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Abstract

The multi-view Gaussian process latent variable model (MV-GPLVM) aims to learn
a unified representation from multi-view data but is hindered by challenges such as
limited kernel expressiveness and low computational efficiency. To overcome these
issues, we first introduce a new duality between the spectral density and the kernel
function. By modeling the spectral density with a bivariate Gaussian mixture, we
then derive a generic and expressive kernel termed Next-Gen Spectral Mixture
(NG-SM) for MV-GPLVMs. To address the inherent computational inefficiency
of the NG-SM kernel, we design a new form of random Fourier feature approx-
imation. Combined with a tailored reparameterization trick, this approximation
enables scalable variational inference for both the model and the unified latent rep-
resentations. Numerical evaluations across a diverse range of multi-view datasets
demonstrate that our proposed method consistently outperforms state-of-the-art
models in learning meaningful latent representations.

1 Introduction

Multi-view representation learning aims to construct a unified latent representation by integrating
multiple modalities and aspects of the observed data [1, 2]. The learned representation captures
inter-view correlations within observations. By sharing information between each view of the data,
we can obtain a much richer latent representation of the data compared to modeling each view
independently which is crucial for handling complex datasets [3–5]. For example, modeling video
data which involves both visual frames and audio signals [6], or developing clinical diagnostic
systems that incorporates the patients’ various medical records [7].

The paradigm of multi-view learning first emerged in early works leveraging techniques such as
canonical correlation analysis (CCA) [8] and its kernelized extensions [9, 10] to jointly model
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Table 1: An overview of relevant MV-LVMs, where we extend advanced GPLVMs to the multi-view case by
prefixing them with MV. Additionally, N represents the total number of observations, M denotes the observation
dimensions, V refers to the number of views, U refers to the number of inducing points, H indicates the number
of GP layer, and L indicates the dimension of random features.

Model Scalable
model

Highly expressive
kernel

Probabilistic
mapping

Bayesian inference
of latent variables

Computational
complexity Reference

MVAE ✓ - ✗ ✓ - [11]
MM-VAE ✓ - ✗ ✓ - [12, 16]
MV-GPLVM ✗ ✗ ✓ ✗ O(N3V ) [22]
MV-GPLVM-SVI ✓ ✗ ✓ ✓ O(MU3V ) [23]
MV-RFLVM ✗ ✗ ✓ ✗ O(NL2V ) [24]
MV-DGPLVM ✗ ✗ ✓ ✓ O(HNU2V ) [14]
MV-ARFLVM ✓ ✗ ✓ ✓ O(NL2V ) [21]

NG-MVLVM ✓ ✓ ✓ ✓ O(NL2V ) This work

correlated data. However, these methods are limited in their ability to capture latent representations
in complex datasets. To address this limitation, two more advanced approaches have become
standard in multi-view learning: neural network-based methods, exemplified by multi-view variational
autoencoders (MV-VAEs) [11, 12], and Gaussian process-based methods, represented by multi-view
Gaussian process latent variable models (MV-GPLVMs) [13, 14].

MV-VAEs incorporate various view-specific variational autoencoders (VAEs) to address multi-view
representation learning [11, 12, 15–17]. However, they suffer from posterior collapse—an inherent
issue in VAEs [18]—where the encoder collapses to the prior distribution over the latent variables,
thereby failing to capture the underlying structure of the data. Several hypotheses have been proposed
to explain posterior collapse. A well-known contributing factor is the overfitting of the decoder
network [19, 20]. One promising direction to mitigate this issue is to introduce regularization in
the function space of the decoder, which may help the latent variable model learn more informative
representations.

The implicit regularization imposed by the Gaussian process (GP) prior helps prevent MV-GPLVMs
from severe overfitting [21]. However, MV-GPLVMs often lack the kernel flexibility required to
model complex representations [13], and are computationally intensive to train, especially on large-
scale multi-view datasets [14]. To overcome these challenges, we propose an expressive and efficient
multi-view oriented GPLVM. Our contributions are:

• We establish a novel duality between the spectral density and the kernel function, deriving
the expressive and generic Next-Gen Spectral Mixture (NG-SM) kernel, which, by modeling
spectral density as dense Gaussian mixtures, can approximate any continuous kernel with
arbitrary precision given enough mixture components. Building on this, we design a novel
MV-GPLVM for multi-view scenarios, capable of capturing the unique characteristics of
each view, leading to an informative unified latent representation.

• To enhance the computational efficiency, we design a unique unbiased random Fourier
features (RFF) approximation for the NG-SM kernel that is differential w.r.t. kernel hyper-
parameters. By integrating this RFF approximation with an efficient two-step reparameteri-
zation trick, we enable efficient and scalable learning of kernel hyperparameters and unified
latent representations within the variational inference framework [15], making the proposed
model well-suited for multi-view scenarios.

• We validate our model on a range of cross-domain multi-view datasets, including syn-
thetic, image, text, and wireless communication data. The results show that our model
consistently outperforms various state-of-the-art (SOTA) MV-VAEs, MV-GPLVMs, and
multi-view extensions of SOTA GPLVMs in terms of generating informative unified latent
representations.

2 Background

Gaussian Processes. Probabilistic models like the Gaussian process latent variable model (GPLVM)
[25] introduces a regularization effect via a GP-distributed prior that helps prevent overfitting and
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thus improves generalization from limited samples. A GP f(·) is defined as a real-valued stochastic
process defined over the input set X ⊆ RD, such that for any finite subset of inputsX={xn}Nn=1⊂X ,
the random variables f = {f(xn)}Nn=1 follow a joint Gaussian distribution [26]. A common prior
choice for a GP-distributed function is:

f | X = N (f | 0,K), (1)

where K denotes the covariance/kernel matrix evaluated on the finite input X with the kernel function
k(x1,x2), i.e., [K]i,j=k(xi,xj), i, j ∈ (1, ..., N).

Consequently, the GPLVM has laid the groundwork for several advancements in multi-view represen-
tation learning. One of the early works by Li et al. [13] straightforwardly assumes that each view in
observations is a projection from a shared latent space using a GPLVM, referred to as multi-view
GPLVM (MV-GPLVM).

Multi-View Gaussian Process Latent Variable Model. A MV-GPLVM assumes that the relation-
ship between each view v∈(1, ..., V ) of observed data Yv=[yv

:,1,y
v
:,2, ...,y

v
:,Mv

]∈RN×Mv and the
shared/unified latent variables X=[x1,x2, ...,xN ]⊤∈RN×D is modeled by a GP. That is, in each
dimension m∈(1, ...,Mv) and view v, MV-GPLVM is defined as follows:

yv
:,m | fv

m(X) ∼ N (fv
m(X), σ2

vI), fv
m(X) ∼ N (0,Kv), xn ∼ N (0, I), (2)

where σ2
v represents the noise variance and fv

m(X)=[fv
m (x1) . . . f

v
m (xN )]

⊤∈RN . The stationary
radial basis function (RBF) is typically the ‘default’ choice of the kernel function. Due to the
conjugacy between the Gaussian likelihood3 and the GP, we can integrate out each fv

m(·) and get the
marginal likelihood formed as :

yv
:,m ∼ N (0,Kv + σ2

vI). (3)

Based on the marginal likelihood and the prior of X, the maximum a posteriori (MAP) estimation
of X can be obtained, with O(N3) computational complexity due to the inversion of the kernel
matrix. Eleftheriadis et al. [27] extend the MV-GPLVM with a discriminative prior over the shared
latent space for adapted to classification tasks. Later, Sun et al. [14] incorporate deep GPs [28] into
MV-GPLVM for model flexibility, named MV-DGPLVM. However, existing MV-GPLVMs still fall
short in handling practical multi-view datasets, that are often large-scale and exhibit diverse patterns
across views. This limitation arises from either (1) the high computational complexity of fitting a
deep GP or (2) limited kernel expressiveness caused by the stationary assumption. Particularly, a
stationary kernel may fail to model input-varying correlations [29], especially in domains like video
analysis and clinical diagnosis that exhibit complex, time-varying dynamics.

