
Leveraging Foundation Models in Healthcare: A Distillation Approach to
Interpretable Clinical Prediction

Hans Farrell Soegeng1*, Tristan Guérand1, Thomas Peyrin1

1School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
hans0048@e.ntu.edu.sg, thomas.peyrin@ntu.edu.sg

Abstract

In data-scarce settings, learning accurate and interpretable
models for high-stakes medical tabular classification remains
a fundamental challenge, as healthcare decisions must be
transparent and trustworthy. We propose a novel pipeline
for few-shot tabular classification that distills the predic-
tive power of large foundation models into globally inter-
pretable student models. Given a tabular dataset, we gener-
ate synthetic data using CTGAN to approximate the underly-
ing distribution. We then finetune high-capacity teacher mod-
els (TabPFN, TabM) on a small number of labeled exam-
ples and use them to pseudolabel the synthetic data. Finally,
we train student explainer models (i.e., XGBoost, decision
trees, Generalized Linear Rule Model (GLRM), and TTnet)
on this pseudolabeled synthetic dataset. These student models
are globally and exactly interpretable, yielding logical deci-
sion rules (e.g., disjunctive normal form) that fully reproduce
their predictions. Evaluated across 7 clinical tabular tasks, our
distilled models generally outperform baselines trained di-
rectly on the few-shot data, with improved ROC AUC scores
across few-shot settings. This work demonstrates that foun-
dation models can be effectively leveraged as teachers to pro-
duce small, transparent, and high-performing classifiers. Our
approach advances the goal of reliable and interpretable ma-
chine learning in real-world settings where labeled data is
limited.

Code — https://github.com/hansfarrell/clinicaldistill

Introduction
In high-stakes clinical settings, machine learning models
must be transparent and trustworthy, yet the scarcity of large,
labeled datasets presents a fundamental challenge (Rudin
2019; Doshi-Velez and Kim 2017). This data limitation cre-
ates an unacceptable trade-off: clinicians must either rely
on traditional interpretable models that underperform with
limited data or trust opaque ”black-box” foundation models
whose internal logic is hidden, restricting their use in health-
care.

While foundation models like TabPFN (Hollmann et al.
2025) and TabM (Gorishniy, Kotelnikov, and Babenko 2025)
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excel at few-shot tabular classification, their complex ar-
chitectures prevent the direct scrutiny required for clinical
adoption. We propose a concise distillation pipeline that
bridges the gap between black-box accuracy and required
transparency.

Our framework (illustrated in Figure 1) transfers the pre-
dictive power of a foundation model into a globally and
exactly interpretable student model. The process begins by
generating synthetic data with CTGAN (Xu et al. 2019) to
mirror the underlying distribution of the clinical data. A
foundation model, finetuned on as few as four real patient
samples, then generates high-quality pseudolabels for this
synthetic dataset. Finally, a lightweight, interpretable stu-
dent model (e.g., a decision tree or TTnet rule extractor (Be-
namira et al. 2023)) is trained on this large, pseudolabeled
dataset. The resulting classifier can be fully expressed as a
set of human-readable logical rules (e.g., in Disjunctive Nor-
mal Form) that exactly reproduce its predictions.

This approach offers dual benefits critical for clinical de-
ployment: it boosts predictive performance in data-scarce
environments and replaces computationally expensive foun-
dation models with efficient and predictable rule sets at in-
ference time. We validate our method on 7 medical clas-
sification tasks using real-world clinical data sourced from
the U.S. National Library of Medicine (ClinicalTrials.gov),
MIT’s PhysioNet, and Kaggle. Our results demonstrate that,
in nearly all cases, distillation significantly improves test
ROC AUC over baseline models without sacrificing the full
interpretability required for healthcare applications.

Our contributions are:

• We propose a novel distillation framework tailored for
creating interpretable models in few-shot clinical set-
tings by combining foundation models with synthetic
data generation.

• We deliver global, exact interpretability, ensuring student
models can be converted into logical formulas that repro-
duce their behavior with perfect fidelity.

• We demonstrate the framework’s effectiveness on a di-
verse set of real-world clinical datasets, confirming its
practical value for developing trustworthy medical AI.
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Figure 1: A high-level illustration of the pipeline.

