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Abstract

Media storms, dramatic outbursts of attention001
to a story, are central components of media dy-002
namics and the attention landscape. Despite003
their importance, there has been little system-004
atic and empirical research on this concept due005
to issues of measurement and operationaliza-006
tion. We introduce an iterative human-in-the-007
loop method to identify media storms in a large-008
scale corpus of news articles. The text is first009
transformed into signals of dispersion based010
on several textual characteristics. In each it-011
eration, we apply unsupervised anomaly de-012
tection to these signals; each anomaly is then013
validated by an expert to confirm the presence014
of a storm, and those results are then used to015
tune the anomaly detection in the next iteration.016

We make available the resulting media storm017
dataset. Both the method and dataset provide018
a basis for comprehensive empirical study of019
media storms.020

1 Introduction021

Media storms - dramatic increases in media atten-022

tion to a specific issue or story for a short period of023

time (Boydstun et al., 2014) - are central compo-024

nents of media dynamics. Such outbursts include,025

for example, news reports on acts of terrorism, pub-026

lic scandals, or major political decisions. They usu-027

ally begin with a specific trigger event (e.g., Wien028

and Elmelund-Præstekær, 2009), and then surge to029

disproportionate levels of coverage - hype (e.g., van030

Atteveldt et al., 2018). Storms intensify nearly all031

media-related effects (e.g., Boydstun et al., 2014;032

Walgrave et al., 2017). In addition, being pivotal033

moments in the public agenda, storms can be crit-034

ical junctures for political actors (Gruszczynski,035

2020; Wolfsfeld and Sheafer, 2006).036

However, we still lack a systematic and compre-037

hensive understanding of such outbursts of media038

attention. One reason is that it is not clear how039

to operationalize this concept into a concrete mea- 040

surable object (Boydstun et al., 2014, 518-519). 041

Essentially, previous researchers are left devising 042

“arbitrary” thresholds for their studies (Boydstun 043

et al., 2014, 519). In addition to this amorphous- 044

ness, an additional challenge is that media storms 045

are relatively sporadic phenomena. Boydstun et al. 046

(2014) approximate that they consist about 11% 047

of all media coverage, a finding that was later cor- 048

roborated by Nicholls and Bright (2019). These 049

properties make it extremely difficult to create a 050

gold-labeled data-set to train a model, or to even 051

begin reading the raw articles to identify media 052

storms directly, necessitating the development of a 053

different strategy to solve this challenging task. 054

Traditionally, communication researchers em- 055

ployed manual content analysis to label and mea- 056

sure issue attention over short periods (e.g., Boyd- 057

stun et al., 2014; Wolfsfeld and Sheafer, 2006). 058

Recent computational work has utilized topic mod- 059

eling (van Atteveldt et al., 2018; Nakshatri et al., 060

2023) and keyword analysis (Lukito et al., 2019) 061

for the task. However, the drawback of these ap- 062

proaches is their sensitivity to research design - 063

the keyword choice or delineation of topics. A 064

researcher might choose a model with broad top- 065

ics - hampering the ability to recognize deviances 066

of specific outburst. Conversely, an overly com- 067

plex model might cause a media storm to be dis- 068

persed across several topics, diluting attention 069

peaks. This could make significant media events 070

less discernible. Meanwhile, focusing on keywords 071

may obfuscate the actual story behind the tokens. 072

Another approach adopted in recent computa- 073

tional communication research has been to focus 074

on news story chains. Such methods utilize clus- 075

tering to identify news events - articles describing 076

the same event or story (e.g., Nicholls and Bright, 077

2019; Trilling and van Hoof, 2020). These tech- 078

niques ‘uncover’ the stories occurring in the corpus 079

- groups of documents discussing the same, specific 080
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event. Recently, Litterer et al. (2023) fine-tuned a081

