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Abstract

Differential privacy (DP) is the gold standard for protecting individuals’ data while
enabling deep learning. It is well-established and frequently used for applications
in medicine and healthcare to protect sensitive patient data. When using graph deep
learning on so-called population graphs, however, the application of DP becomes
more challenging compared to grid-like data structures like images or tables. In this
work, we initiate an empirical investigation of differentially private graph neural
networks on population graphs in the medical domain by examining privacy-utility
trade-offs under different graph learning methods on both real-world and synthetic
datasets. We compare two state-of-the-art methods for differentially private graph
deep learning and empirically audit privacy guarantees through node membership
inference and link stealing attacks. We focus on the impact of the graph structure,
one of the most important inherent challenges of medical population graphs. Our
findings highlight the potential and challenges of this specific DP application
area. Moreover, we find that the underlying graph structure constitutes a potential
factor for larger performance gaps on one of the explored methods by showing a
correlation between the graphs’ homophily and the accuracy of the trained model.

1 Introduction

Graph Neural Networks (GNNs) are powerful tools to apply Deep Learning (DL) techniques to non-
Euclidean data structures, such as graphs, meshes, or point clouds (1). They have been successfully
employed across a range of data structures and demonstrated their versatility and usefulness in
multiple domains, including medicine. The application of GNNs to medical data has been shown to
improve performance of diagnostic systems (2; 3; 4; 5), structure medical data in more accurate ways
(6; 7; 8), and to enable the modelling of medical knowledge in the form of knowledge graphs (9). The
utilisation of GNNs has shown improved performance, even on datasets not exhibiting an intrinsic
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graph structure, e.g. 3D point clouds (10). The application of GNNs has therefore been expanded to
datasets which require constructing a graph structure prior to learning. One such example are medical
population graphs (2). Here, a cohort is represented by one (typically large) graph, in which nodes
represent subjects and edges connect similar subjects. The construction of the graph’s structure is an
important step in this pipeline, since a graph of poor structural quality can substantially hinder graph
learning (11; 12). This has been attributed to several different graph properties, one of them being
homophily (13). Homophily is a measure for the ratio between identically and differently labelled
neighbours in a graph. A high homophily indicates that the majority of nodes in all neighbourhoods
in the graph share the same label as the node of interest.

Despite the aforementioned advantages of Artificial Intelligence (AI) methods, it has been shown
that AI models are vulnerable to attacks designed to extract sensitive data and information (14).
This is especially problematic when applying AI methods to highly sensitive data, such as in the
medical domain. In order to combine the advances of AI with the protection of sensitive data,
Differential Privacy (DP) has become the gold standard for training AI models, while providing
formal privacy guarantees (15). Through an adapted training pipeline, DP enables the training of
deep neural networks, while providing formal privacy guarantees. DP was originally conceived for
tabular datasets, where individual data points can be treated separately. This is not the case in graph
learning settings, where nodes are connected to each other and share information (16). This requires
the design of new DP formulations for graph-structured data and GNNs as well as new methods
to ensure privacy during GNN training. One of the main drawbacks of DP training is a resulting
deterioration in model performance, resulting in the so-called privacy-utility trade-off.

Contributions In this work, we investigate the privacy-utility trade-offs of DP GNN training on
medical population graphs. Our contributions are as follows: (1) To the best of our knowledge, our
work demonstrates the first successful application of DP to multi-hop GNNs in medical population
graphs, where we (2) specifically compare two different lines of methods: one introduced by
Diagavane et al. (17) that is based on graph convolutional networks (18), which we call DP-GCNs
throughout this work and one introduced by Sajadanesh et al. (19), which is called Graph Aggregation
Perturbation (GAP)2, (3) empirically investigate the success of Membership Inference Attacks (MIAs)
and link stealing attacks at different levels of privacy protection with both methods, and (4) analyse
the interplay between graph structure and the accuracy of differentially private GNNs, highlighting
homophily as a key factor influencing model utility.

2 Background and Related Work

2.1 Differential Privacy

Differential Privacy (DP) (15) is a framework designed to enable the analysis of datasets while
protecting the privacy of individual data owners. Intuitively, an algorithm is differentially private,
if the output remains almost the same, indifferent of whether a single subject’s data was part of
the training set or not. Let an analyst A possess a database D, which contains the sensitive data of
individuals. A neighbouring database D′ differs from D in exactly one entry. For graph data, the
definition of this neighbouring database D′ depends on the privacy notion of interest and will be
discussed below. A executes a query function f : X → Y over a database.

Definition 2.1 ((ε, δ)-Differential Privacy) A randomised mechanism M satisfies (ε, δ)-DP if, for
all adjacent database D and D′ and all subsets S ⊆ Range(M), the following statement holds:

P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + δ. (1)

We note that the statement is symmetric and also holds if D and D′ are swapped.

Definition 2.2 (L2 Sensitivity of f ) Let D, D′ and f : X → Y be defined as above with dX being
an associated metric over the metric space X and dY the L2-distance on the space Y of the outputs
of f , then the L2-sensitivity ∆ of f is defined as:

∆f := max
D,D′∈XD≃D′

dY (f(D), f(D′))

dX (D,D′))
. (2)

2We note that a recent pre-print (20) questions the DP guarantee and sensitivity analysis of this work. So we
recommend taking the results of this method with care.
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Definition 2.3 (Gaussian Mechanism) A Gaussian mechanism GM operates on the output y ∈ Rn

of f by adding noise drawn from a normal distribution with a variance calibrated to the L2-sensitivity
of f :

GM(y) = y + ξ, (3)
where ξ ∼ N (0, σ2In) and In is the identity matrix with n diagonal elements.

DP Training of Neural Networks A commonly used method to train neural networks with DP is
using DP-stochastic gradient descent (DP-SGD) (21), where the Gaussian Mechanism (GM) is used
to privatise per-sample-gradients before updating the model parameters. Before that, the L2-norm of
each gradient is bounded to a specific threshold. We note that this method is applicable to all other
(first-order) optimisation techniques, such as Adam.

2.2 Differential Privacy on Graphs

When transitioning from tabular datasets to graph structures, the notion of neighbouring datasets
must be adapted. Three main notions of DP on graph-structured data exist: node-level, edge-level,
and graph-level DP (22). In this work, we focus on node-level DP and compare it with guarantees
provided by edge-level DP. Under node-level DP, two graphs G and G′ are neighbouring if they differ
in a single node and all its adjacent edges. Here, the sensitive information, such as features from
medical images, is assumed to be stored in the node features of the graph as well as encoded in the
graph structure. Under edge-level DP, two graphs G and G′ are neighbouring if they differ in a single
edge. Here, the sensitive information is assumed to only be stored in network connections.

