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ABSTRACT

In drug discovery, highly automated high-throughput laboratories are used to
screen a large number of compounds in search of effective drugs. These experi-
ments are expensive, so one might hope to reduce their cost by only experimenting
on a subset of the compounds, and predicting the outcomes of the remaining ex-
periments. In this work, we model this scenario as a sequential subset selection
problem: we aim to select the smallest set of candidates in order to achieve some
desired level of accuracy for the system as a whole. Our key observation is that, if
there is heterogeneity in the difficulty of the prediction problem across the input
space, selectively obtaining the labels for the hardest examples in the acquisition
pool will leave only the relatively easy examples to remain in the inference set,
leading to better overall system performance. We call this mechanism inference
set design, and propose the use of a confidence-based active learning solution to
prune out these challenging examples. Our algorithm includes an explicit stop-
ping criterion that interrupts the acquisition loop when it is sufficiently confident
that the system has reached the target performance. Our empirical studies on im-
age and molecular datasets, as well as a real-world large-scale biological assay,
show that active learning for inference set design leads to significant reduction in
experimental cost while retaining high system performance.

1 INTRODUCTION

High-throughput screening (HTS) laboratories have enabled scientists to efficiently perform whole-
genome CRISPR knockouts and screen large compound libraries to discover effective therapeutics
(Mayr & Bojanic, 2009; Wildey et al., 2017; Blay et al., 2020; Tom et al., 2024; Fay et al., 2023).
However, conducting such experiments on every compound or gene in these vast design spaces
remains resource-intensive. With typical screening libraries holding on the order of 105 to 106

compounds (Hughes et al., 2011) and the number of possible small molecules estimated at 1060
(Bohacek et al., 1996), the disparity between our screening capabilities and all which we could ex-
plore is staggering. Reducing experimental costs without compromising the quality of the generated
data would allow to greatly accelerate biological and pharmaceutical research.

At any stage of a screening procedure, to reduce experimental costs, we can train a machine learning
model on the data that has already been collected, and then use that model to predict experimental
outcomes for the remainder of the experiments (Naik et al., 2013; Reker & Schneider, 2015; Dara
et al., 2022). This procedure generates a hybrid screen of the target library, with some outcomes
experimentally observed and others obtained from model predictions. However this approach entails
interrelated questions: Which subset of the library should we use to maximize the accuracy of the
predictions? How do we select this subset without access to all experimental outcomes? How do we
ensure that we acquire a large enough collection to meet our accuracy goal?

This setting is similar to an active learning problem in that we want to select examples that maximize
prediction accuracy, but instead of aiming to minimize generalization error on the entire data space,
we focus solely on prediction on one particular set of experiments. The fact that this library is finite
introduces an important difference: here the learner can influence the set of examples on which it
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is evaluated by strategically selecting the examples to be acquired. Since it is often the case that
some experiments outcomes are inherently harder to predict than others, either due to their complex
properties (Bengio et al., 2009), because of the partial observability of the system (Saleh et al., 2021;
Krenn et al., 2020) or due to noise in the labeling function (Frénay & Verleysen, 2013; Lukasik et al.,
2020), the learner can select these harder examples into the training set early on to avoid having to
predict their outcomes at a later stage. Conversely, if a group of examples can be reliably predicted
by the model, we can save experimental costs by not including them in the training set. We call this
mechanism through which a learner can influence its own evaluation set: inference set design.

In this work, we propose an active learning-based solution to hybrid screening. Our approach uses
the model’s confidence to guide the selection of experiments and leverages the mechanism of in-
ference set design to improve the system’s performance on the target set. Our algorithm includes a
practical stopping criterion that terminates the acquisition of additional labels once a lower bound
on a target accuracy is exceeded, and we show that this bound provides probabilistic guarantee on
the performance of the algorithm as long as the model is weakly calibrated. To validate our method,
we conduct a series of empirical studies on image and molecular datasets, as well as a real-world
case study in drug discovery. The results demonstrate that inference set design significantly reduces
experimental costs while improving overall system performance. Importantly, this is true even when
the generalization benefits of active learning-based acquisition functions are marginal compared to
random search. This has important practical implications for active learning: if a problem is a hybrid
screen—in the sense that one only needs good performance on a fixed, finite set of experiments—
then evaluating generalization error dramatically understates the benefits of active learning. By
combining simple active learning acquisition functions with an appropriate stopping criterion, we
show that it is possible to make large scale screening far more efficient.

2 METHODS

In this section, we present the problem of efficiently evaluating a large, finite set of experimental
designs, such as screening a compound library. We formalize it as a subset selection problem, and
show that it can be solved using an active learning strategy. Active learning is effective in this setting
because it essentially selects its own inference set; we call this mechanism, inference set design.
We propose a stopping criterion to monitor the model’s performance and trigger termination of the
acquisition process and show that this algorithm allows to reach provably high levels of performance
on a target set of samples. A pseudo-code is available in Appendix B.

2.1 REDUCING EXPERIMENTAL COSTS VIA HYBRID SCREENS AND INFERENCE SET DESIGN

We are motivated by the problem of efficient data acquisition of compound libraries for drug discov-
ery applications. Each “experimental readout” (or label) y requires us to run an experiment, which
has some associated cost. We assume that we have a predefined target set Xtarget = {xi}

Ntarget
i=1 of

experimental designs for which we want to acquire a readout, where Ntarget represents the number of
samples we wish to obtain labels or predictions for. For example, in drug discovery, a common set of
experimental designs, Xtarget, would be a library of thousands or even millions of compounds, each
required to be tested on several cell types and at different concentrations. For each xi ∈ Xtarget, the
associated experimental readout, yi, would correspond to the drug’s effect on the corresponding cell
type. One way to reduce the acquisition costs of screening the entire target set is to train a predictive
model p̂(x) on the observation set – the subset of the target set, Xobs ⊆ Xtarget, for which we already
have observed the labels y. We can then use this model’s predictions in place of the real labels on
the remaining samples. Because experiments are typically run in multiple rounds, at each round t,
the target set Xtarget can be partitioned into two mutually exclusive subsets:

• The observation setX t
obs, which contains the union of all experimental designs that have already

been tested and for which the readouts, Yt
obs, have been observed. We denote their pairing the

observation dataset Dt
obs := (X ,Y)tobs := {(xi, yi)}Nobs

i=1 . At each step t, a constant number of
Nb samples are acquired and added to the observation set, causing this set to grow over time.

• The inference set X t
inf := Xtarget \ X t

obs, which consists of the remaining experimental designs
in the target set that have not yet been tested. This set shrinks over time as samples are selected
from it for acquisition and transferred into the observation set.
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Set up
Initially, all the samples are
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System accuracy: 60%

The agent is tasked to select
samples for labeling.

