
Published in Deep RL Workshop, NeurIPS 2022

LEARNING REPRESENTATIONS FOR REINFORCEMENT
LEARNING WITH HIERARCHICAL FORWARD MODELS

Trevor McInroe∗
University of Edinburgh

Lukas Schäfer
University of Edinburgh

Stefano V. Albrecht
University of Edinburgh

ABSTRACT

Learning control from pixels is difficult for reinforcement learning (RL) agents
because representation learning and policy learning are intertwined. Previous ap-
proaches remedy this issue with auxiliary representation learning tasks, but they
either do not consider the temporal aspect of the problem or only consider single-
step transitions, which may miss relevant information if important environmental
changes take many steps to manifest. We propose Hierarchical k-Step Latent
(HKSL), an auxiliary task that learns representations via a hierarchy of forward
models that operate at varying magnitudes of step skipping while also learning to
communicate between levels in the hierarchy. We evaluate HKSL in a suite of
30 robotic control tasks with and without distractors and a task of our creation.
We find that HKSL either converges to higher or optimal episodic returns more
quickly than several alternative representation learning approaches. Furthermore,
we find that HKSL’s representations capture task-relevant details accurately across
timescales (even in the presence of distractors) and that communication channels
between hierarchy levels organize information based on both sides of the commu-
nication process, both of which improve sample efficiency.

1 INTRODUCTION

Recently, reinforcement learning (RL) has had significant empirical success in the robotics do-
main (Kalashnikov et al., 2018; 2021; Lu et al., 2021; Chebotar et al., 2021). However, previous
methods often require a dataset of hundreds of thousands or millions of agent-environment interac-
tions to achieve their performance. This level of data collection may not be feasible for the average
industry group. Therefore, RL’s widespread real-world adoption requires agents to learn a satisfac-
tory control policy in the smallest number of agent-environment interactions possible.

Pixel-based state spaces increase the sample efficiency challenge because the RL algorithm is re-
quired to learn a useful representation and a control policy simultaneously. A recent thread of
research has focused on developing auxiliary learning tasks to address this dual-objective learning
problem. These approaches aim to learn a compressed representation of the high-dimensional state
space upon which agents learn control. Several task types have been proposed such as image re-
construction (Yarats et al., 2020; Jaderberg et al., 2017), contrastive objectives (Laskin et al., 2020a;
Stooke et al., 2021), disentanglement objectives (Dunion et al., 2022), image augmentation (Yarats
et al., 2021; Laskin et al., 2020b), and forward models (Lee et al., 2020a; Zhang et al., 2021; Gelada
et al., 2019; Hafner et al., 2020; 2019).

Forward models are a natural fit for RL because they exploit the temporal axis by generating repre-
sentations of the state space that capture information relevant to the environment’s transition dynam-
ics. However, previous approaches learn representations by predicting single-step transitions, which
may not capture relevant information efficiently if important environmental changes take many steps
to manifest. For example, if we wish to train a soccer-playing agent to score a goal, the pertinent
portions of an episode occur at the beginning, when the agent applies a force and direction, and
at the end when the agent sees how close the ball came to the goal. Using multi-step transitions
in this situation could lead to more efficient learning, as we would focus more on the long-term
consequences and less on the large portion of the trajectory where the ball is rolling.

∗t.mcinroe@ac.ed.uk

1

Published in Deep RL Workshop, NeurIPS 2022

In this paper, we introduce Hierarchical k-Step Latent (HKSL), an auxiliary task for RL agents that
explicitly captures information in the environment at varying levels of temporal coarseness. HKSL
accomplishes this by leveraging a hierarchical latent forward model where each level in the hierarchy
predicts transitions with a varying number of steps skipped. Levels that skip more steps should
capture a coarser understanding of the environment by focusing on changes that take more steps
to manifest and vice versa for levels that skip fewer steps. HKSL also learns to share information
between levels via a communication module that passes information from higher to lower levels. As
a result, HKSL learns a set of representations that give the downstream RL algorithm information
on both short- and long-term changes in the environment.

We evaluate HKSL and various baselines in a suite of 30 DMControl tasks (Tassa et al., 2018; Stone
et al., 2021) that contains environments without and with distractors of varying types and intensities.
Also, we evaluate our algorithms in “Falling Pixels”, a task of our creation that requires agents to
track objects that move at varying speeds. The goal in our study is to learn a well-performing control
policy in the smallest number of agent-environment interactions as possible. We test our algorithms
with and without distractors because real-world RL-controlled robots need to work well in controlled
settings (e.g., a laboratory) and uncontrolled settings (e.g., a public street). Also, distractors may
change at speeds independently from task-relevant information, thereby increasing the challenge of
relating agent actions to changes in pixels. Therefore, real-world RL deployments should explicitly
learn representations that tie agent actions to long- and short-term changes in the environment.

In our DMControl experiments, HKSL reaches an interquartile mean of evaluation returns that is
29% higher than DrQ (Yarats et al., 2021), 74% higher than CURL (Laskin et al., 2020a), 24%
higher than PI-SAC (Lee et al., 2020b), and 359% higher than DBC (Zhang et al., 2021). Also,
our experiments in Falling Pixels show that HKSL converges to an interquartile mean of evaluation
returns that is 24% higher than DrQ, 35% higher than CURL, 31% higher than PI-SAC, and 44%
higher than DBC. We analyze HKSL’s hierarchical model and find that its representations more
accurately capture task-relevant details earlier on in training than our baselines. Additionally, we find
that HKSL’s communication manager considers both sides of the communication process, thereby
giving forward models information that better contextualizes their learning process. Finally, we
provide data from all training runs for all benchmarked methods.