So far, only few works have investigated DP training of GNNs for node classification tasks. Daigavane
et al. (17) were among the first to introduce a privacy amplification by sub-sampling technique for
multi-layer GNN training with DP-stochastic gradient descent (DP-SGD). In order to enable a
sensitivity analysis for DP-SGD in multi-layer GNNs, the authors apply a graph neighbourhood
sampling scheme. The number of k-hop neighbours is bounded to a maximum node degree. This
ensures that the learned feature embeddings over the course of training are influenced by at most
a bounded number of nodes. Furthermore, the standard privacy amplification by sub-sampling
technique for DP-SGD is extended, such that a gradient can depend on multiple subjects in the
dataset: First, a local k-hop neighbourhood of each node with a bounded number of neighbours is
sampled. Next, a subset Bt of n sub-graphs is chosen uniformly at random from the set of sub-graphs
that constitute the training set. On these sub-samples (“mini-batches”), standard DP-SGD is applied
by clipping the per-sample gradients, adding noise, and using the noisy gradients for the update step.
The noise is hereby calibrated to the sensitivity with respect to any individual node, which has been
bounded via sub-sampling of the input graph. A different line of work by Sajadmanesh et al. (19)
introduces a method for DP training of multi-layer GNNs via aggregation perturbation, i.e. by adding
noise to the aggregation function of the GNN, which they call GAP. This method ensures edge-level
DP and can be extended for node-level DP by bounding the degree of the graph and applying the
same privacy-preserving aggregation mechanism calibrated to the bounding degree. GAP also uses
the same sub-graphing technique introduced by (17) for bounding the maximum degree of the graph.
Since GAP also uses MLPs in its architecture, standard DP-SGD (21) is used to train these MLPs.

In our experiments, we compare GAP and DP-GCNs and evaluate and interpret their performance.
It is important to note that GAP provides privacy guarantees at inference without incurring any
extra privacy cost than what was spent training the model, unlike DP-GCN, where incorporating
inference-time privacy requires an additional privacy cost and is not provided by default (19; 17).
We still compare the performance of both methods under the same privacy budgets but highlight that
the privacy guarantees differ in practice.

2.3 Empirical Auditing of DP Guarantees

In order to audit the privacy guarantees of AI models, specific attacks can be performed that em-
pirically test the data leakage of a model. DP with sufficiently strong guarantees naturally protects
against MIAs, which aim to infer whether a certain individual was part of the training set or not.
There are a few works investigating MIAs on GNNs (23; 24; 25; 26). These and works on other
privacy attacks on GNNs such as link stealing attacks (27; 28) and inference attacks (29; 30) highlight
an increased vulnerability of GNNs compared to non-graph AI applications. Sensitive information
can be located in the node features, or in the graph structure, or both. Furthermore, the message
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passing between nodes makes a clear separation between individual nodes impossible. We adapt the
MIA technique by (31) to GNNs for the purpose of empirically validating the privacy guarantees.
Furthermore, we perform link-stealing attacks to evaluate the protection of edges in the graph using
LinkTeller (27). In general, link stealing attacks aim to infer the graph structure from the GNN.

3 Methods

All experiments are performed under transductive learning, where all node features and edges are
included in the forward pass, but only the training labels are used for backpropagation. We use
two different DP graph learning methods: (a) DP-GNNs that were introduced by (17) and (b) GAP
networks (19) that follow a different methodology using aggregation perturbation. As a baseline,
we also train Multi-layer Perceptrons (MLPs) on the same datasets. For all trainings, we use the
Adam optimiser. DP-GCNs (17) use a more classical GNN architecture and training pipeline and
adapts the privacy amplification by sub-sampling technique to multi-hop GNNs, using DP-SGD. This
requires the application of a sub-graphing mechanism to the graph structure. GAP on the other hand
constructs a different architecture for GNN training, consisting of three modules: (1) an encoder
module consisting of an MLP, (2) an aggregation module, which performs the message passing
across the neighbourhoods, and (3) a classification module, consisting of one MLPs for each GNN
layer as well as one from the encoder directly. We investigate their differing behaviour under attacks
and evaluate their privacy-utility trade-offs in Section 4.

In order to evaluate our experiments under standardised conditions, we generated a synthetic binary
classification dataset as a benchmark. This allows us to investigate the impact of different graph
structures on the performance of DP population graphs under defined conditions. We use three
medical datasets which are frequently used in the context of population graphs: The TADPOLE
dataset studies Alzheimer’s disease and functions as a benchmark dataset for population graphs (2; 3).
The ABIDE dataset from the autism brain imaging data exchange (32) is a binary classification task
to identify subjects suffering from autism. The ABIDE dataset is highly challenging and therefore
lends itself to investigating the impact of the graph structure on our experiments. We also use an
in-house COVID dataset as a realistic, noisy, and small medical dataset, with the task of predicting
whether a COVID patient will require intensive care unit (ICU) treatment. All graph structures are
generated using the k-nearest neighbour approach (33), where k is a hyperparameter that specifies
how many neighbours each node has. The k most similar neighbours are connected to each other.
We use k = 5 for all medical population graph datasets and k = 10 for the synthetic dataset. We
also use k as the maximum bounding degree for all GAP experiments. Details about δ values used
for training and the homophily of all datasets are summarised in the appendix in Table 8. We note
that the graph construction is non-private and happens prior to training, which is in line with prior
works on datasets with a pre-defined graph structure. We, therefore, consider the edges to contain
private information as well –indicating which subjects are similar to each other–, which is why we
use node-level DP for most of our experiments. This ensures the protection of both, the node features
as well as the whole graph structure.

4 Experiments and Results

In this section, we summarise the results of DP-GCNs and GAP on population graph datasets. We (1)
compare the performance of the different models, (2) empirically audit the data leakage via MIAs and
link stealing attacks, and (3) investigate the impact of the graph structure on the model performance,
using a synthetically generated dataset and the homophily metric for assessing the graph structure.

4.1 DP Training of GNNs on Population Graphs

We summarise the results of non-DP and DP training at different privacy budgets of both methods
and under node-level DP in Table 1 and visualised in Figure 1. As anticipated by the privacy-utility
trade-off, a stronger privacy guarantee results in lower model performance over all datasets and both
methods. The impact of a decreasing ε is similar for both methods, but GAP outperforms DP-GCNs
under all private and non-private settings on all three datasets. On the COVID dataset, both methods
show a high standard deviation across different seed runs, indicating overall highly inconsistent
performance. We attribute this to the very small size of the dataset.
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DP training of GNNs relies on a sub-sampling of the graph structure, which we also evaluate
separately from the non-DP and the DP cases in Table 1 (“Sub-graphing”). For two datasets, the
model trained without DP, but employing sub-graph sampling and gradient clipping, outperforms
the non-DP model trained without these techniques. We attribute this to the regularising effect of
both aforementioned methods. Interestingly, GAP still achieves better performance than DP-GCNs
with sub-graphing. An evaluation of the impact of the number of hops for GAP can be found in the
appendix Table 9. We restrain the sub-graphing experiments to the DP-GCN models and assume
similar behaviour for the GAP experiments.