model to generate document embeddings for the082

clustering.083

While these methods identify media stories, they084

do not encompass the theoretical concept of me-085

dia storms. Rather than capturing prominent sto-086

ries, we are aiming for periods where the me-087

dia coverage is not structured normally (Boyd-088

stun et al., 2014), but rather characterized by089

’hype’—dramatic and anomalous levels of cover-090

age of a story (van Atteveldt et al., 2018; Vasterman,091

2005). However, it is impossible to determine hype092

when only taking into account the structure of a093

single story at a single time-step without noting094

long-term trends and cycles as baselines. Tellingly,095

such methods tend to identify many more instances096

than we do in our experiments here. For exam-097

ple, Litterer et al. (2023) identify 98 cases over098

nearly two years, while we detect 221 over a 20099

year period.100

With these points in mind, we sought a different101

approach we believe better reflects the theoretical102

conception of storms. We return to the basic defini-103

tive property of media storms: a dramatic, tempo-104

rary spike in attention to an issue (above the norm).105

In other words, storms are anomalies in news cov-106

erage, so we turn to anomaly detection to iden-107

tify them. We create several signals representing108

the daily dispersion of texts across the time frame.109

These signals are the basis for a two-step procedure.110

First, an unsupervised anomaly detection model111

identifies media storm candidates—anomalous pe-112

riods of news convergence. Then, a domain expert113

labels true media storms from these candidates.114

This human-in-the-loop process iterates until con-115

vergence, uncovering media storms over the period.116

Our approach offers several advantages. First,117

methodologically speaking, it integrates the tem-118

poral features of topic- or keyword-based outlier119

detection described above, without relying on or120

being limited by idiosyncrasies of researcher de-121

sign. Additionally, the utilization of unsupervised122

anomaly detection allows us to overcome the huge123

quantities of data, presenting experts with a small124

set of candidates to focus on in determining the125

existence of media storms. Furthermore, our ap-126

proach attempts to bypass inherent amorphousness127

by offering a solution that is not based on pre-128

defined statistical thresholds designed for specific129

texts, but rather relies on the overall dynamics of130

news coverage for any given period. The use of131

unsupervised anomaly detection allows media dy-132

namics to reveal themselves in the data. Our expert 133

input comes into play in validating these patterns, 134

confirming they correspond to the theoretical con- 135

cept. This expert input in the choice of seeds and 136

dispersion signals can also allow researchers to in- 137

tegrate their own research perspective within the 138

process - an advantage when dealing with an in- 139

herently amorphous concept.Thus, we are able to 140

uncover additional, more diverse media storms than 141

in previous studies. 142

We utilize a large-scale corpus of news articles 143

spanning 20 years of media coverage (1996-2016) 144

to demonstrate our method. We employ two dis- 145

tinct experimental setups, addressing a broad spec- 146

trum of potential research applications. The first 147

setup utilizes a seed list of media storms to uncover 148

additional occurrences within the same time frame. 149

The second setup utilizes an analyzed time frame 150

to detect media storms in a new, unlabelled target 151

period. We conclude with a preliminary analysis 152

of our findings from both setups, underscoring the 153

efficacy of our method and its potential for media 154

storm research. We then test the capability of a 155

generative Large Language Model (LLM) to per- 156

form the expert validation. The results justify the 157

human-in-the-loop approach, while pointing to the 158

possibility of further automation in the future. 159

Finally, we contribute these findings as a me- 160

dia storms dataset for the years 1996-2016. We 161

believe that this dataset opens up a wide array of 162

exciting research avenues. While the concept of 163

media storms holds great significance to social ac- 164

tors, politicians and social scientists from various 165

fields, empirical exploration has been limited. As 166

the classification of storms within large-scale news 167

coverage data improves, we can enhance our un- 168

derstanding of how these news hypes unfold from 169

a single story or event to a cascade of public in- 170

terest. In an era marked by heightened concern 171

over the media’s impact on the information land- 172

scape – highlighted by issues like polarization, the 173

spread of misinformation, and the prominence of 174

social media – such insights into these significant 175

elements should offer important contributions. 176

2 Data 177

2.1 News Articles 178

To track the media coverage, we assembled a cor- 179

pus of 1,187,607 news articles taken from three 180

major news outlets – the New York Times, the Los 181

Angeles Times and the Washington Post – between 182
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Media Outlet Articles Tokens Tokens/Article (Avg.)
New York Times 520,648 373,980,075 718.30
Washington Post 360,788 293,024,961 812.18
Los Angeles Times 306,171 240,119,545 784.27
Total 1,187,607 907,124,581 763.83