2 BACKGROUND

We study an RL formulation wherein an agent learns a control policy within a partially observable
Markov decision process (POMDP) (Bellman, 1957; Kaelbling et al., 1998), defined by the tuple
(S,O,A, P s, P o,R, γ). S is the ground-truth state space, O is a pixel-based observation space,
A is the action space, P s : S × A × S → [0, 1] is the state transition probability function, P o :
S ×A×O → [0, 1] is the observation probability function, R : S ×A → R is the reward function
that maps states and actions to a scalar signal, and γ ∈ [0, 1) is a discount factor. The agent does
not directly observe the state st ∈ S at step t, but instead receives an observation ot ∈ O which we
specify as a stack of the last three images. At each step t, the agent samples an action at ∈ A with
probability given by its control policy which is conditioned on the observation at time t, π(at|ot).
Given the action, the agent receives a reward rt = R(st, at), the POMDP transitions into a next state
st+1 ∈ S with probability P s(st, at, st+1), and the next observation (stack of pixels) ot+1 ∈ O is
sampled with probability P o(st+1, at, ot+1). Within this POMDP, the agent must learn a control
policy that maximizes the sum of discounted returns over the time horizon T of the POMDP’s
episode: argmaxπ Ea∼π[

∑T
t=1 γ

trt].

3 RELATED WORK

Representation learning in RL. Some research has pinpointed the development of representation
learning methods that can aid policy learning for RL agents. In model-free RL, using represen-
tation learning objectives as auxiliary tasks has been explored in ways such as contrastive objec-
tives (Laskin et al., 2020a; Stooke et al., 2021), image augmentation (Yarats et al., 2021; Laskin
et al., 2020b), image reconstruction (Yarats et al., 2020), information theoretic objectives (Lee et al.,
2020b), inverse models (Burda et al., 2019; Pathak et al., 2017), and intrinsic motivation (Schäfer

2

Published in Deep RL Workshop, NeurIPS 2022

et al., 2022). HKSL fits within the auxiliary task literature but does not use contrastive objectives,
image reconstruction, information theoretic objectives, nor inverse models.

Forward models and hierarchical models. Forward models for model-free RL approaches learn
representations that capture the environment’s transition dynamics via a next-step prediction objec-
tive. Some methods learn stochastic models that are aided with image reconstruction (Lee et al.,
2020a) or reward-prediction objectives (Gelada et al., 2019). Other methods combine forward mod-
els with rewa rd prediction and bisimulation metrics (Zhang et al., 2021) or momentum regression
targets (Schwarzer et al., 2021). Outside of the purpose of representation learning, forward models
are used extensively in model-based RL approaches to learn control policies via planning proce-
dures (Hafner et al., 2020; 2019; Ha & Schmidhuber, 2018; Zhang et al., 2019).

Stacking several forward models on top of one another forms the levels of a hierarchical model. This
type of model has been studied in the context of multiscale temporal inference (Schmidhuber, 1991),
variational inference Chung et al. (2017), and pixel-prediction objectives (Kim et al., 2019; Saxena
et al., 2021). Additionally, hierarchical models have been used for speech synthesis (Kenter et al.,
2019), learning graph embeddings (Chen et al., 2018), and decomposing MDPs (Steccanella et al.,
2021). Sequence prediction literature has explored the use of hierarchical models via manually-
defined connections between levels (Saxena et al., 2021; Koutnik et al., 2014) and using levels with
uniform time-step skipping (Kumar et al., 2020; Castrejon et al., 2019).

Unlike the aforementioned forward model approaches, HKSL combines a set of forward models that
step in the latent space with independent step sizes without additional prediction objectives. Also,
HKSL contains a connection between forward models that learns what to share by using the context
from the entire rollout from higher levels and the current timestep of lower levels, which leads to
faster learning.

4 HIERARCHICAL k-STEP LATENT

HKSL’s hierarchical model is composed of forward models that take steps in the latent space at
varying levels of temporal coarseness. We define temporal coarseness as the degree to which a
level’s forward model skips environment steps. For example, if a forward model predicts the latent
representation of a state five steps into the future, it is considered more coarse than a forward model
that predicts only one step forward. Coarser levels should learn to attend to information in the
environment that takes many steps to manifest in response to an agent’s action. In contrast, finer
levels should learn to attend to environmental properties that immediately respond to agent actions.
This is because coarser levels need to make fewer predictions to reach steps further into the future
than finer levels.

At each learning step, a batch of B trajectories of length k are sampled from the replay memory
τ = {(ot, at, . . . , at+k−1, ot+k)i}Bi=1. The initial observation of each trajectory ot is uniformly
randomly sampled on a per-episode basis t ∼ U(1, T − k)1. In the following, we will denote the
first and last timestep of the batch with t = 1 and t = k, respectively.

HKSL’s components. See Figure 1 for a visual depiction of the HKSL architecture. HKSL’s hier-
archical model is composed of h levels. Each level l has a forward model f l, a nonlinear projection
module wl, an online image encoder elo, and a momentum image encoder elm that is updated as an
exponential moving average of the online encoder (e.g., (He et al., 2020)). Between consecutive
levels there is a communication manager cl,l−1 to pass information from one level l to the level
below it l − 1. The number of steps skipped by a given level nl is independent of the coarseness of
other levels in the hierarchy.

Forward models. HKSL’s forward models are a modified version of the common GRU recurrent
cell (Cho et al., 2014) that allows for multiple data inputs at each step. See Appendix C.3 for
a detailed mathematical description. At step t = 1, the forward models take the representation
produced by the level’s encoder zl1 = elo(o1) along with a concatenation of nl action vectors
ā1 = [a1|...|anl] to predict the latent representation of a future state zl1+nl = f l(zl1, ā1). For any
following timestep t > 1, the forward models take the predicted latent representation zlt as input
instead of the encoder representation.

1Ending the range of numbers on T − k guarantees that trajectories do not overlap episodes.