Table 1: Summary of Results with DP-GCNs (17) and GAP (19) under different privacy budgets ε,
using node-level DP. The results are averaged over 5 random seeds. For DP-GCN we also report the
performance of sug-graphing only. The best performance is highlighted in bold.

Method Non-DP Sub-graphing DP ε = 20 DP ε = 15 DP ε = 10 DP ε = 5

TADPOLE
MLP 79.84 ± 1.52 - 77.25 ± 1.49 77.96 ± 1.23 76.94 ± 1.58 77.41 ± 2.02
DP-GCN 72.73 ± 1.39 76.09 ± 1.73 72.42 ± 0.94 71.02 ± 1.22 70.39 ± 0.43 69.45 ± 1.82
GAP 78.82 ± 2.66 - 75.45 ± 0.88 75.22 ± 1.32 75.06 ± 1.13 75.76 ± 0.67

ABIDE
MLP 71.09 ± 3.50 - 71.54 ± 4.27 72.00 ± 2.29 71.31 ± 1.46 67.43 ± 2.98
DP-GCN 58.86 ± 0.81 65.14 ± 2.37 57.83 ± 2.02 55.54 ± 2.62 53.71 ± 2.73 54.17 ± 2.97
GAP 72.11 ± 1.17 - 71.20 ± 1.83 69.14 ± 1.88 68.11 ± 2.27 62.06 ± 2.41

COVID
MLP 73.85 ± 07.84 - 70.77 ± 13.23 70.77 ± 13.23 70.77 ± 13.23 73.85 ± 13.41
DP-GCN 73.85 ± 10.32 69.23 ± 10.88 56.92 ± 08.77 58.46 ± 06.88 61.54 ± 07.69 46.15 ± 17.20
GAP 60.00 ± 08.97 - 66.15 ± 11.51 64.62 ± 11.51 64.62 ± 10.43 61.54 ± 09.73

(a) TADPOLE (b) ABIDE (c) COVID

Figure 1: Performance of DP-GCNs and GAP on the datasets (a) TADPOLE, (b) ABIDE, and (c)
COVID under node-level DP.

4.2 Empirical Auditing via Attacks

In order to empirically evaluate the privacy leakage of our DP population graph models, we perform
MIAs as well as link-stealing attacks on the different models.

4.2.1 Membership Inference Attacks

The dependencies between graph elements render GNNs more vulnerable to MIA (34). Moreover, in
the transductive setting of graph learning, test node features are included in the forward pass, which
further facilitates MIA (24). To empirically audit the privacy leakage of sensitive patient data from
our GNN models, we employ the MIA implementation of Carlini et al. (31). The adversary/auditor
in this membership inference scenario has full access to the trained model, its architecture, and the
graph, including its ground-truth labels (31). We train several shadow models to estimate the models’
output logit distributions and create a classifier that predicts whether a specific example was used as
training data for the model.

We perform MIA on the GNNs trained on the TADPOLE dataset, as it is known that higher model
accuracy improves MIA success (31) and the interest is to verify the privacy guarantees in the worst
practical case possible. We report the true positive rate (TPR) at three fixed, low false positive
rates (FPR) (0.1%, 0.5%, 1%) in Table 2. We also derive the maximum TPR (i.e. power) that is
theoretically achievable for a given (ε, δ) setting through the duality between (ε, δ)-DP and hypothesis
testing DP (35). We will refer to this maximum achievable TPR as the adversary’s supremum power
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P . Visualisations of the log-scale receiver operating characteristic (ROC) curve of the MIA attacks
performed on the DP-GCNs and GAP can be found in the appendix in Figure 4.

Table 2: Comparison of LiRA MIA (31) experiments on DP-GCN (17) and GAP (19) at different
privacy budgets on the TADPOLE dataset

Training TPR % @ 0.1% FPR TPR % @ 0.5% FPR TPR % @ 1% FPR
P DP-GCN GAP P DP-GCN GAP P DP-GCN GAP

Non-DP - 0.92 1.84 - 0.92 2.01 - 2.30 5.18
DP (ε = 20) 100.0 0 0.17 100.0 0.69 1.55 100.0 2.30 2.23
DP (ε = 15) 100.0 0 0 100.0 0.46 1.03 100.0 0.69 1.89
DP (ε = 10) 100.0 0 0 100.0 0 1.37 100.0 0.23 2.23
DP (ε = 5) 14.85 0 0 74.22 0 0.17 100.0 0 0.34

For FPR-values < 0.001, MIA is unsuccessful for DP-GCNs. As the FPR tolerance is increased, all
models trained with weaker privacy guarantees (ε ∈ {20, 15}) yield positive TPR when attacked, with
TPR values approaching these of models trained without DP guarantees (Non-DP and Sub-graphing)
in case of ε = 20. Interestingly, the model trained at ε = 5 successfully resists membership inference
even at an FPR value of 0.01. Moreover, we observe that the GNN trained with clipped gradients is
less vulnerable to membership inference than the GNNs trained without gradient clipping. This is in
line with the findings in (31; 36) that clipping the gradients during training offers some (empirical)
protection against MIAs. Furthermore, we note that MIAs on GAP are more successful, indicating
more empirical data leakage. These results align with the findings in (19). We attribute these results
mainly to the better performance of GAP compared to DP-GCN. It has been shown that more accurate
models are more vulnerable to LiRA (31).

4.2.2 Link Stealing Attacks

We also perform link stealing attacks, using LinkTeller (27) on the different GNN architectures. The
LinkTeller attack can be compared to performing a MIA on each edge and is guided by an estimated
graph density. Since, in the context of medical population graphs, the graph is constructed with a
specific number of neighbours (k), we assume the estimated density to match the actual degree of the
graph. The results of the LinkTeller attacks on the TADPOLE dataset using GAP are summarised
in Table 3. Since DP-GCNs do not provide privacy guarantees at inference time (17), all LinkTeller
attacks achieved almost perfect precision and recall on these models. The results of the LinkTeller
attacks on GAP models are summarised in Table 3. We evaluate these attacks using 1- and 2-hop
GNNs and different maximum degrees, meaning that the corresponding graphs were constructed
using different k for the k-NN method. As expected, with lower ε values, i.e. stronger privacy,
the accuracy of the LinkTeller attack decreases. Moreover, both, 1- and 2-hop GNNs offer similar
protection against the attacks and a lower-density graph yields better protection against LinkTeller.

Table 3: Results of LinkTeller attacks on the TADPOLE dataset using GAP in %.