Figure 1: Hybrid screen employing active learning as an inference set design strategy. The
goal is to produce a “hybrid dataset”, composed of the labels collected in the observation set and
the predictions of the model made on the inference set. The system’s performance is reported as
the “system accuracy”, measured as a combination of observed labels on the observation set and of
predictions made on the inference set. As samples are acquired and added to the observation set,
the contribution of the accuracy of the prediction model gradually decreases. The aim of the active
agent is to select informative examples while pruning out the most difficult ones in order to reach
very high system accuracy without having to acquire all the samples.

Once acquisition is stopped, at timestep t = τ , the output of the system is a hybrid dataset, i.e.
the combination (X ,Y)τobs ∪ (X , Ŷ)τinf of both the labeled pairs from the observation set and the
predicted pairs from the inference set. We call this procedure a hybrid screen, as it provides a hybrid
set of labels for the entire target set – some measured, some predicted. The system’s performance
at each step t is evaluated based on its accuracy µt

sys across the entire target set, which consists of
perfectly accurate labels y from the observation set and the inferred labels ŷ for the inference set:1

µt
sys :=

1

|Xtarget|
∑

xi∈Xtarget

1(xi ∈ X t
obs) + 1(ŷi = yi | xi ∈ X t

inf) (1)

In this formulation, acquiring all the labels would yield 100% accuracy, but at significant expense.
We instead seek a system that reaches an accuracy of at least γ, while incurring minimal experimen-
tal costs. This can be formulated as the following combinatorial optimization problem,

min
Xobs⊆Xtarget

|Xobs| such that µt=τ
sys > γ (2)

where |Xobs| denotes the number of samples in the observation set. A natural approach is to treat this
as an active learning problem. Like standard active learning, we can sequentially select subsets of
data for labeling and the system accuracy will benefit from any improvements in generalization that
arise from better selection of training examples. However, this setting has an important difference:
we only ever evaluate p̂ on Xinf, and this set is under the control of the learner because any example
that is selected for labeling is removed from the inference set. As a result, by choosing acquisition
functions that select harder training examples first, we make the test-time task of the learner easier, as

1Equation 1 assumes a classification problem, but we also explore continuous outcomes y in Appendix E.1.
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the harder examples are effectively pruned out of the inference set. We call this approach inference
set design – by selective label acquisition, the agent actively designs the composition of the inference
set such that it can excel on it. This mechanism is illustrated in Figure 1.

The data selection heuristics for inference set design are similar to standard active learning, but
there are two important differences between the settings. Firstly, if we evaluate performance under
the standard active learning objective—generalization error measured on a held-out test set—we
risk dramatically understating the performance improvement that result from inference set design.
Instead, evaluating on the target set of interest allows to capture dramatical improvements over a
random sampler even when only marginal improvements in generalization error can be observed.
Secondly, unlike active learning, inference set design requires an explicit stopping criterion in order
to decide when you have collected enough samples to meet the accuracy threshold, which we address
in the following section.

2.2 EMPIRICAL STOPPING CRITERION

The key technical challenge of inference set design is deciding when to stop running new exper-
iments. In a deployment environment, the labels for the inference set will remain unavailable, so
we need to estimate the system performance from the collected data only. To avoid unnecessary
experimentation, inference set design algorithms must employ an efficient stopping criterion. We
address this by maintaining a probabilistic lower bound on the system accuracy, and stopping once
this bound exceeds the critical threshold, γ. A simple approach to maintaining such a bound is to
leverage the feedback from each round of experimentation.

We consider a multi-class classification problem. Formally, let K := {1, 2, . . . ,K} be the set of K
labels and p̂(x) := (p̂1(x), . . . , p̂K(x)) be the predicted probabilities for x that y = k for all k ∈ K.
We denote yi the true label for a sample xi, ŷi := argmaxk p̂k(xi) the predicted class by the model
and v̂i := maxk p̂k(xi) the predicted probability value for that class. We consider the use of the
commonly employed least-confidence acquisition function:

xselected := argmax
xi∈Xinf\Xb

(
1− v̂i

)
, for i = 1, . . . , Nb (3)

where Nb is the number of samples to be acquired, i.e. the acquisition batch-size. The samples xi ∈
Xb are selected one by one by applying the least-confidence criterion in Equation 3 iteratively to the
remaining samples in Xinf that have not yet been transferred to Xb. Because at every round we select
examples that the model regards as challenging, if the model maintains a correct calibration ordering,
the performance on a batch X t

b that we select at round t should lower bound the performance on the
entire inference set. We express this formally in the following lemma:
Lemma 1. Assuming that p̂’s top-predictions are weakly calibrated on the inference set, i.e. that for
any two samples x1 and x2 in Dt−1

inf , v̂1 ≥ v̂2 =⇒ PDt−1
inf

[Y = Ŷ |v̂1] ≥ PDt−1
inf

[Y = Ŷ |v̂2], then

the expected accuracy on a batchDt
b := {(xi, yi)}Nb

i=1 selected by least-confidence fromX t−1
inf is less

or equal than the expected accuracy on the remaining inference set: PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ].

See Appendix A.1 for more details and proof. Lemma 1 shows that although the samples in X t
b are

not independent and identically distributed samples from X t
inf, we can safely use the performance on

Dt
b as a conservative proxy for performance on Dt

inf. We thus leverage the measured performance
on the acquired batch to estimate the performance on the remaining, unobserved inference set.

We can now use this conservative estimate to design an appropriate stopping criterion. Let µ̂t
b :=

1
Nb

∑Nb

i=1 1(yi = ŷi) denote the measured accuracy on the batch Dt
b at acquisition step t. A simple

stopping criterion could consist in picking an accuracy threshold γ for the desired system accuracy,
and to stop acquiring new samples once our system accuracy estimate µ̂t

sys based on µ̂t
b surpasses γ:

τ = argmin
t∈1,...,T

µ̂t
sys > γ , µ̂t

sys =
|X t

obs|+ µ̂t
b|X t

inf|
|Xtarget|

(4)

where τ denotes the stopping time. Optionally, we could augment this criterion with a patience
hyperparameter to make it more robust to the stochasticity introduced by the finite sample size Nb.
A more principled approach however is to directly account for the statistical uncertainty around µ̂t

b
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by using it to derive a bound αt on the true inference accuracy µt
inf. Using standard concentration

inequalities (see detailed derivation in Appendix A.2) we have that,

P (µt
inf ≤ αt) ≤ δ with αt = min

{
a ∈ [0, µ̂t

b] : KL(µ̂t
b||a) ≤

log
(
1
δ

)
Nb

}
(5)

where KL(·||·) denotes the Kullback-Leibler divergence and δ is the failure probability of the bound.
We can thus use the lower-bound value αt in place of µ̂t

b in Equation 4 to ensure achieving our
desired system accuracy threshold γ with probability at least 1− δ.