Table 1: Corpus Statistics

1996 and 2016. All full-length texts for this time183

period purchased and downloaded via a license184

agreement with LexisNexis. 1 These were filtered185

to include only articles from the News and Editorial186

sections. Corpus statistics are detailed in Table 1.187

2.2 Seed list of Media Storms188

To initialize our method, we build upon a seed list189

of media storms to begin calibrating the hyperpa-190

rameters of the unsupervised anomaly detection.191

We begin with a list of storms from Boydstun et al.192

(2014) that has been widely used in media storm193

research. The researchers labeled the New York194

Times front page for a 10-year period to manually195

identify media storms. However, their effort con-196

tained several self-acknowledged constraints: they197

focused solely on domestic issues, measured only198

one national newspaper, and chose arbitrary sta-199

tistical thresholds for operationalization. We wish200

to capture the essence of a media storm through201

a small set of mega-stories of national and global202

significance (expected to be present in the three203

outlets included in our corpus).204

Consequently, we started with the items on their205

list as media storm candidates, which we could206

use for our first experimental setup of the method207

(within the 10-year period overlapping with our208

corpus collection: 1996-2006). However, we ad-209

justed their list to better suit our use-case. First,210

since they analyzed only the New York Times, we211

included only national-level stories. For example,212

storms regarding local sports teams or municipal213

politics were removed. Second, we extended the214

list to include significant international stories, such215

as wars and foreign disasters, which also meet our216

conception ’media storms’. The end result is a mod-217

ified list of 48 media storms between the year 1996218

and 2006. We used this list to initialize the first219

calibration iteration of our unsupervised analysis220

of the full corpus in the first experimental setup (de-221

scribed in Section 3). We note that these are seed222

storm candidates used to begin the exploration of223

1https://www.lexisnexis.com

our data; we are aware that some of these events 224

might not register as media storms after running our 225

automated method, and that they do not represent 226

all media storms occurring in the time period. 227

3 Method 228

In this section, we present our method to detect 229

media storms in a large corpus. First, we describe 230

the representation of our texts into dispersion sig- 231

nals. Second, we detail the unsupervised anomaly 232

detection model employed to analyze the signals. 233

Finally, we outline the integration of the dispersion 234

signals, anomaly detection and human-in-the-loop 235

validation in a media storm detection method. 236

3.1 Representation 237

Our basic assumption is that during media storms, 238

the news coverage converges surrounding a sin- 239

gle story or event, decreasing its variance. Thus, 240

we utilize the following method to refine the raw 241

text into a one-dimensional signal representing the 242

daily media dispersion. For each day in the dura- 243

tion of our research period, the corresponding news 244

articles are converted into a multi-dimensional em- 245

bedding. We calculate a covariance matrix based 246

on this embedding, to capture the variance between 247

all the day’s articles over all of the embeddings’ 248

dimensions. However, since we are interested in 249

capturing the dynamic of the dispersion over time, 250

we calculate the commonly-used trace value (nor- 251

malized by the number of articles published that 252

day). This provides us with a single value for the 253

daily dispersion of the news articles. These are then 254

aggregated to compile one-dimensional dispersion 255

signals for the full duration of the research corpus. 256

In identifying media storms, we seek to include 257

multiple representations of the texts, capturing di- 258

verse discursive attributes. We do this due to the 259

complexity of media storms. In some cases, they 260

might correspond to a single event; in others, they 261

might evolve to encompass multiple stories and 262

news "angles". In some cases, such as in crises or 263

scandals, we might expect to find specific textual 264
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styles expressing drama or surprise. However, in265

cases such as groundbreaking court cases or an-266

ticipated political events, the storm is signaled by267

the sheer volume of coverage rather than any spe-268

cific reporting approach. With this complexity in269

mind, we incorporated four types of document em-270

beddings to create four separate dispersion signals.271

This offers a level of robustness, ensuring that we272

rely on various types of discursive attributes.273

3.1.1 Actors & Settings274

Actors are integral components of news stories. Pre-275

vious research on automated identification of news276

events does so by focusing on entities, assuming277

that texts referring to the same people, places and278

times in the same period, refer to the same news279

event (Nicholls and Bright, 2019; Trilling and van280

Hoof, 2020). Therefore, we include these same281

features in our own approach in order to identify282

convergence in coverage around specific events.283

We used the spaCy open-source natural language284

processing (NLP) named-entity recognition (NER)285

package (Honnibal and Montani, 2017) to extract286

the actors and settings of each article. For each287

document, we generated an embedding based on288

the frequency of each entity within an entity vocab-289

ulary computed over the full corpus.2290

3.1.2 Topics291

In many cases, news coverage focuses more on a292

general issue than a specific story. For instance,293

strings of unrelated violent incidents could trigger294

a general spike in attention to crime without any295

of the individual events being newsworthy on their296

own. Thus, we sought to include storms being ex-297

pressed in categories as opposed to only distinct298

stories, aligning with previous studies identifying299

storms as dramatic increases in coverage to an issue300

(Boydstun et al., 2014; van Atteveldt et al., 2018).301

To generate embeddings for this feature, we utilized302

an unsupervised topic model – top2vec – which303

leverages joint document and word semantic em-304

bedding to find topic vectors in a corpus (Angelov,305

2020). Such topics focus on the issues expressed306

in the news articles. We trained a model containing307

100 topics, so each document was represented by308

a 100-dimensional vector. Each dimension’s value309

was the cosine distance of the document from the310

corresponding topic’s centroid.311

2Documents were truncated to the first 200 tokens, is in ac-
cordance with previous work in media studies showing that the
first section of the article contains the important and relevant
information (Welbers et al., 2021)