Density Baseline Privacy setting 1-hop-GNNs 2-hop-GNNs
Precision Recall Precision Recall Precision Recall

k=5 0.64 0.64

non-DP 100 4.67 87.50 3.27
ε = 20 0.98 0.93 0 0
ε = 10 0.98 0.93 0 0
ε = 5 0.49 0.47 0 0
ε = 1 0.49 0.47 0 0

k=40 6.20 6.20

non-DP 100 90.87 51.51 46.81
ε = 20 2.60 2.70 2.35 2.44
ε = 10 2.56 2.65 2.71 2.80
ε = 5 2.61 2.70 2.55 2.65
ε = 1 2.45 2.23 2.40 2.49

4.3 Impact of Graph Structure on Performance

The interaction between memorisation and generalisation in neural networks is of particular interest
to the privacy community. Feldman (37) hypothesises that especially noisy and atypical data from
the long tail of the data distribution requires memorisation. This increases the negative impact of
DP training for those samples. To investigate the applicability of the long-tail hypothesis to graph
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databases, we evaluate the impact of graph structure, measured in terms of homophily, on accuracy.
Concretely, we hypothesise that graphs with low homophily are “noisier” and therefore suffer more
from DP training. For example, at a homophily of 0.5 on a binary node classification dataset, on
average, half of all neighbours have the same label and the other half the opposite label. Thus, when
applying message-passing on such a graph, the node features will get averaged over an approximately
equal number of nodes from both labels. This makes it nearly impossible to learn meaningful node
feature embeddings, such that learning likely relies nearly exclusively on memorisation. We note that,
in a binary classification task, homophily values are symmetric about 0.5. Interestingly, we observe
a highly different impact of the graph structure on the performance of DP-GCNs and GAP under
node-level DP. While DP-SGD GNNs show consistently worse performance with low homophily
graphs, the GAP experiments under node-level DP indicate that the graph structure has almost no
impact on the performance of the model, which we will investigate in more detail below.
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Figure 2: Impact of homophily on performance of DP-GCN (17) under node-level DP on the synthetic
dataset. Clip: clipping only, Subgr.: sub-graphing only.
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Figure 3: Impact of homophily on performance of GAP under (a) edge-level DP and (b) node-level
DP on the synthetic dataset.

DP-GCNs The results using a synthetic dataset with different levels of homophily using DP-GCNs
are summarised in Table 4 and visualised in Figure 2. The generalisation gap of DP-GCNs is
especially large on low-homophily graphs, indicating over-fitting in the non-DP setting (not shown
in the Table). Model accuracy in the non-DP setting profits more from the regularising effects of
clipping and sub-graphing in graphs with lower homophily (0.6) compared to high homophily (0.9).
As expected, at the lowest homophily of 0.5, learning is severely compromised without DP, and the
regularising effect of clipping and sub-graphing actually harms accuracy. Moreover, learning is nearly
impossible with DP, corroborating that, in this setting, the accuracy benefit of non-DP learning is
mostly due to memorisation. Under DP, graphs with high homophily (0.9) suffer a lower performance
decrease compared to graphs with low homophily, likely due to the favourable graph structure for the
learning task, i.e. not requiring strong memorisation.
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Table 4: Impact of homophily on DP-GCNs using the synthetic dataset. All results refer to test
accuracy (%), with the best ones highlighted in bold. Hom.: homophily.

Hom. Non-DP Clipping Sub-graphing Subg. + Clip. DP (ε = 20) DP (ε = 15) DP (ε = 10) DP (ε = 5)

0.9 99.90 ± 2.00 100.0 ± 0.00 99.80 ± 0.40 99.90 ± 0.00 93.00 ± 4.17 96.00 ± 2.49 93.10 ± 1.36 88.70 ± 3.06
0.8 99.62 ± 0.37 99.90 ± 0.00 100.0 ± 0.00 99.80 ± 2.45 82.80 ± 7.83 80.60 ± 10.8 81.30 ± 6.40 80.00 ± 8.76
0.7 96.50 ± 1.23 99.70 ± 0.40 98.42 ± 0.51 98.20 ± 0.50 79.10 ± 3.00 76.30 ± 3.10 74.80 ± 4.55 70.30 ± 5.64
0.6 73.60 ± 0.97 91.00 ± 2.24 83.10 ± 3.10 85.40 ± 3.54 57.72 ± 2.38 55.50 ± 1.45 54.80 ± 3.87 57.90 ± 1.32
0.5 66.10 ± 1.361 53.60 ± 1.16 57.00 ± 1.76 58.10 ± 2.03 52.71 ± 3.34 51.82 ± 3.43 51.70 ± 2.38 50.70 ± 3.87

GAP Corresponding results using GAP and both node-level and edge-level DP are summarised
in Table 5 and visualised in Figure 3. We here investigate two different notions of DP: edge-level
and node-level DP. The difference in overall model performance between node-level and edge-level
DP on GAP is most likely due to the proportionally larger noise that is added under node-level
DP compared to edge-level DP. Under edge-level DP (Figure 3a) we observe a similar behaviour
to DP-GCNs, where high-homophily graphs outperform the MLP by a large margin while low-
homophily graphs achieve lower results than the MLP. However, for node-level DP (Figure 3b), the
graph structure (measured in homophily) shows almost no impact on the performance of GAP. All
models achieve similar results. We attribute this to the architecture of GAP, which allows information
content to flow through the MLPs of modules (1) to (3), without any impact from the graph structure.
To corroborate this hypothesis, we conduct additional experiments investigating the impact of the
individual modules using occlusion methods. Concretely, we occlude the input of the third module
of GAP –the classification module– in three different ways. We (a) only use one MLP that takes
the normalised node features as input, which are directly passed through from the encoder module
(ENC), (b) use only the MLPs from the aggregated node features of the k-hop layers of the GNN
(NEIGHs), or (c) the original GAP setup, which uses both the ENC and NEIGHs MLPs (ORIG). We
note that the ENC module does not use the graph structure and therefore the notion of homophily
does not apply to this part of the model. We perform the experiments under different homophily
values on the respective occluded versions of GAP on the synthetic dataset and summarise the results
in Table 6. The performance of the ENC module alone aligns strongly with the performance of the
MLP, while the NEIGHs performance is highly dependent on the graph homophily. This is expected
since only the NEIGHs module encodes the message passing across neighbours. It can therefore
improve performance of the network on high-homophily graphs. An ablation study on the impact of
the density of the graph can be found in the appendix in Tables 10 and 11.

Table 5: Impact of homophily on GAP under node-level and edge-level DP. The results are accuracy
values on the test set in %. Hom.: homophily. GNNs outperforming the respective MLP are bold.