To summarize, in this section, we presented a framework for hybrid screens leveraging active learn-
ing to perform inference set design by selectively acquiring labels for hard-to-predict examples,
thereby simplifying the inference set for easier prediction, and using a conservative stopping crite-
rion to ensure that the desired level of system accuracy is achieved at stopping time. The pseudo-
code for our algorithm is presented in Appendix B.

3 RELATED WORK

In this work, we apply Active Learning (AL) to the problem of hybrid screens for biological data
acquisition. Warmuth et al. (2003) were among the first to apply AL to the field of drug discovery,
with an acquisition function based on support vector machines for binding affinity predictors. AL
has since then been explored as a tool for problems such as virtual screening (Fujiwara et al., 2008),
cancer monitoring (Danziger et al., 2009), protein-protein interaction (Mohamed et al., 2010), com-
pound classification (Lang et al., 2016) and chemical space exploration (Smith et al., 2018).

These approaches seek to produce a better model than training on random samples would, and are
to be distinguished from bayesian optimization methods (Graff et al., 2021; Gorantla et al., 2024),
which also fall under the umbrella of “active learning” but instead use the model to seek specific
samples (e.g. with high binding affinity) and often focus on addressing the exploration-exploitation
dilemma which has been widely studied by bandit algorithms (Svensson et al., 2022). For hybrid
screens, we seek a model that can accurately predict the labels of all samples in the inference set,
without attempting to maximize the value of the readouts. Our setting, focusing on a fixed set of
data, is sometimes referred to as pool-based active learning (Wu, 2019; Zhan et al., 2021). Another
similar approach called transductive experimental design aims to select samples that improve the
predictions for a specific pre-defined test set (Yu et al., 2006; Hübotter et al., 2024). A key difference
is that most active learning work (including pool-based AL and transductive experimental design)
tends to focus evaluations on a held-out test set (Atlas et al., 1989; Cohn et al., 1994; Gal et al., 2017;
Margatina et al., 2021; Zhan et al., 2021; Luo et al., 2023; Li et al., 2024) or restrict the algorithm to
very limited acquisition budgets (e.g. only 10% of the data pool) (Yu et al., 2006; Wu, 2019), which
generally does not leave enough margin for mechanisms such as inference set design to dominate.

A closely related problem is that of core set selection (Plutowski & White, 1993; Bachem et al.,
2017; Guo et al., 2022), where the goal is to select the smallest set of samples from a pool of data
such that a model trained on this subset performs on par with a model trained on the entire pool.
The closest works to ours are that of Sener & Savarese (2017) and Li & Rangarajan (2019), which
make an explicit connection between active learning and core set selection and also seek to improve
performance on the unselected examples. In our work however, we focus on uncovering the key
mechanism in action, inference set design, and show empirical validations across a wide variety of
academic and real-life datasets.

4 EXPERIMENTS

In our experiments2, we aim at highlighting the key role that inference set design plays in allow-
ing AL agents to reach high levels of performance on the inference set (Section 4.1), validating the
robustness of this mechanism on molecular datasets used for drug discovery (Section 4.2), apply-
ing this method to a challenging real-world case of compound library screening on a large scale

2The code is available at https://github.com/ineporozhnii/inference_set_design. All
datasets to reproduce our results are publicly available, except one proprietary dataset for the results in Figure 8.
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phenotypic assays (Section 4.3) and empirically validating our theoretical assumption and stop-
ping criterion (Section 4.4). Unless specified otherwise, all curves show average metrics across 3
seeds and the shaded areas denote the standard error of the mean. Vertical lines denote the average
stopping time, with min and max intervals (left to right). For all modalities, we use vectorized rep-
resentations as input and our model p̂ is parameterized using a feed-forward deep neural network
with residual connections. Additional details regarding data pre-processing, network architectures
and hyperparameters are presented in Appendices C and D.

Figure 2: Performance of least-confidence (LC) and random acquisition functions on variations of
MNIST (columns) across 3 seeds. a) Original: MNIST with its naturally occurring easy and hard
examples. b) Partial Observability: MNIST where the bottom two thirds of the images have been
cropped out. c) Noisy labeling function: MNIST with shuffled labels for images of 6’s, 8’s, and 9’s.
The system seeks a target accuracy γ of 98%.

4.1 VISUALIZING INFERENCE SET DESIGN

To develop intuition for inference set design we first run experiments on the MNIST dataset. The
whole MNIST training set is used as the target set from which agents can acquire samples. The
MNIST test set is split 50-50 into a validation set used for early stopping and a test set used for
measuring model performance on held-out data inaccessible by agents. In many real-world applica-
tions, data used for training ML models contains samples that are inherently difficult, only partially
observed, or mislabeled. We investigate these three cases. Specifically, we simulate the challenge
of partial observability by removing the lower part of the image (Figure 2b) and simulate labeling
noise by shuffling labels for selected digits (see Figure 2c).
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Figure 3: Performance of active and random agents on MNIST subject to an increasing number of
shuffled labels. As the task becomes harder, the accuracy gap increases, but the stopping time τ is
triggered later.
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Figure 4: Percent of samples with
shuffled labels acquired by each agent
throughout the acquisition steps.

In these experiments we study the performance of an
active agent using the least-confidence (LC) acquisition
function of Equation 3 and a random agent, selecting
samples with uniform probability over the inference set.
At every active learning step an agent acquires a batch
of 1000 samples from the inference set, adds them to the
training set, and retrains the model from scratch. Across
these active learning steps, we monitor the accuracy on
the inference set, the test set, the acquired batch, and the
system accuracy as a whole (see Equation 1). We also
record which samples have been acquired at every acqui-
sition step. In all three studied settings in Figure 2, we ob-
serve the same phenomenon: the generalisation accuracy
measured on the held-out test set quickly saturates for
both agents, but the active agent is able to obtain signif-
icant improvements on the inference set, and these gains
are also reflected in individual acquisition batches and on
the system’s overall performance.

The mechanism at play here stems from the active design of the inference set by the agent. We illus-
trate this for the case of a noisy labeling function in Figure 4. By selectively acquiring the images
it tends to mislabel, the active agent makes predicting the labels on the remaining samples in the
inference set much easier. Since the majority of samples acquired by the active agent in the first 20
steps represent these challenging examples, its accuracy on the acquired batch is significantly lower
than a random agent’s (Figure 2c, 3rd row). However, once the process of removing mislabeled sam-
ples from the inference set is complete, the active agent’s accuracy on the acquired batch drastically
increases and surpasses the random agent. To further explore the tradeoff between task difficulty and
efficiency gains, we run experiments with shuffled labels for increasingly larger subsets of digits (see
Figure 3). The results show that with a higher number of such “noisy” samples, the gap between the
active and random agents on the inference set increases. The active agent is able to achieve 100%
accuracy on the inference set even with shuffled labels for 80% of the data. However, a more cor-
rupted target set also necessitates more acquisition batches to prune out the difficult examples from
the inference set, incurring smaller experimental budget reductions for highly challenging settings.