Related Work
Foundation Tabular Models
Recent advances have produced powerful ”foundation”
models for tabular data, which are particularly promising
for the few-shot learning challenges common in clinical re-
search. Models like TabPFN (Hollmann et al. 2025), a trans-
former (Vaswani et al. 2017) pre-trained on millions of syn-
thetic tasks, and TabM (Gorishniy, Kotelnikov, and Babenko
2025), a parameter-efficient deep learning architecture, have
demonstrated state-of-the-art performance with limited data.
Similarly, TabLLM (Hegselmann et al. 2023) leverages the
semantic understanding of large language models by seri-
alizing data rows into text. MediTab (Wang et al. 2024)
advances this approach by proposing a data-centric frame-
work that not only consolidates heterogeneous medical ta-
bles into natural language but also employs a critical data au-
diting and enrichment pipeline to train a foundational model.
While these models show immense potential for analyzing
complex clinical datasets, their ”black-box” nature, stem-
ming from deep, opaque architectures, is a significant barrier
to their direct adoption in healthcare, where transparency
and trust are non-negotiable.

Globally Interpretable Tabular Models
For a model to be trusted in a clinical setting, its decision-
making process must be fully transparent. This requires
global interpretability, where the model’s entire logic can
be expressed as a set of human-readable rules, as opposed
to local, post-hoc explanations from methods like LIME
or SHAP, which are vulnerable to adversarial attacks and
do not provide a complete picture of the model’s reason-
ing (Slack et al. 2020).

Our work focuses on models that meet this high standard.
Tree-based models like Decision Trees and XGBoost of-
fer clear, hierarchical rule paths (Chen and Guestrin 2016).
More explicitly, rule-based models such as GLRM (Wei
et al. 2019) and TTnet (Benamira et al. 2023) are de-
signed to output their logic as weighted conjunctive rules

or Boolean formulas. These models produce the kind of ver-
ifiable, ”glass-box” logic essential for clinical decision sup-
port.

Beyond TTnet and GLRM for tabular data, DiffLogic-
Net (Petersen et al. 2022) introduces differentiable logic
gate networks that learn networks of binary logic operators
(e.g., AND, XOR) via a continuous relaxation and then dis-
cretize them into exact logic gate circuits. Notably, DiffLog-
icNet and its convolutional extension for vision tasks can
be compiled into Boolean circuits, enabling fast, hardware-
friendly inference on image classification benchmarks while
preserving a circuit-level representation of the model’s deci-
sion logic.

Distillation
Knowledge distillation (KD) is a technique for transferring
knowledge from a large teacher model to a smaller stu-
dent model, often by training the student on the teacher’s
soft predictions (Hinton 2015). This concept has been ex-
tended to variants like task-specific (Jacob, Agarwal, and
Stenger 2023), multi-teacher (Wen et al. 2024), and self-
distillation (Gou et al. 2023). Combining KD with synthetic
data has also been explored in other domains. For example,
Nguyen et al. used synthesized images for few-shot KD with
black-box teachers in computer vision (Nguyen et al. 2022),
a concept similar to our pipeline. However, the combination
of synthetic augmentation and interpretability has seen little
work in the tabular domain. Our study builds on these ap-
proaches, using distillation to transfer a teacher’s knowledge
into an interpretable student model to achieve transparency.

Methodology
Our distillation pipeline begins with the few-shot clini-
cal dataset, (Xshot, yshot), which is preprocessed by one-hot
encoding categorical features and normalizing continuous
ones. The process unfolds in two main stages:
1. Teacher Training and Pseudolabel Generation: First, a

foundation model (the ”teacher”) is adapted to the small,



few-shot dataset (Xshot, yshot). Depending on the archi-
tecture, this is achieved either by leveraging the pre-
trained prior of generalist model (TabPFN) via finetun-
ing, or by training the model directly on the limited
samples (TabM). Concurrently, we employed CTGAN
(Xu et al. 2019) as our synthetic data generator. While
recent diffusion-based methods like TabDDPM (Kotel-
nikov et al. 2023) have demonstrated state-of-the-art fi-
delity, they incur significantly higher computational costs
during the sampling phase. For our distillation pipeline,
which requires generating large volumes of synthetic
pseudolabeled data, CTGAN offers an optimal trade-off
between distributional fidelity and computational effi-
ciency. The trained teacher model then infers pseudola-
bels, ysyn, for this entire synthetic dataset. This results in
a large, low-variance training set, (Xsyn, ysyn), which en-
capsulates the teacher’s learned knowledge.