DP Method Hom. Non-DP ε = 20 ε = 15 ε = 10 ε = 5 ε = 4 ε = 3 ε = 2 ε = 1

MLP - 84.00 ± 1.10 82.70 ± 0.51 82.80 ± 1.21 82.20 ± 0.75 80.70 ± 2.29 82.20 ± 1.29 81.00 ± 1.67 79.50 ± 3.22 74.90 ± 3.57

no
de

-le
ve

l

GAP

0.9 99.10 ± 0.20 84.40 ± 1.39 82.30 ± 2.84 81.80 ± 3.12 80.00 ± 1.67 79.40 ± 1.20 78.20 ± 1.12 74.10 ± 1.16 66.70 ± 2.29
0.8 96.00 ± 0.71 83.40 ± 1.24 82.20 ± 3.22 81.90 ± 3.15 80.00 ± 1.67 79.20 ± 1.29 78.10 ± 1.11 73.40 ± 2.31 66.60 ± 2.58
0.7 90.30 ± 1.96 82.60 ± 1.53 83.10 ± 2.27 81.20 ± 2.68 80.30 ± 1.86 78.90 ± 1.28 78.30 ± 1.12 74.20 ± 1.50 66.50 ± 2.51
0.6 83.90 ± 2.29 81.50 ± 1.05 82.30 ± 3.64 81.60 ± 2.71 80.20 ± 1.99 78.90 ± 1.20 78.00 ± 1.14 74.40 ± 1.56 66.70 ± 2.40
0.5 81.60 ± 1.50 82.00 ± 1.00 82.20 ± 3.40 81.00 ± 2.47 80.40 ± 1.85 78.90 ± 1.20 78.10 ± 1.11 73.80 ± 2.60 66.50 ± 2.59

ed
ge

-le
ve

l

GAP

0.9 99.10 ± 0.20 98.90 ± 0.58 98.90 ± 0.37 98.60 ± 0.20 97.30 ± 0.24 96.40 ± 1.11 95.10 ± 1.20 90.20 ± 1.17 85.00 ± 1.76
0.8 96.00 ± 0.71 96.00 ± 1.26 95.80 ± 1.21 93.90 ± 1.83 93.20 ± 1.08 92.70 ± 1.50 91.10 ± 1.77 87.80 ± 1.33 83.10 ± 2.01
0.7 90.30 ± 1.96 90.90 ± 1.24 91.10 ± 1.80 90.20 ± 1.21 89.10 ± 1.20 86.50 ± 1.18 85.10 ± 2.20 83.30 ± 2.29 82.50 ± 1.58
0.6 83.90 ± 2.29 81.70 ± 1.91 81.70 ± 2.20 81.30 ± 2.50 80.90 ± 1.53 81.00 ± 1.05 80.60 ± 1.07 81.00 ± 1.95 80.90 ± 1.46
0.5 81.60 ± 1.50 81.88 ± 1.81 80.90 ± 1.77 80.90 ± 2.20 81.10 ± 2.24 81.70 ± 1.86 81.30 ± 1.69 80.90 ± 1.62 80.80 ± 1.36

We perform similar experiments on TADPOLE and ABIDE, where we investigate the expressive
power of the ENC and NEIGHs modules separately. The results are summarised in Table 7. We note
that here again the NEIGHs module suffers most from DP. DP seems to have a stronger impact on the
aggregation module than on the encoder and classification modules, even though all modules receive
the same Gaussian mechanism and the same noise scale. We assume the results of these experiments
to explain the difference in performance between node- and edge-level DP. Edge-level DP guarantees
strictly weaker protection and therefore adds less noise, affecting the aggregation module less.

5 Discussion, Conclusion, and Future Work

In this work, we investigate the practicality and challenges of differential private (DP) graph neural
networks (GNNs) applied to medical population graphs. Applying DP to GNNs requires a specialised
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Table 6: GAP under node-level DP on the synthetic dataset. ENC uses only the MLP from the
encoder, NEIGHs uses only the node features after neighbourhood aggregation, and ORIG the original
setup. GNNs outperforming the MLP are bold.

Method Hom. Non-DP DP ε = 20 DP ε = 15 DP ε = 10 DP ε = 5 DP ε = 4 DP ε = 3 DP ε = 2 DP ε = 1

MLP - 84.00 ± 1.10 82.70 ± 0.51 82.80 ± 1.21 82.20 ± 0.75 80.70 ± 2.29 82.20 ± 1.29 81.00 ± 1.67 79.50 ± 3.22 74.90 ± 3.57

ENC - 83.00 ± 1.45 82.30 ± 2.25 81.30 ± 1.89 81.60 ± 2.01 80.40 ± 2.54 79.10 ± 2.56 76.50 ± 1.82 74.70 ± 2.58 69.30 ± 3.20

NEIGHs 0.9 98.50 ± 0.55 68.50 ± 1.79 63.10 ± 1.43 58.60 ± 2.80 52.00 ± 3.94 51.00 ± 4.17 52.50 ± 3.19 50.00 ± 2.26 49.60 ± 2.87
0.8 94.90 ± 1.39 63.40 ± 2.40 60.00 ± 3.33 54.70 ± 2.99 51.10 ± 4.82 50.10 ± 3.72 52.20 ± 3.44 49.80 ± 2.54 49.60 ± 2.87
0.7 85.90 ± 1.46 58.10 ± 1.93 54.30 ± 1.36 51.80 ± 2.40 50.10 ± 3.64 51.40 ± 3.60 51.50 ± 2.92 51.30 ± 2.69 49.70 ± 2.71
0.6 66.90 ± 1.53 52.70 ± 3.74 52.00 ± 2.74 50.30 ± 1.86 50.50 ± 2.97 51.20 ± 3.36 51.20 ± 3.17 50.50 ± 2.10 49.50 ± 2.51
0.5 48.20 ± 2.57 50.50 ± 2.93 49.90 ± 2.24 49.40 ± 2.40 50.20 ± 3.20 50.10 ± 2.71 51.30 ± 2.94 50.20 ± 2.34 49.30 ± 2.79

ORIG 0.9 99.10 ± 0.20 84.40 ± 1.39 82.30 ± 2.84 81.80 ± 3.12 80.00 ± 1.67 79.40 ± 1.20 78.20 ± 1.12 74.10 ± 1.16 66.70 ± 2.29
0.8 96.00 ± 0.71 83.40 ± 1.24 82.20 ± 3.22 81.90 ± 3.15 80.00 ± 1.67 79.20 ± 1.29 78.10 ± 1.11 73.40 ± 2.31 66.60 ± 2.58
0.7 90.30 ± 1.96 82.60 ± 1.53 83.10 ± 2.27 81.20 ± 2.68 80.30 ± 1.86 78.90 ± 1.28 78.30 ± 1.12 74.20 ± 1.50 66.50 ± 2.51
0.6 83.90 ± 2.29 81.50 ± 1.05 82.30 ± 3.64 81.60 ± 2.71 80.20 ± 1.99 78.90 ± 1.20 78.00 ± 1.14 74.40 ± 1.56 66.70 ± 2.40
0.5 81.60 ± 1.50 82.00 ± 1.00 82.20 ± 3.40 81.00 ± 2.47 80.40 ± 1.85 78.90 ± 1.20 78.10 ± 1.11 73.80 ± 2.60 66.50 ± 2.59

Table 7: Results of GAP under node-level DP with occlusions. ENC uses only the MLP, NEIGHs uses
only the node features after neighbourhood aggregation, and ORIG the original GAP architecture.