3

Published in Deep RL Workshop, NeurIPS 2022

Figure 1: Depiction of HKSL architecture with an “unrolled” two-level hierarchical model where
the first level moves at one step n1 = 1 and the second level moves at three steps n2 = 3. First, the
online encoders (blue) encode the initial observation o1 of the sampled trajectory. Next, the forward
models (red) predict the latent representations of the following observations, with level 1 predicting
single steps ahead conditioned on the level’s previous representation and applied action. The for-
ward model of the second level predicts three steps ahead and receives the previous representation
and concatenation of the three applied actions. The communication manager (green) forwards infor-
mation from the representations of the coarser second level to each forward model step of the first
level as additional inputs. All models are trained end-to-end with a normalized ℓ2 loss of the differ-
ence between the projected representations of each level and timestep and the target representations
of observations at the predicted timesteps. Target representations are obtained using momentum
encoders (purple) and projections are done by the projection model (orange) of the given level.

Communication managers. Communication managers cl,l−1 pass information from coarser to
finer levels in the hierarchy (l → l − 1) while also allowing gradients to flow from finer to coarser
levels (l − 1 → l). A communication manager cl,l−1 takes all latent representations produced by
level l and one-hot-encoded step t as inputs and extracts information that is relevant for the forward
model in level l − 1 at step t. For all levels other than the highest level in the hierarchy, the forward
models also receive the output of c.

Loss function. HKSL computes a loss value at each timestep within each level in the hierarchy as
the normalized ℓ2 distance between a nonlinear projection of the forward model’s prediction and
the “true” latent representation produced by the level’s momentum encoder. Using this “noisy”
approximation of the target ensures smooth changes in the target between learning steps and is
hypothesized to reduce the possibility of collapsed representations (Grill et al., 2020; Tarvainen &
Valpola, 2017). We denote the projection model of level l with wl and the HKSL loss of level l
across the minibatch of trajectories τ can be written as:

Ll
HKSL =

N∑
t=1

Ea,o∼τ

∥∥wl
(
f l(zlt, āt, c

l+1,l(·))
)
− elm(ot+nl)

∥∥2
2
, (1)

where N is the number of steps that a given level can take in τ .

HKSL and SAC. We make a few adjustments to the base SAC algorithm to help HKSL fit naturally.
For one, we replace the usual critic with an ensemble of h critics. Each critic and target critic in
the ensemble receive the latent representations produced by a given level’s encoder and momentum
encoder, respectively. We allow critics’ gradients to update their encoders’ weights, and each critic
is updated using n-step returns where n corresponds to the n of the level within which the critic’s
given encoder resides. By matching encoders and critics in this way, we ensure encoder weights are
updated by gradients produced by targets of the same temporal coarseness.

4

Published in Deep RL Workshop, NeurIPS 2022

Second, the actor receives a concatenation of the representations produced by all online encoders.
HKSL’s actors will make better-informed action selections because they can consider information in
the environment that moves at varying levels of temporal coarseness. Finally, we modify the actor’s
loss function to use a sum of Q-values from all critics:

Lactor = −Ea∼π,o∼τ

[
h∑

l=1

[Ql(o, a)]− α log π(a|[e1o(o)|...|eho (o)])

]
. (2)

5 EXPERIMENTS

We evaluate HKSL with a series of questions and compare it against several relevant baselines. First,
is HKSL more sample efficient in terms of agent-environment interactions than other representation
learning methods (§ 5.2)? Second, what is the efficacy of each of HKSL’s components (§ 5.3)?
Third, how well do HKSL’s encoders capture task-relevant information relative to our baselines’
encoders? (§ 5.4)? Finally, what does does cl,l−1 consider when providing information to l−1 from
l (§ 5.4)?

5.1 EXPERIMENTAL SETUP

Baselines. We use DrQ (Yarats et al., 2021), CURL (Laskin et al., 2020a), PI-SAC (Lee et al.,
2020b), DBC (Zhang et al., 2021) and DreamerV2 Hafner et al. (2021) as our baselines. DrQ
regularizes Q-value learning by averaging temporal difference targets across several augmentations
of the same images. CURL uses a contrastive loss similar to CPC (van den Oord et al., 2018) to
learn image embeddings. PI-SAC uses a Conditional Entropy Bottleneck (Fischer, 2020) auxiliary
loss with both a forward and backward model to learn a representation of observations that capture
the environment’s transition dynamics. DBC uses a bisimulation metric and a probabilisitc forward
model to learn representations invariant to task-irrelevant features. DreamerV2 is a model-based
method that performs planning in a discrete latent space. All model-free methods use SAC (Haarnoja
et al., 2018a;b) as the base RL algorithm, while DreamerV2 leverages an on-policy actor-critic
method with a λ-target critic (Schulman et al., 2016). All methods use the same encoder, critic,
and actor architectures to ensure a fair comparison. Additionally, each method uses the same image
augmentation. See Appendix C for hyperparameter settings.

Environments. We use six continuous-control environments provided by MuJoCo (Todorov et al.,
2012) via the DMControl suite (Tassa et al., 2018; 2020), a popular set of environments for testing
robotic control algorithms. Each of the six environments uses episodes of length 1k environment
steps and a set number of action repeats that controls the number of times the environment is stepped
forward with a given action. We use five variations of each DMControl environment for a total of
30 tasks. Four of the variations use distractors provided by the Distracting Control Suite API (Stone
et al., 2021), and the fifth variation uses no distractors. We use the “color” and “camera” distractors
on both the “easy” and “medium” difficulty settings. The color distractor changes the color of the
agent’s pixels on each environment step, and the camera distractor moves the camera in 3D space
each environment step. The difficulty setting controls the range of color values and the magnitude
of camera movement in each task2.

Additionally, we use an environment of our design, which we call “Falling Pixels”. In Falling Pixels,
the agent controls a platform at the bottom of the screen and is rewarded +1 for each pixel it catches.
Pixels fall from the top of the screen and are randomly assigned a speed when spawned, which
controls how far they travel downwards with each environment step. See Appendix B for further
information on the environments.