2. Training Student Models: In the final stage, an inter-
pretable student model is trained on the complete pseu-
dolabeled dataset, (Xsyn, ysyn). Each student model is de-
signed to be globally and exactly interpretable, convert-
ing its internal logic into human-readable expressions.
Decision Trees and XGBoost: The logic of these mod-
els can be fully represented by their tree structures. Each
path from a root to a leaf node forms a conjunctive rule
(a series of AND conditions), and in the case of XG-
Boost, the final prediction is an aggregation of the out-
puts from an ensemble of such trees. GLRM (General-
ized Linear Rule Model): This model learns a classifier
as a weighted sum of conjunctive rules (Wei et al. 2019).
Its prediction is determined by the function: f(x) =
intercept +

∑
i 1{Rulei(x)} · wi > 0, where Rulei(x) is

a Boolean clause and wi is its learned weight. An exam-
ple of a distilled GLRM is shown in Table 1. TTnet: This
model is explicitly designed to produce a set of rules in
Disjunctive Normal Form (DNF), providing a clear logi-
cal expression for its predictions (Benamira et al. 2023).

Coefficient Clause
+4.786 (intercept)
+4.170 FastingBS = 1
−2.509 Age ≤ 62.00 AND ChestPainType ̸= TA AND Cholesterol > 134.80
−2.210 Cholesterol ≤ 305.00
−2.053 Age ≤ 62.00 AND Oldpeak ≤ 1.80 AND ST Slope = Up
+1.923 Sex = M AND RestingBP ≤ 160.00 AND RestingBP > 110.00
+1.803 Age ≤ 65.00 AND ChestPainType ̸= ATA AND RestingBP > 110.00
−1.711 Oldpeak ≤ 1.00
−1.590 ChestPainType = ATA
−1.262 Cholesterol > 0.00 AND RestingECG ̸= ST AND Oldpeak ≤ 1.80
−1.193 ExerciseAngina = N AND Oldpeak ≤ 2.30
+1.032 RestingBP > 110.00 AND MaxHR ≤ 170.00 AND ST Slope = Flat
−0.929 MaxHR ≤ 103.00
−0.858 RestingBP ≤ 120.00
−0.832 RestingBP ≤ 130.00 AND Oldpeak ≤ 2.30
+0.820 FastingBS = 0 AND Oldpeak ≤ 2.30
−0.817 Age ≤ 65.00 AND Cholesterol > 0.00 AND Oldpeak ≤ 0.60
−0.812 Age ≤ 62.00 AND ChestPainType ̸= NAP AND Cholesterol > 0.00

Table 1: Example rule-based classification model coeffi-
cients and conditions from GLRM distilled from 128-shots
fine-tuned TabPFN on the Heart Disease dataset. We pre-
dict whether a patient has heart disease or not.

Experiments
In this section, we conduct experiments to evaluate our pro-
posed pipeline and try to answer the following question:
How accurate would the classification be with such models?
How much does it improve the baseline of simply training
the explainer model on the few-shot data?

Baseline and Evaluation. To assess the effectiveness of
our distillation-based framework, we benchmark it against
a baseline setting that uses no distillation. In the baseline
pipeline, each student model is trained directly on the few-
shot dataset (Xshot, yshot) without access to the foundation
model. This represents the standard approach to learning in-
terpretable models under data-scarce conditions. For evalua-
tion, we also include the ’all’ shot setting, where the training
set is not sampled but entirely included in the training of the
foundation models for distillation and of the student models
for the baseline method.

For evaluation, we measure the generalization perfor-
mance of each trained student model on the held-out test set
Xtest, using the ROC-AUC (Receiver Operating Characteris-
tic - Area Under the Curve) as the performance metric. Un-
like accuracy, which depends on a fixed threshold, the ROC-
AUC evaluates the quality of the model’s probabilistic or
soft predictions. Higher AUC values indicate better overall
discriminative ability and generalization performance, i.e.
an AUC of 1.0 indicates a perfect classifier whereas an AUC
of 0.5 corresponds to random guessing.

We define a full evaluation unit as a quadruple
(foundation model,dataset, k,student model)
where the student model is trained via our distil-
lation pipeline, i.e., on (Xsyn, ysyn) pseudolabelled
by the foundational model trained on (Xshot, yshot).
Each such unit is compared against a baseline triplet
(dataset, k,student model) where the student model
is trained on the few-shot data (Xshot, yshot) instead.