Data Method Non-DP DP ε = 20 DP ε = 15 DP ε = 10 DP ε = 5

TA
D

PO
L

E MLP 79.84 ± 1.52 77.25 ± 1.49 77.96 ± 1.23 76.94 ± 1.58 77.41 ± 2.02

ENC 81.73 ± 1.50 76.71 ± 0.91 75.14 ± 0.73 75.76 ± 0.94 74.75 ± 1.66
NEIGHs 75.37 ± 1.06 42.12 ± 1.93 38.67 ± 1.23 36.94 ± 1.67 36.24 ± 0.81
ORIG 78.82 ± 2.66 75.45 ± 0.88 75.22 ± 1.32 75.06 ± 1.13 75.76 ± 0.67

A
B

ID
E

MLP 71.09 ± 3.50 71.54 ± 4.27 72.00 ± 2.29 71.31 ± 1.46 67.43 ± 2.98

ENC 71.77 ± 1.93 70.86 ± 1.25 69.37 ± 0.58 68.11 ± 2.15 62.86 ± 1.70
NEIGHs 53.14 ± 2.40 54.06 ± 0.86 52.69 ± 1.32 52.47 ± 1.82 53.37 ± 1.00
ORIG 72.11 ± 1.17 71.20 ± 1.83 69.14 ± 1.88 68.11 ± 2.27 62.06 ± 2.41

application of DP concepts like privacy amplification techniques and DP-SGD methods (17). We
evaluate privacy-utility trade-offs of DP GNNs trained on medical population graphs of two state-of-
the-art graph deep learning methods with DP: (1) DP-GCNs by Daigavane et al. (17) and (2) DP GNNs
with aggregation perturbation (GAP) (19). While the first method adapts GCNs (18) to graph learning
with DP, GAP designs a new model architecture. We investigate these methodological differences and
their implications on population graph studies. On all utilised datasets, GAP outperformed DP-GCNs,
from which we conclude that GAP seems to be a more suitable method for DP training on population
graphs. This might be due to the comparably low homophily of the generated population graphs,
which shows less impact on GAP than on DP-GCNs. GAP also performs more consistently across
different homophily values. We attribute this to the architecture of GAP, which has three different
modules that allow for information passing through the model without using the neighbourhood
aggregation. We further investigate this correlation between graph structure and model performance
and find that models trained on graphs with low homophily (indicating noisy neighbourhoods with
different labels) are more impacted by DP than models trained on high homophily graphs when using
DP-GCNs. This finding and its possible connection to the long-tail hypothesis (37) is a promising
direction for future work to potentially improve DP methods for GNNs by improving the underlying
graph structure. Even though our current experiments are on medical population graphs, we believe
our results to be more generally applicable to DP graph deep learning for node classification tasks.

We note that there are other methods to perform node-level predictions with GNNs under DP, which
are interesting directions for future work. One example are private aggregation of teacher ensemble
(PATE) (38) methods, which have also been applied for graph learning (39). However, these methods
require a suitable public dataset, which is difficult to obtain in medical settings. Recently, another
method for DP training of GNNs has been introduced (40). The authors propose new decoupled
graph convolutions and show strong performance on low-homophily graphs. In addition, homophily
is not the only measure for the “quality” of a graph structure. Further metrics such as cross-class
neighbourhood similarity (41), neighbourhood entropy (42), or the normalised smoothness value (11)
should be evaluated, which may shed more light on the impact of graph structure on the performance
of differntially private graph neural networks.
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A Additional Information on the Datasets

A summary of the different homophily values of all datasets, the utilised δ values, as well as the k
used for graph construction are summarised in Table 8.

Table 8: Summary of the homophily of the utilised graph structures as well as the δ and k values for
all datasets.

Dataset Nr. nodes Homophily δ k

TADPOLE 1 277 0.7392 1.31 · 10−4 5

COVID 65 0.7569 2.78 · 10−3 5

ABIDE 871 0.6009 1.92 · 10−4 5

Synthetic 1 000 varying 1.79 · 10−4 10

B Additional Experiments and Results

We perform some additional experiments to further investigate privacy-utility trade-offs of DP
population graphs in the medical domain. We, for example, investigate the impact of different number
of hops on the performance of GAP on the datasets TADPOLE, ABIDE, and COVID. The results are
summarised in Table 9.

Table 9: GAP results across different number of hops on the dataset TADPOLE, ABIDE, and COVID
at different privacy budgets.

Hops Non-DP ε = 20 ε = 15 ε = 10 ε = 5 ε = 4 ε = 3 ε = 2 ε = 1

TADPOLE
1 79.84 ± 0.91 74.98 ± 2.47 74.12 ± 2.69 76.00 ± 0.97 74.67 ± 0.91 74.43 ± 0.63 74.51 ± 0.50 71.14 ± 2.01 67.37 ± 1.37
2 78.82 ± 2.66 75.45 ± 0.88 75.22 ± 1.32 75.06 ± 1.13 75.76 ± 0.67 75.29 ± 0.66 73.18 ± 1.90 69.80 ± 1.79 66.43 ± 1.13
3 79.45 ± 2.17 76.78 ± 0.72 76.55 ± 1.52 75.92 ± 1.01 75.37 ± 1.78 74.59 ± 2.04 72.16 ± 1.66 69.57 ± 1.13 66.59 ± 2.28

ABIDE
1 72.69 ± 1.32 70.74 ± 4.00 70.17 ± 2.12 68.69 ± 3.32 62.86 ± 2.96 61.37 ± 2.25 61.03 ± 2.54 57.14 ± 3.49 53.03 ± 4.05
2 72.11 ± 1.17 71.20 ± 1.83 69.14 ± 1.88 68.11 ± 2.27 62.06 ± 2.41 61.94 ± 2.67 59.77 ± 3.52 57.71 ± 1.62 53.26 ± 1.89
3 72.46 ± 1.89 72.00 ± 2.82 68.91 ± 2.95 67.77 ± 3.08 63.43 ± 3.00 62.86 ± 2.50 60.91 ± 3.24 58.17 ± 3.64 52.80 ± 1.06

COVID
1 60.00 ± 11.31 52.31 ± 11.31 53.85 ± 12.87 47.69 ± 8.97 47.69 ± 8.97 49.23 ± 13.41 49.23 ± 7.84 46.15 ± 10.88 56.92 ± 6.15
2 61.54 ± 6.88 66.15 ± 11.51 64.62 ± 11.51 64.62 ± 10.43 61.54 ± 9.73 64.62 ± 10.43 66.15 ± 12.50 61.54 ± 14.60 56.92 ± 14.27
3 63.08 ± 12.31 58.46 ± 15.07 58.46 ± 12.50 58.46 ± 15.84 44.62 ± 22.51 58.46 ± 7.84 53.85 ± 10.88 52.31 ± 12.31 52.31 ± 16.43

In Figure 4, we visualise the log-scale receiver operating characteristic (ROC) curve of the MIA
attacks performed on DP-GCN and GAP on the TADPOLE dataset.
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Figure 4: Empirical ROC curves for MIA on the TADPOLE dataset.

