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Abstract
In recent years, contrastive learning has achieved
state-of-the-art performance in the territory of self-
supervised representation learning. Many previ-
ous works have attempted to provide the theo-
retical understanding underlying the success of
contrastive learning. Almost all of them rely on
a default assumption, i.e., the label consistency
assumption, which may not hold in practice (the
probability of failure is called labeling error) due
to the strength and randomness of common aug-
mentation strategies, such as random resized crop
(RRC). This paper investigates the theoretical im-
pact of labeling error on the downstream classi-
fication performance of contrastive learning. We
first reveal several significant negative impacts of
labeling error on downstream classification risk.
To mitigate these impacts, data dimensionality
reduction method (e.g., singular value decompo-
sition, SVD) is applied on original data to reduce
false positive samples, and establish both theoreti-
cal and empirical evaluations. Moreover, it is also
found that SVD acts as a double-edged sword,
which may lead to the deterioration of down-
stream classification accuracy due to the reduced
connectivity of the augmentation graph. Based
on the above observations, we give the augmen-
tation suggestion that we should use some mod-
erate embedding dimension (such as 512, 1024 in
our experiments), data inflation, weak augmenta-
tion, and SVD to ensure large graph connectivity
and small labeling error to improve model perfor-
mance.
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1. Introduction
Contrastive learning, as an emerging self-supervised learn-
ing paradigm, has achieved remarkable performance by
leveraging data without label information (He et al., 2020;
Chen et al., 2020c; Jang & Wang, 2023; Wang et al., 2023b;
Ji et al., 2023). Typically, this learning framework entails for-
mulating an auxiliary contrastive task endowed with pseudo-
labels, which aims to maximize the similarity between two
samples augmented from the same original sample while
minimizing the similarity between samples augmented from
different original samples (Chen et al., 2020b).

Recently, some studies have delved into the theoretical
mechanism underlying the empirical success of contrastive
learning (Mikolov et al., 2013; Pagliardini et al., 2018; Jean
et al., 2019; Arora et al., 2019; Jing et al., 2022; Wang et al.,
2022; Lei et al., 2023). Generally speaking, they acquiesce
that the labels of two augmented samples generated from the
same original sample remain consistent, which is referred
to as the label consistency assumption (Wang et al., 2022).
Particularly, Wang et al. (2022) stated that label consistency
is a natural and minimal assumption that is likely to hold
in practice, and established the upper and lower bounds
of downstream classification risk for contrastive learning
only requiring intra-class samples have similar augmented
views (called intra-class augmentation overlap, see Figure
1 (b)). Nevertheless, given that data augmentation process
is random, some strong augmentation strategies like RRC
may lead to the lose of semantic-related information (Zang
et al., 2024), which undermines label consistency and gives
rise to labeling error (Tamkin et al., 2023). For instance,
Figure 1 (a) shows that several images augmented from a
dog image using RRC possess different labels (dog, ship,
fog and blanket). In such a situation, it can be observed
that inter-class samples also exhibit the augmentation over-
lap phenomenon (see Figure 1 (c)). This inconsistent label
phenomenon (called labeling error) motivates us to develop
new theoretical analysis for contrastive learning to better
understand the interplay among data augmentation, labeling
error, and downstream classification performance.

Recently, the analysis framework of HaoChen et al. (2021)
pioneered the consideration of the labeling error caused by
data augmentation, which revealed the first dependencies
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Figure 1. (a) Four images augmented from a single dog image using RRC have different labels (dog, ship, fog and blanket). (b) Augmented
views of different intra-class samples may overlap. For instance, two views labeled as “dog” might be augmented from different dog
images. (c) Augmented views of different inter-class samples may also overlap. For instance, two views labeled as “ship” might be
augmented from a dog image and a ship images, respectively.

on labeling error and the connectivity of the augmentation
graph (Equation (2) in HaoChen et al. (2021)) for the down-
stream linear probe error. While matching the experimental
observations, they didn’t offer any suggestions to reduce the
dependency on labeling error. Subsequently, considering
that generated data may sometimes even harm contrastive
learning, Wang et al. (2024) formulated a novel analysis
strategy to explore the reasons underlying this labeling error
phenomenon from the perspective of data inflation 1. Theo-
retical and empirical results in Wang et al. (2024) illustrated
that stronger data inflation would bring larger graph connec-
tivity, which decreases the upper bound of the downstream
linear probe error. They also validated that stronger data
augmentation would affect the trade-off of labeling error
and graph connectivity to bring the phenomenon that model
performance first rises and then falls. Consequently, they
suggested obtaining large graph connectivity along with
small labeling error through the combination of strong data
inflation and weak augmentation. However, good down-
stream performance is primarily ensured by large graph
connectivity. They didn’t verify whether the labeling error
caused by the weak augmentation is sufficiently small.

In this paper, we investigate the negative impacts of labeling
error. Specifically, we first provide the theoretical upper and
lower bounds of downstream classification risk and error 2

considering both intra-class and inter-class augmentation

1Data inflation was defined by Wang et al. (2024) as the process
of using generative models (e.g., denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020)) to generate a lot of synthetic
samples. Wang et al. (2024) performed contrastive learning on the
combination of the real and generated data.

2Classification error measures the proportion of misclassified
samples. Thus, the summation of classification error and accuracy
equal to 100%.

overlap. From the data dimensionality reduction perspective,
our theoretical and empirical analyses validate the effective-
ness of some useful suggestions for decreasing labeling
error to enhance downstream classification performance.
Our main contributions are summarized as follows.

• Theoretical guarantees of classification risk for both
intra-class and inter-class augmentation overlap cases.
Beyond the intra-class augmentation overlap consid-
ered by Wang et al. (2022), we establish the first upper
and lower bounds of downstream classification risk for
inter-class augmentation overlap case. It is discovered
from these bounds that there are several significant de-
pendencies associated with labeling error. Following
the above analysis, a new perspective of data dimen-
sionality reduction is introduced to reduce these depen-
dencies. As illustrated by singular value decomposition
(SVD), both theoretical analysis and empirical obser-
vations demonstrate that this dimensionality reduction
technique is capable of suppressing classification risk
by diminishing labeling error.

• Theoretical guarantees of classification error while us-
ing SVD. Except for downstream classification risk, we
provide an upper bound of classification error while
using SVD. This bound uncovers that SVD can also
reduce classification error by decreasing labeling error.
Besides, SVD might lead to small graph connectivity,
thereby potentially worsening this bound. We sug-
gest that adopting a moderate 3 embedding dimension
contributes to the decrease of classification error by

3The word “moderate” means that the embedding dimension
k is not too small or too large. In our experiments, k = 512 or
k = 1024 may be suitable.
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increasing graph connectivity, which is validated by
our data experiments.

• Some useful suggestions guided by our analyses. Under
the experiment setting of Wang et al. (2024), our empir-
ical evaluations indicate that their weak data augmen-
tation still brings an unignorable labeling error. The
aforementioned analyses suggest that we should use
moderate embedding dimension, data inflation, weak
augmentation, and SVD to achieve two critical ob-
jectives: ensuring large graph connectivity and small
labeling error, thereby enhancing the downstream clas-
sification accuracy.

2. Related Works
Theoretical Understanding of Contrastive Learning. Ex-
cept for the above theoretical studies, there are also many
understanding of contrastive learning from other perspec-
tives (Tian et al., 2020; Chen et al., 2020a; Zimmermann
et al., 2021; Saunshi et al., 2022; Waida et al., 2023; Ji
et al., 2023; Zhang et al., 2023b; Zou & Liu, 2023; Wen
et al., 2024). From the perspective of information theory,
Tian et al. (2020) theoretically and empirically showed that
data augmentation can decrease mutual information and
improve downstream classification accuracy. Saunshi et al.
(2022) empirically presented that different function classes
and algorithms bring different behaviors and suggested the
consideration of inductive biases in theoretical analysis. Ji
et al. (2023) proved two conclusions: 1) contrastive learning
outperforms some other self-supervised learning paradigms
such as autoencoder and generative adversarial network; 2)
label information benefits in-domain downstream task and
harms out-domain downstream task. Different from previ-
ous theories on data augmentation (Dao et al., 2019; Rajput
et al., 2019; Wu et al., 2020), Chen et al. (2020a) pioneered a
connection between data augmentation and the performance
of downstream task using group theory under approximate
equality condition (similar to label consistency). These
works all hinge upon the label consistency assumption as a
fundamental premise. In contrast, our analysis is free from
the label consistency assumption.

Applications of Contrastive Learning. Contrastive learn-
ing has achieve the empirical success in many fields, includ-
ing time series prediction (Nonnenmacher et al., 2022; Lee
et al., 2024; Xu et al., 2024; Zheng et al., 2024), graph learn-
ing (Xia et al., 2022; Ghose et al., 2023; Lin et al., 2023;
Yu et al., 2023b; Liu et al., 2024), federated learning (Yu
et al., 2023a; Louizos et al., 2024), multi-modal learning
(Lin et al., 2022; Wang et al., 2023a; Huang et al., 2023a;
Fang et al., 2023; Xia et al., 2023), adversarial learning (Xu
et al., 2023a; Zhang et al., 2023a; Xu et al., 2023b; Luo
et al., 2023), etc. Not only self-supervised contrastive learn-
ing, there are also some supervised works (Khosla et al.,

2020; Barbano et al., 2023) and weak supervised progresses
(Zheng et al., 2021; Tsai et al., 2022; Cui et al., 2023) that
combine available label information to guide model training.