3.1.3 Narrative plot elements 312

Plot refers to "the ways in which the events and 313

characters’ actions in a story are arranged" (Kukko- 314

nen, 2014), and thus provide more information on 315

the structure and "tellability" (Shenhav, 2015) of 316

stories at the heart of media storms. In order to in- 317

clude plot elements, we used NEAT – a multi-label 318

classifier that was trained on a specially compiled 319

dataset (Levi et al., 2022) to identify three plot- 320

driven, narrative elements – complication, resolu- 321

tion, and success. Each document was represented 322

by three dichotomous variables to include each of 323

the three narrative elements. 324

3.1.4 Large Language Model (LLM) 325

Finally, we chose to include document embeddings 326

based on pre-trained, transformer-based LLMs. 327

Such models uncover latent features and patterns 328

found within texts, and have proven to be a stan- 329

dard for diverse NLP tasks. We used the all-mpnet- 330

base-v2 sentence-embedding model trained with 331

a modified pre-trained BERT network that uses 332

siamese and triplet network structures to derive se- 333

mantically meaningful sentence embeddings that 334

can be compared using cosine-similarity (Reimers 335

and Gurevych, 2019). 336

We note significant correlations between the four 337

signals (Table 2). However, the correlations indi- 338

cate that there is not a complete ‘overlap’. This 339

attests to each signal’s exclusive information. 340

LLM Entities Plot

Topics 0.89 0.92 0.69
LLM 0.86 0.88
Entities 0.70

Table 2: Pearson correlations between signals

3.2 Unsupervised Anomaly Detection 341

With these media dispersion signals, we can be- 342

gin the detection of anomalous convergence peri- 343

ods. To this end, we chose to utilize Facebook 344

Prophet (Taylor and Letham, 2018). Prophet is an 345

open-source library that is conceived to be a reli- 346

able "off-the-shelf" time-series forecasting model 347

that could be easily applicable in a variety of use 348

cases. Prophet fits an additive regression model 349

to a time series while including components for a 350

linear or logistic growth curve, yearly and weekly 351

seasonality cycles, and user-designated holidays: 352
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y(t) = g(t) + s(t) + h(t) + εt, where g(t) rep-353

resents the trend component, s(t) denotes the sea-354

sonal component, h(t) stands for the holiday effect355

at time t, and εt is the error term.356

The model is fitted to the time series in ques-357

tion, flagging data points that significantly deviate358

from predicted values as anomalies. The devia-359

tion is determined by the interval width hyperpa-360

rameter – the width of the uncertainty levels as-361

cribed to the model. For example, a wider interval362

means only extreme values will be labeled anoma-363

lies. Two other hyperparameters - the changepoint364

prior scale and the changepoint range - are impor-365

tant for our application. The first sets the number366

of time-series changepoints to include in the model.367

The second specifies the proportion of the time se-368

ries used to fit these changepoints. When working369

with decades worth of data, such values can sig-370

nificantly influence the model’s predictions. For371

example, a lower changepoint range means that the372

model takes into consideration only the early por-373

tions of the time series, while a low changepoint374

prior leads to decreased sensitivity to fluctuations.375

We chose to focus on these three hyper parame-376

ters, fine-tuning them throughout our procedure to377

calibrate the unsupervised anomaly detection. For378

example, in Figure 1 we see the dispersion signals379

for the outbreak of Hurricane Katrina.380

Figure 1: Hurricane Katrina – dispersion signals: enti-
ties (green), LLM (purple), narrative plot elements (red)
and topics (blue).

3.3 Media Storm Detection381

We define a two-step procedure for identifying me-382

dia storms in our corpus.383

Step 1: Take as input an initial list of media384

storms and a target corpus of media coverage repre-385

sented as described in 3.1,3 to run the anomaly de-386

tection. Treating the initial input list as the “ground387

truth” for the current iteration, we evaluate the388

3Smoothed by finding the 7-day rolling mean

model’s precision and recall as follows: 389

Precision = D
A and Recall = D

S , where D is the 390

number of media storms from the initial list labeled 391

as anomalies by the model, A is the total number 392

of anomalies detected by the model, and S is the 393

number of media storms in the initial list. 394

We conduct a random search (Bergstra and Ben- 395

gio, 2012) of the hyperparameter space, running 396

multiple instances of the anomaly detection with 397

varying the three aforementioned hyperparameter 398

values. We evaluate each instance by its preci- 399

sion and recall, seeking iterations with the highest 400

scores in both metrics. In cases of ties, we prioritize 401

recall. 4 For the optimal instance, we examine the 402

results of the anomaly detection, noting the dates 403

of all periods of consecutive anomalies of at least 404

two consecutive days. We filter these to include 405

only the time frames where a majority out of the 406

four dispersion signals were flagged as anomalies. 407

This criterion was added due to the inherently am- 408

biguous nature of media storms; we want to focus 409

on genuine media storms and not merely statistical 410

noise originating in the anomaly detection model 411

or borderline instances that might be contentious 412

among researchers. This final, filtered list is our 413

output: a collection of anomalies – media storm 414

candidates. 415

Step 2: Take as an input the list of media storm 416

candidates. We apply expert validation to ascer- 417

tain which candidate corresponds to a genuine me- 418

dia storm. For each anomaly cluster, the expert 419

reviewed newspaper articles from the associated 420

dates and cross-referenced the time frame with his- 421

torical events from the corresponding dates. Only 422

anomaly clusters found to correspond to a genuine 423

occurrence were provided descriptive labels by our 424

expert and added to the set of media storms. More 425

detailed information and guidelines regarding the 426

expert validation can be found in Appendix A. 427

3.4 Experimental Setups 428

We utilized this two-step procedure in two distinct 429

setups: In-Period and Out-Period implementations. 430

In-Period. In this setup, we focused on a tar- 431

get period between 1996-2006, aiming to expand a 432

seed list and detect all other storms in same period. 433

We started by applying the two-step procedure de- 434

scribed in 3.3 to the seed list described in 2.2 and 435

4We assume that our initial storm list is but a portion of
the real media storms in our target period. Therefore, we
prioritize maximizing our identification of these real storms,
before maximizing the sensitivity of the model.
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the dispersion signals for the target years described436

