
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Adaptive Concept Bottleneck for Foundation Models

Anonymous Authors1

Abstract
Advancements in foundation models have led to
a paradigm shift in deep learning pipelines. The
rich, expressive feature representations from these
pre-trained, large-scale backbones are leveraged
for multiple downstream tasks, usually via light-
weight fine-tuning of a shallow fully-connected
network following the representation. However,
the non-interpretable, black-box nature of this pre-
diction pipeline can be a challenge, especially in
critical domains such as healthcare. In this paper,
we explore the potential of Concept Bottleneck
Models (CBMs) for transforming complex, non-
interpretable foundation models into interpretable
decision-making pipelines using high-level con-
cept vectors. Specifically, we focus on the test-
time deployment of such an interpretable CBM
pipeline “in the wild”, where the distribution of
inputs often shifts from the original training distri-
bution. We propose a light-weight adaptive CBM
that makes dynamic adjustments to the concept-
vector bank and prediction layer(s) based solely
on unlabeled data from the target domain, without
access to the source dataset. We evaluate this test-
time CBM adaptation framework empirically on
various distribution shifts and produce concept-
based interpretations better aligned with the test
inputs, while also providing a strong average test-
accuracy improvement of 15.15%, making its per-
formance on par with that of non-interpretable
classification with foundation models.

1. Introduction
Foundation models, trained on vast data corpora, are pow-
erful feature extractors applicable across diverse distribu-
tions and tasks (Bommasani et al., 2021; Rombach et al.,
2022). They can be applied to classification tasks via zero-
shot predictions or linear probing with task-specific training
data (Kumar et al., 2022; Radford et al., 2021). However,
such models often operate as inscrutable black-boxes, pre-
senting a barrier to user trust and understanding. Another
challenge faced in the standard deployment of foundation
model-based deep classifiers is their vulnerability to distri-

bution shifts at test time caused e.g., due to environmental
changes, which can cause a drop in performance. This
is particularly challenging in high-stakes domains such as
healthcare (AlBadawy et al., 2018) and autonomous driv-
ing (Yu et al., 2020).

This work aims to tackle these challenges and develop an
interpretable classification framework that leverages the
rich, expressive feature representations of foundation mod-
els, while also preserving their robustness to (operational)
distribution shifts at test time. To address interpretability,
we leverage Concept Bottleneck Models (CBMs) (Koh et al.,
2020) to transform a foundation model-based deep classi-
fier into an interpretable, concept-based prediction pipeline.
Unlike their early versions where a direct mapping from an
input to its concept predictions is learned using concept la-
bels, recent advances have shown the potential to transform
any pre-trained neural network into a CBM (Yuksekgonul
et al., 2023), and vision-language models can guide the con-
struction of concept bottlenecks without explicit concept
labels (Oikarinen et al., 2023; Wu et al., 2023). Concept-
based predictions not only provide interpretability but are
also beneficial for robustness under varying input distribu-
tions. A central premise of CBMs is that as complex feature
embeddings go through the concept bottleneck, the result-
ing prediction should, in theory, become more invariant
to inconsequential changes in the input (Kim et al., 2018;
Adebayo et al., 2020).

However, we identify that CBMs that are directly deployed
under distribution shifts do not necessarily produce more
robust predictions compared to that obtained directly based
on the feature representations (i.e., foundation models either
with zero-shot prediction or with fine-tuned linear predic-
tion). This observation underscores the need for a dynamic
approach to adapt the concept- (or CBM-) based prediction
framework for real-world deployment in the wild.

To our knowledge, we make the first attempt at test-time
adaptation of CBMs with a foundation model as the back-
bone. Given unlabeled test data and a frozen foundation
model, we propose to: 1) adapt the concept bottleneck to
align the target (test) input’s concept-score patterns with
that of the source domain, and 2) adapt the label predictor
(following the concept bottleneck) to dynamically adjust the
contribution of different concepts to the prediction. Our em-
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pirical results show that the proposed method significantly
enhances the accuracy of CBMs under various distribution
shifts (e.g., improving the accuracy of Yuksekgonul et al.
(2023) by 28%), while also providing meaningful concept-
based interpretations.