3. Preliminaries
This section initiates our analysis with a comprehensive
overview of contrastive learning. For any given samples
x̄i, x̃i ∈ Rd and label yi ∈ {1, ...,K}, denote D̄ =
{x̄i}n1

i=1, D̃ = {(x̃i, yi)}n2
i=1 as an original unlabeled dataset

and a labeled dataset, respectively. Contrastive learning ini-
tializes and trains the model parameters in an unsupervised
fashion, laying a foundational understanding of the under-
lying structure and patterns of data in D̄. The subsequent
supervised fine-tuning stage further adapts the pre-trained
model parameters to some specific downstream task on D̃
to enhance model performance.

For the first learning stage, an encoder projector f ∈ F1 :
Rd → Sk−1 is pre-trained to map a d-dimensional input
vector to an embedding vector in a k-dimensional unit hy-
persphere, where the inequality k < d generally holds which
is validated by our experiments. This pre-training process
is composed with several steps including data augmenta-
tion, contrastive representation, and loss calculation. Due to
the unavailability of true label, contrastive pre-training con-
structs a surrogate task via some sample augmentation strate-
gies. Then, this task is learned by minimizing the distance
between similar samples and maximizing the distance be-
tween dissimilar samples in embedding space. For example,
we first select an original sample x̄ ∈ D̄, and make data aug-
mentations t, t+ ∈ T (T = {t|t : Rd → Rd}) to obtain two
independent augmented samples x = t(x̄), x+ = t+(x̄),
respectively. Then, M negative samples x−

i , i = 1, ...,M ,
are randomly augmented from other original samples in
D̄. We assume x̄, x̃, x, x− follow the same population dis-
tribution written as p(x), which is the same as previous
work like Arora et al. (2019); Wang et al. (2022). We use
these samples to calculate the most common contrastive
loss, InfoNCE loss (van den Oord et al., 2018), defined as
follows

LInfoNCE(f)

=Ep(x,x+)Ep(x−
i )

[
− log

ef(x)
⊤f(x+)

ef(x)⊤f(x+) +
∑M

i=1 e
f(x)⊤f(x−

i )

]
,

(1)

where p(x, x+) =
∫
p(x, x+|x̄)p(x̄)dx̄ is the joint distribu-

tion of the positive augmented sample pair (x, x+). Then,
given an original sample x̄ ∈ D̄, p(x, x+|x̄) denotes the
conditional distributions of any positive augmented sample
pair (x, x+).

In InfoNCE loss, the similarity between two samples is
quantified by the inner product f(x)⊤f(x′) of two vectors
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(x′ denotes any sample in x+, x−
1 , ..., x

−
M ). Considering

that f is a projector mapping from Rd to a k-dimensional
unit hypersphere, the inner product f(x)⊤f(x′) represents
cosine similarity. To sum up, minimizing InfoNCE loss is
equivalent to maximizing the similarity of negative pairs
and minimizing the similarity of positive pair. Generally,
we consider the empirical version of InfoNCE loss

L̂InfoNCE(f)

=− 1

n1

n1∑
j=1

log
ef(xj)

⊤f(x+
j )

ef(xj)⊤f(x+
j ) +

∑M
i=1 e

f(xj)⊤f(x−
ji)

(2)

and its minimizer

f∗ ∈ arg min
f∈F1

L̂InfoNCE(f).

For the second learning stage, the parameters of the pre-
trained encoder remain unaltered. We retrain a linear projec-
tion head g ∈ F2 : Rk → RK with the weight W ∈ Rk×K

using the cross entropy (CE) loss (3) to conduct downstream
classification task. For a labeled sample (x̃, y) ∈ D̃, the CE
loss and the mean CE loss 4 are calculated via

LCE(gf,W ) = Ep(x̃,y)

[
− log

exp
(
f(x̃)⊤wy

)∑K
i=1 exp (f(x̃)

⊤wi)

]
(3)

and

LCE(gf,µ) = Ep(x̃,y)

[
− log

exp
(
f(x̃)⊤µy

)∑K
i=1 exp (f(x̃)

⊤µi)

]
,

(4)

where the linear classifier gf,W is formulated as Wf,W =
[w1, ..., wK ], and the parameter of mean projection head is
µ = [µ1, ..., µK ] whose element µi denotes the mean of the
representations for the inputs with the label i ∈ [K], i.e.,
µi = Ep(x|y=i)[f(x)]. Define the downstream classification
error as

E(f,W ) = Pr
x̄∈D̄

[gf,W (x̄) ̸= yx̄] . (5)

This work uses linear probing in fine-tuning stage, rather
than full fine-tuning which updates all model parameters.

As previously stated, contrastive learning employs data aug-
mentation methods to make preparation for unsupervised
pre-training. There are two default assumptions: 1) the
positive samples pair (x, x+) have the same label yx̄ as the
original sample x̄; 2) any negative sample x−

i has a different

4Mean classifier was first considered by Arora et al. (2019).
They stated that the mean classifier could achieve comparable
performance to learned weights. Note that we don’t use the mean
classifier in our experiments. It is only available as an intermediate
result (Theorem 4.2) in our theoretical analysis.

label from x̄. However, the inherent randomness of both
traditional data augmentations and negative sample sam-
pling may violate these two assumptions in practice. As a
consequence, the pre-training process may be led astray, po-
tentially undermining both the overall training effectiveness
and the quality of the learned representations. This study
primarily focuses on the potential labeling error caused by
false positive augmented samples (Assumption 3.1).

Assumption 3.1 (Labeling Error (HaoChen et al., 2021;
Wang et al., 2024)). For any x̄ ∈ D̄, its latent label yx̄,
and its augmented sample x ∼ p(·|x̄), we assume that the
true label of x is not consistent with yx̄ with the probability
α ∈ (0, 1). That is, Ex̄∈D̄,x∼p(·|x̄) [I [yx ̸= yx̄]] = α.

4. Main Results
4.1. Theoretical Impact of Labeling Error

Definition 4.1 (Augmentation Overlap). Given a collection
of augmentation strategies T , we say that two original sam-
ples x̄, x̄′ ∈ D̄ are T -augmentation overlapped if they have
overlapped views, i.e., ∃t, t′ ∈ T such that t(x̄) = t′(x̄′).

In the analysis of Wang et al. (2022), they proposed the
concept of augmentation overlap. Owing to the label consis-
tency, the positive augmented sample pair (x, x+) were
both labeled yx̄. That is, p(x, x+) = p(x, x+, yx̄) =
p(x, yx̄)p(x

+, yx̄) and p(x, yx̄) =
∫
p(x, yx̄|x̄)p(x̄)dx̄.

Therefore, they analyzed the model performance in the case
that different intra-class samples could have overlapped aug-
mented views (Figure 1 (b)). While under Assumption 3.1,
there arises the phenomenon that different inter-class sam-
ples may also exhibit overlapped augmented views (Figure
1 (c)). Our first theorem (Theorem 4.2) takes these two
augmentation overlap cases into account (the proof can be
found in Appendix C).

To ease the understanding of our analysis, we in-
troduce some necessary notations. Let p(x, y¬x̄ ) =∫
p(x, y¬x̄ |x̄)p(x̄)dx̄ denote the distribution of the posi-

tive augmented sample x not belonging to the class yx̄.
p(x, x+, y¬x̄ ) =

∫
p(x, x+, y¬x̄ |x̄)p(x̄)dx̄ denotes the distri-

bution of the positive augmented sample pair (x, x+) having
one sample not belonging to the class yx̄ at least. In the case
of Theorem 4.2, p(x, x+) = p(x, x+, yx̄) + p(x, x+, y¬x̄ ).

Theorem 4.2 (Bounds of Mean Classification Risk). Let
Assumption 3.1 hold. For any f ∈ F1, g ∈ F2, the gap
between the mean downstream classification risk and the
contrastive risk LCE(gf,µ)− LInfoNCE(f) can be upper
bounded by

Ep(x,y¬
x̄ )

[
f(x)⊤µyx̄

]
+
√

Vy¬
x̄
(f(x)|yx̄)

+
√

V (f(x)|yx̄) +O
(
M− 1

2

)
− log

(
M

K

)

4



How does Labeling Error Impact Contrastive Learning? A Perspective from Data Dimensionality Reduction

and lower bounded by

Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
−
√

V (f(x)|yx̄)−O
(
M− 1

2

)
−1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)− log

(
M + 1

K

)
,

where Vy¬
x̄
(f(x)|yx̄) = Ep(x,y¬

x̄ )

[
∥f(x)− µyx̄

∥2
]
,

V (f(x)|yx̄) = Ep(x,yx̄)

[
∥f(x)− µyx̄∥

2
]
, V (f(x−)|y−)

= Ep(x,y−)

[∥∥f(x)− µy−
∥∥2] are the conditional intra-

class variances of the representations of false positive, true
positive and negative augmented samples, respectively.