5.2 SAMPLE EFFICIENCY

Training and evaluation procedure. In our training scheme, agents perform an RL and representa-
tion learning gradient update once per action selection. Every 10k environment steps in DMControl
and 2.5k environment steps in Falling Pixels, we perform an evaluation checkpoint, wherein the
agent’s policy is sampled deterministically as the mean of the produced action distribution, and we

2Refer to (Stone et al., 2021) for details.

5

Published in Deep RL Workshop, NeurIPS 2022

0.15 0.30 0.45

DreamerV2

DBC

PI-SAC

CURL

DrQ

HKSL

IQM

0.60 0.75

Optimality Gap

Normalized Score
0 2 4 6 8 10

Environment Steps (×105)

0.0

0.1

0.2

0.3

0.4

0.5

E
va

lu
at

io
n

R
et

ur
ns

Sample Efficiency in DMControl Suite

DreamerV2
DBC
PI-SAC
CURL
DrQ
HKSL

Figure 2: IQM (left) and optimality gap (middle) of evaluation returns at 100k environment steps,
and IQM throughout training (right) across all 30 DMControl tasks. Shaded areas are 95% confi-
dence intervals.

compute the average performance across 10 episodes. All methods are trained with a batch size of
128. We train agents for 100k and 200k environment steps for five seeds in DMControl and Falling
Pixels, respectively.

Results. We use the “rliable” package (Agarwal et al., 2021) to plot statistically robust summary
metrics in our evaluation suite. To produce aggregate metrics, we normalize all DMControl returns
to the maximum per-episode returns, which is 1k for all tasks. Specifically, Figure 2 shows the
interquartile mean (IQM) (left) and the optimality gap (middle) along with their 95% confidence
intervals (CIs) that are generated via stratified bootstrap sampling3 at the 100k steps mark in DM-
Control. Optimality gap measures the amount by which a given algorithm fails to achieve a perfect
score4. Additionally, Figure 2 shows IQM and 95% CIs as a function of environment steps (right)
in DMControl. Both of these results show that HKSL significantly outperforms our baselines across
our 30 environment DMControl testing suite. See Appendix E for individual environment results.
We note that simply using a forward model does not guarantee improved performance, as suggested
by the comparison between HKSL, PI-SAC, and DBC.

Due to the randomness in Falling Pixels, the maximum per-episode return is difficult to calculate.
Therefore, we do not aggregate Falling Pixels with DMControl returns, but instead show the IQM
and 95% CIs for Falling Pixels as a function of environment steps in Figure 3 (left). We highlight that
HKSL significantly outperforms all of our baselines, converging to a performance of collecting over
20% more pixels per episode than the next-best-performing algorithm. Collecting a large number
of pixels in Falling Pixels requires agents to keep track of environment objects that move at varying
speeds. HKSL explicitly achieves this with its hierarchy of forward models. Also, we note that
DreamerV2 struggles to outperform a random policy. We hypothesize that this is due to Falling Pix-
els’ observation space characteristics: the important information is single-pixel-sized. Hafner et al.
(2021) show that image-reconstruction gradients are important to DreamerV2’s success (Figure 5
in Hafner et al. (2021)), and the small details in Falling Pixels cause an uninformative reconstruc-
tion gradient5.

5.3 COMPONENT ABLATIONS

We probe each component of HKSL to determine its contribution to the overall RL policy learning
process. Specifically, we test SAC without the hierarchical model but with HKSL’s ensemble of
critics (No Repr), HKSL where each level in the hierarchy moves with a single step (All n = 1),
HKSL without c (No c), HKSL where each level in the hierarchy shares encoders (Shared Encoder),
and single-level HKSL (h = 1). The No Repr ablation tests whether HKSL’s performance boost
is due to the ensemble of critics or the hierarchical model itself. The All n = 1 ablation tests our
hypothesis that only learning representations at the environment’s presented temporal coarseness

3For all plots, we performed at least 5,000 samples.
4We note that a perfect score (optimality gap = 0) is technically impossible in the DMControl suite. As

such, only the relative positioning of CIs should be considered.
5Hafner et al. (2021) also give this reason for why DreamerV2 does poorly in the “Video Pinball” environ-

ment.

6

Published in Deep RL Workshop, NeurIPS 2022

0 0.5 1.0 1.5 2.0
Environment Steps (×105)

4

6

8

10

12

14

Ev
al

ua
tio

n
Re

tu
rn

s

Evaluation Returns in Falling Pixels
HKSL
DrQ
CURL
DBC
PI-SAC
DreamerV2

0 0.5 1.0 1.5 2.0
Environment Steps (×105)

6

8

10

12

14

Ev
al

ua
tio

n
Re

tu
rn

s

Evaluation Returns in Falling Pixels

h= 3

h= 1

h= 2

h= 4

Figure 3: IQM and 95% CIs of evaluation returns for all algorithms in Falling Pixels (left) and
ablations over HKSL’s h (right).

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

iz
ed

 S
co

re

Ablations in Cartpole, Swingup
HKSL
No Repr
All n= 1

No c
Shared Encoder
h= 1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

1.0
IQ

M
 N

or
m

al
ize

d
Sc

or
e

Ablations in Ball in cup, Catch

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

iz
ed

 S
co

re

Ablations in Walker, Walk

Figure 4: IQM 95% CIs of evaluation returns for HKSL ablations in Cartpole, Swingup (left), Ball
in Cup, Catch (middle), and Walker, Walk (right).

can miss out on important information. The No c ablation tests the value of sharing information
between levels. The Shared Encoder ablation tests if one encoder can learn information at varying
temporal coarseness. Finally, the h = 1 ablation tests the value of the hierarchy itself by using a
standard forward model (e.g., (Schwarzer et al., 2021; McInroe et al., 2021)).