2. Background
Let X denote the space of inputs x and Y := {1, · · · , L}
the set of class labels y. We assume that the labeled training
data from a source domain is sampled from an unknown
probability distribution ps(x, y), and unlabeled test data
from a target domain is sampled from an unknown probabil-
ity distribution pt(x). The subscripts ‘s’ and ‘t’ refer to the
source and target domain respectively.

2.1. Foundation Models with a Concept Bottleneck

Consider a foundation model ϕ : X 7→ Rd, which is any pre-
trained backbone model or feature extractor (Eslami et al.,
2023; Jia et al., 2021; Girdhar et al., 2023) that maps the
input x to an intermediate feature embedding ϕ(x) ∈ Rd.
ϕ(x) is pre-trained on a large-scale, broad mixture of data
for general purposes, i.e., not restricted to a specific domain.
For a specific downstream classification task, the general
practice is to either apply zero-shot prediction on ϕ(x), or
to train a shallow label predictor gs : Rd 7→ RL using a
supervised loss ℓ(x, y) (e.g., cross-entropy) that maps ϕ(x)
to the un-normalized class predictions (logits) gs(ϕ(x)).

A CBM (Koh et al., 2020) first projects the high-dimensional
feature embeddings to a lower m-dimensional (m ≪ d)
concept-score space (acting like a bottleneck), and fol-
lows it with a label predictor, which is a simple linear
or fully-connected layer that maps the concept scores
into class predictions. The concept bottleneck is rep-
resented by a matrix of m unit concept vectors Cs =
[cs1 / ∥cs1∥2 · · · csm / ∥csm∥2]⊤ ∈ Rm×d, where each
csi ∈ Rd represents a high-level concept (e.g., “stripes”,
“dots”). The m concept scores are obtained via a lin-
ear projection vCs(x) = Cs ϕ(x), which is followed by
the label predictor to obtain the CBM model, defined as
f (cbm)
s (x) := WsvCs

(x) +bs = WsCs ϕ(x) +bs. The
label predictor is defined by Ws ∈ RL×m and bs ∈ RL,
and it outputs the un-normalized class predictions.

2.2. Distribution Shifts in the Wild.

Our focus in this work is on the performance of CBMs
deployed in the wild, i.e., when test inputs can undergo
a distribution shift relative to the training data. This is a
very practical scenario in real-world deployments, where
inputs may undergo covariate shifts e.g., due to noise, blur,
snow, fog, lighting changes, etc (known as common corrup-
tions) (Hendrycks & Dietterich, 2019b; Hendrycks et al.,

2020). The distribution shift could also take the form of
disparate correlation to semantics, e.g., waterbirds always
on a water background in the source dataset, but on a land
background in the target dataset (Sagawa et al., 2019a).

There has been growing interest in the utility of concept-
based explanations under distribution shifts. Since the first
work (Kim et al., 2018) hinted at the potential of high-level
concepts as “diagnosis units” against low-level perturba-
tions (e.g., adversarial examples), subsequent research has
suggested the utility of concept-based explanations for the
diagnosis and analysis of data drifts (Adebayo et al., 2020;
Abid et al., 2022; Moayeri et al., 2023). However, prior
works do not consider whether their static concepts, pre-
pared before deployment, would be appropriate for the target
data at test time, and do not provide a way of adapting the
concepts according to the target data. Our work emphasizes
the need for a dynamic approach to CBMs under distribu-
tion shift in order to maintain their accuracy and provide
reliable explanations.