From the above results, it can be observed that there are mul-
tiple terms determining the upper and lower bounds of the
mean classification risk LCE(gf,µ), i.e., 1) LInfoNCE(f):
the contrastive risk; 2) Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
: the similar-

ity between the representation f(x) of the false positive
sample x and the mean representation of all samples with la-
bel yx̄; 3) Vy¬

x̄
(f(x)|yx̄), V (f(x)|yx̄), V (f(x−)|y−): the

pseudo conditional intra-class variance 5 of the repre-
sentations of false positive samples and the conditional
variances for true positive and negative samples; 4)
Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
: the similarity between the rep-

resentation pair (f(x), f(x+)), where positive augmented
sample pair (x, x+) contains one false positive sample at
least; 5) O

(
M− 1

2

)
: the order of the approximation error;

6) log
(
M
K

)
: a constant depending on M and K. In terms of

the form of these bounds, our result is more refined than that
of Theorem 4.2 in Wang et al. (2022) as evidenced by these
terms Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
, Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
,

Vy¬
x̄
(f(x)|yx̄) and V (f(x−)|y−). It should be noted that

the assumption of our Theorem 4.2 is milder than the corre-
sponding result in (Wang et al., 2022), which leads to some
latent differences in these terms. We carry out the following
analyses with respect to these terms.

(1) Ep(x,y¬
x̄ )

[
f(x)⊤µyx̄

]
: This term stems from the fact

that data augmentation may bring labeling error. Concretely,
the true label of the augmented sample x in this term is
not yx̄. In the most extreme case where all embedding
vectors are perpendicular to µyx̄

within the hypothesis space
F1, this term will equal 0. Moreover, α = 0 will lead to
Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
= 0. Figure 2 vividly illustrates our

analysis.

(2) Vy¬
x̄
(f(x)|yx̄): Wang et al. (2022) mistook false posi-

tive augmented samples for true positive augmented sam-
ples, consequently resulting in a large conditional posi-
tive intra-class variance. Upon revisiting the definition
µyx̄

= Ep(x|yx̄)[f(x)], these false positive augmented sam-

5Considering the definition Vy¬
x̄
(f(x)|yx̄), it is not a strictly

conditional variance since it just includes all false positive samples.
For convenience, we called it pseudo conditional variance.

Figure 2. The relationship between all fy¬
x̄
(x) and µyx̄ in the hy-

pothesis function space F1, where fy¬
x̄
(x), fyx̄(x) denote the em-

bedding vectors of x without and with the label yx̄, respectively.
The darker the purple of the embedding vector fy¬

x̄
(x), the lower

the absolute similarity |fy¬
x̄
(x)⊤µyx̄ |. The blue dashed arrows

denote all fyx̄(x) used to obtain µyx̄ (the blue solid arrow).

ples do not have an impact on µyx̄
. When we discard these

false positive augmented samples, the remaining positive
augmented samples appear more concentrated around µyx̄

in comparison to those of Wang et al. (2022). Therefore,
as the value of α decreases, this term will progressively
decrease until it reaches 0.

(3) V (f(x−)|y−): Considering the sampling randomness
and the unavailability of the true labels for negative samples,
we let the label y− denote the latent label of the negative
augmented sample x−, irrespective of the class to which
its original sample x̄− pertains. Therefore, compared with
Vy¬

x̄
(f(x)|yx̄), this term remains unaffected by the labeling

error α. We provide Figure 3 to facilitate the understanding
of the difference between the analyses of Vy¬

x̄
(f(x)|yx̄) and

V (f(x−)|y−).

(4) Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
: In light of the definition of

p(x, x+, y¬x̄ ), any positive augmented sample pair (x, x+)
in this term possess different latent labels. Analogous to
Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
, this term is prone to be small and it

equals 0 when α = 0.

To sum up, Theorem 4.2 provides more detailed and prac-
tical bounds of the mean downstream classification risk
LCE(gf,µ) under milder assumption compared to the re-
sults in Wang et al. (2022). Our analysis indicates that the
labeling error α exerts negative impacts on the theoretical
downstream classification risk. Thus, we aim to put forward
some suggestions to mitigate these impacts.

4.2. Dimensionality Reduction as A New Perspective

This subsection investigates the impact of labeling error
on contrastive learning through a new perspective of data
dimensionality reduction. We take Singular Value Decom-
position (SVD, Wall et al. (2003)) as an illustrative example.
For ease of calculation, the randomized SVD (RSVD, Halko
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Figure 3. The impact of the labeling error α on the positive (a) and negative (b) augmented samples. Brown dots, blue dots and grey dots
denote the false positive samples, true positive samples and true negative samples, respectively. Blue arrows denote the decrease of α.

et al. (2011)) algorithm is employed in our experiments.

Definition 4.3 (SVD). For a matrix X ∈ Rm×m′
(without

loss of generality, we let m ≤ m′), its SVD is expressed as
X = USV ⊤, where U = [u1, ..., um] ∈ Rm×m(V =
[v1, ..., vm′ ] ∈ Rm′×m′

) is the left (right) singular ma-
trix, consisting of m(m′) orthonormal column vectors
(eigenvectors of XX⊤(X⊤X)), S = [diag(s1, ..., sm),0]
is composed of a diagonal matrix diag(s1, ..., sm) ∈
Rm×m and a zero matrix 0 with size m × (m′ − m), the
values si(i = 1, ...,m) are the singular value, arranged in
descending order such that s1 ≥ s2 ≥ ... ≥ sm ≥ 0.

In general, we use the truncated version of SVD which is ex-
pressed as X̂q = UqSqV

⊤
q , where Uq = [u1, ..., uq] ∈

Rm×q, Sq = diag(s1, ..., sq), Vq = [v1, ..., vq] ∈
Rm′×q, q ∈ [m]. The following lemma provided by Eckart
& Young (1936) proved that X̂q is the best least squares
lower rank approximation with rank q for a given matrix X .

Lemma 4.4 (Eckart-Young Theorem). Let X be a m×m′

matrix of rank r ∈ [m] with complex elements. Define Pq

as the set of all m×m′ matrices with rank q ∈ [r]. Then,∥∥∥X − X̂q

∥∥∥
F
≤ ∥X −B∥F ,∀B ∈ Pq.

As stated by Kilmer et al. (2021), Lemma 4.4 implies that
the majority of the informational content is captured by the
dominant singular subspaces, i.e., the span of the singular
vectors corresponding to the largest singular values. By de-
fault, we assume a positive correlation between the amount
of information and its semantic relevance. It follows that the
information content corresponding to the largest singular
value s1 should represent the most crucial information in
X . For example, an image is intrinsically represented as
a matrix X . The information associated with s1 is most
significant for distinguishing the true semantic of the image.
Table 1 empirically validates that the larger the singular
value is, the more semantic-related information it encom-
passes. Figure 4 visually presents the differences between
original samples and the samples with data dimensionality
reduction.

Figure 4. Examples from STL-10. The first row shows the original
images and the second row shows the images after taking SVD.

Proposition 4.5. Let a sample and its corresponding sample
after applying SVD be represented as the matrices X and
X̂q ∈ Rm×m′

, respectively. Assume that there are q∗ sin-
gular values associated with semantic-related information.
When q ≥ q∗, under Assumption 3.1 and the augmentation
collection T , the true label of the augmented sample of X̂q

is inconsistent with the latent label of X with the probabil-
ity αq ≤ α. Conversely, when q < q∗, the corresponding
probability satisfies αq > αq∗ .

We define the truncated SVD with q = q∗ as the optimal
truncated SVD. As indicated by Proposition 4.5, we observe
the trend where α initially decreases and then increases. In
the first stage (q ≥ q∗), the decrease of α derives from the re-
moval of semantically irrelevant information. Once q < q∗,
semantic-related information begins to be discarded, giving
rise to the increase of α. Table 2 and Figure 5 (Appendix G)
present empirical performances applying the truncated SVD
with different values of q, aligning with our analysis above.
Notably, the values of q∗ vary across different settings. Ta-
ble 4 (Appendix G) further validates the effectiveness of
SVD across various augmentation strategies 6. Due to the
unavailability of q∗, we select a relatively large value of q,
specifically q = 30 for CIFAR-10 (image size is 32 × 32)
in Table 4. Even though we merely discard the information
corresponding to the two smallest singular values s31, s32,

6Explanations of these augmentation strategies in Table 4 are
provided in Appendix D
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Table 1. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-10 using the truncated SVD which discards
two singular values (si,i+1 denotes we discard the i-th and the i+ 1-th singular values si, si+1 via SVD, T1 = {Random resize crop
(RRC), Color jitter, Random horizontal flip, Random grayscale, Gaussian blur}, bold number indicates the optimal performance of each
experimental group).

T Encoder s1,2 s3,4 s5,6 s7,8 s9,10 s11,12 s15,16 s21,22 s31,32

T1 Resnet-18 57.31 65.63 66.93 67.93 67.97 68.59 68.61 69.20 69.48

the results of multiple augmentation strategies in Table 4 all
exhibit some non-negligible improvements, with an average
increase of 0.97%.

To begin, we introduce an assumption related to SVD, i.e.,
(ϵq∗ , ϵq)-alignment for any false positive sample pair.

Assumption 4.6 ((ϵq∗ , ϵq)-Alignment for Any False Pos-
itive Sample Pair). Let Assumption 3.1 hold. When per-
forming SVD with the truncated value q, the encoder f with
the empirical InfoNCE loss L̂InfoNCE(f) (2) can align any
positive sample pair (x, x+) ∼ p(x, x+, y¬x̄ ) such that their
distance in the embedding space lies within [ϵ(αq∗), ϵ(αq)].
For simplicity, let ϵq∗ = ϵ(αq∗), ϵq = ϵ(αq). Consequently,
the alignment satisfies ϵq∗ ≤ ∥f(x)− f(x+)∥ ≤ ϵq .