The performance gap between the two setups quantifies
the benefit of leveraging foundation models and synthetic
data generation to support interpretable model learning in
few-shot regimes. We report and compare test ROC-AUC
scores across all combinations of:

• 7 medical tabular classification datasets (a description of
the datasets is provided in Table 2),

• 8 values of k, number of shots (4, 8, 16, 32, 64, 128, 256,
’all’),

• 2 foundational models for the distillation pipeline (TabM,
TabPFN),

• 4 student interpretable models (Decision Tree, Logistic
Rule Regression, TTnet, XGBoost).

Overall, the distillation pipeline achieves higher
ROC-AUC scores than the baseline in a majority of
dataset–shot–student combinations, showing its broad
applicability across domains. The gains are most prominent
in low-shot settings (4-8 shots). These trends highlight both
the strengths and the boundaries of the approach.

A summary of aggregate results is presented in Figure 2.
More details on the experimental results are presented on the
Extended Results section of the Appendix .



Figure 2: Each row of figures describes the performance of the TabM, TabPFN models (in descending order). For each parent
model, we report the (i) distribution of the test ROC-AUC across all 15 datasets and 7 student models, (ii) mean ROC-AUC
by shot size for each student model, (iii) the overall average ROC-AUC across students as a function of shot size, where the
shaded regions represent the standard deviation across different student models at each shot size.

TabPFN and TabM consistently outperform the baseline
across all shot settings, although the benefit narrows down
for both on 16 shots. TabPFN, in particular, exhibits the
most robust improvements across the board, with espe-
cially strong gains in ultra-low-shot scenarios. This reflects
TabPFN’s design for Bayesian in-context learning, leverag-
ing its synthetic prior training to generalize from minimal
data. By pseudolabeling CTGAN-generated samples, it pro-
vides the student models with a dense, low-variance training
signal, critical in data-scarce settings.

Looking across student models, XGBoost (Chen and
Guestrin 2016) and decision trees generally extract the
largest improvements from distillation (they gain most in
mean AUC and exploit richer signals from the pseudola-
bels), whereas TTnet (Benamira et al. 2023) generally shows
the smallest incremental benefit (its CNN architecture lim-
its its tabular learning capabilities). Logistic rule regres-
sion (Wei et al. 2019) get moderate, reliable gains as they
are able to capture rule-like structure from the teacher.

Statistical Test. To formally evaluate whether the dis-
tillation pipeline yields higher predictive performance than
the non-distilled baseline, we apply the paired Wilcoxon
signed-rank test to the per-experiment ROC-AUC scores.
Let xi denote the AUC obtained by the distilled student
model on experiment i and yi the corresponding AUC for
the baseline student model directly trained on few-shot data,
where each paired index i corresponds to the same tuple

(dataset, k,student model,seed). We test the one-
sided hypothesis that distillation increases the median AUC.

Formally, we define paired differences

di = xi − yi, for i = 1, 2, . . . , N.

We test the one-sided alternative hypothesis:

H0 : median(di) ≤ 0 , vs. H1 : median(di) > 0.

Applying the test to the full set of matched AUC pairs pro-
duced a p-value of 5 × 10−65. Given the extremely small
value, we can confidently reject H0 at conventional signifi-
cance levels and conclude that the distillation pipeline pro-
duces significantly higher AUC performance than the base-
line.

Aside from the Wilcoxon signed-rank test, we perform the
Friedman statistical test with Nemenyi post-hoc to validate
and rank the effect of distillation over the baseline method
with TabM and TabPFN. The AUC results over the different
(dataset, k,student model,seed) combination are
grouped, and the 3 methods producing the groups (TabPFN,
TabM, baseline) are compared. Thus, it is an all-pairs com-
parison, testing

H0 : the distribution of the 3 groups are the same, vs.
H1 : there is a significant difference between the

distribution of group i, j

The pairwise p-values between the 3 methods are:



Baseline TabPFN TabM
Baseline 1 0.000 0.0231
TabPFN 0.000 1 0.000
TabM 0.0231 0.000 1

At α = 0.05, we can conclude that there is a significant
difference between the distribution of the TabM group and
the baseline group with a p-value of 0.023. With a p-value of
close to 0 when statistically compared to both the TabM and
baseline groups, the distillation effect with TabPFN is very
evident, highlighting the effectiveness of the synthetic prior
pre-training of TabPFN.