in 3.1. The output list of validated storms from the437

first iteration was saved, and then used to initialize438

a second iteration of the procedure. The output of439

this iteration became the seed of the subsequent440

iteration. We continuously add the validated media441

storms to a list of finalized media storms over all442

iterations. We continued the iterations until reach-443

ing convergence, defined by identifying new media444

storms amounting to less than 1% of our current445

list of finalized media storms. We note that it can446

be necessary to curate the finalized list of media447

storms to consolidate duplicate storms. These were448

primarily due to small variations in the anomaly449

dates in each iteration that may still encapsulate a450

single media storm time frame.451

Out-Period. In this setup we utilize the two-step452

procedure in 3.3, but begin the first step with input453

seed storm lists for one period, to uncover an output454

of occurrences in a second, unlabeled time period.455

Specifically, we compile data from an analyzed456

period together with additional, unlabeled data. As457

per Step 1, we use the already-labeled storms to run458

the random search and find the optimal anomaly459

detection instance. Then, we implement Step 2460

on the media storm candidates for the new time461

period. In this way, we leverage information from462

a previous time frame to create a list of validated463

media storms for the unlabeled data.464

These two experimental setups correspond with465

two common research scenarios. The In-Period466

deployment demonstrates the ability to leverage a467

handful of qualitatively-identified media storms to468

curate a comprehensive list encompassing a full tar-469

get period. This challenge becomes especially pro-470

nounced when transitioning from qualitative, small-471

scale studies to more systematic, big-data-driven re-472

search. The Out-Period deployment demonstrates473

the ability to leverage an analyzed time period to474

detect media storms in a new time frame. This475

offers promise both for expanding datasets and for476

predictive prospects.477

4 Results478

Table 3 shows the results of the In-Period exper-479

imental setup. We performed four rounds of our480

procedure until reaching convergence – adding a481

single new media storm to our collection of 100482

finalized storms. For each round, we count the483

number of storm candidates found by the anomaly484

detection model, the number of candidates vali-485

Iteration 1 2 3 4

Storm candidates 116 141 132 133
Storms validated 94 95 94 93
Not validated 22 46 38 40
New storms 71 18 4 1

Table 3: In-Period iterations

dated as new storms, and the number of candidates 486

found to not correspond with storms, as described 487

in 3.3. Additionally, since in this setup we run 488

multiple rounds on the same period, we note the 489

completely newly-discovered media storms – in- 490

stances that were not detected in previous rounds. 491

Table 4 displays, for each pair of signal types, 492

the Pearson Correlation between the anomalies de- 493

tected based solely on each of the signal types. 494

An analysis of these correlations reveals that each 495

signal contains exclusive information. Notably, 496

the Plot signal shows the lowest correlations, per- 497

haps due to the NEAT model being more discourse- 498

grounded than vocabulary-based. 499

Entities LLM Plot

Topics 0.69 0.64 0.46
Entities 0.72 0.47
LLM 0.53

Table 4: Anomaly-based Pearson Correlations

In our implementation of the Out-Period exper- 500

iment, we ran a single round of the two-step pro- 501

cedure (described in Section 3.3) for each year 502

between 2007 and 2016 in our data, utilizing the 503

media storms found in the previous nine years as 504

seeds for detection in the final year. For example, 505

we utilized the media storms identified in the In- 506

Period experiment in the years 1997-2006 as our 507

input to find the media storms of 2007. Then, to 508

analyze the year 2008, we utilized the storms from 509

the years 1998-2007, and so forth. 510

Table 5 displays the results from our Out-Period 511

experiments. There are slight fluctuations in the re- 512

sults of each round. For example, in 2007 and 2008 513

we identified only 10 candidates, while reaching 514

peaks of 20 candidates in 2014 and 2016. Addi- 515

tionally, there is a slight variance in the number of 516

candidates verified as media storms (second row) 517

and the number of candidates not corresponding 518

to genuine storms. The existence of slight fluctu- 519

ations seems reasonable; we would expect slight 520

6



Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Storm candidates 10 10 15 15 16 15 19 20 15 20
Storms validated 6 9 12 11 12 14 14 16 13 13
Not validated 4 1 3 4 4 1 5 4 2 7

Table 5: Out-Period iterations

differences between periods when working with521

long-period temporal data.522

Year # Storms Duration Avg. Duration STD

1996 9 8.33 5.96
1997 9 6.56 1.59
1998 14 9.14 4.59
1999 9 7.78 3.80
2000 11 9.73 7.40
2001 4 9.00 6.73
2002 10 12.60 7.82
2003 10 19.00 22.77
2004 11 13.00 10.14
2005 9 8.33 5.32
2006 5 7.80 3.35
Total 101 10.38 9.54