4.2 ASSESSING THE ROBUSTNESS OF THE MECHANISM

In the previous section, we have shown that inference set design leads to significantly improved
system performance compared to random sampling, even with highly corrupted datasets. In this
section, we validate that these observations hold for a wildly different type of data – molecular
datasets. We use the Quantum Machine 9 (QM9) (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014). QM9 contains 134k small organic molecules and their quantum chemical properties com-
puted with Density Functional Theory (DFT). For inputs, we convert the SMILES strings molecular
representations into their Extended Connectivity Fingerprints (ECFPs). We predict the HOMO-
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Figure 5: Results on QM9. a) A sample of molecules from the QM9 dataset. b) Performance of
active agents (LC and BALD), heuristic orderings, and random sampler on QM9 across 3 seeds.

LUMO gap framed as a classification task by discretizing the values into two balanced classes using
median as a boundary condition to explore agents’ performance on classification task. Our main
active agent uses the least-confidence acquisition function. We also explore the use of the BALD
acquisition function (Gal et al., 2017). In addition to active and random agents, for both datasets, we
also evaluate the performance of heuristic-based acquisition orderings (original ordering, smallest
to largest molecules, ordered by SA-score, etc.) as well as a diversity sampling strategy (selecting
molecules with the largest Tanimoto distance to the acquired set).
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Figure 6: Percent of “hard” examples
acquired by each agent throughout the
acquisition loop on QM9.

The results on QM9 demonstrate that both LC and BALD
agents achieve much higher accuracy on the inference set
than the baselines. Furthermore, they reach near 100%
accuracy on both system and inference set after acquiring
only 30% of data (see Figure 5). Saturating performance
across all agents on the test set suggests once again that
the active agent is able to make gains by pruning out diffi-
cult examples from the inference set rather than by gener-
alizing better. To confirm this hypothesis, we compiled a
list of “hard to predict” molecules by training five models
with different random seeds on a 5-fold cross-validation
split of the inference set, and flagged the molecules for
which at least 4 out 5 models made a mistake. The re-
sulting “hard to predict” subset contains 4, 944 molecules
(approximately 5% of the inference set). We then tracked
the proportion of these samples that was acquired by each
agent in the active learning experiments. Figure 6 shows
that the active agents acquire molecules from the “hard to
predict” subset at a much higher rate than the baselines.

In addition to the classification results on QM9 presented here, we extend our method to a regression
task on the much larger Molecules3D dataset in Appendix E.1 and get to a similar conclusion.
Put together, these results on additional datasets spanning both classification and regression tasks
and including 3 different active acquisition functions confirm and extend the observations made on
MNIST in the previous section. They suggest that inference set design is an effective approach to
guide acquisition of molecular compounds, by significantly reducing the cost of acquiring a fixed
set of molecules and ensuring high system performance. In the next section, we apply this method
to real-world biological data.
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Figure 8: Performance on a pheno-similarity classification task on our proprietary phenomics
dataset. The least-confidence agent is shown to be the most effective on this task and reaches the
targeted system accuracy of 98% at around 80% of the acquisition procedure.

4.3 INFERENCE SET DESIGN IN THE REAL WORLD

Modern HTS platforms combined with genetic perturbation techniques facilitate large scale cell
microscopy experiments that are designed to capture the effects of biological perturbations (Celik
et al., 2022). In these experiments before taking microscopy images, cells undergo perturbation by
either a CRISPR/Cas9-mediated gene knock-out or injection of a bioactive molecular compound at
a given concentration. The obtained cell microscopy images are then processed and passed through
a neural network to obtain embeddings that correspond to a specific perturbation. With data from
such HTS pipeline it is possible to build “Maps of Biology” that contain organized information about
known and new biological relationships. Each point on the map corresponds to the cosine similarity
between perturbation embeddings and encodes whether two perturbations are related. Expanding
maps of biology might uncover new biological relationships that in turn could guide the discovery
of leads for new medicines. However, even with ultra-HTS platforms, experimentally acquiring
microscopy images of all possible cell perturbations is unfeasible. We aim to apply inference set
design to this problem with the goal of reducing costs associated with building maps of biology.

For our experiments, we start by using the publicly available RxRx3 dataset (Fay et al., 2023) which
contains the learned embeddings for 17, 063 CRISPR/Cas9-mediated gene knock-out perturbations,
as well as 1, 674 FDA-approved compound perturbations at 8 concentrations each. We frame this as
a classification problem and train our models to predict the discretized cosine similarity between the
perturbation embeddings of any gene-compound pair. As preprocessing, for each gene-compound
pairs, we select the compound-concentration perturbation that yields the largest cosine-similarity
with the target gene. The cosine-similarities are discretized by computing a gene-specific threshold
using the upper semi-interquartile range (SIQR) with a step-size of 2.5. Finally, we remove the
genes that have an activity rate (across compounds) below 25%. The result is a 151× 1, 674 matrix
of labels encoding either pheno-similarity (y = 1) or an absence of relationship (y = 0) between a
gene and a compound perturbation (see Figure 7b).
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For this prediction task, we treat all gene embeddings as known and focus only on the much larger
space of compound acquisition. To featurize compounds we use embeddings of the MolGPS model
(Sypetkowski et al., 2024). At every active learning step, agents acquire a batch of compounds
from the inference set and uncover their relationships with all genes in the dataset (entire row of
the matrix). The results on the RxRx3 dataset show only minor improvements over a random agent
(see Appendix E). We believe this is due to high complexity of biological relationships and limited
size of the inference set. Indeed, successfully learning to infer cellular similarity between gene and
compound perturbations from only a few hundred examples is highly unlikely. To push this analysis
further, we re-run the same experiment but on our proprietary phenomics dataset. It is similar to
RxRx3 but much larger. It contains cell perturbation embeddings for 102,855 compound and 5,580
gene perturbations, leading to a 2, 000 times larger relationship matrix. Using inference set design,
the active agent is now able to outperform the baselines on this task, as shown in Figure 8. These
experiments represent promising results for large scale applications of active learning to hybrid
screens for early drug discovery.