Overall, these results validate our core claim: distillation
from foundation tabular models into globally interpretable
students can enhance few-shot classification performance,
particularly with TabPFN, provided the teacher’s inductive
biases align with the data regime.

Limitation and Future Work
The primary limitation of our framework is that the student
model’s performance is fundamentally bounded by the qual-
ity of its teacher. As the student learns exclusively from
teacher-generated pseudolabels, it inevitably inherits any
systematic biases, miscalibrations, or domain-specific weak-
nesses present in the foundation model. A student, therefore,
cannot outperform a suboptimal teacher.

This dependency, however, underscores the importance
of strategic teacher selection. Our framework is model-
agnostic, allowing practitioners to choose a foundation
model whose inductive biases are best aligned with the
dataset’s characteristics., for instance, leveraging TabPFN
for extremely small datasets or TabM for numeric-heavy
data. This points to promising directions for future work,
including the development of automated teacher selection
methods or the use of teacher ensembles to mitigate the
weaknesses of any single model and enhance overall robust-
ness.

Conclusion
In this work, we propose a novel framework for enabling
globally interpretable few-shot tabular classification by dis-
tilling foundation models into rule-based student models.
This approach is especially applicable for high-stakes fields
like healthcare, where decisions must be transparent, trust-
worthy, and often rely on inherently data-scarce clinical
datasets.

Our approach leverages the strengths of recent tabular
foundation models (e.g. TabPFN, TabM) to generate high-
quality pseudolabels on synthetic data, which are then used
to train interpretable models like GLRM, TTnet, decision
trees, and XGBoost.

Through experiments on 7 diverse clinical datasets across
varying shot sizes, we demonstrate that distillation from
foundation models improves the performance of inter-
pretable student models compared to training them directly
on few-shot data. In particular, TabPFN emerges as a con-
sistently strong teacher, with distilled students outperform-
ing their baselines across all shot settings and for all student
models, often by substantial margins. By replacing them

with distilled interpretable models, our pipeline not only en-
hances explainability but can also offer efficiency gains for
deployment.

As tabular foundation models continue to advance, espe-
cially with the integration of ever more powerful LLM back-
bones, our distillation framework will serve as an essential
tool to extract, inspect, and understand their learned repre-
sentations. In this way, it not only addresses today’s need
for interpretable few-shot models, but also lays groundwork
for mechanistic interpretability of future, large-scale tabular
foundation models.

Our findings suggest that, when appropriately matched to
dataset characteristics, foundation models can act as power-
ful teachers that elevate the practicality of interpretable mod-
els in low-data regimes, and in the case of TabPFN, can de-
liver consistently strong, universal gains across all settings
tested.
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Datasets
We conduct experiments on 7 clinical binary classification
tabular datasets, comprising 4 datasets from the US clini-
cal trials library, 1 from the MIT physiology laboratory data
bank, and 2 from Kaggle. We present the dataset names, the
number of samples, the number of categorical and continu-
ous features, the number of positive and negative instances,
and the source link for the datasets.

Table 2: Number of samples, categorical features, continu-
ous features, and the source of the 7 datasets used for the
benchmark.

dataset name n samples cat. cont. 1 0

breastcancer1 3871 14 2 266 3605
breastcancer22 1651 13 6 320 1331
chemotherapy3 1604 31 11 714 890
coloncancer4 2968 14 3 357 2611
diabetes5 768 0 8 268 500
heart6 918 6 5 508 410
respiratory7 1776 22 24 283 1492

Implementation Details
We generated a fixed number of 5000 synthetic samples with
the CTGAN generator for all datasets. This large sample size
is selected to ensure sufficient density to capture the decision
boundaries learned by the foundational model. All train-
ing and inference results for the parent models (TabPFN,
TabM) uses seed 0 to pseudolabel the synthetic data. After-
wards, the distillation and baseline experiments of the stu-
dent models across all 7 datasets and 7 shot settings uses
5 random seeds (0, 1, 6, 7, 8) to report the mean and stan-
dard deviation of metrics. We use a class-balanced sampling
to obtain the few-shot data for parent model training for all
k ∈ [4, 8, 16, 32, 64, 128, 256].