To address those issues, we review the recent work of GPLVM [21, 23, 24], that we may extend to
deal with the multi-view scenario (See detailed comparisons in Table 1). One potential solution is the
advisedRFLVM (named ARFLVM for short) [21]. This method integrates the stationary spectral
mixture (SM) kernel to enhance kernel flexibility in conjunction with a scalable random Fourier
feature (RFF) kernel approximation. However, it remains limited by the stationary assumption.

Random Fourier Features. Bochner’s theorem [30] states that any continuous stationary kernel
and its spectral density p(w) are Fourier duals, i.e., k(x1−x2)=

∫
p(w) exp

(
iw⊤(x1−x2)

)
dw.

Built upon this duality, Rahimi and Recht [31] approximate the stationary kernel k(x1 − x2) using
an unbiased Monte Carlo (MC) estimator with L/2 spectral points {w(l)}L/2

l=1 sampled from p(w),
given by

k(x1 − x2) ≈ ϕ(x1)
⊤ϕ(x2), (4)

where the random feature

ϕ(x) =

√
2

L

[
cos
(
2πx⊤w1:L/2

)
, sin

(
2πx⊤w1:L/2

)]⊤
∈ RL.

Here the superscript 1 : L/2 indicates that the cosine or sine function is repeated L/2 times, with
each element corresponding to the one entry of {w(l)}L/2

l=1 . Consequently, the kernel matrix K

can be approximated by Φ(x)Φ(x)⊤, with Φ(x) = [ϕ(x1); . . . ;ϕ(xN )]
⊤. By employing the RFF

approximation, the kernel matrix inversion can be computed using the Woodbury matrix identity [32],
thereby reducing the computational complexity to O(NL2).

3Extending to other likelihoods is straightforward, as guided by the GP literature [23, 24].
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3 Methodology

In § 3.1, we introduce our expressive kernel function for multi-view representation learning. In
§ 3.2, we propose a sampling-based variational inference algorithm to efficiently learn both kernel
hyperparameters and latent representations. The scalable RFF approximation and the associated
efficient reparameterization trick are detailed in § 3.3.

3.1 Next-Gen SM (NG-SM) Kernel

As mentioned in § 2, limited kernel expressiveness in the MV-GPLVM may hinder its ability to capture
informative latent representations, potentially neglecting crucial view-specific characteristics like
time-varying correlations in the data4. This problem necessitates a more flexible kernel design. The
bivariate SM kernel (BSM) is one notable development for improving kernel flexibility [29, 33, 34].
Grounded in the duality that relates any continuous kernel function to a dual density from the
generalized Bochner’s theorem [35], this method first models the dual density using a mixture of
eight bivariate Gaussian components and then transforms it into the BSM kernel. By removing the
restrictions of stationarity, the generalized Bochner’s theorem enables the BSM kernel to capture
time-varying correlations [29].

However, the BSM kernel faces several limitations imposed by the generalized Bochner’s theorem:
(1) To guarantee the positive semi-definite (PSD) spectral density, the two variables in the bivari-
ate Gaussian must have equal variances, which limits the flexibility of the Gaussian mixture and
consequently reduces the kernel’s expressiveness. (2) According to the duality in the generalized
Bochner’s theorem, it is not possible to derive a closed form expression of random features5, such as
ϕ(x) in Eq. (4). Thus, the inversion of the BSM kernel matrix retains high computational complexity,
rendering it unsuitable for multi-view datasets. To address the limitations of the BSM kernel, we
propose the new NG-SM kernel—a more flexible and RFF-admissible alternative. Its formulation is
enabled by a novel duality, stated in Theorem 1.
Theorem 1 (Universal Bochner’s Theorem). A complex-valued bounded continuous kernel k (x1,x2)
on RD is the covariance function of a mean square continuous complex-valued random process on
RD if and only if

k (x1,x2) =
1

4

∫
exp
(
iw⊤

1 x1 − iw⊤
2 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
1 x2

)
+

exp
(
iw⊤

1 x1 − iw⊤
1 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
2 x2

)
u(dw1,dw2)

where u is the Lebesgue-Stieltjes measure associated with some function p (w1,w2). When w1 = w2,
this theorem reduces to Bochner’s theorem.

Proof. The proof can be found in App. B.2.

The duality established in Theorem 1 implies that a bivariate spectral density entirely determines the
properties of a continuous kernel function. In this sense, we propose the underlying bivariate spectral
density by a Gaussian mixture:

pngsm (w1,w2) =

Q∑
q=1

αqsq (w1,w2) (5)

with each symmetric density sq (w1,w2)

sq(w1,w2)=
1

2
N
((

w1

w2

)∣∣∣∣ (µq1

µq2

)
,

[
Σ1 Σ⊤

c
Σc Σ2

])
+

1

2
N
((

−w1

−w2

)∣∣∣∣ (µq1

µq2

)
,

[
Σ1 Σ⊤

c
Σc Σ2

])
(6)

in order to explore the space of continuous kernels. To simplify the notation, we omit the index q
from the sub-matrices Σ1=diag(σ2

q1), Σ2=diag(σ2
q2), and Σc=ρq diag(σq1) diag(σq2), where

σ2
q1,σ

2
q2 ∈ RD and the scalar ρq denotes the correlation between w1 and w2. These components

4For an exploration of the impact of limited kernel expressiveness in manifold learning, see § 4.1.
5See App. B.1 for a more detailed discussion.
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Figure 1: Probabilistic graphical model of our proposed method. Here, θv
ngsm denotes the parameters of pngsm.

collectively form the covariance matrix of the q-th bivariate Gaussian component. Furthermore, the
vectors µq1 and µq2 ∈ RD constitute the mean of the q-th bivariate Gaussian component.

Based on Theorem 1, we derive the NG-SM kernel, kngsm(x1,x2) (see Eq. (40) in App. B.3), with
kernel hyperparameters

θngsm={αq,µq1,µq2,σ
2
q1,σ

2
q2, ρq}

Q
q=1.

As the PSD assumption is relaxed and the mixtures of Gaussians become dense [36], the duality
ensures that the NG-SM kernel can approximate any continuous kernel arbitrary well. Next, we will
demonstrate that a general closed-form RFF approximation can be derived for all kernels based on
our duality, which we specify for the NG-SM kernel below.

Theorem 2. Let ϕ(x) be the randomized feature map of kngsm(x1,x2), defined as follows:√
1

2L

cos(w(1:L/2)⊤
1 x

)
+cos

(
w

(1:L/2)⊤
2 x

)
sin
(
w

(1:L/2)⊤
1 x

)
+sin

(
w

(1:L/2)⊤
2 x

)∈RL, (7)

where the vertically stacked vectors {[w(l)
1 ;w

(l)
2 ]}L/2

l=1 ∈ RL/2×2D are independent and identically
distributed (i.i.d) random vectors drawn from the spectral density pngsm(w1,w2). Then, the unbiased
estimator of the kernel kngsm(x1,x2) using RFFs is given by:

kngsm(x1,x2) ≈ ϕ(x1)
⊤ϕ(x2). (8)

Proof. The proof can be found in App. C.1.