4.4 EMPIRICAL VALIDATION OF WEAK CALIBRATION AND STOPPING CRITERION

In this last experimental section, we validate the theoretical claims made in Section 2.2. The pro-
posed stopping criterion assumes weak calibration i.e. that the true accuracy of the model does not
need to be exactly equal to its confidence (perfect calibration), but that the correct ordering is con-
served. Figure 12 in Appendix F.1 shows that this assumption is empirically verified in all of our
experiments, supporting the claim that weak calibration can be achieved in practice. In Figure 13,
in Appendix F.2, we also empirically validate that the proposed stopping criterion making use of the
bound presented in Equation 5 does indeed cause the agent to stop acquiring new labels at a system
accuracy superior to the targeted threshold (see Equation 4).

5 DISCUSSION

While active learning has undergone significant theoretical development and experimentation over
the past 30 years, its widespread adoption in the industry remains a challenge (Reker, 2019). Active
learning is often framed as a means to improve generalization performance on held-out test sets,
which is a goal made difficult by real-world challenges such as noisy labeling functions as well
as high diversity and partial observability of the input space. However, we believe that a shift in
perspective can help unlock the untapped potential of active learning. By focusing on optimizing
performance on a target set of samples and allowing the model to decide which examples to label
and which to predict, active learning can become a powerful tool for real-world applications.

We applied this perspective to the problem of hybrid screens in drug discovery, where the goal
is to acquire readouts for only a subset of compounds while making accurate predictions for the
remaining ones. Our approach makes use of a confidence-based acquisition function and leverages
the concept of inference set design, a strategy where the model selects the most challenging examples
for labeling, leaving easier cases for prediction. Our empirical results, across image and chemical
datasets, as well as a real world biological application, show that this approach leads to consistent
and significant improvements. Moreover, our results highlight that heuristic-based orderings, often
used in real-world data acquisition efforts, are highly suboptimal. They can lead to drastically
different results across tasks and datasets and often end up harming the performance by introducing
unjustified biases in the acquisition ordering. Importantly, this bias then prevents the experimenter
from using the performance on the acquisition batch as an indication of the performance on the
remaining examples in the inference set. A confidence-based agent also introduces a bias in sample
selection, but assuming weak calibration, this bias is directional and still allows the acquisition batch
to be used as a lower bound for the performance on the remaining examples (see Lemma 1). It then
compensates for the conservativeness of its stopping criterion by designing its own inference set,
leading to overall earlier stopping time and greater budget reductions.

An important limitation of our work is the assumption that observed labels are deterministic and
constitute perfect accuracy. Many real-world biological experiments however produce noisy obser-
vations. Combining the inference set design framework with aleatoric uncertainty modeling to better
address cases of weak supervision represents a promising direction for future work.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Bowen Li and Srinivas Rangarajan. Designing compact training sets for data-driven molecular
property prediction through optimal exploitation and exploration. Molecular Systems Design &
Engineering, 4(5):1048–1057, 2019.

Xiongquan Li, Xukang Wang, Xuhesheng Chen, Yao Lu, Hongpeng Fu, and Ying Cheng Wu. Un-
labeled data selection for active learning in image classification. Scientific Reports, 14(1):424,
2024.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing
mitigate label noise? In International Conference on Machine Learning, pp. 6448–6458. PMLR,
2020.

Yunan Luo, Yang Liu, and Jian Peng. Calibrated geometric deep learning improves kinase–drug
binding predictions. Nature Machine Intelligence, 5(12):1390–1401, 2023.

Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. arXiv preprint arXiv:2109.03764, 2021.

Lorenz M Mayr and Dejan Bojanic. Novel trends in high-throughput screening. Current Opin-
ion in Pharmacology, 9(5):580–588, 2009. ISSN 1471-4892. doi: https://doi.org/10.1016/
j.coph.2009.08.004. URL https://www.sciencedirect.com/science/article/
pii/S1471489209001283. Anti-infectives/New technologies.

Thahir P Mohamed, Jaime G Carbonell, and Madhavi K Ganapathiraju. Active learning for human
protein-protein interaction prediction. BMC bioinformatics, 11:1–9, 2010.

12

http://dx.doi.org/10.1039/D0SC06805E
https://proceedings.neurips.cc/paper_files/paper/2024/file/e17fe6fe9990fffb637b42c98c005515-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e17fe6fe9990fffb637b42c98c005515-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.13469390
https://doi.org/10.5281/zenodo.13469390
https://www.sciencedirect.com/science/article/pii/S1471489209001283
https://www.sciencedirect.com/science/article/pii/S1471489209001283


Published as a conference paper at ICLR 2025

Armaghan W Naik, Joshua D Kangas, Christopher J Langmead, and Robert F Murphy. Efficient
modeling and active learning discovery of biological responses. PLoS One, 8(12):e83996, 2013.

Emmanuel Noutahi, Cas Wognum, Hadrien Mary, Honoré Hounwanou, Kyle M. Kovary, Desmond
Gilmour, thibaultvarin r, Jackson Burns, Julien St-Laurent, t, DomInvivo, Saurav Maheshkar, and
rbyrne momatx. datamol-io/molfeat: 0.9.4, September 2023. URL https://doi.org/10.
5281/zenodo.8373019.

Mark Plutowski and Halbert White. Selecting concise training sets from clean data. IEEE Transac-
tions on neural networks, 4(2):305–318, 1993.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-
tum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):140022, Aug
2014. ISSN 2052-4463. doi: 10.1038/sdata.2014.22. URL https://doi.org/10.1038/
sdata.2014.22.

Daniel Reker. Practical considerations for active machine learning in drug discovery. Drug Discov-
ery Today: Technologies, 32:73–79, 2019.

Daniel Reker and Gisbert Schneider. Active-learning strategies in computer-assisted drug discovery.
Drug discovery today, 20(4):458–465, 2015.

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of
Chemical Information and Modeling, 52(11):2864–2875, 2012. doi: 10.1021/ci300415d. URL
https://doi.org/10.1021/ci300415d. PMID: 23088335.

Kaziwa Saleh, Sándor Szénási, and Zoltán Vámossy. Occlusion handling in generic object detection:
A review. In 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics
(SAMI), pp. 000477–000484. IEEE, 2021.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Justin S Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E Roitberg. Less is
more: Sampling chemical space with active learning. The Journal of chemical physics, 148(24),
2018.

Hampus Gummesson Svensson, Esben Jannik Bjerrum, Christian Tyrchan, Ola Engkvist, and
Morteza Haghir Chehreghani. Autonomous drug design with multi-armed bandits. In 2022 IEEE
International Conference on Big Data (Big Data), pp. 5584–5592. IEEE, 2022.

Maciej Sypetkowski, Morteza Rezanejad, Saber Saberian, Oren Kraus, John Urbanik, James Tay-
lor, Ben Mabey, Mason Victors, Jason Yosinski, Alborz Rezazadeh Sereshkeh, et al. Rxrx1: A
dataset for evaluating experimental batch correction methods. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4284–4293, 2023.

Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Frad-
kin, and Dominique Beaini. On the scalability of gnns for molecular graphs, 2024. URL
https://arxiv.org/abs/2404.11568.

Gary Tom, Stefan P. Schmid, Sterling G. Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley
Lo, Sergio Pablo-Garcı́a, Ella M. Rajaonson, Marta Skreta, Naruki Yoshikawa, Samantha Corapi,
Gun Deniz Akkoc, Felix Strieth-Kalthoff, Martin Seifrid, and Alán Aspuru-Guzik. Self-driving
laboratories for chemistry and materials science. Chemical Reviews, 124(16):9633–9732, 2024.
doi: 10.1021/acs.chemrev.4c00055. URL https://doi.org/10.1021/acs.chemrev.
4c00055. PMID: 39137296.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou.
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A THEORETICAL SUPPLEMENTS

A.1 PROOF OF LEMMA 1

For completeness, we start by re-stating Lemma 1 in more detail.

We consider a multi-class classification problem, with K := {1, 2, . . . ,K} the set of K labels and
p̂(x) := (p̂1(x), . . . , p̂K(x)) the predicted probabilities for x that y = k for all k ∈ K. We denote
yi the true label for a sample xi, ŷi := argmaxk p̂k(xi) the predicted class by the model and
v̂i := maxk∈K p̂k(xi) the predicted probability value for that class. In the context of sequential
label acquisition, we denote X t−1

inf := {xi}Ni=1 the inference set containing N samples at acquisition
step t− 1, and Dt−1

inf := {(xi, yi)}Ni=1 the same set with the associated labels yi. Stepping forward,
at time t, an acquisition batch of Nb samples and their labels Dt

b := {(xi, yi)}Nb
i=1 are selected from

the inference dataset of the previous step Dt−1
inf .

Following the least-confidence acquisition function, at time-step t, the samples in Dt−1
inf are ordered

by confidence where x1 has the predicted class with the lowest confidence and xN has the predicted
class with the highest confidence:

v̂1 ≤ v̂2 ≤ · · · ≤ v̂Nb︸ ︷︷ ︸
first Nb samples

≤ v̂Nb+1 ≤ · · · ≤ v̂N︸ ︷︷ ︸
last N−Nb samples

(6)

and the selected batch consists of the first Nb samples. The remaining inference set is composed of
the remaining N −Nb samples, i.e. Dt

inf := D
t−1
inf \ Dt

b = {(xi, yi)}Ni=Nb+1.

The practical utility of this ordering depends on the calibration of the model. Calibration reflects
the correctness of the model’s confidence compared to its true performance. A perfectly calibrated
model p̂ would output confidence levels that perfectly match the true probability of correct classifi-
cation. We extend the notation of Guo et al. (2017) to be dataset-specific, and denote PD[Y = Ŷ ]
the probability of p̂ producing the correct class prediction for any sample from a dataset D, which
can equivalently be thought of as p̂’s accuracy on that dataset:

PD[Y = Ŷ ] := E(xi,yi)∼D[1(yi = ŷi)] (7)

Similarly, PD[Y = Ŷ |ṽ] denotes the confidence-conditional accuracy of the model for ṽ, a specific
confidence level3:

PD[Y = Ŷ |ṽ] := E(xi,yi)∼D[1(yi = ŷi)|v̂i = ṽ] (8)

Perfect calibration on the inference set would thus imply that for any confidence level ṽ ∈ [0, 1], we
have PDt−1

inf
[Y = Ŷ |ṽ] = ṽ. Instead, in Lemma 1, we only assume weak calibration of the model

on the predicted class, i.e. that the confidence ordering of the model’s top predictions reflects the
ordering of probabilities of correct classification. Formally, weak calibration on Dt−1

inf implies that
for any pair of samples xi and xj in our dataset Dt−1

inf , we have:

v̂i ≤ v̂j =⇒ PDt−1
inf

[Y = Ŷ |v̂i] ≤ PDt−1
inf

[Y = Ŷ |v̂j ] (9)

We aim to prove that, assuming weak calibration on the inference set, the expected accuracy on the
least-confidence batch is bounded by the expected accuracy over the remaining inference set:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (10)

Proof. The expected accuracy from Equation 7 can be rewritten in terms of its confidence-
conditional form in Equation 8:

PD[Y = Ŷ ] =
1

|D|

|D|∑
i=1

PD[Y = Ŷ |v̂i] (11)

From the weak calibration assumption in Equation 9, it follows that the model’s confidence-
conditional accuracy is a non-decreasing function of its confidence. Combined with the acquisition

3In practice such confidence levels would be binned together such that PD[Y = Ŷ |ṽ] represents the accu-
racy over all samples in D for which the model’s confidence is in [ṽ − ϵ, ṽ + ϵ], see (Guo et al., 2017).
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mechanism of Equation 6, we obtain an ordering of the probability that the model obtains the correct
label along the entire inference set at step t− 1:

PDt−1
inf

[Y = Ŷ |v̂1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂Nb
]︸ ︷︷ ︸

Nbfirst terms

≤ PDt−1
inf

[Y = Ŷ |v̂Nb+1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂N ]︸ ︷︷ ︸
N−Nb remaining terms

(12)
The empirical average of a set of numbers that are inferior or equal to those of a second set has to
be inferior or equal to the empirical average of the second set:

1

Nb

Nb∑
i=1

PDt−1
inf

[Y = Ŷ |v̂i] ≤
1

N −Nb

N∑
i=Nb+1

PDt−1
inf

[Y = Ŷ |v̂i] (13)

By definition of Dt
inf := D

t−1
inf \ Dt

b, the left-hand side from Equation 13 thus captures all the terms
from Dt

b and the right-hand side those from Dt
inf. Rewriting each side using Equation 11, we obtain:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (14)

This concludes the proof.

A.2 BOUND DERIVATION

Here we derive the bound presented in Equation 5. The Chernoff bound (Chernoff, 1952) for
Bernouilli random variables provides an exponential tail bound for the true mean µ of a sequence
of Bernouilli distributed random variables Z1, Z2, . . . , Zn. It can be expressed using the Kullback-
Leibler Divergence (KL) for Bernouilli distributions (Lattimore & Szepesvári, 2020, page 135, Cor-
rollary 10.4):

P (µ ≤ a) ≤ exp
(
− n · KL(µ̂||a)

)
∀ a ∈ [0, µ̂] (15)

with KL(µ̂||a) := µ̂ log
µ̂

a
+ (1− µ̂) log

1− µ̂

1− a
(16)

It quantifies the probability that the true mean µ is smaller or equal to some bound a given the
observed sample mean µ̂ and sample size n. For us, the value {0, 1} of a variable Zi indicates
whether a particular sample xi was correctly classified i.e. Zi := 1(yi = ŷi). In the context of
inference set design and following the notation from Section 2, µ̂t

b represents the observed accu-
racy on the acquired batch at time-step t, with acquisition batch-size Nb, and µt

inf represents the
(unknown) accuracy of the model on the remaining inference set. Note that the Chernoff bound
usually assumes that µ̂t

b is an unbiased estimator of µt
inf. In our case, µ̂t

b is a biased estimator due
to the active selection mechanism of the batch. However, in Lemma 1, we show that this estimator
is actually a conservative estimate of the true accuracy, and thus in turn contributes to making the
bound presented in Equation 15 even more conservative, and preserves its validity.