Intuitively, labeling error can affect the relationship between
the embedding vectors of a positive augmented sample
pair. Thus, we introduce the (ϵq∗ , ϵq)-alignment assump-
tion, which is inspired by the weak alignment definition
proposed by Wang et al. (2022) (Definition B.1 in Appendix
B.1). Furthermore, Assumption 4.6 means that the encoder
f , optimized under the loss L̂InfoNCE(f), can align any
(x, x+) ∼ p(x, x+, yx̄) with the maximum distance ϵq∗ in
embedding space, that is, ∥f(x)− f(x+)∥ < ϵq∗ .

Theorem 4.7, stated as below, is derived based on Assump-
tion 4.6, which theoretically clarifies the effectiveness of
data dimensionality reduction.

Theorem 4.7. Given the conditions of Theorem 4.2 and As-
sumption 4.6, after taking the truncated SVD on D̄, the mean
downstream classification risk LCE(gf,µ)−LInfoNCE(f)
with the encoder f can be upper bounded by

ϵq∗ + ϵq −
1

2
ϵ2q∗ +O

(
M− 1

2

)
− log

(
M

eK

)

and lower bounded by

−ϵq∗ − ϵ2q∗ − 1

2
ϵ2q −O

(
M− 1

2

)
− log

(
M + 1

K

)
.

When q = q∗, the two bounds are ϵq∗ + O
(
M− 1

2

)
−

log
(

M
eK

)
and −ϵq∗ − ϵ2q∗ −O

(
M− 1

2

)
− log

(
M+1
K

)
.

4.3. Further Understanding of Labeling Error

Next, we will delve deeper into the theoretical impact of
SVD on the downstream classification error E(f,W ) in (5)
through the lens of spectral graph theory. In the subsequent
analysis, the spectral contrastive loss Lspe(f) is adopted,
which is proposed in HaoChen et al. (2021) and similar
to the InfoNCE loss. The augmentation graph, defined as
below, is involved in our analysis.
Definition 4.8 (Augmentation Graph, HaoChen et al.
(2021)). Given an original dataset D̄ and an augmentation
collection T , there exist n augmented samples that form the
augmentation dataset

Daug = {x|x = t(x̄), x̄ ∈ D̄, t ∈ T }.

An augmentation graph G is obtained by taking the n aug-
mented samples as the graph vertices and assuming there
exists an edge between two vertices x, x′ ∈ Daug (if they
can be generated from a random original sample x̄ ∈ D̄).

According to spectral graph theory, we define A ∈ Rn×n

as the adjacency matrix of the augmentation graph G.
For two augmented samples x, x′ ∈ Daug, the element
A(x, x′) denotes the marginal probability of generating
x, x′ from a random original sample x̄ ∈ D̄. Formally,
A(x, x′) = Ex̄∈D̄ [p(x|x̄)p(x′|x̄)]. The corresponding nor-
malized graph Laplacian matrix is L = I − D− 1

2AD− 1
2 ,

where D represents a diagonal degree matrix with the diag-
onal element Dx,x =

∑
x′∈Daug

A(x, x′). The eigenvalues
of L are denoted as {λi}ni=1, where 0 = λ1 ≤ ... ≤ λn ≤ 2.

HaoChen et al. (2021) first established an upper bound
related to α and λk+1 for the downstream classifica-
tion error of the majority voting classifier ḡf,W (x̄) =
argmaxi∈[K] Pr

x∼p(·|x̄)
[gf,W (x) = i] . Building upon their

analysis framework, Wang et al. (2024) suggested using
strong data inflation and weak data augmentation to guaran-
tee a small value of α and a large value of λk+1. We aim to
replace the complex data inflation with SVD.

Our experimental results in Table 5 and Table 6 (Appendix
G) demonstrate that the benefit of employing SVD can catch
up with that of data inflation. Moreover, we theoretically
provides the upper bound of the downstream classification
error under the application of the truncated SVD with the
hyper-parameter q.

7
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Table 2. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) using the truncated SVD with different truncated
parameter q.

T Encoder Dataset w/o SVD q = 30 q = 25 q = 20 q = 15 q = 10

T1 Resnet-18 CIFAR-10 68.82 69.48 69.75 69.87 69.01 68.26

T1 Resnet-50 CIFAR-10 63.20 63.36 63.96 62.23 60.97 60.06

RRC Resnet-18 CIFAR-10 58.56 58.83 58.67 58.61 58.54 58.32

T1 Resnet-18 CIFAR-100 38.48 38.81 40.10 39.05 38.98 38.10

T Encoder Dataset w/o SVD q = 90 q = 70 q = 50 q = 30 q = 10

T1 Resnet-18 STL-10 71.54 73.12 72.29 71.10 70.04 67.52

Theorem 4.9 (Bounds of Classification Error). Let Assump-
tion 3.1 hold. For the empirical optimal encoder f∗, after
taking the truncated SVD with hyper-parameter q on the
original dataset D̄, there exists a linear head W with norm
∥W ∗∥F ≤ 1/(1− λk,q) such that

E(f∗,W ∗) ≤ 4αq

λk+1,q
+ 8αq,

where k denotes the dimension of embedding space and
λk+1,q denotes the k + 1-th eigenvalues of L.

Note that there are two differences between our Theorem
4.9 and Theorem C.3 of HaoChen et al. (2021): 1) we take
the truncated SVD on original samples; 2) we evaluate the
classification error for the linear classifier gf,W rather than
the majority voting classifier ḡ of HaoChen et al. (2021).

Wang et al. (2024) concluded that stronger data inflation
solely enhances graph connectivity (larger λk+1) without
affecting labeling error. When the graph connectivity is
sufficient, only weak data augmentation is necessary to
achieve a small labeling error. However, Table 5 and Table
6 reveal that the weak augmentation employed by Wang
et al. (2024) still induces an non-negligible labeling error.
Compared with Theorem 4.1 in Wang et al. (2024), Theorem
4.9 further introduces SVD to offer an improvement by
reducing α to αq. In the following, we will analyze the
impact of SVD on αq and λk+1,q involved in Theorem 4.9.

(1) αq: As discussed behind Proposition 4.5, αq exhibits a
trend of first decreasing and then increasing as the decrease
of q ∈ [m]. The value of αq reaches its optimal value αq∗

when q = q∗.

(2) λk+1,q: As mentioned earlier, {λi}ni=1 are the eigenval-
ues of the normalized graph Laplacian matrix L. Based on
the definition of L, it can be known that {1− λi}ni=1 are
the eigenvalues of the adjacency matrix A, where 1− λk+1

is the k+1-th largest eigenvalue. The definition of A(x, x′)
demonstrates that the implementation of SVD on origi-
nal samples will not lead to a decrease in the elements

on the main diagonal of A. In other words, the trace
tr(A) is non-decreasing and remains less than 1, formally,
tr(A) =

∑n
i=1 (1− λi,q) ≤ 1. Therefore, the application

of SVD may lead to λk+1,q ≤ λk+1, deteriorating the bound
of Theorem 4.9. It appears that choosing a large dimension
k of embedding space may alleviate this deterioration as
much as possible by increasing graph connectivity. When
the value of k is not sufficiently large, such as k ≤ 512, the
corresponding results in Table 7 (Appendix G) may reveal
this trend. However, Table 7 also indicates that an overly
large value of k might cause the degeneration of the down-
stream classification performance. Interestingly, similar
optimal values of k have been observed across experiments
on different datasets (CIFAR-10, CIFAR-100 and STL-10)
and different encoders (Resnet-18 and Resnet-50). Exper-
imental results with InfoNCE loss (Table 8 in Appendix
G) also reveal this phenomenon. Therefore, there are still
some results that do not align with our analysis. As stated
in Limitation (Appendix F), we leave the exploration of the
underlying reasons for future work. In this paper, we pro-
pose selecting a moderate value of k, such as 512 or 1024.
Additionally, we recommend adopting data inflation similar
to that in Wang et al. (2024) to mitigate the negative impact
of SVD on λ, which is validated by the experiments in the
second rows of Table 5 and Table 6 (Appendix G).

In summary, an augmentation strategy is proposed and vali-
dated to ensure large graph connectivity and small labeling
error, where the key building blocks include using moderate
embedding dimension, data inflation, weak augmentation
and SVD.

5. Conclusions
This paper investigated theoretically the impact of labeling
error on the downstream classification performance of con-
trastive learning. The derived upper and lower bounds of
the downstream classification risk are both affected by the
labeling error. To mitigate these negative impacts, we first
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propose removing the semantically irrelevant information
of the original data from the perspective of data dimension-
ality reduction. Specifically, the classical SVD method is
employed to offer both theoretical and empirical evidence
to support the effectiveness of dimensionality reduction.
Except for the advantages of conducting SVD on the orig-
inal data, we also theoretically find that SVD may cause
the deterioration of downstream classification accuracy by
decreasing the graph connectivity of augmentation graph.
Based on the aforementioned analysis, we provide an aug-
mentation strategy that we should use moderate embedding
dimension (such as k = 512, 1024), data inflation, weak
augmentation and SVD to ensure large graph connectiv-
ity and small labeling error, ultimately improving model
performance.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Notations
The main notations of this paper are summarized in Table 3.

Table 3. Summary of main notations involved in this paper.