By integrating this unbiased estimator into the framework of MV-GPLVM, we derive the next-gen
multi-view GPLVM:

yv
:,m ∼ N (0,Φv

xΦ
v⊤
x + σ2

vI), (w
(l)
1 )v,(w

(l)
2 )v∼pvngsm(w

v
1 ,w

v
2), xn ∼ N (0, I) , (9)

where the random feature matrix for each view is denoted as Φv
x = [ϕ(x1); . . . ;ϕ(xN )]

⊤, with
the superscript of each feature map omitted for simplicity of notation. The probabilistic graphical
model is shown in Figure 1. Furthermore, we collectively denote σ2 = {σ2

v}Vv=1 and spectral points
W ≜ {Wv}Vv=1, with each

Wv ≜ {[(w(l)
1 )v; (w

(l)
2 )v]}L/2

l=1 ∈ RL/2×2D. (10)

The following subsections will illustrate how to infer the parameters of the NG-MVLVM through a
unified sampling-based variational inference framework [15].

3.2 Sampling-based Variational Inference

We employ variational inference [37] to jointly and efficiently estimate the posterior and hyperparam-
eters θ = {θngsm,σ

2}. Variational inference reformulates Bayesian inference task as a deterministic
optimization problem by approximating the true posterior p(W,X|Y) using a surrogate distri-
bution, q(W,X), indexed by variational parameters ξ. The variational parameters are typically
estimated by maximizing the evidence lower bound (ELBO) which is equivalent to minimizing the
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Kullback-Leibler (KL) divergence KL(q(W,X)∥p(W,X|Y)) between the surrogate and the true
posterior.

To construct the ELBO for NG-MVLVM, we first obtain joint distribution of the model:

p(Y,X,W) = p(X)

V∏
v=1

p(Wv)p(Yv|X,Wv) (11)

and then define the variational distributions q(W,X) as

q(X,W) ≜ q(X)p(W) = q(X)

V∏
v=1

p(Wv), (12)

where q(X)=
∏N

n=1 N (xn|µn,Sn), and ξ≜{µn∈RD, Sn∈RD×D}Nn=1 are the free variational
parameters. The variational distribution q(W) is set to its prior p(W) as this is essentially equal to
assuming that q(W) follows a Gaussian mixtures (the justification for this choice of approximation
is in App. C.3). Consequently, the optimization problem is:

max
θ,ξ

Eq(X,W)

[
log

p(X)
∏V

v=1 p(W
v)p(Yv|X,Wv)

q(X)
∏V

v=1 p(W
v)

]

=

V∑
v=1

Eq(·,·) [log p(Y
v|X,Wv)]

(a): reconstruction

−KL(q(X)∥p(X))

(b): regularization

which jointly learns the model hyperparameters θ and infers the variational parameters ξ. Term (a)
encourages reconstructing the observations using any samples drawn from q(X,W) and term (b)
serves as a regularization to prevent X from deviating significantly from the prior distribution.

To address this optimization problem using the sampling-based variational inference [15], we first
derive the analytical form of term (b), the KL divergence between two Gaussian distributions, and
expand term (a), approximating the expectation via MC estimation,

V∑
v=1

Mv∑
m=1

1

I

I∑
i=1

logN
(
yv
:,m|0, (Φv

xΦ
v⊤
x )(i)+σ2

vI
)
, (13)

where I denotes the number of differentiable MC samples drawn from q(X) and p(W) with respect
to θ and ξ (see the further computational details in App. C.2). Then, modern optimization techniques,
such as Adam [38], can be directly applied to solve the problem. However, this raises a question:
How can differentiable MC samples be efficiently generated from the mixture bivariate Gaussian
distribution, p(Wv), that implicitly involves discrete variables?

3.3 Sampling in Mixture Bivariate Gaussians

In other words, it is essential to both generate differentiable samples from the mixture bivariate
Gaussian and ensure high sampling efficiency, which is particularly beneficial in the multi-view
case. However, the typical sampling process hinders us from achieving this goal [39, 40]. A
primary difficulty stems from first generating an index q from the discrete distribution, P (q) =

αq/
∑Q

j=1 αj , q = 1, ..., Q, as it is inherently non-reparameterizable w.r.t. the mixture weights.
Although the Gumbel-Softmax method provides an approximation, it remains unstable and highly
sensitive to hyperparameter choices [41]. Additionally, directly performing joint sampling from
sq(w1,w2) (see Eq. (6)) incurs a computational complexity of O(8D3), further complicating the
sampling process. Next, we will demonstrate how to address both issues. To simplify the notation,
we omit the superscript v in this section.

1) Two-step reparameterization trick

Applying the reparameterization trick on a multivariate normal distribution requires computing the
Cholesky decomposition of the full covariance matrix, incurring a computational cost of O(8D3)
[39]. To alleviate this computational burden, we propose the two-step reparameterization trick as
follows, which reducing sampling complexity to O(D).
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Proposition 1 (Two-step reparameterization trick). We can sample w
(l)
1 ,w

(l)
2 from a bivariate

Gaussian distribution sq(w1,w2) using the following steps:

1. w
(l)
1 = µq1 + σq1◦ ϵ1,

2. w
(l)
2 = µq2 + ρq(σq2\σq1) ◦ (w(l)

1 −µq1)+
√
1−ρ2qσq2 ◦ ϵ2,

where ϵ2, ϵ1 are standard normal random variables and ◦ and \ represents element-wise multiplica-
tion and division, respectively.

Proof. The proof and complexity analysis can be found in App. C.4.

2) Unbiased differential RFF estimator

Let spectral points W ≜ {[w(l)
q1 ;w

(l)
q2 ]}

Q,L/2
q=1,l=1, be sampled from p(W) =

∏Q
q=1

∏L/2
l=1 sq(w1,w2)

using the two-step reparameterization trick. Inspired by previous work [21, 42], we first use the
spectral points from the q-th mixture component to construct the following feature map:

φq(x) ≜
√
αq · ϕ(x; {w(l)

q1 }
L/2
l=1 , {w

(l)
q2 }

L/2
l=1 ). (14)

Based on the feature maps {φq(x)}Qq=1, we can formulate our RFF estimator for the NG-SM kernel
as follows.
Theorem 3. Stacking the feature maps φq(x), q = 1, . . . , Q, yields the final form of the RFF
approximation for the NG-SM kernel, φ(x):

φ (x)=
[
φ1(x)

⊤, φ2(x)
⊤, . . . , φQ(x)

⊤]⊤∈RQL. (15)

Built upon this mapping, our unbiased RFF estimator for the NG-SM kernel is reformulated as
follows:

Ep(W)

[
φ(x1)

⊤φ(x2)
]
= kngsm(x1,x2). (16)

Proof. The proof can be found in App. C.5.

Moreover, given inputs X and the RFF feature map φ(x), we can establish the approximation error
bound for the NG-SM kernel gram matrix approximation, K̂ngsm≜Φngsm(X)Φngsm(X)⊤ below,
where Φngsm(X) = [φ (x1) , . . . , φ (xN )]

⊤ ∈ RN×QL.

Theorem 4. Let C = (
∑Q

q=1 α
2
q)

1/2, then for a small ϵ > 0, the approximation error between the
true NG-SM kernel matrix Kngsm and its RFF approximation K̂ngsm is bounded as follows:

P
(∥∥∥K̂ngsm −Kngsm

∥∥∥
2
≥ ϵ
)
≤ N exp

(
−3ϵ2L

2NC
(
6 ∥Kngsm∥2 + 3NC

√
Q+ 8ϵ

)) ,

where ∥ · ∥2 is the matrix spectral norm.

Proof. The proof can be found in App. C.6.