To establish a confidence level on that bound, we can lower-bound the right-hand side itself to the
desired bound-failure probability δ, which after rearranging yields:

KL(µ̂||a) ≥
log( 1δ )

Nb
(17)

At time t, we thus seek the maximum bound value a = αt for µt
inf such that the inequality on

Equation 17 holds by finding the value of a that satisfies the following condition:

αt = min
a

{
a ∈ [0, µ̂t

b] : KL(µ̂||a) ≤
log( 1δ )

Nb

}
(18)

Since this is a scalar optimization problem from closed-form expressions, computing αt can be done
easily and efficiently using a grid-search. With this choice for a, we obtain the desired probabilistic
bound P (µt

inf < αt) ≤ δ summarized in Equation 5.
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B ALGORITHM

Algorithm 1 Hybrid Screen using Inference Set Design
1: Input: Acquisition batch-size Nb, threshold γ, margin δ
2: Initialize Step t=0, observation set X t=0

obs ← ∅, inference set X t=0
inf ← Xtarget, predictor p̂.

3: repeat
4: Train the predictor p̂ on (X ,Y)tobs (if not empty)
5: Obtain the predictions on the inference set P̂t

inf ← {p̂(xi) ∀xi ∈ Xinf}
6: Run acquisition function to obtain scores Stinf ← g

(
P̂t

inf

)
7: Select a batch of Nb inputs with the highest scores Stinf to form X t

b

8: Remove the acquired batch from the inference set X t
inf ← X

t−1
inf \ X t

b
9: Obtain the true labels Yt

b for the acquisition batch
10: Append the acquired batch to the observation set (X ,Y)tobs ← (X ,Y)t−1

obs ∪ (X ,Y)tb
11: Compute α on (X ,Y)tb from Equation 5
12: until

|X t
obs|+ α|X t

inf|
|Xtarget|

> γ or X t
inf = ∅

13: Return hybrid screen readouts: (X ,Y)t=τ
obs ∪ (X , Ŷ)t=τ

inf

C ADDITIONAL DETAILS ON DATASETS AND PREPROCESSING

C.1 MOLECULAR DATASET PREPROCESSING

In many practical applications, exact geometries of screened molecules are unknown as they require
computationally expensive DFT calculations. As a first data processing step, we use the RDKit
(Landrum et al., 2024) and Molfeat (Noutahi et al., 2023) libraries to convert molecular structures
into SMILES strings and compute their Extended Connectivity Fingerprints (ECFPs). Both molec-
ular datasets are cleaned by removing duplicated SMILES and fingerprints as well as single-atom
structures. For total energies in the Molecules3D dataset we use a reference correction technique
where atomic energies are calculated using a linear model fitted to the counts of atoms of each
type present in a molecule (the obtained atomic energies are presented in Table 1). For reference
correction, a randomly selected sample of 100k molecules is used. The atomic energies are then
subtracted from the total energies of all molecules in the dataset. The obtained referenced-corrected
energies are normally distributed with mean around 0 eV. A small number of outliers with reference-
corrected energy values above 10 standard deviations are removed from the dataset as well as the
100k samples that were used for reference correction to avoid data leakage.

The final QM9 and Molecule3D datasets contain 133, 885 and 3, 453, 538 molecules respectively.
Both datasets are split into inference, validation, and test sets with 80%, 5%, 15% fractions. The
QM9 HOMO-LUMO gap values are discretized into 2 balanced classes using median as a boundary
condition to explore agents’ performance on a classification task.

Atomic Number Energy (eV) Atomic Number Energy (eV)
1 -26.765 14 -7922.180
5 -673.550 15 -9313.610
6 -1054.411 16 -10810.329
7 -1483.001 17 -12474.680
8 -2034.056 32 -56538.647
9 -2687.455 33 -60828.588

12 -5367.759 34 -65296.349
13 -6657.476 35 -69980.303

Table 1: Atomic energies used for reference correction on Molecules3D dataset.
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C.2 RXRX3 DATASET PREPROCESSING

The RxRx3 dataset contains one embedding for each well. Each perturbation type (gene-guide
pair or compound-concentration pair) has several replicates across wells, plates and experiments.
Each plate also contains unperturbed control cells which are used to keep track of and eliminate
a portion of the batch effects (Sypetkowski et al., 2023). These raw embeddings thus need to be
aligned and aggregated. We align them by centering and scaling each perturbation embedding to
the embeddings of the experiment-level unperturbed control wells. The embeddings are then aggre-
gated through a multi-stage averaging procedure, across wells, plates, experiments and guides (for
CRISPR perturbations), which yields an average embedding for each gene-perturbation and each
compound-concentration perturbation. We then use the obtained embeddings to compute the cosine
similarities between gene and compound perturbations in the RxRx3 dataset.

D HYPERPARAMETERS AND IMPLEMENTATION DETAILS

For all experiments presented in this work we use MLP models with residual connections (Touvron
et al., 2021). All experiments were repeated with 3 different random seeds and the hyperparameters
are summarized in Table 2.

Hyperparemeter name MNIST QM9 Molecules3D RxRx3 Proprietary
data

Acquisition batch size 1,000 250 10,000 10 1000

Number of hidden layers 2 3 2 2 2

Hidden layer size 512 512 512 512 1024

Learning rate 0.001 0.001 0.001 0.001 0.001

gradient norm clip 1.0 1.0 1.0 1.0 1.0

Dropout 0.1 0.1 0.1 0.1 0.1

Train epochs 1,000 1,000 30 30 1000

Train batch size 1,024 1,024 32,768 1,024 1,024

Early stop patience 50 50 15 25 25

Number of ensemble members - - 5 - -

Table 2: Hyperparameters for experiments.
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E ADDITIONAL RESULTS

E.1 REGRESSION TASK ON MOLECULES3D

To evaluate the inference set design paradigm on a regression task we use the Molecules3D dataset
(Xu et al., 2021). Molecules3D contains structures and DFT-computed properties of nearly 4 million
molecules. In our experiments we aim to predict the HOMO-LUMO gap and total energy. For
inputs, we convert the SMILES strings molecular representations into their Extended Connectivity
Fingerprints (ECFPs) (see Appendix C.1 for all details).