Notations Descriptions

D̄ the original unlabeled dataset defined as {x̄1, ..., x̄n1
}, x̄i ∈ Rd

D̃ the labeled dataset defined as {(x̃1, y1), ..., (x̃n2 , yn2)}, x̃i ∈ Rd, yi ∈ [1, ...,K]

p(x̄|y), p(x̃|y) the distributions of the samples x̄, x̃ conditioned on the label y

p(x, x+) the joint distribution of the positive augmented sample pair (x, x+)

p(x, y¬x̄ ) the distribution of the positive augmented sample x not belonging to the class yx̄

p(x, x+, y¬x̄ ) the distribution of (x, x+) having one sample not belonging to the class yx̄ at least

{x−
i }Mi=1 M negative augmented samples

F1,F2 the functional spaces of the encoder f and the linear projection head g

k the dimension of embedding vector

K the number of labels for downstream classification task

T the data augmentation set defined as {t|t : Rd → Rd}

LInfoNCE(f) population InfoNCE loss

L̂InfoNCE(f) empirical InfoNCE loss

f∗ the empirical optimal encoder for minf∈F1 L̂InfoNCE(f)

LCE(g) cross entropy (CE) loss

gf,W , gf,µ linear classifier and mean classifier

W the weight of the linear projection head g defined as [w1, ..., wK ]

µ the parameter of mean projection head defined as [µ1, ..., µK ]

E(f,W ) the downstream classification error defined as Pr
x̄∈D̄

[gf,W (x̄) ̸= yx̄]

α the labeling error defined as Ex̄∈D̄,x∼p(·|x̄) [I [yx ̸= yx̄]]

Vy¬(f(x)|y) the variance of the representations for false positive augmented samples

V (f(x)|y) the variance of the representations for true positive augmented samples

V (f(x−)|y−) the variance of the representations for negative augmented samples

m,m′ the size of the matrix X ∈ Rm×m′
(for example an image)

U(V ) the left (right) singular matrix with m(m′) orthonormal column vectors

S the diagonal matrix whose diagonal elements are singular values

q, q∗ the truncated parameter of truncated SVD and its optimal value

Lspe spectral contrastive loss

Daug, n the augmentation dataset defined as {x|x = t(x̄), x̄ ∈ D̄, t ∈ T } and its number

G, A, L augmentation graph, its adjacency matrix and normalized graph Laplacian matrix

λ the eigenvalues of L

12
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B. Lemmas
Lemma B.1 (Lemma A.2 in Wang et al. (2022)). For LSE := logEp(z)

[
exp

(
f(x)⊤g(z)

)]
, we denote its (biased) Monte

Carlo estimate with M random samples zi ∼ p(z), i = 1, ...,M as ˆLSEM = log 1
M

∑M
i=1 exp

(
f(x)⊤g(zi)

)
. Then,

approximation error can be upper bounded in expectation as

Ex,zi

[∣∣∣ ˆLSEM − LSE
∣∣∣] ≤ O

(
M− 1

2

)
.

Lemma B.2 (Equation (11) in Wang et al. (2022)). Let a projector f ∈ F : Rd → Sk−1 map from the d-dimensonal input
space to a unit hypersphere in the k-dimensional space. For x, x+ ∈ Rd, we have

f(x)
(
f(x+)− µy

)
≤
(

f(x+)− µy

∥f(x+)− µy∥

)⊤ (
f(x+)− µy

)
=
∥∥f(x+)− µy

∥∥ ,
where µy = Ep(x|y)[f(x)], y denotes label.

Lemma B.3 (Corollary 3.5 in Budimir et al. (2000)). Let the function g : Rd → R be a differentiable convex and L-smooth
mapping. Then, for any z ∈ Rd, we have

0 ≤ Ep(z) [g(z)]− g(Ep(z) [z]) ≤ L

d∑
j=1

V (z(j)) = LV (z),

where z(j) denotes the j-th dimension of z, V (z(j)) denotes the variance of z(j).

Lemma B.4 (Theorem 4.5 in Arora et al. (2019)). With probability at least 1− δ, for any f∗ ∈ argminf∈F1
L̂InfoNCE(f)

and g ∈ F2, there holds that LCE(gf∗,W ) ≤ LCE(gf∗,µ).

Lemma B.5 (Theorem C.3 in HaoChen et al. (2021)). Assume the set of augmented data Daug is finite. Let f∗ ∈
argminf :D→Rk be a minimizer of the population spectral contrastive loss Lspe(f). Then, there exists a linear head W ∗

with norm ∥W ∗∥F ≤ 1/(1− λk) such that

Pr
x̄∈D̄,x∈p(·|x̄)

[gf∗,W∗(x) ̸= yx̄] ≤
4α

λk+1
+ 8α.

C. Proofs of main results
Theorem C.1 (Theorem 4.2 (restated)). Let Assumption 3.1 hold. For any f ∈ F1, g ∈ F2, the gap between the mean
downstream classification risk and the contrastive risk LCE(gf,µ)− LInfoNCE(f) can be upper bounded by

Ep(x,y¬
x̄ )

[
f(x)⊤µyx̄

]
+
√
Vy¬

x̄
(f(x)|yx̄) +

√
V (f(x)|yx̄) +O

(
M− 1

2

)
− log

(
M

K

)
and lower bounded by

Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
−
√

V (f(x)|yx̄)−O
(
M− 1

2

)
− 1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)− log

(
M + 1

K

)
,

where Vy¬
x̄
(f(x)|yx̄) = Ep(x,y¬

x̄ )

[
∥f(x)− µyx̄∥

2
]
, V (f(x)|yx̄) = Ep(x,yx̄)

[
∥f(x)− µyx̄∥

2
]
, V (f(x−)|y−) =

Ep(x,y−)

[∥∥f(x)− µy−
∥∥2] are the conditional intra-class variances of the representations of false positive, true posi-

tive and negative augmented samples, respectively.

Proof of Theorem 4.2: For a given training sample x̄ and its unavailable label yx̄, its positive augmented samples are x, x+

and M negative samples are x−
i , i = 1, ...,M (x−

i belongs to any class in the K classes). We let µyx̄
= Ep(x|yx̄) [f(x)].

Under our assumptions, it is easy to know that the labels of x and x+ may be different from their original sample x̄. In other
words, data augmentation may change the semantic of x̄ due to the stochastic augmentation. Thus, we denote p(x, x+, yx̄)

13
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the distribution of (x, x+) with the same label yx̄ and denote p(x, x+, y¬x̄ ) the distribution of (x, x+) with at least one
augmented sample having the label different from yx̄. Then, we have the following lower bounds of the InfoNCE loss

LInfoNCE(f)

=Ep(x,x+)Ep(x−
i )

[
− log

ef(x)
⊤f(x+)

ef(x)⊤f(x+) +
∑M

i=1 e
f(x)⊤f(x−

i )

]

=Ep(x,x+)Ep(x−
i )

[
log

(
1 +

∑M
i=1 exp

(
f(x)⊤f(x−

i )
)

exp (f(x)⊤f(x+))

)]

≥− Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
Ep(x−

i )

[
log

M∑
i=1

exp
(
f(x)⊤f(x−

i )
)]]

=− Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
Ep(x−

i )

[
log

1

M

M∑
i=1

exp
(
f(x)⊤f(x−

i )
)]]

+ logM

(1)

≥ − Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
log

1

M
Ep(x−

i )

[
M∑
i=1

exp
(
f(x)⊤f(x−

i )
)]]

−O
(
M− 1

2

)
+ logM

=− Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
logEp(x−)

[
exp

(
f(x)⊤f(x−)

)]]
−O

(
M− 1

2

)
+ logM

=− Ep(x,x+,yx̄)

[
f(x)⊤f(x+)

]
− Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
+ Ep(x)

[
logEp(y−)

[
Ep(x−|y−)

[
exp

(
f(x)⊤f(x−)

)]]]
−O

(
M− 1

2

)
+ logM

(2)

≥ − Ep(x,x+,yx̄)

[
f(x)⊤

(
µyx̄

+ f(x+)− µyx̄

)]
− Ep(x,x+,y¬

x̄ )

[
f(x)⊤

(
µyx̄

+ f(x+)− µyx̄

)]
+ Ep(x)

[
logEp(y−)

[
exp

(
f(x)⊤µy−

)]]
−O

(
M− 1

2

)
+ logM

=− Ep(x,x+,yx̄)

[
f(x)⊤µyx̄

+ f(x)⊤
(
f(x+)− µyx̄

)]
− Ep(x,x+,y¬

x̄ )

[
f(x)⊤µyx̄

+ f(x)⊤
(
f(x+)− µyx̄

)]
+ Ep(x)

[
logEp(y−)

[
exp

(
f(x)⊤µy−

)]]
−O

(
M− 1

2

)
+ logM

(3)

≥ − Ep(x,x+,yx̄)

[
f(x)⊤µyx̄ +

∥∥f(x+)− µyx̄

∥∥]+ Ep(x)

[
logEp(y−)

[
exp

(
f(x)⊤µy−

)]]
−O

(
M− 1

2

)
+ logM − Ep(x,x+,y¬

x̄ )

[
f(x)⊤µyx̄

+
∥∥f(x+)− µyx̄

∥∥]
(4)

≥ − Ep(x,yx̄)

[
f(x)⊤µyx̄

]
−
√

Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]
+ Ep(x)

[
log

1

K

K∑
k=1

exp
(
f(x)⊤µk

)]