See Figure 4 for the performance comparison between these ablations and full HKSL in the no
distractors setting of Cartpole, Swingup, Ball in Cup, Catch, and Walker, Walk. All results are
reported as IQMs and 95% CIs over five seeds. We highlight that variations without all components
perform worse than full HKSL. This suggests that HKSL requires each of the individual components
to achieve its full potential.

Also, we ablate across the number of levels h in HKSL’s hierarchy in Falling Pixels. Figure 3 (right)
depicts IQMs and 95% CIs over five seeds for values of h in the set {1, 2, 3, 4} with temporal coarse-
ness of levels set to [1, 3, 5, 7] for levels one through four, in order. We highlight that increasing h
achieves a monotonic improvement in evaluation returns up to when h = 4. We hypothesize that
setting h = 3 captures all relevant information in Falling Pixels, and increasing to h = 4 leads to
similar returns as when h = 3 and does not destabilize learning.

5.4 REPRESENTATION ANALYSIS

How well do representations align with task-relevant information? To test the ability of encoders
to retrieve task-relevant information from pixel input, we save the weights of the encoders for each
method throughout training in our evaluation suite. We then use the representations produced by
these encoders to train a linear projection (LP) to predict task-relevant information over varying
timescales. This process is akin to linear probing (Alain & Bengio, 2017), a method used to analyze
representations (e.g,. (Anand et al., 2019)). We note that the encoders’ weights are frozen, and the
gradient from the prediction task only updates the LP’s weights.

In the Cartpole, Swingup task, the objective is to predict the cart’s and pole’s coordinates. In the Ball
in Cup, Catch task, the objective is to predict the ball’s coordinates. We collect 10 and five episodes
of image-coordinate pairs in each environment for LP training and testing, respectively. We repeat
this data-collection exercise for both environments’ non-distraction, easy color distractors, and easy
camera distractors versions. After fitting the LP on the training sets, we measure the mean squared

7

Published in Deep RL Workshop, NeurIPS 2022

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0
M

SE

No Distractors
HKSL
DrQ
CURL
DBC
PI-SAC
DreamerV2

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0
Color

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Camera

Cartpole, Swingup

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

No Distractors

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025
Color

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

Camera
Ball in Cup, Catch

Figure 5: MSE on task-relevant information in unseen episodes for Cartpole, Swingup (top) and
Ball in Cup, Catch (bottom) at the 100k environment steps mark. Non-distraction, color distractor,
and camera distractor settings shown from left-to-right. Lower is better.

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

No Distractors
HKSL
DrQ
CURL
DBC
PI-SAC
DreamerV2

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Color

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0
Camera

Cartpole, Swingup

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

No Distractors

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

Color

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Camera

Ball in Cup, Catch

Figure 6: MSE on task-relevant information in unseen episodes for Cartpole, Swingup (top) and
Ball in Cup, Catch (bottom) at the 50k environment steps mark. Non-distraction, color distractor,
and camera distractor settings shown from left-to-right. Lower is better.

error (MSE) on the unseen testing set. Figure 5 shows the average MSE and ± one standard deviation
over the testing episodes using encoders trained for 100k environment steps in our benchmark suite.
In Cartpole, Swingup (top row), we use the LP to predict coordinates from one (t+ 1), five (t+ 5)
and 10 (t + 10) steps into the future. In Ball in Cup, Catch (bottom row), we use the LP to predict
coordinates from one (t + 1), two (t + 2) and three (t + 3) steps into the future. We highlight that
HKSL’s encoders produce representations that more accurately capture task-relevant information
with the lowest variance in nearly every case. Also, this accuracy carries over into the distraction
settings, giving a reason for HKSL’s relatively strong performance in the presence of distractors,
despite not addressing distractors explicitly.

8

Published in Deep RL Workshop, NeurIPS 2022

1 2 3 4 5 6

1

2

3

4

5

6

0.0 1.3 2.1 3.2 4.2 5.1

0.0 1.3 2.5 3.7 4.6

0.0 1.4 2.7 3.8

0.0 1.5 2.8

0.0 1.4

0.0

`2 Distance Between Vectors from c

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

5

0

5

10
PCA Projections of c's Output

Figure 7: Average distance between vectors produced by c (left). The numbers along the side and
bottom correspond to the value of t. PCA projections of representations produced by c for multiple
timesteps across 18 trajectories (right) with colors corresponding to trajectories.

We repeat this process using encoders from earlier in the agent-training process. Figure 6 shows the
MSE and ± one standard deviation over the testing episodes using encoders trained for 50k environ-
ment steps in our benchmark suite. We note that the same pattern from the 100k environment steps
encoders persists. These results suggest that HKSL agents benefit from more informative represen-
tations in earlier stages of training than our baselines, which leads to better sample efficiency.

What does c consider? We hypothesize that the communication manager cl,l−1 provides a wide
diversity of information for f l−1 by taking into account the current transition of the below level l−1
as well as the representations from the above level l. To check this hypothesis, we perform two tests.
First, we measure the ℓ2 distance between the vectors produced by c when the step t is changed and
other inputs are held fixed. If c completely ignores t, the distance between c(·, 1) and c(·, 4), for
example, would be zero. Second, we examine the separability of c’s outputs on a trajectory-wise
basis. If two sampled trajectories are very different, then the representations produced by the above
level should change c’s output such that either trajectory should be clearly separable.