The GAP method consists of three modules: (1) the encoder module, (2) the aggregation module,
and (3) the classification module. In order to investigate the impact of the aggregation module on
the overall performance of GAP, we occlude parts of the GAP model and evaluate the individual
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performances. We split the classification module into three versions: (a) using the original architecture
(ORIG), (b) only using the MLP from the encoder module (ENC), and (c) using the MLPs from the
neighbourhood aggregation (NEIGHs). We here summarise some additional experiments using this
setup. Table 10 shows the performance of the individual modules with at different homophily values
on the synthetic dataset, using two different maximum degrees: 10 and 200. This degree refers to
both the k for graph construction and the bounding degree for sub-graphing. It is noteworthy that
the NEGHs module performs better at a high maximum degree than on a low maximum degree. We
furthermore summarise similar experiments at a fixed homophily of 0.9 on the synthetic dataset with
several different maximum degrees in Table 11, which shows the same trend that the performance of
the NEIGHs module performs better with an increasing maximum degree.

Table 10: Breakdown of ENC and NEIGHs modules of the classifier module of GAP under node-level
DP along with the homophily value on the synthetic dataset.

Max degree Method Hom. Non-DP DP ε = 20 DP ε = 15 DP ε = 10 DP ε = 5 DP ε = 4 DP ε = 3 DP ε = 2 DP ε = 1

MLP - 84.00 ± 1.10 82.70 ± 0.51 82.80 ± 1.21 82.20 ± 0.75 80.70 ± 2.29 82.20 ± 1.29 81.00 ± 1.67 79.50 ± 3.22 74.90 ± 3.57

ENC - 83.00 ± 1.45 82.30 ± 2.25 81.30 ± 1.89 81.60 ± 2.01 80.40 ± 2.54 79.10 ± 2.56 76.50 ± 1.82 74.70 ± 2.58 69.30 ± 3.20

10

NEIGHs 0.9 98.50 ± 0.55 68.50 ± 1.79 63.10 ± 1.43 58.60 ± 2.80 52.00 ± 3.94 51.00 ± 4.17 52.50 ± 3.19 50.00 ± 2.26 49.60 ± 2.87
0.8 94.90 ± 1.39 63.40 ± 2.40 60.00 ± 3.33 54.70 ± 2.99 51.10 ± 4.82 50.10 ± 3.72 52.20 ± 3.44 49.80 ± 2.54 49.60 ± 2.87
0.7 85.90 ± 1.46 58.10 ± 1.93 54.30 ± 1.36 51.80 ± 2.40 50.10 ± 3.64 51.40 ± 3.60 51.50 ± 2.92 51.30 ± 2.69 49.70 ± 2.71
0.6 66.90 ± 1.53 52.70 ± 3.74 52.00 ± 2.74 50.30 ± 1.86 50.50 ± 2.97 51.20 ± 3.36 51.20 ± 3.17 50.50 ± 2.10 49.50 ± 2.51
0.5 48.20 ± 2.57 50.50 ± 2.93 49.90 ± 2.24 49.40 ± 2.40 50.20 ± 3.20 50.10 ± 2.71 51.30 ± 2.94 50.20 ± 2.34 49.30 ± 2.79

ORIG 0.9 99.10 ± 0.20 84.40 ± 1.39 82.30 ± 2.84 81.80 ± 3.12 80.00 ± 1.67 79.40 ± 1.20 78.20 ± 1.12 74.10 ± 1.16 66.70 ± 2.29
0.8 96.00 ± 0.71 83.40 ± 1.24 82.20 ± 3.22 81.90 ± 3.15 80.00 ± 1.67 79.20 ± 1.29 78.10 ± 1.11 73.40 ± 2.31 66.60 ± 2.58
0.7 90.30 ± 1.96 82.60 ± 1.53 83.10 ± 2.27 81.20 ± 2.68 80.30 ± 1.86 78.90 ± 1.28 78.30 ± 1.12 74.20 ± 1.50 66.50 ± 2.51
0.6 83.90 ± 2.29 81.50 ± 1.05 82.30 ± 3.64 81.60 ± 2.71 80.20 ± 1.99 78.90 ± 1.20 78.00 ± 1.14 74.40 ± 1.56 66.70 ± 2.40
0.5 81.60 ± 1.50 82.00 ± 1.00 82.20 ± 3.40 81.00 ± 2.47 80.40 ± 1.85 78.90 ± 1.20 78.10 ± 1.11 73.80 ± 2.60 66.50 ± 2.59

ENC - 83.00 ± 1.45 83.10 ± 2.27 82.40 ± 2.20 80.90 ± 3.01 81.00 ± 2.97 80.80 ± 2.25 78.80 ± 2.48 75.70 ± 1.81 69.90 ± 1.62

20
0

NEIGHs 0.9 100.00 ± 0.00 96.70 ± 1.75 91.60 ± 1.24 84.50 ± 2.07 65.30 ± 2.08 59.60 ± 2.11 54.70 ± 4.18 50.50 ± 2.30 50.90 ± 2.22
0.8 100.00 ± 0.00 91.10 ± 2.30 84.90 ± 2.48 75.50 ± 3.32 60.80 ± 5.16 53.80 ± 2.86 51.80 ± 1.91 51.30 ± 2.18 51.20 ± 1.78
0.7 99.80 ± 0.40 79.40 ± 2.40 72.50 ± 3.59 64.60 ± 3.75 54.00 ± 2.19 51.90 ± 2.89 50.60 ± 3.53 51.80 ± 2.69 50.80 ± 1.86
0.6 98.70 ± 1.08 63.50 ± 3.52 57.10 ± 2.87 53.70 ± 2.06 50.80 ± 3.12 50.80 ± 2.42 51.10 ± 3.01 51.20 ± 2.06 51.80 ± 1.50
0.5 49.30 ± 4.27 48.90 ± 2.78 49.50 ± 3.18 50.30 ± 3.04 49.30 ± 2.91 50.30 ± 4.06 49.60 ± 3.17 51.20 ± 2.34 51.60 ± 1.74

ORIG 0.9 99.90 ± 0.20 98.20 ± 0.68 94.80 ± 1.44 87.00 ± 3.13 80.40 ± 2.11 78.50 ± 1.34 79.20 ± 1.57 76.30 ± 2.62 67.50 ± 5.63
0.8 100.00 ± 0.00 94.00 ± 1.00 89.20 ± 1.81 83.90 ± 3.02 80.70 ± 2.38 78.60 ± 1.16 79.50 ± 1.48 76.20 ± 2.68 66.90 ± 5.72
0.7 99.70 ± 0.40 86.20 ± 1.96 84.40 ± 2.03 82.40 ± 2.56 80.60 ± 2.48 78.60 ± 1.24 79.60 ± 1.32 78.60 ± 2.65 67.50 ± 6.16
0.6 98.80 ± 0.51 82.90 ± 1.16 82.20 ± 1.57 81.20 ± 1.86 80.30 ± 2.11 79.00 ± 1.41 79.60 ± 2.15 76.30 ± 2.44 67.20 ± 5.60
0.5 80.90 ± 2.09 82.50 ± 1.30 82.90 ± 1.56 81.80 ± 2.11 80.80 ± 1.94 79.00 ± 1.38 79.20 ± 1.69 76.10 ± 2.75 67.50 ± 5.98

Table 11: Results of node-level DP with GAP for graph structures with different density values and a
separate investigation of ENC and NEIGHs modules of GAP at a homophily of 0.9. ENC uses only the
MLP without neighbourhood aggregation, NEIGHs uses only the node features after neighbourhood
aggregation and ORIG uses the original setup of GAP (using both ENC and NEIGHs).

