), which yields an average embedding for each gene-perturbation and each
compound-concentration perturbation. We then use the obtained embeddings to compute cosine
similarities between gene and compound perturbations in the RxRx3 dataset.

D HYPERPARAMETERS AND IMPLEMENTATION DETAILS

For all presented experiments in this work we use MLP models with residual connections (Touvron
et al., 2021). All experiments were repeated with 3 different random seeds. Hyperparameters for
each experiments are summarized in Table 2.

Hyperparemeter name MNIST QM9 Molecules3D RxRx3 Proprietary
data

Acquisition batch size 1,000 250 10,000 10 1000

Number of hidden layers 2 3 2 2 2

Hidden layer size 512 512 512 512 1024

Learning rate 0.001 0.001 0.001 0.001 0.001

gradient norm clip 1.0 1.0 1.0 1.0 1.0

Dropout 0.1 0.1 0.1 0.1 0.1

Train epochs 1,000 1,000 30 30 1000

Train batch size 1,024 1,024 32,768 1,024 1,024

Early stop patience 50 50 15 25 25

Number of ensemble
members

None None 5 None None

Table 2: Hyperparameters for experiments.
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E ADDITIONAL RESULTS

E.1 REGRESSION TASK ON MOLECULES3D

To evaluate the inference set design paradigm on a regression task we use a large dataset
Molecules3D (Xu et al., 2021). Molecules3D contains structures and DFT-computed properties
of approximately 4 million molecules. In our experiments we aim to predict the HOMO-LUMO gap
and total energy. For inputs, we convert the SMILES strings molecular representations into their
Extended Connectivity Fingerprints (ECFPs).
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Figure 10: Performance of QBC, random, and heuristic agents for HOMO-LUMO gap prediction
(top) and energy prediction (bottom) on Molecules3D dataset. The dashed vertical shows average
stopping time across random seeds, surrounded by mix to max intervals (left to right). The patience
parameter p = 10 was used in all experiments with the threshold MSE tMSE = 0.1eV 2 for HOMO-
LUMO gap and tMSE = 100eV 2 for Energy predictions. QBC agent satisfied stopping condition
after acquiring ≈ 80% of the data.

For this regression task, we use a query-by-committee (QBC) active learning approach that computes
variance across the predictions of an ensemble. To determine the stopping time we use a criterion
with two parameters: MSE threshold tMSE on the acquired batch and patience p. The stopping
time is reached if the acquired batch MSE is lower than tMSE for p steps. Like for our QM9
experiments, in addition to active and random agents, we also evaluate the performance of heuristic-
based acquisition orderings (molecules ordered by size, sorted by SA-score, etc.). QBC achieves
an approximately five times lower MSE compared to the random agent or heuristic-based orderings
(see Figure 10). This shows that inference set design approach is not limited to classification tasks
and can be applied to regression problems.

Although, in many applications predicting properties of larger molecules present a more challeng-
ing task, our experiments on the Molecules3D dataset demonstrate that acquiring molecules ordered
from large to small may harm the predictions on inference set and overall system performance
(see Figure 10). One of the reasons is the distribution of chemical elements across molecules in
the dataset. When acquiring molecules from small to large, all unique chemical elements of the
Molecules3D dataset are present in the training set after acquiring just the first 1,000 samples. How-
ever, when acquiring molecules from large to small, some chemical elements remain only in the
inference set until the very end of the experiment which is especially detrimental for the total en-
ergy predictions (see Figure 11). This result demonstrates that using heuristic rules such as ordering
molecules by size for data acquisition does not guarantee optimal acquisition or generalization of
heuristic rules to new data.
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Figure 11: Number of unique chemical elements in the training set when acquiring samples ordered
by molecule size. Acquiring molecules from large to small leaves several chemical elements out of
the training set until the end of the dataset.