We first train an HKSL agent where h = 2, n1 = 1, and n2 = 3 in Cartpole, Swingup for 100k
environment steps and collect 50 episodes of experiences with a random policy. Then, we randomly
sample a trajectory from this collection and step through the latent space with both forward models.
We repeat this 100 times and measure the pairwise ℓ2 distance between c’s outputs for every value of
t within sampled trajectories. Figure 7 (left) reports the average distance between each pair. We note
that the distance between c’s output grows as the steps between the pairs grows. This suggests that c
considers the transition of the level below it when deciding what information to share. Additionally,
we highlight that the distance increases consistently where pairs that are the same number of steps
apart are about the same distance apart. For example, pairs (2, 5) and (3, 6) are both three steps
apart and share roughly the same average ℓ2 distance. This suggests that c produces representations
that are grouped smoothly in the latent space. Figure 7 (right) visualizes the PCA projections of
c’s outputs from 18 randomly sampled trajectories, where each trajectory is a different color. This
figure confirms our second intuition, as the representations are clearly separable on a trajectory-wise
basis with representations smoothly varying across steps within the same trajectory.

6 CONCLUSION

This paper presented Hierarchical k-Step Latent (HKSL), an auxiliary task for accelerating control
learning from pixels via a hierarchical latent forward model. Our experiments showed that HKSL’s
representations can substantially improve the performance of downstream RL agents in pixel-based
control tasks, both in terms of converged returns and sample efficiency. We also showed that HKSL’s
representations more accurately capture task-relevant information than our baselines and do so early
in training. Finally, we showed that the communication manager organizes information in response
to the above and below levels.

9

Published in Deep RL Workshop, NeurIPS 2022

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. 2021.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. In International Conference on Learning Representations (Workshop Track), 2017.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. In 33rd Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Richard Bellman. A markovian decision process. Indiana University Mathematics Journal, 6:679–
684, 1957.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations (ICLR), 2019.

Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for video predic-
tion. In International Conference on Computer Vision (ICCV), 2019.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex
Irpan, Benjamin Eysenbach, Ryan C Julian, and Chelsea Finn andyou Sergey Levine. Actionable
models: Unsupervised offline reinforcement learning of robotic skills. In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks. In The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-
18), 2018.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111, 2014.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. In International Conference on Learning Representations (ICLR), 2017.

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah Hanna, and Stefano V Albrecht.
Temporal disentanglement of representations for improved generalisation in reinforcement learn-
ing. In NeurIPS Workshop on Deep Reinforcement Learning, 2022.

Ian Fischer. The conditional entropy bottleneck. Entropy, 2020.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP:
Learning continuous latent space models for representation learning. In Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning. In 34th Conference on Neural Information
Processing Systems (NeurIPS), 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning (ICML), volume 80, pp. 1861–1870, 2018a.

10

Published in Deep RL Workshop, NeurIPS 2022

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning (ICML), pp. 2555–2565, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In International Conference on Learning Representations
(ICLR), 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In Internation Conference on Learning Representations (ICLR), 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735, 2020.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18), 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. In Proceedings of the ICML
2017 workshop on Reproducibility in Machine Learning (RML), 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. In 2nd Conference
on Robot Learning (CoRL), 2018.

Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement
learning. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

Tom Kenter, Vincent Wan, Chun-An Chan, Rob Clark, and Jakub Vit. CHiVE: Varying prosody in
speech synthesis with a linguistically driven dynamic hierarchical conditional variational network.
In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

Taesup Kim, Sungjin Ahn, and Yoshua Bengio. Variational temporal abstraction. In 33rd Conference
on Neural Information Processing Systems (NeurIPS), 2019.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML), 2014.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent
Dinh, and Durk Kingma. Videoflow: A conditional flow-based model for stochastic video gener-
ation. In International Conference on Learning Representations (ICLR), 2020.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised representa-
tions for reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119, pp. 5639–5650, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In 34th Conference on Neural Information Processing
Systems (NeurIPS), volume 33, pp. 19884–19895, 2020b.

11

Published in Deep RL Workshop, NeurIPS 2022

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pp. 741–752, 2020a.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio
Guadarrama. Predictive information accelerates learning in rl. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pp. 11890–11901, 2020b.

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted Xiao,
Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, and Sergey Levine. Aw-opt: Learning robotic
skills with imitation and reinforcement at scale. In roceedings of the 5th Conference on Robot
Learning (CoRL), 2021.

Trevor McInroe, Lukas Schäfer, and Stefano V. Albrecht. Learning temporally-consistent represen-
tations for data-efficient reinforcement learning. arXiv preprint: arXiv:2110.04935, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.

Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. In 35th
Conference on Neural Information Processing Systems (NeurIPS), 2021.

Jürgen Schmidhuber. Neural sequence chunkers. Technical report, 1991.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations (ICLR), 2021.

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Stefano V. Albrecht. Decoupled rein-
forcement learning to stabilise intrinsically-motivated exploration. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2022.

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch de-
pendence in the training of deep neural networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Lorenzo Steccanella, Simone Totaro, and Anders Jonsson. Hierarchical representation learning for
markov decision processes. arXiv preprint: arXiv:2106.01655, 2021.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite – a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In Proceedings of the 38th International Conference on Machine
Learning (ICML), volume 139, pp. 9870–9879, 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. In 31st Conference on Neural
Information Processing Systems (NeurIPS), 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. DeepMind control suite. arXiv preprint arXiv:1801.00690, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm control: Software and tasks for
continuous control. arXiv preprint arXiv:2006.12983, 2020.

12

Published in Deep RL Workshop, NeurIPS 2022

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2020.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions (ICLR), 2021.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations (ICLR), 2021.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
Conference on Machine Learning (ICML), 2019.

A EXTENDED BACKGROUND

Soft Actor-Critic. Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) is a popular off-policy, model-
free RL algorithm for continuous control. SAC uses a state-action value-function critic Q and target
critic Q̄, a stochastic actor π, and a learnable temperature α that weighs between reward and entropy:
Eot,at∼π[

∑
t R(ot, at) + αH(π(·|ot))].