Hardware.
For all experiments, we use 4 Nvidia GeForce RTX 3090
GPUs and 8 cores Intel(R) Core(TM) i7-8650U CPU
clocked at 1.90 GHz, 16 GB RAM. The hardware chosen
was based on availability; neural networks under PyTorch
were run on GPU, while tree-based models from scikit-learn
were run on CPU.

Foundation Models.
TabM: Trained up to 500 epochs with AdamW (Loshchilov
and Hutter 2019) optimizer (learning rate 1e-3, weight
decay 1e-4).

Source: https://clinicaltrials.gov/ct2/show/NCT00041119
Source: https://clinicaltrials.gov/ct2/show/NCT00312208
Source: https://clinicaltrials.gov/ct2/show/NCT00694382
Source: https://clinicaltrials.gov/ct2/show/NCT00079274
Source: https://www.kaggle.com/datasets/pritsheta/diabetes-

dataset
Source: https://www.kaggle.com/datasets/fedesoriano/heart-

failure-prediction
Source: https://physionet.org/content/mimic2-iaccd/1.0/



Explainer Models.
We perform standard hyperparameter tuning by seaching
over the hyperparameter space from (Grinsztajn, Oyallon,
and Varoquaux 2022).

Decision Tree:
Parameter Distribution
Max Depth UniformInt[1, 20]
Min Samples Split UniformInt[2, 10]
Min Samples Leaf UniformInt[1, 10]
Max features [sqrt, log2, None, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Criterion [”gini”, ”entropy”]

XGBoost:
Parameter Distribution
Max depth UniformInt[1, 11]
Num estimators UniformInt[100, 6000]
Gamma LogUniform[1e-8, 7]
Lambda LogUniform[1, 4]
Alpha LogUniform[1e-8, 1e2]

Logistic Rule Regression (Wei et al. 2019):

Parameter Distribution
λ0 [0.1, 0.05, 0.01]
λ1 [0.01, 0.005, 0.001]

Extended Results
We present the extended results of the experiments in Ta-
bles 3 to 7 and Figures 3 to 9. Tables 3 to 5 show the mean
AUC of the baseline vs distillation by TabPFN and TabM
for all 7 datasets and 4 student models across k = 4, 32, 256
shots. The AUC is averaged across 5 random seeds and the
standard deviation over the 5 seeds is shown as superscript.

Figures 3 to 9 plots these results for each dataset, show-
ing the baseline vs distillation AUC comparison across all
shot sizes for each student model. Only the TabPFN distilla-
tion results are shown in these figures for clarity, as it con-
sistently outperforms TabM and the baseline method in our
experiments, as seen in Figure 2.

We also present the model complexity of each student
model in Table 7, measured as the number of boolean op-
erators (& and |) + the number of rules that reproduces the
model’s logic exactly. An example rule set from GLRM
is shown in Table 1, which consists of 18 rules and 19
boolean operators (&), adding up to a complexity of 37.
The TTnet model can be converted into Disjunctive Normal
Form (DNF) to obtain the exact number of rules and boolean
operators, while decision trees and XGBoost models can be
converted into sets of conjunctive rules by tracing each path
from root to leaf.

Table 3: Results for k = 4 shots. Mean AUC with standard
deviation shown as superscript.