The feature map φ(x) not only provides theoretical guarantees for the approximation but also
eliminates the need to generate differential samples from the mixture bivariate Gaussian distribution
by directly introducing differentiability into the optimization objective w.r.t. the mixture weights αq .

Furthermore, the two-step reparameterization trick uses the correlations between w1 and w2, for
efficient sampling. Consequently, the aforementioned optimization problem is solvable with standard
algorithms like Adam [15]. We summarize the pseudocode in Algorithm 1 which illustrates the
implementation of our proposed method, named Next-Gen Multi-View Latent Variable Model (NG-
MVLVM).
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Algorithm 1: NG-MVLVM: Next-Gen Multi-View Latent Variable Model
1 Input: Dataset Y; Maximum iterations T .
2 Initialize: Iteration count t = 0, model hyperparameters θ, and variational parameters ξ.
3 while t < T or Not Converged do
4 Sample X from q(X) =

∏N
n=1 N (xn|µn,Sn) using the reparameterization trick.

5 For each view, sample Wv from p(Wv)=
∏Q

q=1

∏L/2
l=1 sq(w

v
1 ,w

v
2) via the two-step

reparameterization trick.
6 For each view, construct Φv

ngsm(X) using the sampled X and Wv .
7 Evaluate data reconstruction term of ELBO through Eq. (13).
8 Evaluate regularized term of ELBO analytically.
9 Maximize ELBO and update θ, ξ using Adam [38].

10 Increment t = t+ 1.
11 Output: θ, ξ.

4 Experiments

We demonstrate the superior performance of our model across multiple cross-domain multi-view
datasets, including synthetic data (§ 4.1), image-text data (§ 4.2), and wireless communication data
(§ 4.3). Additional experimental details are provided in App. D, including benchmark implementations
(App. D.2) and hyperparameter selection (App. D.3). We further evaluate the representation learning
capability on single-view real-world datasets (App. D.4.1), and demonstrate robustness in multi-view
settings (App. D.4) and data reconstruction tasks (App. D.5), through supplementary simulations.

4.1 Synthetic Data

We firstly demonstrate the impact of kernel expressiveness on manifold learning and highlight the
expressive power of the proposed NG-SM kernel. To this end, we synthesized two datasets using
a two-view MV-GPLVM with the S-shape X, based on different kernel configurations: (1) both
views using the stationary RBF kernel, and (2) one view using the RBF kernel and the other using
the non-stationary Gibbs kernel [26] (see further details in App. D.1.1). For benchmark methods,
we use the MV-DGPLVM [14] and the multi-view extension of the SOTA ARFLVM [21], namely,
MV-ARFLVM.

The manifold learning and kernel learning results across different methods for the two datasets are
presented in Figure 2. The results for MV-ARFLVM indicate that if the model fails to capture the
non-stationary features of one view, then significant distortions arise in the unified latent variables.
In turn this degrades the model’s ability to learn stationary features from other views. In contrast,
both the latent variables and kernel matrices learned by our method are closer to the ground truth
compared to the benchmark methods, especially in non-stationary kernel setting. Thus, these results
demonstrate the importance of kernel flexibility for the MV-GPLVM.

For the MV-DGPLVM, we select the best latent representations from all GP layers and plot the
corresponding kernel Gram matrix. However, the kernel learning result may be less meaningful,
as the flexibility of model stems from using deep GPs rather than the kernel choice. The deep
architecture of MV-DGPLVM exhibits a notable capability to capture non-stationary components,
yielding a relatively “high-quality” latent representations. However, due to the large number of
parameters and the complex hierarchical structure [43], MV-DGPLVM often suffers from overfitting
and computational inefficiency, still resulting in inferior performance compared to our method.

4.2 Multi-View Image and Text Data

We further demonstrate our model’s ability to learn unified latent representations on various multi-
view image and text datasets, while maintaining high computational efficiency. Specifically, fol-
lowing the setting of Wu and Goodman [11], we construct multi-view settings by pairing each
single-view dataset—images (MNIST, YALE, CIFAR), text (NEWSGROUPS), and structured data
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Figure 2: Comparison of learned latent variables and
kernel matrices with the ground truth. Each dashed
box shows latent variables (left) and kernel matrices
for the two views (middle and right). Left: Both views
use RBF. Right: View 1 uses RBF, view 2 uses Gibbs.

Figure 3: The wall-time (in seconds) for training on
MNIST across different benchmark methods with vary-
ing dataset size N . Solid lines indicate the average
over five runs; shaded regions represent the standard
deviation.

Table 2: Classification accuracy, expressed as a percentage (%), is evaluated by using KNN and SVM clas-
sifiers with five-fold cross-validation. Mean and standard deviation of the accuracy is computed over five
experiments and the top-performing result for each metric is in bold.

DATASET BRIDGES CIFAR MNIST NEWGROUPS YALE

METRIC KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM

OURS 85.31 ± 1.47 87.49 ± 1.76 36.02 ± 0.34 32.47 ± 0.96 82.72 ± 0.61 60.14 ± 1.11 100.0 ± 0.00 100.0 ± 0.00 83.87 ± 1.44 64.81 ± 2.50
MV-ARFLVM 83.42 ± 1.53 86.21 ± 7.59 35.71 ± 0.59 31.58 ± 1.13 81.85 ± 1.58 59.51 ± 2.43 100.0 ± 0.00 100.0 ± 0.00 78.86 ± 2.23 56.72 ± 3.41
MV-DGPLVM 78.03 ± 11.96 73.48 ± 3.08 22.15 ± 10.54 24.31 ± 8.07 26.83 ± 12.25 27.04 ± 18.25 60.14 ± 2.31 36.02 ± 5.354 53.97 ± 6.37 34.58 ± 12.67

MVAE 73.38 ± 2.83 71.26 ± 3.22 25.83 ± 7.97 31.74 ± 2.73 46.41 ± 0.88 55.18 ± 1.91 33.81 ± 4.18 35.97 ± 3.25 74.92 ± 3.31 65.13 ± 2.34
MMVAE 73.01 ± 3.01 72.04 ± 2.43 29.81 ± 2.24 34.73 ± 1.64 39.07 ± 2.58 40.85 ± 7.90 95.21 ± 1.98 38.86 ± 2.70 41.35 ± 4.94 22.12 ± 5.97

MV-NGPLVM 80.72 ± 3.89 71.58 ± 3.59 29.14 ± 2.07 21.92 ± 1.72 52.74 ± 5.10 13.63 ± 1.96 99.25 ± 4.84 35.28 ± 1.41 30.37 ± 1.36 23.91 ± 4.09

(BRIDGES)6—with its corresponding label as an additional view. In addition to SOTA MV-GPLVM
variants used in § 4.1, we also compare MV-GPLVM with the Gibbs kernel (MV-NGPLVM) and the
SOTA MV-VAE variants: MVAE [11] and MMVAE [12]. After inferring the unified latent variable
X, we perform five-fold cross-validation using two types of classifiers: K-nearest neighbor (KNN)
and support vector machine (SVM). As summarized in Table 2, we report the mean and standard
deviation of classification accuracy of various classifiers across multiple datasets. Additionally,
Figure 3 illustrates the model fitting wall-time on the MNIST dataset with respect to dataset size.

From those results, we can see that our method demonstrates superior performance in estimating
the latent represntations while maintaining computational scalability. For the MV-VAE variants,
the inferior performance can be attributed to: (1) optimizing the huge number of neural network
parameters leads to model instability, and (2) the posterior collapse issue in the VAE results in an
uninformative latent space. Both factors are partly due to overfitting, a problem that can be naturally
addressed by the MV-GPLVM variants.