For this regression task, we use a query-by-committee (QBC) active learning approach that computes
variance across the predictions of an ensemble. To determine the stopping time we use a criterion
with two parameters: MSE threshold tMSE on the acquired batch and patience p. The stopping
time is reached if the acquired batch MSE is lower than tMSE for p steps. Like for our QM9
experiments, in addition to active and random agents, we also evaluate the performance of heuristic-
based acquisition orderings (molecules ordered by size, sorted by SA-score, etc.). QBC achieves
an approximately five times lower MSE compared to the random agent or heuristic-based orderings
(see Figure 9). This shows that inference set design approach is not limited to classification tasks
and can be applied to regression problems.
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Figure 9: Performance of QBC, random, and heuristic agents for HOMO-LUMO gap prediction
(top) and energy prediction (bottom) on Molecules3D dataset. The dashed vertical shows average
stopping time across random seeds, surrounded by mix to max intervals (left to right). The patience
parameter p = 10 was used in all experiments with the threshold MSE tMSE = 0.1eV 2 for HOMO-
LUMO gap and tMSE = 100eV 2 for Energy predictions. QBC agent satisfied stopping condition
after acquiring ≈ 80% of the data.

Although, in many applications predicting properties of larger molecules presents a more challeng-
ing task, our experiments on the Molecules3D dataset demonstrate that acquiring molecules ordered
from large to small may harm the predictions on inference set and overall system performance (see
Figure 9). One of the reasons is the distribution of chemical elements across molecules in the dataset.
When acquiring molecules from small to large, all unique chemical elements of the Molecules3D
dataset are present in the training set after acquiring just the first 1,000 samples. However, when
acquiring molecules from large to small, some chemical elements remain only in the inference set
until the very end of the experiment which is especially detrimental to the total energy predictions
(see Figure 10). This result demonstrates that using heuristic rules such as ordering molecules by
size for data acquisition does not guarantee optimal acquisition or generalization of heuristic rules
to new data and instead risks harming the performance due to the introduction of such biases.
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Figure 10: Number of unique chemical elements in the training set when acquiring samples ordered
by molecule size. Acquiring molecules from large to small leaves several chemical elements out of
the training set until the end of the dataset.

E.2 CLASSIFICATION TASK ON RXRX3

Our results on the RxRx3 dataset demonstrate minor improvements from the active agents (LC
and BALD) compared to random selection. The accuracy on the inference and test sets remains low
throughout the experiment regardless of the acquisition method. This is unsurprising considering the
extreme difficulty of predicting biological relationships in a low data regime. The result suggests
that in the setting with low predictive power, even when the majority of the data is acquired, the
ability of inference set design to provide significant budget reductions is limited.
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Figure 11: Performance of agents on pheno-similarity classification task on RxRx3.
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F ADDITIONAL ANALYSIS

F.1 EMPIRICAL VALIDATION OF WEAK CALIBRATION ASSUMPTION

In Lemma 1, we show that when using a least-confidence acquisition function, at any time-step t,
the measured accuracy µ̂t

b on the acquisition batch is a lower-bound on the unobserved accuracy on
the remaining inference set µ̂t

inf, assuming that the model p̂ is weakly calibrated in the inference set.
A weakly calibrated model is such that an increased confidence translates to a higher likelihood of
correct prediction (higher accuracy). In Figure 12, we can see that at several points throughout the
active learning loop, the least-confidence based agent is not perfectly calibrated. Indeed, there is a
substantial gap between its confidence levels and the true accuracy (seen when comparing the col-
ored bars to the identity function shown in gray). However, the model is generally weakly calibrated
(the colored bars are always increasing). These observations support the empirical validity of our
assumption for Lemma 1.

Figure 12: Model calibration analysis for a run of the least confidence agent at different active
learning steps (columns) for all of our classification experiments (rows). The colored bars represent
the accuracy of predictions binned w.r.t their confidence level, and the gray bars show the identity
function illustrating what perfect calibration would look like. The models satisfy the condition of
being weakly calibrated since the accuracy of the model’s predictions increases monotonically with
their confidence. The confidence distribution shifting to the right as t increases indicates the growing
confidence of the model in correctly predicting the labels of the remaining examples in the inference
set.
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F.2 EMPIRICAL VALIDATION OF STOPPING CRITERION

In Section 2.2, we present a stopping criterion based on the fact that the accuracy measured on the
acquisition batch can be used as a proxy for the accuracy on the remaining, non-acquired samples
(inference set). The criterion is simple, once the estimated system accuracy µ̂t

sys at time t (see
Equation 4) is above a user-defined targeted threshold γ, the acquisition is stopped. This criterion
makes use of the bound of Equation 5, and both a random sampler and a least-confidence based
agent can use this bound in a principled way. The random agent can validly use it because the
accuracy of its acquisition batches, uniformly drawn from the inference set, are unbiased estimates
of the true accuracy on the entire inference set, which is typically required for such bounds. The
least-confidence agent can use it validly because we show in Lemma 1 that, assuming that the model
is weakly calibrated (which we empirically validate in Appendix F.1), because of its confidence-
based acquisition function, the accuracy of its acquisition batches represent a lower-bound on the
true inference set accuracy, making the bound of Equation 5 even more conservative.

To empirically validate this bound (Equation 5), we run a large number of trials for both the least-
confidence (LC) and random agents across the classification datasets used in the experiments section.
The results show that for the LC agent, all trials ended at a stopping time t = τ at which the true
system accuracy µt

sys was above the threshold γ, which is in accordance with the fact that the LC
agent uses a lower-bound estimate in place of an unbiased estimate for the inference set accuracy,
resulting in a looser bound for Equation 5 and an actual failure-probability lower than δ. For the
random agent, we observed 1% of the trials end with a system accuracy below the threshold in
one of the experiments, 6% in another, and 0% on the three remaining datasets. These results
are in accordance with the theory presented in Section 2.2 and Appendix A.2. On QM9, 6 out of
100 experiments resulting in slight bound failure is statistically in accordance with the theoretical
bound failure probability of δ = 5%. For the other datasets, the bound was looser, which is also a
possibility, and showcases that the observed gap between δ and the true bound-failure probability
can be problem-dependent.

Figure 13: System accuracy at stopping time observed across 100 seeds for the MNIST, Cropped
MNIST, Shuffled MNIST and QM9 experiments, and 50 seeds for the Phenomics experiments. In
all experiments, we use a bound-failure probability of δ = 0.05. For the LC agent, all trials lead to
a stopping time t = τ at which the true system accuracy µt=τ

sys higher than the threshold γ. For the
Random Agent, we observed the same thing for Cropped MNIST, Shuffled MNIST and Phenomics.
We also observed 1% of bound failure for (regular) MNIST, and 6% for QM9.
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