Dataset Student Baseline TabPFN TabM

Breast

TT 0.4960.045 0.5470.020 0.5530.011

XGB 0.5000.000 0.5480.020 0.5510.013

LRR 0.5610.052 0.5430.021 0.5460.011

DT 0.5140.028 0.5400.011 0.5230.006

Breast 2

TT 0.5290.087 0.5160.032 0.4970.039

XGB 0.5000.000 0.4920.009 0.4820.013

LRR 0.5320.054 0.4810.010 0.4770.012

DT 0.5180.036 0.4870.006 0.4850.009

Chemo

TT 0.5210.035 0.5280.013 0.4490.009

XGB 0.5000.000 0.5070.009 0.4710.007

LRR 0.5720.061 0.4860.006 0.4530.008

DT 0.5000.000 0.4680.007 0.4580.006

Colon

TT 0.5150.032 0.5410.028 0.5540.014

XGB 0.5000.000 0.5380.009 0.5270.012

LRR 0.4950.050 0.5160.009 0.5260.014

DT 0.5000.000 0.5320.008 0.5360.009

Diabetes

TT 0.6020.101 0.7850.008 0.7410.036

XGB 0.5000.000 0.7900.015 0.6990.016

LRR 0.6530.103 0.8000.011 0.7280.010

DT 0.5350.069 0.6820.014 0.6810.007

Heart

TT 0.5400.214 0.8210.011 0.6940.081

XGB 0.5000.000 0.8390.006 0.8130.015

LRR 0.5750.234 0.8080.009 0.7850.008

DT 0.5540.108 0.8150.009 0.7090.005

Respiratory

TT 0.7580.101 0.9640.032 0.9080.014

XGB 0.5000.000 0.9920.001 0.9550.002

LRR 0.9020.060 0.9950.001 0.9530.003

DT 0.5000.000 0.9880.007 0.9020.010



Table 4: Results for k = 32 shots. Mean AUC with standard
deviation shown as superscript.

Dataset Student Baseline TabPFN TabM

Breast

TT 0.5780.049 0.5780.020 0.5700.021

XGB 0.5640.048 0.5750.022 0.5780.019

LRR 0.5720.057 0.5830.018 0.5800.021

DT 0.5750.030 0.5510.018 0.5670.016

Breast 2

TT 0.6500.044 0.6730.010 0.6300.015

XGB 0.5990.051 0.7110.008 0.6550.017

LRR 0.6280.024 0.7070.006 0.6470.013

DT 0.5670.061 0.6440.011 0.5820.009

Chemo

TT 0.5810.045 0.6250.005 0.6090.003

XGB 0.5830.014 0.6340.007 0.6410.004

LRR 0.5500.037 0.6040.006 0.6280.006

DT 0.5680.023 0.5890.006 0.5670.004

Colon

TT 0.5570.021 0.5600.013 0.5220.018

XGB 0.5360.035 0.5500.004 0.5220.008

LRR 0.5690.026 0.5440.004 0.4970.010

DT 0.5340.008 0.5450.010 0.5100.018

Diabetes

TT 0.7440.032 0.7810.016 0.5880.030

XGB 0.7440.040 0.8020.007 0.7250.014

LRR 0.7390.024 0.7860.008 0.6950.017

DT 0.6460.095 0.7370.015 0.6420.017

Heart

TT 0.8570.025 0.8830.007 0.8540.007

XGB 0.8470.023 0.8900.006 0.8830.004

LRR 0.8540.033 0.8760.005 0.8590.005

DT 0.7890.041 0.8310.005 0.8230.008

Respiratory

TT 0.7640.049 0.9120.016 0.9400.009

XGB 0.9740.016 0.9980.000 0.9870.002

LRR 0.9880.007 0.9910.000 0.9910.000

DT 0.9830.011 0.9970.000 0.9590.014

Table 5: Results for k = 256 shots. Mean AUC with stan-
dard deviation shown as superscript.

Dataset Student Baseline TabPFN TabM

Breast

TT 0.6420.017 0.6660.016 0.6270.031

XGB 0.6400.017 0.6630.025 0.6890.041

LRR 0.5910.017 0.6500.024 0.6590.023

DT 0.5840.030 0.6210.017 0.6410.033

Breast 2

TT 0.7170.017 0.7540.016 0.7410.017

XGB 0.7090.018 0.7770.016 0.7580.026

LRR 0.6870.022 0.7730.015 0.7550.019

DT 0.6610.016 0.7270.017 0.7020.011

Chemo

TT 0.6650.009 0.6930.023 0.6820.006

XGB 0.6560.019 0.7350.006 0.7350.014

LRR 0.6380.030 0.6950.003 0.6920.004

DT 0.5990.031 0.6940.009 0.6300.009

Colon

TT 0.6500.015 0.6480.005 0.6630.010

XGB 0.6250.029 0.6670.008 0.6640.025

LRR 0.6440.035 0.6640.005 0.6770.005

DT 0.5900.021 0.6220.011 0.6400.027

Diabetes

TT 0.8030.010 0.7990.010 0.7730.011

XGB 0.8000.018 0.8560.005 0.8170.026

LRR 0.7860.025 0.8400.003 0.8130.011

DT 0.7420.008 0.7610.002 0.7290.030

Heart

TT 0.9100.011 0.9150.001 0.8810.007

XGB 0.9010.009 0.9290.009 0.9020.015

LRR 0.9080.015 0.9250.004 0.8870.006

DT 0.8150.021 0.8600.010 0.8300.024

Respiratory

TT 0.9730.007 0.9210.012 0.9270.005

XGB 0.9940.006 1.0000.000 0.9980.001

LRR 0.9880.010 0.9910.000 0.9840.010

DT 0.9970.005 0.9980.000 0.9960.006



Table 6: Results for k = all shots. Mean AUC with standard
deviation shown as superscript.