SAC’s critic is updated with the squared Bellman error over historical trajectories
τ = (ot, at, rt, ot+1) sampled from a replay memory D:

Lcritic = Eτ∼D[(Q(ot, at)− (rt + γy))2], (3)
where y is computed by sampling the current policy:

y = Ea′∼π[Q̄(ot+1, a
′)− α log π(a′|ot+1)]. (4)

The target critic Q̄ does not receive gradients, but is updated as an exponential moving average
(EMA) of Q (e.g., He et al. (2020)). SAC’s actor parameterizes a multivariate Gaussian N (µ, σ)
where µ is a vector of means and σ is the diagonal of the covariance matrix. The actor is updated
via minimizing :

Lactor = −Ea∼π,τ∼D[Q(ot, a)− α log π(a|ot)], (5)
and α is learned against a static value.

B ENVIRONMENTS

Table 1 outlines the action space, the action repeat hyperparameter, and the reward function type of
each environment used in this study. The action repeat hyperparameters that are displayed in the
table are the standards as defined by (Hafner et al., 2019) and are the same used in most studies in
DMControl. The versions of each environment with distractors follow the presented information as
well.

The Falling Pixels environment is rendered as a 35×15 grayscale image. The agent is confined to the
bottom row and pixels are spawned at the top row. The agent is placed randomly along the bottom
row and the top row is filled with pixels at the beginning of each episode. With each environment
step, the pixels travel downwards until they reach the bottom row. If the agent is occupying a pixel’s
column when it reaches the bottom row, that pixel is “collected” and the agent is rewarded +1.
Regardless of whether a pixel is collected, it disappears from the board once it reaches the bottom
row. When a column does not have a pixel within it, there is a 2.5% chance for a new pixel to be
spawned in that row each environment step. When spawned, the pixel is assigned a speed from the
set {1, 3, 5} uniformly at random. Each episode is 250 environment steps.

13

Published in Deep RL Workshop, NeurIPS 2022

Table 1: Dimensions of action spaces, action repeat values, and reward function type for all six
environments in the DMControl benchmark suite and Falling Pixels.

Environment, Task dim(A) Action Repeat Reward Type
Finger, spin 2 2 Dense

Cartpole, swingup 1 8 Dense
Reacher, easy 2 4 Sparse
Cheetah, run 6 4 Dense
Walker, walk 6 2 Dense

Ball in Cup, catch 2 4 Sparse
Falling Pixels 1 1 Dense

Table 2: SAC Hyperparameters used to produce paper’s main results.

Hyperparameter Value
Image padding 4 pixels

Initial steps 1000
Stacked frames 3

Evaluation episodes 10
Optimizer Adam

(β1, β2) Optimizer (0.9, 0.999)
Learning rate 1e− 3

Batch size 128
Q function EMA 0.01
Encoder EMA 0.05

Target critic update freq 2
dim(z) 50

γ 0.99
Initial α 0.1
Target α - |A|

Replay memory capacity 100,000
Actor log stddev bounds [-10,2]

C ARCHITECTURE AND HYPERPARAMETERS

C.1 SAC SETTINGS

All encoders follow the same architecture as defined by (Yarats et al., 2020). These encoders are
made of four convolutional layers separated by ReLU nonlinearities, a linear layer with 50 hidden
units, and a final layer norm opertion (Ba et al., 2016). Each convolutional layer has 32 3×3 kernels
and the layers have a stride of 2, 1, 1, and 1, respectively. This in contrast to the encoder used in the
PI-SAC study (Lee et al., 2020b), which uses Filter Response Normalization (Singh & Krishnan,
2020) layers between each convolution.

The architectures used by the SAC networks follow the same architecture as deinfed by (Yarats
et al., 2020). Both the actor and critic networks have two layers with 1024 hidden units, separated
by ReLU nonlinearities. This is in contrast to the networks used in the PI-SAC study, which uses a
different number of hidden units in the actor and critic networks.

Several studies have shown that even small differences in neural network architecture can cause
statistically signficant differences in performance (Islam et al., 2017; Henderson et al., 2018). As
such, we avoid using the original PI-SAC encoder and SAC architectures to ensure a fair study
between all methods.

Table 2 shows the SAC hyperparameters used by all methods in this study. For method-specific
hyperparameters (e.g., auxiliary learning rate, architexture of auxiliary networks, etc.), we defaulted
to the settings provided by the original authors.

14

Published in Deep RL Workshop, NeurIPS 2022

C.2 HKSL HYPERPARAMETERS

Table 3 shows the hyperparameters that control HKSL. h represents the number of levels, n con-
tains a list of the skips of each level from lowest to highest level, k shows the length of the trajectory
sampled at each training step, learning rate corresponds to the learning rate of all HKSL’s compo-
nents, and actor update freq corresponds to the number of steps between each actor update. These
hyperparameters were found with a brief search over the non-distractor setting of each environment.

HKSL’s communication manager c is a simple two-layer non-linear model. The first layer has 128
hidden units and the second has 50. The two layers are separated by a ReLU nonlinearity.

Table 3: Hyperparameters used for HKSL for each environment.