Consequently, the performance of the MV-GPLVM variants is generally superior to that of the MV-
VAE, though this often comes with increased computational cost—an issue our method effectively
mitigates. Specifically, the performance improvement of our method compared to MV-ARFLVM and
MV-NGPLVM is due to our proposed NG-SM kernel. MV-DGPLVM not only exhibits instability
but also incurs extremely high computational costs, which can be attributed to its large number of
parameters.

4.3 Wireless Communication Data

For further evaluations, we test the model in a channel compression task. Specifically, we generate
wireless communication channel datasets using a high-fidelity channel simulator—QUAsi Determin-
istic RadIo channel GenerAtor (QUADRIGA)7. The environment we considered consists of a base
station (BS) with 32 antennas serving 10 single-antenna user equipments (UEs), each moving at a
speed of 30 km/h. We sample 1, 000 complex-valued channel vectors for each UE at intervals of 2.5

6See detailed dataset descriptions in App. D.1.2.
7https://quadriga-channel-model.de
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Figure 4: (Left) Classification accuracy , expressed as a percentage (%), is evaluated using KNN, Logistic
Regression (LR) and SVM classifiers with five-fold cross-validation. Mean and standard deviation are computed
over five experiments. (Right) The average mean squared error (MSE) of the reconstructed channel data
compared to the original channel data across different latent variable dimensions in five experiments.

ms. The real and imaginary parts of each complex channel vector are treated as two distinct views,
with the identifier of the UE as the label, resulting in a two-view dataset8 with N = 10, 000 and
Mv = 32 for v = 1, 2.

To reduce communication overhead, the UE typically transmits a compressed channel vector to the
BS instead of the full vector. This compressed vector must retain sufficient information to accurately
reconstruct the ground-truth channel vectors. We use the unified latent variables as the compressed
channel vector and evaluate both their classification performance and reconstruction capability. The
mean and standard error of the classification accuracy, along with the mean square error (MSE)
between the reconstructed and ground-truth channel vectors, are shown in Figure 4. The results
indicate that the KNN accuracy achieved by our method consistently surpasses that of competing
methods, while the MSE is consistently lower. These findings highlight the superior performance of
our model in channel compression tasks compared to other benchmark approaches.

5 Conclusion

This paper introduces NG-MVLVM, a novel model designed to address two critical challenges in
multi-view representation learning with MV-GPLVMs: limited kernel expressiveness and compu-
tational inefficiency. Specifically, we first establish a duality between spectral density and kernel
function, yielding a versatile kernel capable of modeling the non-stationarity in multi-view datasets.
We then show that with the proposed RFF approximation and efficient sampling method, the infer-
ence of model and latent representations can be effectively performed within a variational inference
framework. Experimental validations demonstrate that our model, NG-MVLVM, outperforms
state-of-the-art methods such as MV-VAE and MV-GPLVM in providing informative unified latent
representations across diverse cross-domain multi-view datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our main contributions in the abstract and provide a point-by-
point elaboration of these contributions in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in App. E. Computational efficiency
and scalability are also analyzed in the experimental section (§ 4.2) and in App. D.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results in the paper are presented with clearly stated assumptions.
Formal proofs are provided in App. B and C, and are properly referenced in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full code in the supplemental material and list all hyperparameter
settings of experiments in App. D.3, ensuring reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the supplemental material and clearly indicate the
sources of all datasets and benchmark implementations in App. D.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant experimental details—including data processing (App. D.1),
hyperparameter settings (App. D.3), and resources of benchmark methods (App. D.2)—are
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation over five runs for each experiment, and
compare and analyze the performance and variability across different methods in § 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the compute resources are provided in App. D.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research complies fully with its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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A Notation Table

We summarize key symbols and their corresponding dimensions used throughout the paper to improve
clarity.

Table 3: Summary of Notations

Symbol Description Dimension
N Number of observations scalar
M Dimensionality of observation scalar
V Number of views scalar
D Dimensionality of latent space scalar
U Number of inducing points scalar
H Number of GP layers (for DGPLVM) scalar
L Dimensionality of random features scalar
X Latent representation N ×D
Y (v) Observation in view v N ×Mv

yv
:,m Observation vector in view v, dimension m N × 1

f
(v)
m (X) Latent function for view v, dimension m N × 1
K(v) Kernel matrix for view v N ×N
w(v) Spectral points of view v L/2× 2D

(w
(l)
1 )v l-th sampled spectral point for view v (first component) D
σ2
v Noise variance for view v scalar

αq Mixture weight of q-th Gaussian component scalar
µq1, µq2 Mean vectors of q-th bivariate Gaussian D
σ2
q1, σ

2
q2 Variance vectors of q-th bivariate Gaussian D

ρq Correlation coefficient in q-th component scalar
θ Set of kernel hyperparameters -
ξ Set of variational parameters -

B Next-Gen SM kernel and Universal Bochner’s Theorem

B.1 Bivariate SM kernel

The development of the spectral mixture (SM) kernel is based on the fundamental Bochner’s theorem
[44], which suggests that any stationary kernel and its spectral density are Fourier duals. However, the
stationarity assumption limits the kernel’s learning capacity, especially when dealing with multi-view
datasets, where some views may exhibit non-stationary characteristics. To model the non-stationarity,
the Bivariate SM (BSM) kernel was introduced in [29, 45], based on the following generalized
Bochner’s theorem:
Theorem 5 (Generalized Bochner’s Theorem). A complex-valued bounded continuous kernel
k (x1,x2) on RD is the covariance function of a mean square continuous complex-valued random
process on RD if and only if

k (x1,x2) =

∫
exp
(
i
(
w⊤

1 x1 −w⊤
2 x2

))
m (dw1,dw2) , (17)

where m is the Lebesgue-Stieltjes measure associated with some positive semi-definite (PSD) function
S (w1,w2).

According to Theorem 5, one can approximate the function S(w1,w2), and implement the inverse
Fourier transform shown in Eq. (17) to obtain the associated kernel function. The bivariate spectral
mixture (BSM) kernel adopts this concept and approximates S(w1,w2) as a bivariate Gaussian
mixture as follows:

S (w1,w2) =

Q∑
q=1

αqsq (wq1,wq2) , (18)
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where sq (wq1,wq2) represents the q-th component of a bivariate Gaussian distribution, formally
defined as [29]:

1

8

∑
µq∈±{µq1,µq2}2

N


(
wq1

wq2

)∣∣∣∣ (µq1

µq2

)
,

(
diag(σ2

q1) ρq diag(σq1) diag(σq2)
ρq diag(σq1) diag(σq2) diag(σ2

q2)

)
≜Σq

 .

(19)
Here ±{µq1,µq2}2 represents:

{(µq1,µq2), (µq1,µq1), (µq2,µq2), (µq2,µq1), (20)
(−µq1,−µq2), (−µq1,−µq1), (−µq2,−µq2), (−µq2,−µq1)}.

The terms σ2
q1 and σ2

q2 ∈ RD represent the variances of the q-th bivariate Gaussian component, while
ρq denotes the correlation between wq1 and wq2; the vectors µq1 and µq2 ∈ RD specify the means
of the q-th Gaussian component. The mixture weight is denoted by αq, and Q is the total number
of mixture components. Taking the inverse Fourier transform, we can obtain the following kernel
function:

k (x1,x2) =

Q∑
q=1

αq exp

(
−1

2
x̃⊤Σqx̃

)
Ψq(x1)

⊤Ψq (x2) , (21)

where

Ψq(x) =

[
cos
(
µ⊤

q1x
)
+ cos

(
µ⊤

q2x
)

sin
(
µ⊤

q1x
)
+ sin

(
µ⊤

q2x
)] ∈ R2,

and x̃ = (x1,−x2) ∈ R2D is a stacked vector.