−O
(
M− 1

2

)
+ logM − Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
−
√

Ep(x,y¬
x̄ )

[
∥f(x)− µyx̄

∥2
]

=− Ep(x,yx̄)

[
f(x)⊤µyx̄

− log

K∑
k=1

exp
(
f(x)⊤µk

)]
−
√

Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]

−O
(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
−
√
Ep(x,y¬

x̄ )

[
∥f(x)− µyx̄∥

2
]

=LCE(gf,µ)−
√

Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]
−O

(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
−
√
Ep(x,y¬

x̄ )

[
∥f(x)− µyx̄

∥2
]
,

where inequality (1) derives from Lemma B.1, inequality (2) is due to the Jensen’s inequality of convex function (exponential
function exp), inequality (3) follows Lemma B.2, and inequality (4) is from the Cauchy–Schwarz inequality and the defini-
tions of p(x, x+) and y¬x̄ . Let V (f(x)|yx̄) = Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]

and Vy¬
x̄
(f(x)|yx̄) = Ep(x,y¬

x̄ )

[
∥f(x)− µyx̄

∥2
]
.
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We can get the upper bound of LCE(gf,µ) + log
(
M
K

)
− LInfoNCE(f) as

LCE(gf,µ) + log

(
M

K

)
− LInfoNCE(f)

≤Ep(x,y¬
x̄ )

[
f(x)⊤µyx̄

]
+
√
Vy¬

x̄
(f(x)|yx̄) +

√
V (f(x)|yx̄) +O

(
M− 1

2

)
.

Next, we will prove the corresponding lower bound.

LCE(gf,µ)− Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
=− Ep(x,yx̄)

[
f(x)⊤µyx̄

]
+ Ep(x)

[
log

K∑
k=1

exp
(
f(x)⊤µk

)]
− Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
=− Ep(x,yx̄)

[
f(x)⊤µyx̄

]
+ Ep(x)

[
log

1

K

K∑
k=1

exp
(
f(x)⊤µk

)]
+ logK − Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
=− Ep(x,x+,yx̄)

[
f(x)⊤µyx̄

]
+ Ep(x)

[
logEp(y)

[
exp

(
f(x)⊤µy−

)]]
+ logK − Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
(1)

≥ − Ep(x,x+,yx̄)

[
f(x)⊤f(x+) + f(x)⊤

(
µyx̄

− f(x+)
)]

+ Ep(x)

[
Ep(yx̄,y

−
i )

[
log

1

M + 1

(
exp

(
f(x)⊤µyx̄

)
+

M∑
i=1

exp
(
f(x)⊤µy−

i

))]]
−O

(
M− 1

2

)
+ logK − Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
(2)

≥ − Ep(x,x+,yx̄)

[
f(x)⊤f(x+)

]
− Ep(x,yx̄) [∥f(x)− µyx̄∥]

+ Ep(x)

[
Ep(yx̄,y

−
i )

[
log

1

M + 1

(
exp

(
f(x)⊤µyx̄

)
+

M∑
i=1

exp
(
f(x)⊤µy−

i

))]]
−O

(
M− 1

2

)
+ logK − Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
=− Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
Ep(yx̄,y

−
i )

[
log

1

M + 1

(
exp

(
f(x)⊤µyx̄

)
+

M∑
i=1

exp
(
f(x)⊤µy−

i

))]]
− Ep(x,yx̄) [∥f(x)− µyx̄

∥]−O
(
M− 1

2

)
+ logK

=− Ep(x,x+)

[
f(x)⊤f(x+)

]
− Ep(x,yx̄) [∥f(x)− µyx̄

∥]−O
(
M− 1

2

)
+ logK

+ Ep(x)

[
Ep(yx̄,y

−
i )

[
log

1

M + 1

(
Ep(x+,x−

i |yx̄,y
−
i )

[
exp

(
f(x)⊤µyx̄

)
+

M∑
i=1

exp
(
f(x)⊤µy−

i

)])]]
(3)

≥ − Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
Ep(yx̄,y

−
i )

[
Ep(x+,x−

i |yx̄,y
−
i )

[
log

1

M + 1

(
exp

(
f(x)⊤f(x+)

)
+

M∑
i=1

exp
(
f(x)⊤f(x−

i )
))]]]

− 1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)−

√
Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]
−O

(
M− 1

2

)
+ logK

=− Ep(x,x+)

[
f(x)⊤f(x+)

]
+ Ep(x)

[
Ep(x+,x−

i )

[
log

(
exp

(
f(x)⊤f(x+)

)
+

M∑
i=1

exp
(
f(x)⊤f(x−

i )
))]]

− 1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)−

√
Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]
−O

(
M− 1

2

)
− log

(
M + 1

K

)
=LInfoNCE(f)−

1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)−

√
Ep(x,yx̄)

[
∥f(x)− µyx̄

∥2
]
−O

(
M− 1

2

)
− log

(
M + 1

K

)
,
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where the inequalities (1), (2) are similar to the proof of the above upper bound, the inequality (3) follows Lemma B.3
7 and the Cauchy–Schwarz inequality. Let V (f(x)|yx̄) = Ep(x,yx̄)

[
∥f(x)− µyx̄∥

2
]
. We can get the lower bound of

LCE(gf,µ) + log
(
M+1
K

)
− LInfoNCE(f) as

LCE(gf,µ) + log

(
M + 1

K

)
− LInfoNCE(f)

≥Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
−
√
V (f(x)|yx̄)−

1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)−O

(
M− 1

2

)
.

□

By integrating the Theorem 4.5 of Arora et al. (2019), we can directly derive Corollary C.2 which measures the upper bound
of the classification risk LCE(gf∗,W ).

Corollary C.2. Under the condition of Theorem 4.2, the downstream classification risk LCE(gf∗,W ) + log
(
M
K

)
can be

upper bounded by LInfoNCE(f
∗) + Ep(x,y¬

x̄ )

[
f∗(x)⊤µyx̄

]
+
√
Vy¬

x̄
(f∗(x)|yx̄) +

√
V (f∗(x)|yx̄) +O

(
M− 1

2

)
.

Proof of Corollary C.2: According to Lemma B.4, we can know that, for any f∗ ∈ argminf∈F1 L̂InfoNCE(f) and
g ∈ F2, the downstream classification risk LCE(gf∗,W ) with the linear classifier W can be bounded by the mean downstream
classification risk LCE(gf∗,µ) with the mean classifier µ. And, from Theorem 4.2, we can obtain the upper bound of
the mean downstream classification risk LCE(gf∗,µ) as LInfoNCE(f

∗) + Ep(x,y¬
x̄ )

[
f∗(x)⊤µyx̄

]
+
√
Vy¬

x̄
(f∗(x)|yx̄) +√

V (f∗(x)|yx̄) +O
(
M− 1

2

)
− log

(
M
K

)
. Therefore, the upper bound of Corollary C.2 is proved. □

Proposition C.3 (Proposition 4.5 (restated)). Let a sample and its corresponding sample after applying SVD be represented
as the matrices X and X̂q ∈ Rm×m′

, respectively. Assume that there are q∗ singular values associated with semantic-related
information. When q ≥ q∗, under Assumption 3.1 and the augmentation collection T , the true label of the augmented sample
of X̂q is inconsistent with the latent label of X with the probability αq ≤ α. Conversely, when q < q∗, the corresponding
probability satisfies αq > αq∗ .

Proof of Proposition 4.5: In practice, each sample possesses a unique amount of semantic-related information content.
While for convenience, we assume that each sample can be decomposed into q∗ singular values capturing semantic-related
information. It means that each sample has a unique value of q∗. Under Lemma 4.4 and the default assumption that there is
a positive correlation between the amount of information and the importance of information, we can demonstrate that the
larger the singular value, the more semantic-related the information captured in the corresponding subspace. As we can see,
the observations in Table 1 show the trend of increase of downstream classification accuracy from the experiment discarding
the singular values s1, s2 to the one discarding s31, s32, which empirically validates our conclusion. Based on the above
analysis, we can derive that truncated SVD firstly discards semantically irrelevant information that leads to labeling error.
When q takes the value q∗, samples don’t have any semantically irrelevant information. When q < q∗, labeling error will
increase due to the loss of semantic-related information.

□

Theorem C.4 (Theorem 4.7 (restated)). Given the conditions of Theorem 4.2 and Assumption 4.6, after taking the truncated
SVD on D̄, the mean downstream classification risk LCE(gf,µ)− LInfoNCE(f) with the encoder f can be upper bounded
by

ϵq∗ + ϵq −
1

2
ϵ2q∗ +O

(
M− 1

2

)
− log

(
M

eK

)
and lower bounded by

−ϵq∗ − ϵ2q∗ − 1

2
ϵ2q −O

(
M− 1

2

)
− log

(
M + 1

K

)
.

When q = q∗, the two bounds are ϵq∗ +O
(
M− 1

2

)
− log

(
M
eK

)
and −ϵq∗ − ϵ2q∗ −O

(
M− 1

2

)
− log

(
M+1
K

)
.