3. Adaptive Concept Bottleneck Models
We propose a dynamic approach to adapt CBMs at test time.
Given a CBM f (cbm)

s (x) that is represented by a concept bank
Cs and trained on a source dataset (that is not accessible),
and an unlabeled test set Dt = {xtn}Nt

n=1 from a target
distribution, our two-fold objective to adapt the CBM is 1:

1. Concept-Score Alignment (CSA): Perform feature
alignment of the concept scores of test inputs vC(xt) ∈
Rm such that their class-conditional distributions are
close to that of the concept scores from the source dataset.
By adapting the concept vectors C, this will ensure that
the label predictor continues to “see” very similar class-
conditional input distributions at test time, thereby main-
taining accurate predictions.

2. Linear Probing Adaptation (LPA): Adapt the label
predictor (W,b) of the CBM to account for any discrep-
ancy or mismatch in the feature-alignment CSA step.

We next present our adaptation objectives for CSA and LPA.
Following the convention in the TTA literature (Wang et al.,
2021; Chen et al., 2022), we randomly split the test set into
fixed-size batches Dt =

⋃B
b=1 Db

t , and perform adaptation
sequentially on each batch b, obtaining the adapted model’s
predictions on the subsequent (unseen) batch b+ 1. In the
following, we refer to a specific test batch Db

t .

Pseudo-labeling. Since the test samples are unlabeled, it be-
comes challenging to perform class-conditional alignment
of the concept scores vC(xt) (i.e., CSA). We utilize the
idea of pseudo-labeling to address this, as commonly done

1Here we drop the subscript ‘s’ to denote that they are adapta-
tion parameters, not specific to the source domain.
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Adaptive Concept Bottleneck for Foundation Models

Figure 1: Proposed test-time adaptation for a concept bottleneck model based on a (frozen) foundation model
backbone. As shown in the example inputs, there is a distribution shift in the target domain in the form of disparate
correlation to semantics. In the target domain, the waterbird images have a land background, whereas the images have a
water background in the source domain. Our proposed method consists of a concept-score alignment step which adapts the
concept bottleneck layer, and a linear probing adaptation step which adapts the label predictor (classifier) layer.

in the TTA and semi-supervised learning literature (Chen
et al., 2022; Lee et al., 2013; Sohn et al., 2020). A sim-
ple approach for pseudo-labeling the test set is to use the
class predictions of the source-domain CBM (referred to
as “self-labeling”). However, the CBM is often not robust
to distribution shifts and could lead to poor-quality pseudo-
labels. Instead, we leverage the powerful feature-extraction
backbone ϕ(x), which is a foundation model pre-trained on
diverse data distributions, and use its pseudo-label ŷt via
zero-shot prediction (as done e.g., in Radford et al. (2021)).

Objective for CSA. The general form of the adaptation
objective (to minimize) for concept-score alignment is:

LCSA(C) =
1

|Db
t |

∑
xt∈Db

t

ℓada(f
(cbm)
t (xt), ŷt)

+ λCSA ∥C−Cs∥2F , (1)

where ℓada is an adaptation loss (to be defined) guided by
the pseudo-label, and the second term is a regularization
on how much the concept vectors can to deviate from their
source domain values in terms of the Frobenius norm.

Motivated by class-aware feature alignment (Jung et al.,
2023), we design ℓada(·) to adapt the concept bottleneck
to achieve concept-score alignment on a per-class level.
Jung et al. (2023) model the intermediate feature representa-
tion of a DNN classifier as a class-conditional multivariate
Gaussian, whose parameters are estimated from the source-
domain dataset. We also base our design of ℓada(·) on the
well-explored idea that for discriminative feature alignment,
the intra-class distances (compactness) should be small, and
the inter-class distances (separation) should be large on the
test samples (Ye et al., 2021; Ming et al., 2023).

Suppose the class-conditional distributions of the concept-
score vector in the source domain are modeled as Gaussians:

P(vCs
(xs) | ys = y) = N (vCs

(xs) ;µy,Σy), ∀y ∈ Y .
Given a labeled source-domain dataset, it is straight-forward
to estimate µy and Σy using the sample mean and sample
covariance of vCs(xs) on the samples from class y. Al-
though we cannot access the source dataset during adap-
tation, we assume (as in Jung et al. (2023)) that we have
access to these distribution statistics {(µy,Σy)}y∈Y .