Dataset Student Baseline TabPFN TabM

Breast

TT 0.6460.018 0.6630.018 0.6360.024

XGB 0.6380.017 0.6670.023 0.6880.042

LRR 0.6140.027 0.6510.023 0.6600.023

DT 0.5920.024 0.6200.018 0.6370.038

Breast 2

TT 0.7180.016 0.7540.017 0.7480.015

XGB 0.7120.027 0.7770.016 0.7630.026

LRR 0.7020.028 0.7700.016 0.7560.017

DT 0.6340.027 0.7190.014 0.6900.022

Chemo

TT 0.6650.009 0.6770.037 0.6740.005

XGB 0.6560.013 0.7350.004 0.7300.012

LRR 0.6230.053 0.7050.004 0.6920.004

DT 0.6070.047 0.6940.005 0.6210.013

Colon

TT 0.6470.012 0.6490.008 0.6580.010

XGB 0.6070.022 0.6670.007 0.6580.022

LRR 0.6430.035 0.6640.005 0.6770.005

DT 0.5950.024 0.6220.009 0.6320.011

Diabetes

TT 0.8040.010 0.7980.009 0.7730.010

XGB 0.7980.013 0.8550.006 0.8110.028

LRR 0.7390.120 0.8410.003 0.8100.009

DT 0.7270.024 0.7890.013 0.7450.034

Heart

TT 0.9080.013 0.9150.001 0.8770.010

XGB 0.9060.006 0.9300.010 0.9070.013

LRR 0.8970.030 0.9260.004 0.9000.007

DT 0.8450.022 0.8590.006 0.8300.019

Respiratory

TT 0.9740.008 0.9200.011 0.9260.003

XGB 0.9940.006 1.0000.000 0.9980.000

LRR 0.9830.010 0.9910.000 0.9950.000

DT 0.9970.005 0.9960.004 0.8820.214

Table 7: Mean complexity of student models across different
shot configurations.

Dataset Student Shots
4 8 16 32 64 128 256 all

Breast

TT 125 118 129 139 144 151 145 141
XGB 1286 1769 2527 3065 3985 5706 6710 8012
LRR 28 22 54 27 32 44 38 42
DT 127 107 240 169 239 344 397 360

Breast 2

TT 115 139 141 139 159 163 165 154
XGB 476 1700 1835 2111 3720 3989 3796 3756
LRR 46 65 53 70 52 103 115 98
DT 95 247 266 244 228 259 267 319

Chemo

TT 145 150 231 236 270 244 277 284
XGB 1316 405 2054 1027 1867 2402 4823 3611
LRR 59 21 68 79 75 99 83 95
DT 38 46 163 224 168 142 183 191

Colon

TT 116 109 136 154 168 149 167 168
XGB 1264 1184 2223 3151 7915 6806 5242 5735
LRR 26 18 37 47 58 70 77 78
DT 64 48 112 305 472 387 507 499

Diabetes

TT 65 61 72 75 83 84 78 75
XGB 1542 1194 3934 2750 3502 4423 5973 5933
LRR 41 52 43 62 93 76 77 71
DT 121 211 212 263 353 313 351 292

Heart

TT 99 122 136 147 150 149 147 152
XGB 1553 877 1398 1783 3579 2536 6208 3731
LRR 15 23 39 48 57 35 48 54
DT 31 58 176 233 223 166 357 316

Respiratory

TT 468 410 385 318 328 278 355 310
XGB 2010 1978 1528 847 674 1853 987 701
LRR 83 54 30 26 9 6 8 13
DT 147 146 91 35 35 38 26 23



Figure 3: Performance comparison for Breast Cancer
dataset.

Figure 4: Performance comparison for Breast Cancer 2
dataset.

Figure 5: Performance comparison for Chemotherapy
dataset.

Figure 6: Performance comparison for Colon Cancer
dataset.

Figure 7: Performance comparison for Diabetes dataset.

Figure 8: Performance comparison for Heart dataset.



Figure 9: Performance comparison for Respiratory dataset.