7Wang et al. (2022) proved the convex function logsumexp is 1
2

-smooth.
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Proof of Theorem 4.7:

Upper bound: From the proof of Theorem 4.2, we can get that

LInfoNCE(f)

≥− Ep(x,x+,yx̄)

[
f(x)⊤µyx̄

+
∥∥f(x+)− µyx̄

∥∥]+ Ep(x)

[
logEp(y−)

[
exp

(
f(x)⊤µy−

)]]
−O

(
M− 1

2

)
+ logM − Ep(x,x+,y¬

x̄ )

[
f(x)⊤µyx̄

+
∥∥f(x+)− µyx̄

∥∥]
≥LCE(gf,µ)− Ep(x,yx̄) [∥f(x)− µyx̄

∥]−O
(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
− Ep(x,y¬

x̄ ) [∥f(x)− µyx̄∥]

=LCE(gf,µ)− Ep(x,yx̄)

[∥∥Ep(x+|yx̄)[f(x)− f(x+)]
∥∥]−O

(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
− Ep(x,y¬

x̄ )

[∥∥Ep(x+|yx̄)[f(x)− f(x+)]
∥∥]

(1)

≥LCE(gf,µ)− Ep(x,x+,yx̄)

[∥∥f(x)− f(x+)
∥∥]−O

(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
− Ep(x,y¬

x̄ )

[
Ep(x+|yx̄)

[∥∥f(x)− f(x+)
∥∥]]

(2)

≥LCE(gf,µ)− ϵq∗ − ϵq −O
(
M− 1

2

)
+ log

(
M

K

)
− Ep(x,y¬

x̄ )

[
f(x)⊤µyx̄

]
(3)

≥LCE(gf,µ)− ϵq∗ − ϵq −O
(
M− 1

2

)
+ log

(
M

K

)
−
(
1− 1

2
ϵ2q∗

)
,

where the inequality (1) is derived from the Cauchy–Schwarz inequality, the inequality (2) is due to Assumption 4.6 and the
inequality (3) is caused by ϵ2q∗ ≤ ∥f(x)− µyx̄

∥2 = ∥f(x)∥2 + ∥µyx̄
∥2 − 2f(x)⊤µyx̄

and ∥f(x)∥ ≤ 1.

Then,

LCE(gf,µ) + log

(
M

eK

)
− LInfoNCE(f) ≤ ϵq∗ + ϵq −

1

2
ϵ2q∗ +O

(
M− 1

2

)
.

Lower bound: Similarly, we can get that

LCE(gf,µ)− Ep(x,x+,y¬
x̄ )

[
f(x)⊤f(x+)

]
≥LInfoNCE(f)−

1

2
V (f(x)|yx̄)−

1

2
V (f(x−)|y−)− Ep(x,yx̄) [∥f(x)− µyx̄

∥]−O
(
M− 1

2

)
− log

(
M + 1

K

)
≥LInfoNCE(f)−

1

2
ϵ2q∗ − 1

2
ϵ2q∗ − ϵq∗ −O

(
M− 1

2

)
− log

(
M + 1

K

)
.

That is

LCE(gf,µ) + log

(
M + 1

K

)
− LInfoNCE(f)

≥− ϵ2q∗ − ϵq∗ −O
(
M− 1

2

)
+ Ep(x,x+,y¬

x̄ )

[
f(x)⊤f(x+)

]
≥− ϵ2q∗ − ϵq∗ −O

(
M− 1

2

)
+

1

2
Ep(x,x+,y¬

x̄ )

[
∥f(x)∥2 + ∥f(x+)∥2

]
− 1

2
ϵ2q

≥− ϵ2q∗ − ϵq∗ −O
(
M− 1

2

)
− 1

2
ϵ2q,

where the second inequality is due to ∥f(x)− f(x+)∥2 = ∥f(x)∥2 + ∥f(x+)∥2 − 2f(x)⊤f(x+) ≤ ϵ2q . □

Corollary C.5. Under the condition of Theorem 4.7, the downstream classification risk LCE(gf∗,W ) + log
(

M
e2K

)
can be

upper bounded by LInfoNCE(f
∗) + ϵq∗ +2ϵq − ϵ2q +O

(
M− 1

2

)
. When q = q∗, the bound is LInfoNCE(f

∗) + ϵq∗ − 2+

O
(
M− 1

2

)
.
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Theorem C.6 (Theorem 4.9 (restated)). Let Assumption 3.1 hold. For the empirical optimal encoder f∗, after taking
the truncated SVD with hyper-parameter q ∈ [m] on the original dataset D̄, there exists a linear head W with norm
∥W ∗∥F ≤ 1/(1− λk,q) such that E(f∗,W ∗) ≤ 4αq

λk+1,q
+ 8αq , where k denotes the dimension of embedding space.

Proof of Theorem 4.9: Lemma B.5 states that

Pr
x̄∈D̄,x∈p(·|x̄)

[gf∗,W∗(x) ̸= yx̄] ≤
4α

λk+1
+ 8α.

We rewrite the definition E(f,W ) = Pr
x̄∈D̄

[gf,W (x̄) ̸= yx̄] as Pr
x̄∈D̄,x∈p(x̄|x̄)

[gf,W (x) ̸= yx̄]. Thus, after taking the truncated

SVD with hyper-parameter q ∈ [m] on the original dataset D̄,

E(f∗,W ∗) = Pr
x̄∈D̄,x∈p(x̄|x̄)

[gf∗,W∗(x) ̸= yx̄] ≤ Pr
x̄∈D̄,x∈p(·|x̄)

[gf∗,W∗(x) ̸= yx̄] ≤
4αq

λk+1,q
+ 8αq.

□

D. Experimental setting
Details of models and datasets. For the backbone structure, we use three variants of Resnet, i.e., Resnet-18, Resnet-50,
and Resnet-152, where the dimensions of embedding are chosen from 128, 256, 512, 1024, and 2048. We use two-layers
multilayer perceptron (MLP) to be the projection layers. For the datasets, we employ three benchmark datasets, i.e.,
CIFAR-10, CIFAR-100, and STL-10.

Details of pre-training and fine-tuning. We do pre-training for 100 epochs with batch size 256 using the optimizer Adam.
The optimizer has the weight decay parameter 0.0004 and learning rate 0.0003. The learning rate decreases following the
cosine schedule. In this stage, the dimension of the final output of the model is set as 128. For the downstream fine-tuning
process, we train with a small number of labeling samples for 100 epochs with batch size 256 using the optimizer Adam
with weight decay parameter 0.0008 and learning rate 0.0003. We use 1 RTX 2070 GPU for all experiments.

Details of these experiments with inflation Considering fair comparison, we do pre-training for 33 epochs with batch size
256 when we make data inflation. The settings of fine-tuning are the same for all experiments.

Details of augmentations In the main text, we provide several groups of augmentation strategies whose components are
listed. We need to make the explanations that these abbreviations of augmentations without specific parameter settings adopt
their default settings. For example, “RRC” (instead of “RRC(0.08, 0.5)”) adopts the default parameters “(0.08, 1.0)”, where
the range “(0.08, 1.0)” denotes the proportion of preserved area after cropping. “Color jitter” (instead of “Color jitter(0.5,
0.4)”) adopts the default parameters “(1.0, 0.8)”, where “1.0” denotes a scale parameter and “0.8” denotes a probability
parameter. “Cutout” (instead of “Cutout(0.5, 1.0)”) adopts the default parameters “(0.1, 1.0)”, where the range “(0.1, 1.0)”
denotes the coordinate parameters used to cut samples.

E. Discussions with related works
Huang et al. (2023b) proposed the concept of augmented distance and provided some upper bounds revealing the theoretical
effect of augmented distance on understream classification performance. Specifically, they found that the classification
performance of contrastive SSL is related to three key factors: alignment of positive samples, divergence of class centers,
and concentration of augmented data. Theorem 2 in our work provided both upper and lower bound, which can not only
give similar conclusions but also reveal some additional factors. Firstly, the term V (f(x)|yx̄) implies the alignment of
positive samples. Secondly, the term Vy¬

x̄
(f(x)|yx̄) stems from labeling error caused by data augmentation, which is similar

to the concentration of augmented data. Thirdly, the term V (f(x−)|y−) implies the alignment of negative samples, which
is not considered by Huang et al. (2023b). More importantly, we further improved the bounds of Theorem 2 via data
dimensionality reduction and provided the corresponding theoretical analysis and empirical observations (Section 4.2).

Cui et al. (2023) established a theoretical framework for weakly supervised contrastive learning for the first time. Their
results revealed that 1) semi-supervised information improves the error bound compared with purely unsupervised contrastive
learning by using all labeled samples; 2) joint training of supervised and unsupervised contrastive learning does not improve
the error bound compared with purely supervised or purely unsupervised contrastive learning. Although weakly supervised
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contrastive learning is not the topic of our work, the labeling error considered by our work is analogous to a type of weak
supervision, i.e., noisy-labeled information. Therefore, we will extend the theoretical analysis of this work to weakly
supervised contrastive learning in our future work. Besides, Cui et al. (2023) and our work both gave the suggestion that we
should choose a moderate feature dimension k, which enhances the credibility of our suggestion.

F. Limitations
The limitations of our work are listed as follows:

• This paper selects the embedding dimension k = 512 or k = 1024 as an example of a moderate choice. Nevertheless,
we’ve observed that the optimal values of k vary somewhat across different experimental settings, showing a degree of
inconsistency. Delving into the underlying reasons for this inconsistency holds great interest since it has the potential
to provide valuable insights that would be beneficial for the design of more effective algorithms.