The Mahalanobis distance measures the distance of a test
input’s concept-score vector to a class-conditional Gaussian
as Dmah(xt ;µy,Σy) = (vC(xt)−µy)

⊤Σ−1
y (vC(xt))−

µy). For a test input xt with pseudo-label ŷt, the intra-class
and inter-class distances are defined as

Dintra(xt, ŷt) = Dmah(xt ;µŷt
,Σŷt

) and (2)

Dinter(xt, ŷt) =

L∑
ℓ=1:ℓ ̸=ŷt

Dmah(xt ;µℓ,Σℓ). (3)

Finally, the adaptation loss in Eqn (1) based on the Maha-
lanobis distance, which aims to minimize the intra-class
distances and maximize the inter-class distances is

ℓada(f
(cbm)
t (xt), ŷt) = log

Dintra(xt, ŷt)

Dinter(xt, ŷt)
. (4)

Objective for LPA. We achieve linear probing adaptation
by adjusting the label predictor of the CBM using cross-
entropy loss between the predictions of the target-domain
CBM and the pseudo-labels:

LLPA(W,b) = − 1

|Db
t |

∑
xt∈Db

t

logσŷt
(f (cbm)

t (xt)), (5)

where σk(r) takes the logits r and outputs the softmax
probability for class k. Using this objective, the (linear)
label predictor is adapted such that the CBM’s predictions
on test samples are consistent with their pseudo-labels.
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Dataset ZS LP
Yuksekgonul et al. (2023) Yeh et al. (2020)

w/o adaptation + CSA + LPA + CSA + LPA w/o adaptation + CSA + LPA + CSA + LPA

Waterbirds
Source

AVG 0.821 0.973 0.978 ± 0.001 - - - 0.988 ± 0.001 - - -
WG 0.662 0.949 0.964 ± 0.003 - - - 0.983 ± 0.001 - - -

Target
AVG 0.613 0.538 0.333 ± 0.004 0.388 ± 0.014 0.589 ± 0.003 0.613 ± 0.003 0.440 ± 0.003 0.444 ± 0.004 0.595 ± 0.004 0.634 ± 0.006
WG 0.419 0.447 0.299 ± 0.011 0.153 ± 0.030 0.337 ± 0.005 0.419 ± 0.001 0.370 ± 0.009 0.381 ± 0.010 0.336 ± 0.007 0.389 ± 0.012

Metashift
Source

AVG 0.957 0.972 0.979 ± 0.001 - - - 0.972 ± 0.001 - - -
WG 0.934 0.960 0.969 ± 0.003 - - - 0.960 ± 0.001 - - -

Target
AVG 0.947 0.783 0.844 ± 0.014 0.844 ± 0.015 0.944 ± 0.001 0.948 ± 0.001 0.901 ± 0.001 0.900 ± 0.002 0.917 ± 0.002 0.929 ± 0.003
WG 0.928 0.605 0.739 ± 0.032 0.738 ± 0.033 0.932 ± 0.001 0.932 ± 0.002 0.846 ± 0.002 0.842 ± 0.005 0.878 ± 0.005 0.914 ± 0.002

Table 1: Our test-time adaptation significantly improves the test accuracy of CBMs. For each setting, we compare the
performance of CBM between three variants of our adaptation method: adaptation with CSA loss in Equ (1), with LPA loss
in Equ (5), and with both of them included.

4. Experiments
4.1. Setup

We test our proposed test-time adaptation with two different
approaches to preparing the concept bottleneck for CBMs:
using general-purpose concept bank where natural language
concept descriptions and modern vision-language models
(e.g., Stable Diffusion (Rombach et al., 2022)) are being
leveraged to automatically generate concept examples for
finding the Concept Activation Vectors (CAVs) (Kim et al.,
2018) (each CAV corresponds to a csi ∈ Cs) (Yuksekgonul
et al., 2023; Wu et al., 2023); or learning concept vectors
to optimize the concept-based prediction accuracy in an
unsupervised manner (Yeh et al., 2020).