The BSM kernel overcomes the stationarity limitation in the SM kernel. However, it still has two
major issues.

• First, the assumption of identical variance of w1 and w2 limits the approximation flexibility
of the mixture of Gaussian, which in turn diminishes the generalization capacity of the
kernel.

• Second, the RFF kernel approximation technique cannot be directly applied, as the closed-
form expression of the feature map is hard to derive (see explaination below).

The first limitation arises from the requirement that the spectral density must be PSD. To ensure the
symmetry of the BSM kernel function (i.e., k(x1,x2) = k(x2,x1)), the BSM kernel assumes that
σq1 = σq2, ∀q.

In addition, we highlight the challenges of deriving a closed-form feature map for RFF when directly
applying Theorem 5. According to Theorem 5, the kernel can be approximated via MC as follows:

k (x1,x2) =
1

4

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
u(dw1,dw2)

=
1

4
Eu

(
exp
(
i(w⊤

1 x1 −w⊤
2 x2)

))
≈ 1

2L

L/2∑
l=1

exp
(
i(w

(l)⊤
1 x1 −w

(l)⊤
2 x2)

)

=
1

2L

L/2∑
l=1

(
cos
(
w

(l)⊤
1 x1

)
cos
(
w

(l)⊤
2 x2

)
+ sin

(
w

(l)⊤
1 x1

)
sin
(
w

(l)⊤
2 x2

))
.

(22)

Since w1 and w2 are distinct, it is hard to derive a closed-form RFF approximation for k(x1,x2).
More specifically, it is challenging to explicitly define ϕw1

(·), ϕw2
(·), the feature maps of the kernel

function, such that
k(x1,x2) ≈ ϕw1

(x1)
⊤ϕw2

(x2) = ϕw1
(x2)

⊤ϕw2
(x1) (23)

Thus, the inversion of the BSM kernel matrix retains high computational complexity, rendering it
unsuitable for multi-view data.
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Remark 1. To enhance the kernel capacity, this paper proposes the Universal Bochner’s Theorem
(Theorem 1) and the NG-SM kernel. The main contribution of Theorem 1 is that it relaxes the PSD
assumption of the spectral density, thus the induced NG-SM kernel can mitigate the constraint of
identical spectral variance.
Remark 2. To derive a closed-form feature map for any kernel, one potential approach is to
decompose the spectral density S(w1,w2) into some density functions p(w1,w2) [45, 46], such as:

S(w1,w2) =
1

4
(p(w1,w2) + p(w2,w1) + p(w1)δ(w2 −w1) + p(w2)δ(w1 −w2)), (24)

where p(w1) and p(w2) are the marginal distributions of p(w1,w2), and δ(x) denotes the Dirac
delta function. Subsequently, MC integration can be applied to S(w1,w2) to derive the closed-form
feature map, see details in Appendix C.1.

B.2 Proof of Theorem 1

(=⇒) Suppose there exists a continuous kernel k(x1,x2) on RD. By the Theorem 5, this kernel can
be represented as:

k(x1,x2) =

∫
exp

(
i(w⊤

1 x1 −w⊤
2 x2)

)
m(dw1,dw2),

where m is the Lebesgue-Stieltjes measure associated with some PSD function S(w1,w2) of bounded
variation.

To ensure that the kernel function is exchangeable and PSD, we design the spectral density S(w1,w2)
as follows:

S(w1,w2) =
1

4
(p(w1,w2) + p(w2,w1) + p(w1)δ(w2 −w1) + p(w2)δ(w1 −w2)), (25)

where δ(x) represents the Dirac delta function, and p is a certain density function that can be
decomposed from S as Eq. (25). Additionally, p(w1) and p(w2) are the marginal distributions of
p(w1,w2).

The resulting kernel k (x1,x2) =

1

4

(∫
exp

(
i
(
w⊤

1 x1−w⊤
2 x2

))
p (w1,w2) dw1 dw2+

∫
exp

(
i
(
w⊤

2 x1−w⊤
1 x2

))
p (w2,w1) dw2 dw1

+

∫
exp

(
iw⊤

1 (x1−x2)
)
p (w1) δ(w2−w1) dw1+

∫
exp

(
iw⊤

2 (x1−x2)
)
p (w2) δ(w1−w2) dw2

)
=
1

4

(∫
exp

(
i
(
w⊤

1 x1 −w⊤
2 x2

))
u(dw1,dw2) +

∫
exp

(
i
(
w⊤

2 x1 −w⊤
1 x2

))
u(dw1,dw2)

+

∫
exp

(
i
(
w⊤

1 x1 −w⊤
1 x2

))
u(dw1) +

∫
exp

(
i
(
w⊤

2 x1 −w⊤
2 x2

))
u(dw2)

)
,

(26)
where u is the Lebesgue-Stieltjes measure associated with the density function p(w1,w2).

Note that we can disregard the δ functions in the last two terms of the expression, as the integrands in
these terms depend solely on w1 or w2. Consequently, we can only integrate over the single variable,
while setting the other variable to be equal to the one being integrated.

Finally, we can express the kernel:

k (x1,x2) =
1

4

∫
( exp

(
i
(
w⊤

1 x1−w⊤
2 x2

))
+exp

(
i
(
w⊤

2 x1−w⊤
1 x2

))
+ exp

(
iw⊤

1 (x1−x2)
)
+exp

(
iw⊤

2 (x1−x2)
)
)u(dw1,dw2),

(27)

which is the expression shown in Theorem 1.

(⇐=) Given the function:

k (x1,x2) =
1

4

∫
(exp

(
iw⊤

1 x1−iw⊤
2 x2

)
+exp

(
iw⊤

2 x1−iw⊤
1 x2

)
+ exp

(
iw⊤

1 (x1−x2)
)
+exp

(
iw⊤

2 (x1−x2)
)
)u(dw1,dw2),

(28)

25



we have the condition that:

S(w1,w2) =
1

4
(p(w1,w2) + p(w2,w1) + p(w1)δ(w2 −w1) + p(w2)δ(w1 −w2)), (29)

is a PSD function. We aim to demonstrate that k(x1,x2) is a valid kernel function. Specifically, we
need to show that k is both symmetric and PSD.

First, it is straightforward to show that k(x1,x2) = k(x2,x1), confirming that k is symmetric.

The next step is to establish that k is PSD. Consider that k(x1,x2) =

1

4

(∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
p(w1,w2) dw1dw2+

∫
exp
(
i(w⊤

1 x1−w⊤
1 x2)

)
p(w1,w2) dw1dw2

+

∫
exp
(
i(w⊤

2 x1−w⊤
1 x2)

)
p(w1,w2) dw1dw2+

∫
exp
(
i(w⊤

2 x1−w⊤
2 x2)

)
p(w1,w2) dw1dw2

)
=

1

4

(∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
p(w1,w2) dw1dw2+

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
p(w1)δ(w2−w1) dw1dw2

+

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
p(w2,w1) dw1dw2 +

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
p(w2)δ(w1−w2) dw1dw2

)
=

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)1
4
(p(w1,w2)+p(w2,w1)+p(w1)δ(w2−w1)+p(w2)δ(w1−w2)) dw1dw2

=

∫
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
m(dw1dw2),

(30)
where m is the Lebesgue-Stieltjes measure associated with the PSD density function S (w1,w2).
Thus, by Theorem 5, k(w1,w2) is PSD.

B.3 Derivation of Next-Gen SM kernel

The BSM kernel based on Theorem 5 is constrained by the requirement of identical variances for w1

and w2, and is incompatible with the RFF approximation technique. In this section, we derive the
NG-SM kernel based on Theorem 1, which effectively resolves these limitations.