• This paper pioneers in theoretically elucidating the role of labeling error in contrastive learning from a novel perspective,
data dimensionality reduction. Algorithmically, we utilize the classical SVD for preliminary empirical validation.
However, considering the unavailability and diversity of p∗ across different settings, the fixed q in the traditional SVD
fails to guarantee a sufficiently small labeling error. Thus, our future research will focus on developing a more flexible
low-rank image approximation method, which assigns a distinct truncated parameter q to each sample.

• Even though our work mainly concentrates on the study of the potential false positive augmented samples, conducting
research on false negative augmented samples remains of great necessity.

G. Other Experimental Results

Figure 5. Classification risks of SimCLR using the augmentation T1 and the truncated SVD with different values of q. The corresponding
top-1 accuracies are shown in Table 2.

Table 4. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-10 using the truncated SVD with different
augmentations (T2 = {T1+ Cutout}; T3 = {RRC, Cutout, Hide patch}; T4 = {RRC, Cutout, Color jitter}; T5 = {RRC, Cutout};
T6 = {RRC(0.08, 0.5), Cutout}; T7 = {RRC(0.08, 0.5), Cutout(0.5, 1.0)}).

SVD Encoder T2 T3 T4 T5 T6 T7 RRC(0.08,0.5)

w.o. SVD Resnet-18 62.90 50.53 60.00 56.67 54.97 54.09 57.11

q = 30 Resnet-18 64.86 51.00 61.57 57.85 55.69 54.75 58.10
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Table 5. Downstream classification top-1 accuracies (%) of SimCLR (Lspe) on CIFAR-10 using the truncated SVD with different q or the
data inflation strategy under the weak data augmentation adopted by Wang et al. (2024) (T8 = {RRC(0.2, 1.0), Color jitter(0.5, 0.4),
Random horizontal flip, Random grayscale, Gaussian blur}).

T Encoder Inflation w/o SVD q = 30 q = 25 q = 20 q = 15 q = 10

T8 Resnet-18 71.54 71.21 71.64 71.65 71.11 70.41 67.83

T Encoder Inflation Inflation + (q = 30) Inflation + (q = 25) Inflation + (q = 20)

T8 Resnet-18 71.54 71.64 72.55 71.19

Table 6. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-10 using the truncated SVD with different q
or the data inflation strategy under the weak data augmentation adopted by Wang et al. (2024) (T8 = {RRC(0.2, 1.0), Color jitter(0.5,
0.4), Random horizontal flip, Random grayscale, Gaussian blur}).

T Encoder Inflation w/o SVD q = 30 q = 25 q = 20 q = 15 q = 10

T8 Resnet-18 70.87 70.11 70.92 70.67 70.97 70.41 69.03

T Encoder Inflation Inflation + (q = 30) Inflation + (q = 25) Inflation + (q = 20)

T8 Resnet-18 70.87 70.98 71.21 70.48

Table 7. Downstream classification top-1 accuracies (%) of SimCLR (Lspe) using the truncated SVD (q = 30 for CIFAR-10 and
CIFAR-100, q = 90 for STL-10) with different embedding dimension k.

T Encoder Dataset
Embedding Dimension

k = 128 k = 256 k = 512 k = 1024 k = 2048

T1 Resnet-18 CIFAR-10 67.71 68.51 68.54 69.09 68.65

T1 Resnet-50 CIFAR-10 67.43 65.99 66.50 66.83 66.22

T1 Resnet-18 CIFAR-100 35.00 36.68 36.78 37.78 37.18

T1 Resnet-50 CIFAR-100 35.46 35.42 35.39 35.59 35.53

T1 Resnet-18 STL-10 72.35 72.42 73.12 73.88 73.47

T1 Resnet-50 STL-10 74.68 74.94 75.01 76.26 75.57

Table 8. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) using the truncated SVD (q = 30 for CIFAR-10 and
CIFAR-100, q = 90 for STL-10) with different embedding dimension k.

T Encoder Dataset
Embedding Dimension

k = 128 k = 256 k = 512 k = 1024 k = 2048

T1 Resnet-18 CIFAR-10 68.12 69.11 69.48 69.27 68.84

T1 Resnet-50 CIFAR-10 67.72 68.29 69.12 67.83 63.36

T1 Resnet-152 CIFAR-10 66.75 67.64 68.05 65.98 62.50

T1 Resnet-18 CIFAR-100 37.68 38.49 39.59 39.42 39.19

T1 Resnet-50 CIFAR-100 38.96 39.50 39.83 38.10 32.23

T1 Resnet-18 STL-10 71.28 71.37 71.93 71.49 71.34

T1 Resnet-50 STL-10 72.72 73.76 72.53 71.73 70.28
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Table 9. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) using the truncated SVD (q = 30 for CIFAR-10) with
different epochs.

T Encoder Dataset SVD
Epochs

100 200 300 400 500

T1 Resnet-18 CIFAR-10 w.o. SVD 68.82 70.91 71.05 72.97 74.54

T1 Resnet-18 CIFAR-10 q = 30 69.48 71.06 71.48 73.43 74.94

Table 10. Downstream classification top-1 accuracies (%) of MoCo (LInfoNCE) using the truncated SVD with different q.

T Encoder Dataset w/o SVD q = 30 q = 25 q = 20 q = 15 q = 10

T1 Resnet-18 CIFAR-10 72.69 73.02 72.48 71.58 71.30 69.87

Table 11. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) using the truncated SVD on TinyImageNet-200
(image size 64× 64, 50 pre-training epochs) and different backbones (ViT, ConvNeXt, 10 pre-training epochs) with different truncated
parameter q.

T Encoder Dataset w/o SVD q = 60 q = 50 q = 40

T1 Resnet-18 TinyImageNet-200 28.72 29.38 28.44 27.94

T1 ViT CIFAR-10 42.22 42.98 42.87 38.44

T1 ConvNeXt CIFAR-10 55.75 56.37 55.87 55.59

Table 12. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-10 using the truncated SVD which discards
two singular values (si,i+1 denotes we discard the i-th and the i+ 1-th singular values si, si+1 via SVD, T1 = {Random resize crop
(RRC), Color jitter, Random horizontal flip, Random grayscale, Gaussian blur}, bold number indicates the optimal performance of each
experimental group).

T Encoder s1,2 s2,3 s3,4 s4,5 s5,6 s6,7 s7,8 s8,9

T1 Resnet-18 57.31 64.14 65.63 67.20 66.93 67.77 67.93 68.44

T Encoder s9,10 s10,11 s11,12 s12,13 s15,16 s21,22 s31,32

T1 Resnet-18 67.97 68.08 68.59 68.96 68.61 69.20 69.48

Table 13. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-10 using the truncated SVD with Random
Erasing, GridMask and HidePatch.

SVD Encoder Random Erasing GridMask HidePatch

w.o. SVD Resnet-18 49.27 50.33 23.05

q = 30 Resnet-18 49.65 51.20 26.22

Table 14. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE , 10 pre-training epochs) on ViT and ConvNeXt using
the truncated SVD (q = 30 for CIFAR-10) with different embedding dimension k (− represents that it does not converge).

T Encoder Dataset
Embedding Dimension

k = 128 k = 256 k = 512 k = 1024 k = 2048 k = 3072 k = 4096

T1 ViT CIFAR-10 41.62 41.28 42.22 43.14 40.18 − −

T1 ConvNeXt CIFAR-10 53.48 55.58 55.75 55.89 56.71 55.84 55.13
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Figure 6. Curve of classification top-1 accuracies (%).

Table 15. Downstream classification top-1 accuracies (%) of BYOL (LInfoNCE , 10 pre-training epochs) using the truncated SVD
(q = 30 for CIFAR-10) with different embedding dimension k.

T Encoder Dataset
Embedding Dimension

k = 128 k = 256 k = 512 k = 1024 k = 2048 k = 3072 k = 4096

T1 BYOL CIFAR-10 33.71 33.85 34.08 34.09 34.32 33.11 33.00

Table 16. Downstream classification top-1 accuracies (%) of SimCLR (LInfoNCE) on CIFAR-100 and STL-10 using the truncated SVD
with different q or the data inflation strategy under the weak data augmentation adopted by Wang et al. (2024) (T8 = {RRC(0.2, 1.0),
Color jitter(0.5, 0.4), Random horizontal flip, Random grayscale, Gaussian blur}).

Dataset T Encoder Inflation w/o SVD q = 90 q = 70 q = 50

STL-10 T8 Resnet-18 70.86 70.51 71.49 71.23 69.26

Dataset T Encoder Inflation Inflation + (q = 90) + (q = 70) + (q = 50)

STL-10 T8 Resnet-18 70.86 71.75 71.21 69.85

Dataset T Encoder Inflation w/o SVD q = 30 q = 25 q = 20

CIFAR-100 T8 Resnet-18 42.84 42.29 42.93 42.72 42.5

Dataset T Encoder Inflation Inflation + (q = 30) + (q = 25) + (q = 20)

CIFAR-100 T8 Resnet-18 42.84 43.04 43.08 42.92

Table 17. The estimated frequencies (%) of labeling error for CIFAR-10 with multiply augmentation strategies.

Augmentation RRC T1 T2 T3
Frequency 27.9 37.5 48.3 42.1
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Table 18. The cost of SVD on different datasets.

Dataset CIFAR-10 TinyImageNet-200 STL-10

Size 32× 32 64× 64 96× 96

Truncated parameter q q = 30 q = 60 q = 90

Time of per image / s 0.001994 0.004985 0.007978

Time of all images / s 99.7186 498.5094 797.7724
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