Table 6: Storms statistics – 1996 to 2006

Year # Storms Duration Avg. Duration STD

2007 7 10.57 4.04
2008 9 9.22 4.94
2009 12 8.50 5.28
2010 11 7.73 5.66
2011 12 8.33 4.66
2012 14 8.64 5.33
2013 14 8.79 4.25
2014 16 8.56 6.36
2015 13 10.54 5.50
2016 12 9.42 4.64
Total 120 8.96 5.06

Table 7: Storms statistics – 2007 to 2016

The end result of these experiments is 101 storms523

for the first period (1996-2006), and 120 storms for524

the second period (2007-2016) for a total of 221525

media storms found in our corpus. These lists in-526

cluded many significant events, such as Hurricane527

Katrina (2015), the Sandy Hook school shooting528

and ensuing gun control debate (2012), and the529

Snowden NSA revelations (2013). For a descrip-530

tive overview, see Appendix B.531

In addition to these unanticipated events, many532

of the storms detected correspond to routine,533

planned events such as elections or sporting events.534

However, there were also intriguing cases such as535

a 2010 spike in discussion on issues of airline secu-536

rity and privacy. That storm does not correspond537

to any specific major event, perhaps arising due 538

to the proximity to the Thanksgiving transit peak. 539

This is an interesting example of a media storm – 540

public discussion of important issues – that arises 541

not from any specific event directly linked to the 542

issue (We stress that this is merely a hypothesis 543

that invites focused examination). 544

What is particularly interesting about these statis- 545

tics is the relative consistency of the results be- 546

tween the two setups. Upon examination of the 547

results in Tables 6 and 7, we see that there are no 548

strongly discernible differences between the me- 549

dia storms found in each of the setups. During the 550

years 1996 to 2006, the annual average number of 551

storms was 9.18. This contrasts with the period 552

from 2007 to 2016, which recorded an average 553

of 12 storms annually. This difference was statis- 554

tically significant, t(18) = −2.422, p = 0.026. 555

However, it would appear such differences might 556

be due to real-world trends over time. Specifically, 557

we see that the first years of the second period 558

(2007 and 2008) reveal fewer storms than some of 559

the first setup’s years. Meanwhile, an examination 560

of the storm durations does not reveal statistical 561

differences (t(146.15) = 1.343, p = 0.181). Such 562

results support the utility of both setups, suggesting 563

that both are detecting the same phenomena. 564

Finally, to understand the importance of the do- 565

main expertise, we examined the validation statis- 566

tics between the two setups: The four rounds of 567

the first setup found 522 media storm candidates 568

- anomaly clusters flagged by the Prophet model. 569

Of these, 28% did not correspond to a true media 570

storm according to the expert. The yearly rounds of 571

storm detection in the second setup yielded a total 572

of 155 media storm candidates, of which 22% were 573

not deemed as storms by the expert. These numbers 574

seem to justify the role of human validation. 575

5 Automated Validation 576

The second step in our proposed procedure (Sec- 577

tion 3.3) involves manual validation of media storm 578

candidates by an expert. In order to estimate the 579
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possibility to automate this step, we performed580