E.2 CLASSIFICATION TASK ON RXRX3

Results on the RxRx3 dataset demonstrate minor improvements from the active agents (LC and
BALD) compared to random selection. The accuracy on inference and test set remains low through-
out the experiment regardless of the acquisition method. This is expected considering the extreme
difficulty of predicting biological relationships in a low data regime. The result suggests that in
the setting with low predictive power, even when the majority of the data is acquired, the ability of
inference set design to provide significant budget reductions is limited.
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Figure 12: Performance of agents on pheno-similarity classification task on RxRx3.
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F ADDITIONAL ANALYSIS

F.1 EMPIRICAL VALIDATION OF WEAK CALIBRATION ASSUMPTION

In Lemma 1, we show that when using a least-confidence acquisition function, at any time-step t,
the measured accuracy µ̂t

b on the acquisition batch is a lower-bound on the unobserved accuracy on
the remaining inference set µ̂t

inf, assuming that the model p̂ is weakly calibrated in the infence set.
A weakly calibrated model is such that an increased confidence translates to a higher likelihood of
correct prediction (higher accuracy). In Figure 13, we can see that at several points throughout the
active learning loop, the least-confidence based agent is not perfectly calibrated. Indeed, there is a
substantial gap between its confidence levels and the true accuracy (seen when comparing the col-
ored bars to the identity function shown in gray). However, the model is generally weakly calibrated
(the colored bars are always increasing). These observations support the empirical validity of our
assumption for Lemma 1.

Figure 13: Model calibration analysis for a run of the least confidence agent at different active
learning steps (columns) for all of our classification experiments (rows). The colored bars represent
the accuracy of predictions binned w.r.t their confidence level, and the gray bars show the identity
function illustrating what perfect calibration would look like. The models satisfy the condition of
being weakly calibrated since the accuracy of the model’s predictions increases monotonically with
their confidence. The confidence distribution shifting to the right as t increases indicates that the
growing confidence of the model in correctly predicting the labels of the remaining examples in the
inference set.

F.2 EMPIRICAL VALIDATION OF STOPPING CRITERION

In Section 2.2, we present a stopping criterion based on the fact that the accuracy measured on the
acquisition batch can be used as a proxy for the accuracy on the remaining, non-acquired samples
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Figure 14: System accuracy at stopping time observed across 100 seeds for the MNIST, Cropped
MNIST, Shuffled MNIST and QM9 experiments, and 50 seeds for the Phenomics experiments. In
all experiments, we use a bound-failure probability of δ = 0.05. For the LC agent, all trials lead to
a stopping time t = τ at which the true system accuracy µt=τ

sys higher than the threshold γ. For the
Random Agent, we observed the same thing for Cropped MNIST, Shuffled MNIST and Phenomics.
We also observed 1% of bound failure for (regular) MNIST, and 6% for QM9.

(inference set). The criterion is simple, once the estimated system accuracy µ̂t
sys at time t (see

Equation 4) is above a user-defined targeted threshold γ, the acquisition is stopped. This criterion
makes use of the bound of Equation 5, and both a random sampler and a least-confidence based
agent can use this bound in a principled way. The random agent can validly use it because the
accuracy of its acquisition batches, uniformly drawn from the inference set, are unbiased estimates
of the true accuracy on the entire inference set, which is typically required for such bounds. The
least-confidence agent can use it validly because we show in Lemma 1 that, assuming that the model
is weakly calibrated (which we empirically validate in Appendix F.1), because of its confidence-
based acquisition function, the accuracy of its acquisition batches represent a lower-bound on the
true inference set accuracy, making the bound of Equation 5 even more conservative.

To empirically validate this bound (Equation 5), we run a large number of trials for both the least-
confidence (LC) and random agents across the classification datasets used in the experiments section.
The results show that for the LC agent, all trials ended at a stopping time t = τ at which the true
system accuracy µt

sys was above the threshold γ, which is in accordance with the fact that the LC
agent uses a lower-bound estimate in place of an unbiased estimate for the inference set accuracy,
resulting in a looser bound for Equation 5 and an actual failure-probability lower than δ. For the
random agent, we observed 1% of the trials end with a system accuracy below the threshold in
one of the experiment, 6% in another, and 0% on the three remaining datasets. These results are
in accordance with the theory presented in Section 2.2 and Appendix A.2. On QM9, 6 out of
100 experiments resulting in slight bound failure is statistically in accordance with the theoretical
bound failure probability of δ = 5%. For the other datasets, the bound was looser, which is also a
possibility, and showcases that the observed gap between δ and the true bound-failure probability
can be problem-dependent.
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