Environment, Task h n k Learning rate Actor Update Freq
Finger, spin 2 [1,3] 3 1e-4 2

Cartpole, swingup 2 [1,3] 6 1e-3 1
Reacher, easy 2 [1,3] 3 1e-4 2
Cheetah, run 2 [4,5] 10 1e-4 2
Walker, walk 2 [1,3] 6 1e-3 1

Ball in Cup, catch 2 [1,3] 6 1e-3 1
Falling Pixel 3 [1,3,5] 6 le-3 1

C.3 HKSL’S FORWARD MODELS

The usual GRU formulation at step t:

ut
gru = σ(fu

gru([at|zt−1])) (6)

rtgru = σ(fr
gru([at|zt−1])) (7)

ht
gru = tanh(fh

gru([r
t
gru ⊙ zt−1|at])) (8)

gtgru = (1− ut
gru)⊙ zt−1 + ut

gru ⊙ ht
gru (9)

where each each distinct f is an affine transform, σ is the sigmoid nonlinearity, and ⊙ is the
Hadamard product. In order to allow the forward models to take the optional input from c, we
add an identical set of additional affine transforms:

ut
c = σ(fu

c ([Ct|zt−1])) (10)

rtc = σ(fr
c ([Ct|zt−1])) (11)

ht
c = tanh(fh

c ([r
t
c ⊙ Ct|zt−1])) (12)

gtc = (1− ut
c)⊙ zt−1 + ut

c ⊙ ht
c (13)

where Ct denotes the output from c at step t. Finally, the output of the forward model is the average
of the two pathways:

zt =
gtc + gtgru

2
(14)

D ATTENTION MAPS

We examine the encoders within HKSL’s hierarchy to ascertain their objects of focus. Each encoder
receives gradients relating to a different magnitude of temporal coarseness. Therefore, each encoder
should learn to “focus” on different aspects of input images. The top row in each plot shows the
unstacked frames that go into the past from right to left (e.g., the framestack depicted with images
as [ot−2, ot−1, ot]. The bottom row of each plot shows the attention maps from each encoder. The
attention maps are generated by taking the output of the final convolutional layer and averaging
across the feature map dimension. All encoders are from HSKL agents after 100k environment
steps of training.

15

Published in Deep RL Workshop, NeurIPS 2022

Figure 8: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario
from Cartpole, Swingup. Encoder from first and second level shown on the left and right, respec-
tively.

Figure 9: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario
from Cartpole, Swingup. Encoder from first and second level shown on the left and right, respec-
tively.

Figure 8 depicts a scenario from Cartpole, Swingup. We note that the encoder from the first level
(left) attends to the pole, an object that is not controlled by the agent. In contrast, the encoder from
the second level (right) attends to the cart, which is directly controlled by the agent. Figure 9 also
depicts a scenario from the Cartpole, Swingup environment. Here, the cart is offscreen for one frame
in the stack. Here, we see the same pattern as in Figure 8. The encoder from the first and second
level pay more attention to the pole and the cart, respectively.

Figure 10 depicts a scenario from the Ball in Cup, Catch environment. We highlight that the encoder
from the first level (left) appears to attend entirely to the information from the most recent frame
in the input stack. In contrast, the encoder from the second level (right) gathers the full trajectory
of information from each frame in the stack. This phenomenon is especially apparent in Figure 11,
where the encoder from the second level (right) captures the trajectory of the ball as it falls into the
cup.

16

Published in Deep RL Workshop, NeurIPS 2022

Figure 10: Input frame stack (top row) and corresponding attention maps (bottom row) for a sce-
nario from Ball in Cup, Catch. Encoder from first and second level shown on the left and right,
respectively.

Figure 11: Input frame stack (top row) and corresponding attention maps (bottom row) for a sce-
nario from Ball in Cup, Catch. Encoder from first and second level shown on the left and right,
respectively.

E INDIVIDUAL ENVIRONMENT RESULTS

This section shows the mean (bold lines) ± one standard deviation (shaded area) for every individual
environment and distractor combination. Figure 12 displays the non-distractor environments, Fig-
ure 13 shows the color distractors on the easy setting, Figure 14 shows the color distractors on the
medium setting, Figure 15 shows the camera distractors on the easy settings, and Figure 16 shows
the camera distractors on the medium setting.

17

Published in Deep RL Workshop, NeurIPS 2022

0

200

400

600

800
Ev

al
ua

tio
n

Re
tu

rn
s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

1000
Ball in Cup, Catch

0

200

400

600

800

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800

Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0
100
200
300
400
500
600
700

Reacher, Easy

No Distractiors

Figure 12: Evaluation returns for agents trained in DMControl without distractors. Bold line depicts
the mean and shaded area represents +− one standard deviation across five seeds.

0

200

400

600

800

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

Ball in Cup, Catch

0
100
200
300
400
500
600
700

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800

Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Reacher, Easy

Color Distractiors (Easy)

Figure 13: Evaluation returns for agents trained in DMControl with color distractors on the easy
setting. Bold line depicts the mean and shaded area represents +− one standard deviation across
five seeds.

0

200

400

600

800

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

1000
Ball in Cup, Catch

0

100

200

300

400

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

Reacher, Easy

Color Distractiors (Medium)

Figure 14: Evaluation returns for agents trained in DMControl with color distractors on the medium
setting. Bold line depicts the mean and shaded area represents +− one standard deviation across
five seeds.

18

Published in Deep RL Workshop, NeurIPS 2022

0

100

200

300

400

500

600

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

Ball in Cup, Catch

0

100

200

300

400

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0
50

100
150
200
250
300
350

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Reacher, Easy

Camera Distractiors (Easy)

Figure 15: Evaluation returns for agents trained in DMControl with camera distractors on the easy
setting. Bold line depicts the mean and shaded area represents +− one standard deviation across
five seeds.

0

100

200

300

400

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

Ball in Cup, Catch

0

50

100

150

200

250

300
Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

50

100

150

200

250

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

600

700 Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

600
Reacher, Easy

Camera Distractiors (Medium)

Figure 16: Evaluation returns for agents trained in DMControl with camera distractors on the
medium setting. Bold line depicts the mean and shaded area represents +− one standard devia-
tion across five seeds.

19

	Introduction
	Background
	Related Work
	Hierarchical k-Step Latent
	Experiments
	Experimental Setup
	Sample Efficiency
	Component Ablations
	Representation Analysis

	Conclusion
	Extended Background
	Environments
	Architecture and Hyperparameters
	SAC Settings
	HKSL Hyperparameters
	HKSL's Forward Models

	Attention Maps
	Individual Environment Results