an experiment designed to test the capability of a581

generative LLM to perform this task. We assem-582

bled all the media storms candidates produced in583

the first step in the procedure, during both exper-584

imental setups described in Section 3.4, resulting585

in a set of 320 unique candidates. For each can-586

didate, we prompted the GPT-4 model (OpenAI,587

2024) to decide whether or not it constitutes a me-588

dia storm, providing it with a sample of 75 news589

articles from the relevant dates as well as their pair-590

wise cosine-similarities (see Appendix C for full591

details). Table 8 shows the confusion matrix sum-592

marizing GPT’s decisions vs. our expert validation.593

Notably, the expert and GPT-4 were in agree-594

ment about 45% of the storm candidates. Among595

these, they agreed on the storm’s label in 74% of596

the cases. However, GPT-4 failed to identify a597

large number of media storms found by the expert.598

These include some clear cases, such as the British599

Petroleum oil spill in the Gulf of Mexico (2010),600

the shooting of U.S. Representative Giffords in601

Arizona (2011), and the Ebola outbreak (2014).602

While these results justify the human-in-the-loop603

approach, they merit further exploration into the604

possibility of utilizing computational models in per-605

forming (or at least aiding in) the validation step.606

Expert
Storm Not Storm

G
PT Storm 19% 10%

Not Storm 45% 26%

Table 8: Expert-GPT confusion matrix

This analysis further offers a unique opportunity607

to explore possible false-negatives by the expert608

(media storms they had missed). A total of 32609

candidates were validated as media storms by the610

GPT-4 model but not by the expert. After review-611

ing these, five were determined to qualify as media612

storms by our expert: one new event, the Khobar613

Tower Bombing (1996), and four cases of addi-614

tional peaks in coverage surrounding media storms615

previously validated as such by the expert.616

6 Conclusion & Future Work617

In this paper, we offer several contributions. First,618

we present a human-in-the-loop method to detect619

media storms in a large corpus of news texts. We620

describe a two-step iterative procedure, combining621

unsupervised anomaly detection and expert valida-622

tion, to identify these rare events within a larger 623

dataset. Significantly, whereas previous studies 624

build upon ‘arbitrary’ statistical thresholds, we uti- 625

lize an unsupervised anomaly detection algorithm 626

to allow the media dynamics to reveal themselves 627

in the data. Our expert input comes into play in val- 628

idating these patterns, confirming they correspond 629

to the theoretical concept. Consequently, we are 630

able to uncover additional, more nuanced media 631

storms than in previous studies. By incorporat- 632

ing expert validation, we can set the granularity 633

or type of the storms which we seek to identify; 634

researchers can express their research agenda to 635

decide what types of media storms they are inter- 636

ested in detecting. Additionally, we performed a 637

comparison between the expert and GPT-4, demon- 638

strating that while not fully capable of replacing a 639

human expert, there is some potential in utilizing a 640

generative LLM during the validation process. 641

Second, our method offers a procedure that can 642

be applied in various research scenarios, over di- 643

verse and large corpora, while leveraging expert 644

knowledge for validation. Within the realm of 645

this paper, we included three English-language 646

newspapers for a specific time-frame. However, 647

the method could plausibly be applied on any 648

news corpora in any language, provided the nec- 649

essary techniques could be utilized (e.g., entity- 650

detection, sentence transformers). Additionally, 651

researchers might be able to use this approach on 652

non-mainstream media sources as well, including 653

identifying periods of textual convergence in social 654

media platforms and digital news. 655

Third, through the two experimental setups, we 656

collected a comprehensive list of media storms. 657

This time frame we chose to focus on is of particu- 658

lar significance for media scholars. Between 1996 659

and 2016, the media landscape underwent dramatic 660

transformations, with the rise of 24-hour news cy- 661

cles, the interactivity of social media and the frag- 662

mentation of the attention landscape (Chadwick, 663

2017; Edy and Meirick, 2018). These validated 664

storms provide opportunities to examine intriguing 665

theoretical questions, including how the volatility 666

of the media landscape has evolved, changes in the 667

events triggering storms, and perhaps developing 668

predictive capabilities regarding storm outbursts 669

and durations. Thus we use the results of this study 670

to provide a dataset consisting of media storms 671

with their start and end dates, which will be made 672

publicly available to researchers together with the 673

dispersion signals extracted from the corpus. 674
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7 Limitations675

We note two main limitations of this project. First,676

the procedure described here assumes that our me-677

dia storms are all mutually exclusive. We locate678

time frames of anomalous coverage and associate679

each period with a single, discrete media storm.680

In reality, a single time frame might contain more681

than one major news story, or the anomaly might682

actually be identified as one story declines and the683

other begins. Such findings correspond to issues684

that arose during the expert validation stage: some685

anomalous clusters contained a few potential storm686

stories. Only upon close examination of the time687

series’ peaks and the articles that were published688

in correspondence with them, could we decide on689

a single story for the storm. Additionally, some690

of the periods actually did include two separate691

media storm stories, one following the other (See692

comments in Appendix A). In this project, we lim-693

ited ourselves to choosing a single media storm per694

each period. In future work, however, we could695

integrate a clustering method to further distinguish696

and track stories within the media storms.697

A second limitation is that our method does not698

include systematic steps to prevent the existence699

of false negatives - media storms undetected by700

the anomaly detection. Since we do not have a701

gold-standard to initiate our storm detection, there702

remains a possibility that our procedure may have703

failed to detect instances within our corpus. In704

general, our approach relies on high-quality seeds705

to initiate the search for additional media storms.706

We assume that these instances fully represent the707

phenomenon, and that, therefore, all media storms708

should be similar enough in characteristic to them.709

In this way, multiple iterations of anomaly detec-710

tion should uncover all true media storms. How-711

ever, we note that this is not a complete solution712

to the issue of false negatives. In future work, we713

would examine potential solutions, such as ran-714

domly sampling the non-storm time periods to ex-715

amine for storms, utilizing computational models716

to produce “competing” validations (as in the pre-717

liminary experiment described in Section 5, or per-718

haps generating additional textual signals which719

might reveal more storm instances.720
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A Guidelines for Expert Validation824