We simulate distribution shifts by adopting the settings
from Wu et al. (2023) and evaluate on two datasets: Water-
birds (Sagawa et al., 2019b) and Metashift (Liang & Zou,
2021). Waterbirds dataset is for a two-class classification
task (“landbird” vs. “waterbird”). In the source domain,
landbird (waterbird) images are always associated with the
land (water) background, while in the target domain, the cor-
relation with the background is flipped; landbird (waterbird)
is always on the water (land) background. Metashift has two
classes of “cat” and “dog”. Likewise, it simulated the dis-
parate correlation to the backgrounds. Source cat images are
always correlated with sofa or bed on the background, while
dog is always correlated with bench or bike. For evaluation,
we randomly split 90:10 equally across correlation types;
i.e., 10% of dog with sofa, 10% of dog with bed, 10% of
cat with bench, 10% of cat with bike. In the target domain,
both classes are always correlated with the shelf on the back-
ground. In all cases, we use CLIP:ViT-L-14 (Radford et al.,
2021) as a backbone.

We report the performance in two metrics: averaged group
accuracy (AVG) and worst-group accuracy (WG). A model
well-generalized to distribution shifts should have high AVG
and WG, with a small gap between the source and target
domains. We repeated each experiment for 50 trials and
report the mean and standard error.

4.2. Results and Discussion

In the source domain, we observe that CBMs always out-
perform the classification accuracy based on feature em-
beddings of foundation models (i.e., ZS or LP). However,
in the target domain, without adaptation, the accuracy of
CBMs is not even close to the accuracies of ZS or LP. This
observation confirms the need for our test-time adaptation
for the post-deployment reliable performance of CBMs (see
Table 2 for more results).

With the proposed adaptive concept bottleneck, the test-
time accuracy is significantly increased in all cases, even
outperforming that of feature-based predictions in terms
of both AVG and WG. In the explored type of distribution
shifts (disparate reliance on covariates), LPA is more crucial
than CSA to boost performance. But having both of them is
beneficial to achieve the best result.

We also highlight that the performance of our method is
dependent on the quality of pseudo-labels (see Table 3).
Future work would include exploring approaches to im-
prove the quality of pseudo-labels via ensembling, aug-
mentations (Zhang et al., 2022), or nearest-neighbors vot-
ing (Chen et al., 2022).

5. Conclusion
We explored the robustness of concept bottleneck for foun-
dation models under distribution shifts. We proposed a
dynamic concept bottleneck approach, leveraging concept-
score alignment and concept-reliance tuning to enhance
model interpretability and adaptability. Our preliminary
findings indicate that this classification pipeline, using foun-
dation models as a backbone, followed by adaptive concept
bottleneck, offers not only strong test-time performance but
also valuable post-deployment insights. Future work will ex-
tend our analysis to a wider array of foundation models and
distribution shift scenarios, and an in-depth analysis of the
resulting interpretations to further validate our approach.
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A. Background
Concept Bottleneck Models.

A Concept Bottleneck Model (CBM) (Koh et al., 2020) projects the feature embeddings from a backbone model onto
a concept space (linear subspace of Rd spanned by concept vectors), and make class predictions based on the concept-
projected embeddings. Let Cs = {cs1, . . . , csm} define a concept bank (basis) consisting of m concept vectors, where
each concept vector csi ∈ Rd lies in the feature embedding space, and represents a high-level concept (e.g., “stripes”,
“dots”). Let Cs = [cs1 / ∥cs1∥2 · · · csm / ∥csm∥2]⊤ ∈ Rm×d define the corresponding concept-projection matrix, whose
rows are the unit-normalized concept vectors. This matrix projects a feature representation ϕ(x) ∈ Rd to a vector of
m concept scores as vCs