The spectral density of the NG-SM kernel is designed as:

pngsm (w1,w2) =

Q∑
q=1

αqsq (w1,w2) , (31)

with each

sq (w1,w2) =
1

2
N
((

w1

w2

)∣∣∣∣ (µq1

µq2

)
,

[
Σ1 Σ⊤

c
Σc Σ2

])
+

1

2
N
((

−w1

−w2

)∣∣∣∣ (µq1

µq2

)
,

[
Σ1 Σ⊤

c
Σc Σ2

])
.

(32)
We simplify the notation by omitting the index q from the sub-matrices Σ1 = diag(σ2

q1),
Σ2 = diag(σ2

q2), and Σc = ρq diag(σq1) diag(σq2), where σ2
q1,σ

2
q2 ∈ RD and ρq represents

the correlation between w1 and w2. These terms together define the covariance matrix for the q-th
bivariate Gaussian component. Additionally, the vectors µq1 and µq2 ∈ RD serve as the mean of the
q-th bivariate Gaussian component.

Relying on Theorem 1, we derive the NG-SM kernel kngsm (x1,x2) =
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1

4

∫
pngsm (w1,w2)

(
exp
(
iw⊤

1 x1 − iw⊤
2 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
1 x2

)
+ exp

(
iw⊤

1 x1 − iw⊤
1 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
2 x2

))
dw1dw2

=
1

4

Q∑
q=1

αq

∫
1

2
(Φq(w1,w2) + Φq(−w1,−w2))

(
exp
(
iw⊤

1 x1 − iw⊤
2 x2

)
+exp

(
iw⊤

2 x1−iw⊤
1 x2

)
+exp

(
iw⊤

1 x1−iw⊤
1 x2

)
+exp

(
iw⊤

2 x1−iw⊤
2 x2

))
dw1dw2,

where

Φq(w1,w2) = N
((

w1

w2

)∣∣∣∣ (µq1

µq2

)
,

[
Σ1 Σ⊤

c
Σc Σ2

])
. (33)

We focus solely on the real part of the kernel function. Since the real part of the integrand is a cosine
function, and both Φq and the cosine function are even functions, we can therefore simplify the
expression as follows.

=
1

4

Q∑
q=1

αq

∫
Φq(w1,w2)

(
exp
(
iw⊤

1 x1 − iw⊤
2 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
1 x2

)
+ exp

(
iw⊤

1 x1 − iw⊤
1 x2

)
+ exp

(
iw⊤

2 x1 − iw⊤
2 x2

))
dw1dw2

=
1

4

Q∑
q=1

αq

(∫
Φq(w1,w2) exp

(
iw⊤

1 x1−iw⊤
2 x2

)
dw1dw2

Term (1)

+

∫
Φq(w2,w1) exp

(
iw⊤

2 x1−iw⊤
1 x2

)
dw1dw2

Term (2)

+

∫
Φq(w1) exp

(
iw⊤

1 x1−iw⊤
1 x2

)
dw1

Term (3)

+

∫
Φq(w2) exp

(
iw⊤

2 x1−iw⊤
2 x2

)
dw2

Term (4)

)
,

(34)
where Φq(w1) and Φq(w2) are marginal distributions of Φq(w1,w2). Next, we will derive the
closed forms for each term. First, Term (1) is given by:

Term (1) =
∫

N (w | µq,Σq) e
w⊤x̃dw

=
1

(2π)2|Σq|

∫
exp

(
−1

2
(w − µq)

⊤
Σ−1

q (w − µq) +w⊤x̃

)
dw

=
1

(2π)2|Σq|

∫
exp

(
−1

2
w⊤Σ−1

q w +w⊤ (x̃+Σ−1
q µq

)
− 1

2
µ⊤

q Σ
−1
q µq

)
dw

=exp

(
1

2

(
x̃+Σ−1

q µ⊤
q

)⊤
Σq

(
x̃+Σ−1

q µ⊤
q

))
exp

(
−1

2
µ⊤

q Σ
−1
q µq

)
=exp

(
1

2
x̃⊤Σqx̃+ µ⊤

q x̃

)
,

(35)

where we defined x̃ = (ix1,−ix2) and w = (w1,w2). In addition, µq = (µq1,µq2) and

Σq =

[
Σ1 Σ⊤

c
Σc Σ2

]
.
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The first term of the kernel mixture is then given by:

Term (2) =exp

(
1

2
x̃⊤Σqx̃+ µ⊤

q x̃

)
=exp

(
−1

2

(
x⊤
1 Σ1x1 − 2x⊤

1 Σcx2 + x⊤
2 Σ2x2

))
exp

(
i
(
µ⊤

q1x1 − µ⊤
q2x2

))
=exp

(
−1

2

(
x⊤
1 Σ1x1 − 2x⊤

1 Σcx2 + x⊤
2 Σ2x2

))
cos
(
µ⊤

q1x1 − µ⊤
q2x2

)
.

(36)

By swapping x1 and x2 in Term (1), the closed form of Term (2) can be easily obtained as below:

Term (2) = exp

(
−1

2

(
x2Σ1x

⊤
2 − 2x1Σcx

⊤
2 + x1Σ2x

⊤
1

))
cos
(
µq1x

⊤
2 − µq2x

⊤
1

)
. (37)

Term (3) of the kernel is then given by:

Term (3) =
∫

N (w1 | µq1,Σ1) exp
(
iw⊤

1 (x1 − x2)
)
dw1

=
1

(2π)2|Σ1|

∫
exp

(
−1

2
(w1−µq1)

⊤
Σ−1

1 (w1 − µq1) + iw⊤
1 (x1 − x2)

)
dw1

=
1

(2π)2|Σ1|

∫
exp

(
−1

2
w⊤

1 Σ
−1
1 w1+w⊤

1

(
i(x1 − x2)+Σ−1

1 µq1

)
− 1

2
µ⊤

q1Σ
−1
1 µq1

)
dw1

=exp

(
1

2

(
i(x1−x2)+Σ−1

1 µq1

)⊤
Σ1

(
i(x1−x2)+Σ−1

1 µq1

))
exp

(
−1

2
µ⊤

q1Σ
−1
1 µq1

)
=exp

(
1

2
i(x1 − x2)

⊤Σ1i(x1 − x2) + µ⊤
q1i(x1 − x2)

)
=exp

(
−1

2

(
x1 − x2)

⊤Σ1(x1 − x2)
))

exp
(
iµ⊤

q1(x1 − x2)
)

=exp

(
−1

2

(
x1 − x2)

⊤Σ1(x1 − x2)
))

cos
(
µ⊤

q1(x1 − x2)
)
.

(38)
The 4’th term of the kernel can be derived in a manner similar to the 3’rd term.

Term (4) = exp

(
−1

2

(
x1 − x2)

⊤Σ2(x1 − x2)
))

cos
(
µ⊤

q2(x1 − x2)
)
. (39)

Thus, NG-SM kernel takes the form:

k(x1,x2) =
1

4

Q∑
q=1

αq

[
exp

(
−1

2

(
x⊤
1 Σ1x1 − 2x⊤

1 Σcx2 + x⊤
2 Σ2x2

))
cos
(
µ⊤

q1x1 − µ⊤
q2x2

)
+ exp

(
−1

2

(
x⊤
2 Σ1x2 − 2x⊤

1 Σcx2 + x⊤
1 Σ2x1

))
cos
(
µ⊤

q1x2 − µ⊤
q2x1

)
+ exp

(
−1

2

(
x1 − x2)

⊤Σ1(x1 − x2)
))

cos
(
µ⊤

q1(x1 − x2)
)

+ exp

(
−1

2

(
x1 − x2)

⊤Σ2(x1 − x2)
))

cos
(
µ⊤

q2(x1 − x2)
)
] .