At the conclusion of the first step in the procedure825

described in Section 3.3, the expert received a set826

of storm candidates (i.e. anomaly period) encom-827

passing news articles’ start and end dates. For each828

such anomaly period, the expert was given two829

tasks: (1) decide if a media storm is occurring, and830

(2) if a storm has been identified, decide on a de- 831

scriptive label of the dominant news story or group 832

of stories. 833

In order to address these tasks the expert per- 834

formed the following steps: 835

Review the news article titles. For this pur- 836

pose, the expert was aided by t-distributed stochas- 837

tic neighbor embedding (t-SNE) visualization of 838

the spread of all the articles published during 839

this period. The visualization embedded the ar- 840

ticles in the latent semantic space based on the 841

all-mpnet- 335base-v2 sentence-embedding model 842

as described in 3.1. The t-SNE visualization allows 843

for improved efficiency in browsing news coverage, 844

helping to identify clusters of similar articles and 845

understand if there is a dominant story or group of 846

stories among them. The expert reviewed the titles 847

of news articles and, if necessary, further explored 848

the articles in context. 849

Examination of historical context of storm 850

candidates. For this purpose, the expert used 851

lists of key events (such as www.infoplease. 852

com/current-events) and other sources, such as 853

Google and Wikipedia. We note that key historical 854

events helped identify many media storms; how- 855

ever, in some cases, media storms evolved from 856

increased attention to specific issues or policy do- 857

mains, rather than historical events. 858

B Media Storms 859

Between the years 1996 and 2016, we found 221 860

media storms utilizing our method. These storms 861

include several categories of news stories. First, 862

43 of the instances were relating to U.S. elections 863

and election campaigns - including the elections 864

themselves, debates, party primaries, and coverage 865

of the campaign trail. 866

Another relatively prevalent category are unan- 867

ticipated violent events. These include the Versace 868

murder (1997), the Columbine School Shooting 869

(1999), the September 11th terror attacks (by far the 870

most prominent storm as attested to by the conver- 871

gence levels), the shooting of U.S. Representative 872

Giffords in Arizona (2011), and the riots killing 873

of police officers in Dallas (2016). Overall, there 874

were 30 such media storms. 875

42 of the media storms were considered foreign 876

news, in that they occurred outside of the U.S. 877

These include wars in the Balkans (1997-1999), 878

violent outbreaks in the Middle East (e.g., 2002, 879

2012, 2013), disasters (e.g., the 2010 earthquake 880
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in Haiti, the 2005 tsunami in the Indian Ocean and881

the Fukushima nuclear accident in 2011), and sig-882

nificant deaths (e.g., Princess Diana in 1997 and883

Pope John Paul II in 2005).884

Another category of interest was media storms885

that included intense coverage of stories that did886

not correspond to a specific event, but rather related887

to policy-driven matters. For example, there have888

been several periods of intense attention on the U.S.889

involvement in Iraq that would encompass multi-890

ple stories - daily insurgent attacks, visits by U.S.891

government officials, interviews with local leaders892

- occurring long after specific events such as the893

original invasion or the start of the "Surge" troop894

increase. These were cases where we could discern895

intense discussion of an issue for a period, without896

linking the media storm to a specific trigger. An-897

other interesting and surprising example of such898

a storm occurred in 2010, when the media cover-899

age reveals high levels of attention to issues of air900

travel, airport security and debates about passenger901

privacy. While we could not find any clear trigger902

event behind such coverage, the proximity of the903

discussion to the Thanksgiving holiday rush hints904

at what might be a heightened public attention to905

such issues. Perhaps an online discussion on a so-906

cial media platform might have even initiated such907

a media discussion.908

Table 9 summarizes the 10 longest media storms909

found in our dataset.910

Title Year Duration

2003 invasion of Iraq 2003 80
2004 Presidential Election 2004 41
Iraq War coverage 2003 30
US Ebola outbreak 2014 30
2000 Presidential Election 2000 29
Trent Lott Scandal 2002 26
Operation Defensive Shield 2002 23
AIG Bonuses 2009 23
1996 Olympics 1996 22
2010 Midterm Elections 2010 22

Table 9: 10 longest media storms

C GPT-4 Prompts911

For each media storm candidate (anomaly in-912

stance), we provided the following prompt to the913

model via the OpenAI API:914

"A media storm is a dramatic increase in media915

attention to a specific issue or story for a short 916

period of time. In such a case, we expect most news 917

articles for a given period to discuss a single story 918

or issue. I have a corpus of news articles published 919

between [START DATE] and [END DATE]. For 920

this period, please use the article titles and the 921

dates to first decide if a media storm is occurring. 922

If a media storm is occurring, respond with ’YES’ 923

and provide a label to describe the story behind 924

the media storm. If a media storm is not occurring, 925

respond with ’NO’. Please respond concisely in the 926

format: ’YES: [LABEL]’ or ’NO’." 927

This prompt included the dates of the anomaly 928

period, the titles of a random sample of news ar- 929

ticles published during that period, and a matrix 930

containing the pairwise cosine distances between 931

the sample articles’ embeddings. This information 932

was provided to match the details provided to the 933

human coder in the validation stage. 934

We randomly sampled articles for each period 935

due to the large number of documents for each 936

anomalous interval. We experimented with several 937

sample sizes, finding that sampling 75 articles to 938

provide with the prompt yielded the best results. 939
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