Max Degree Method Non-DP DP ε = 20 DP ε = 15 DP ε = 10 DP ε = 5 DP ε = 4 DP ε = 3 DP ε = 2 DP ε = 1

ENC 83.00 ± 1.45 82.30 ± 2.25 81.30 ± 1.89 81.60 ± 2.01 80.40 ± 2.54 79.10 ± 2.56 76.50 ± 1.82 74.70 ± 2.58 69.30 ± 3.20

10 NEIGHs 98.50 ± 0.55 68.50 ± 1.79 63.10 ± 1.43 58.60 ± 2.80 52.00 ± 3.94 51.80 ± 4.17 52.50 ± 3.19 50.00 ± 2.26 49.60 ± 2.87
ORIG 99.10 ± 0.20 84.40 ± 1.39 82.30 ± 2.84 81.80 ± 3.12 80.00 ± 1.67 79.40 ± 1.20 78.20 ± 1.12 74.10 ± 1.16 66.70 ± 2.29

20 NEIGHs 100.00 ± 0.00 75.30 ± 2.99 68.90 ± 2.35 63.20 ± 2.71 55.40 ± 3.77 52.10 ± 3.99 51.80 ± 2.48 51.10 ± 2.89 50.60 ± 1.66
ORIG 98.80 ± 0.24 86.90 ± 1.59 83.60 ± 2.42 81.90 ± 3.09 80.60 ± 1.39 79.30 ± 0.98 78.10 ± 1.11 74.40 ± 1.36 66.70 ± 2.54

30 NEIGHs 99.90 ± 0.20 81.70 ± 2.01 73.90 ± 2.73 67.80 ± 2.29 57.50 ± 3.03 54.00 ± 4.06 51.80 ± 3.56 51.10 ± 3.06 49.70 ± 2.77
ORIG 99.90 ± 0.20 89.50 ± 2.28 85.30 ± 1.63 81.30 ± 2.84 80.30 ± 1.54 79.10 ± 1.16 78.00 ± 1.26 74.30 ± 1.44 65.90 ± 2.71

40 NEIGHs 99.80 ± 0.24 85.90 ± 1.16 78.20 ± 1.44 70.80 ± 2.50 59.30 ± 3.06 55.80 ± 3.04 53.70 ± 4.51 51.30 ± 3.03 50.60 ± 1.77
ORIG 99.90 ± 0.20 92.50 ± 2.70 87.60 ± 2.52 82.50 ± 1.48 80.30 ± 1.94 79.20 ± 1.25 78.20 ± 0.98 74.20 ± 1.47 66.40 ± 2.67

50 NEIGHs 100.0 ± 0.00 89.50 ± 1.87 80.70 ± 3.39 73.00 ± 2.17 61.20 ± 3.14 57.70 ± 3.20 55.00 ± 3.92 52.50 ± 2.07 49.40 ± 2.65
ORIG 100.0 ± 0.00 94.00 ± 2.21 88.70 ± 3.30 83.10 ± 1.53 80.30 ± 1.94 79.50 ± 1.22 77.90 ± 1.11 74.20 ± 1.44 65.40 ± 2.63

60 NEIGHs 100.00 ± 0.00 91.70 ± 2,58 84.70 ± 2.87 74.70 ± 3.04 62.00 ± 2.28 58.50 ± 3.61 55.30 ± 3.37 52.60 ± 2.46 48.80 ± 1.69
ORIG 100.00 ± 0.00 94.80 ± 2.06 91.00 ± 2.51 84.80 ± 3.04 80.30 ± 1.75 79.60 ± 0.97 77.90 ± 1.11 74.30 ± 1.44 66.10 ± 2.42

70 NEIGHs 100.00 ± 0.00 94.30 ± 1.29 86.60 ± 2.46 76.90 ± 2.37 62.60 ± 2.50 59.50 ± 2.66 55.00 ± 3.61 52.50 ± 2.02 48.70 ± 1.60
ORIG 100.00 ± 0.00 96.80 ± 0.81 91.50 ± 2.49 85.50 ± 2.95 80.80 ± 1.57 78.90 ± 1.20 78.00 ± 1.05 74.20 ± 1.44 65.70 ± 2.42

80 NEIGHs 100.00 ± 0.00 95.10 ± 1.74 88.00 ± 2.74 78.70 ± 3.34 64.50 ± 2.49 59.90 ± 2.67 55.50 ± 3.94 52.90 ± 2.24 49.50 ± 2.77
ORIG 100.00 ± 0.00 96.50 ± 1.00 93.20 ± 1.21 86.30 ± 2.77 80.50 ± 1.64 79.10 ± 1.02 77.70 ± 1.29 74.30 ± 1.44 65.70 ± 2.11

90 NEIGHs 100.00 ± 0.00 95.40 ± 1.16 90.20 ± 1.94 81.00 ± 1.64 65.50 ± 1.87 61.10 ± 2.85 57.70 ± 3.01 53.30 ± 2.14 49.10 ± 2.76
ORIG 99.90 ± 0.2 97.70 ± 1.08 93.90 ± 1.85 87.70 ± 3.11 80.50 ± 1.64 79.60 ± 0.86 77.70 ± 1.29 74.30 ± 1.44 66.70 ± 3.59

100 NEIGHs 100 ± 0.00 97.50 ± 1.14 92.00 ± 1.92 82.10 ± 2.15 66.90 ± 1.85 61.40 ± 2.67 58.10 ± 2.31 53.10 ± 2.13 48.80 ± 2.23
ORIG 99.80 ± 0.40 98.50 ± 0.84 95.20 ± 1.63 88.30 ± 3.06 80.50 ± 1.41 79.80 ± 0.93 77.90 ± 1.11 74.30 ± 1.44 66.50 ± 3.56

200 NEIGHs 100.00 ± 0.00 96.70 ± 1.75 91.60 ± 1.24 84.50 ± 2.07 65.30 ± 2.08 59.60 ± 2.11 54.70 ± 4.18 50.50 ± 2.30 50.90 ± 2.22
ORIG 99.90 ± 0.20 98.20 ± 0.68 94.80 ± 1.44 87.00 ± 3.13 80.40 ± 2.11 78.50 ± 1.34 79.20 ± 1.57 76.30 ± 2.62 67.50 ± 5.63
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