(x) = Cs ϕ(x), where the i-th concept score is given by ⟨ϕ(x), csi⟩
||csi||2 ∈ R. The CBM first

maps a high-dimensional feature representation to a lower-dimensional (here m ≪ d) concept-score space (acting like a
bottleneck), and follows it with a label predictor, which is a simple linear or fully-connected layer that maps the concept
scores into class predictions (Yuksekgonul et al., 2023; Oikarinen et al., 2023). Formally, the CBM can be defined as
f (cbm)
s (x) := WsvCs

(x) + bs = WsCs ϕ(x) + bs, where Ws ∈ RL×m, bs ∈ RL defines the linear label predictor. A
key advantage of the CBM is that its predictions are a linear combination of the high-level concept scores, which allows
for better interpretability of the model. Since the label predictor of a CBM is chosen to be simple (e.g., a linear layer), its
performance is strongly dependent on the construction (richness) of the concept bank.

Preparing the concept bottleneck.

There are various ways of defining the concept vectors csi in the concept prediction layer vCs
(x). Early works on CBM

required the training (source) dataset to have concept annotations from domain experts in addition to the class labels, and
the concept predictor is trained on this (Koh et al., 2020). Subsequent works have also explored learning the concept vectors
in an unsupervised manner (i.e., without any concept annotations) (Yeh et al., 2020; Choi et al., 2023). More recently,
natural language concept descriptions and modern vision-language models (e.g., Stable Diffusion (Rombach et al., 2022))
are being leveraged to automatically generate concept examples (Yuksekgonul et al., 2023; Wu et al., 2023) for finding
the Concept Activation Vectors (CAVs) (Kim et al., 2018) (each CAV corresponds to a csi ∈ Cs), or to directly guide the
construction of concept bank Cs (Oikarinen et al., 2023). We highlight that in all prior works (to our knowledge) the concept
bank remains static, i.e., once the set of concept vectors is defined and the CBM is deployed, its predictions are made based
on the predefined concepts, regardless of any distribution shift at test time.

B. Additional Experiments

Method
CIFAR10

AVG (↑) WG (↑)

Backbone Source 0.723 0.381
+ ZS Target 0.374 ± 0.038 0.132 ± 0.032
Backbone Source 0.872 0.764
+ LP Target 0.496 ± 0.013 0.215 ± 0.015

PCBM (Yuksekgonul et al., 2023)
Source 0.796 0.665 ± 0.001
Target 0.426 ± 0.012 0.160 ± 0.013

Yeh et al. (Yeh et al., 2020)
Source 0.885 ± 0.002 0.760 ± 0.032
Target 0.496 ± 0.170 0.206 ± 0.197

Table 2: Predictions based on high-level semantic concepts are not necessarily more robust against distribution shifts.
For CIFAR10, we use CLIP:ResNet50 as the backbone. We report the averaged accuracy (AVG) and worst group accuracy
(WG) across the classes.
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Dataset ZS LP
Yuksekgonul et al. (2023) Yeh et al. (2020)

w/o adaptation + CSA + LPA + CSA + LPA w/o adaptation + CSA + LPA + CSA + LPA

Metashift
Source

AVG 0.957 0.972 0.979 ± 0.001 - - - 0.972 ± 0.001 - - -
WG 0.934 0.960 0.969 ± 0.003 - - - 0.960 ± 0.001 - - -

Target
AVG 0.705 0.835 0.890 ± 0.006 0.620 ± 0.049 0.713 ± 0.005 0.676 ± 0.009 0.840 ± 0.009 0.834 ± 0.009 0.749 ± 0.008 0.690 ± 0.005
WG 0.460 0.720 0.850 ± 0.013 0.279 ± 0.110 0.476 ± 0.017 0.398 ± 0.018 0.712 ± 0.018 0.700 ± 0.020 0.512 ± 0.016 0.400 ± 0.010

Table 3: Negative results of our test-time adaptation. In the target domain, the model faces Metashift images with random
Gaussian noise (Hendrycks & Dietterich, 2019a). When the performance of zero-shot inference is poor in the target domain,
the pseudo-label cannot serve as a reliable reference for the test-time adaptation.
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