(40)

C Auto-differentiable Next-Gen SM Kernel using RFF Approximation

C.1 Random Fourier feature for Next-Gen SM Kernel

Our proposed Theorem 1 establishes the following duality: k (x1,x2) =

1

4
Eu

(
exp
(
i(w⊤

1 x1−w⊤
2 x2)

)
+exp

(
i(w⊤

2 x1−w⊤
1 x2)

)
+exp

(
i(w⊤

1 x1−w⊤
1 x2)

)
+exp

(
i(w⊤

2 x1−w⊤
2 x2)

))
.
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By estimating this expectation with the MC estimator using spectral points {w(l)
1 ;w

(l)
2 }L/2

l=1 sampled
from p(w1,w2), we can drive

k (x1,x2) ≈
1

2L

L/2∑
l=1

(
exp
(
i(w

(l)⊤
1 x1 −w

(l)⊤
2 x2)

)
+ exp

(
i(w

(l)⊤
2 x1 −w

(l)⊤
1 x2)

)
+exp

(
i(w

(l)⊤
1 x1 −w

(l)⊤
1 x2)

)
+ exp

(
i(w

(l)⊤
2 x1 −w

(l)⊤
2 x2)

))
=

1

2L

L/2∑
l=1

(
cos
(
w

(l)⊤
1 x1

)
cos
(
w

(l)⊤
1 x2

)
+ cos

(
w

(l)⊤
1 x1

)
cos
(
w

(l)⊤
2 x2

)
+ cos

(
w

(l)⊤
2 x1

)
cos
(
w

(l)⊤
1 x2

)
+ cos

(
w

(l)⊤
2 x1

)
cos
(
w

(l)⊤
2 x2

)
+ sin

(
w

(l)⊤
1 x1

)
sin
(
w

(l)⊤
1 x2

)
+ sin

(
w

(l)⊤
1 x1

)
sin
(
w

(l)⊤
2 x2

)
+ sin

(
w

(l)⊤
2 x1

)
sin
(
w

(l)⊤
1 x2

)
+ sin

(
w

(l)⊤
2 x1

)
sin
(
w

(l)⊤
2 x2

))
= ϕ(x1)

⊤ϕ(x2)

(41)

where

ϕ (x) =

√
1

2L

cos(w(1:L/2)⊤
1 x

)
+cos

(
w

(1:L/2)⊤
2 x

)
sin
(
w

(1:L/2)⊤
1 x

)
+sin

(
w

(1:L/2)⊤
2 x

)∈RL. (42)

Here the superscript 1 : L/2 indicates that the cosine plus cosine or sine plus sine function is repeated
L/2 times, with each element corresponding to the one entry of {w(l)

1 ;w
(l)
2 }L/2

l=1 . If we specify
the spectral density as pngsm(w1,w2) (Eq. (31)), the estimator of the kernel kngsm(x1,x2) can be
formulated as:

kngsm(x1,x2) ≈ ϕ(x1)
⊤ϕ(x2), (43)

where random features ϕ(x1) and ϕ(x2) are constructed using spectral points sampled from
pngsm(w1,w2).

C.2 ELBO Derivation and Evaluation

The term (a) of ELBO is handled numerically with MC estimation as below:

(a) =
Mv∑
m=1

Eq(X,W)

[
log p(yv

:,m|X,Wv)
]

(44a)

≈
Mv∑
m=1

1

I

I∑
i=1

logN (yv
:,m|0, K̃v(i)

ngsm + σ2
vIN ), (44b)

where I denotes the number of MC samples drawn from q(X,W). Additionally, K̃
v(i)
ngsm =

(Φv
xΦ

v⊤
x )(i) is the NG-SM kernel gram matrix approximation, where Φv

x ∈ RN×L.

The term (b) of ELBO can be evaluated analytically due to the Gaussian nature of the distributions.
More specific, we have

(b) =
N∑

n=1

KL(q(xn)∥p(xn)) (45a)

=
1

2

N∑
n=1

[
tr(Sn) + µ⊤

nµn − log |Sn| −D
]
, (45b)

where D represents the dimensionality of xn, and Sn is commonly assumed to be a diagonal matrix.
Consequently, the ELBO can be expressed as follows:
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ELBO = Eq(X,W)

[
p(Y,X;W)

q(X,W)

]
= Eq(X,W)

[
log

p(X)
∏V

v=1 p(W
v)p(Yv|X,Wv)

q(X)
∏V

v=1 p(W
v)

]

=

V∑
v=1

Eq(·,·) [log p(Y
v|X,Wv)]

(a): reconstruction

−KL(q(X)∥p(X))

(b): regularization

≈
V∑

v=1

Mv∑
m=1

1

I

I∑
i=1

logN (yv
:,m|0, K̃v(i)

ngsm + σ2IN )− 1

2

N∑
n=1

[
tr(Sn) + µ⊤

nµn − log |Sn| −D
]

=

V∑
v=1

Mv∑
m=1

1

I

I∑
i=1

{
−N

2
log 2π − 1

2
log
∣∣∣K̃v(i)

ngsm + σ2
vIN

∣∣∣− 1

2
yv⊤
:,m

(
K̃v(i)

ngsm + σ2
vIN

)−1

yv
:,m

}

− 1

2

N∑
n=1

[
tr(Sn) + µ⊤

nµn − log |Sn| −D
]
.

When N ≫ L, both the determinant and the inverse of K̃v(i)
ngsm + σ2

vIN can be computed efficiently
by the following two lemma [26].
Lemma 1. Suppose A is an invertible n-by-n matrix and U,V are n-by-m matrices. Then the
following determinant equality holds.∣∣A+UV⊤∣∣ = ∣∣Im +V⊤A−1U

∣∣ |A| .
Lemma 2 (Woodbury matrix identity). Suppose A is an invertible n-by-n matrix and U,V are
n-by-m matrices. Then(

A+UV⊤)−1
= A−1 −A−1U(Im +V⊤U)−1V⊤.

We can reduce the computational complexity for evaluating the ELBO from the original O(N3) to
O(NL2) as below:∣∣∣K̃v(i)

ngsm + σ2
vIN

∣∣∣ = σ2N
v

∣∣∣∣IL +
1

σ2
v

(Φv
xΦ

v⊤
x )(i)

∣∣∣∣ , (46)(
K̃v(i)

ngsm + σ2
vIN

)−1

=
1

σ2
v

[
IN −Φv(i)

x

(
IL + (Φv

xΦ
v⊤
x )(i)

)−1

Φv(i)⊤
x

]
. (47)

C.3 Treating W variationally

Alternatively, we define the variational distributions as
q(X,W) = q(W;η)q(X),

where the variational distribution q(W;η) is also a bivariate Gaussian mixture that is parameterized
by η. By combining these variational distributions with the joint distribution defined in Eq. (11), we
derive the following ELBO:

ELBO = Eq(X,W)

[
p(Y,X,W)

q(W;η)q(X)

]
= Eq(X,W)

[
log

p(X)
∏V

v=1 p(W
v;θngsm)p(Y

v|X,Wv)

q(X)
∏V

v=1 p(W
v;η)

]

=

V∑
v=1

Eq(·,·) [log p(Y
v|X,Wv)]

(a): reconstruction

−KL(q(X)∥p(X))

(b): regularization of X

−KL(q(W;η)∥p(W;θngsm))︸ ︷︷ ︸
(c): regularization of W

, (48)

where we redefine the prior distribution p(W) as p(W;θngsm) to maintain notational consistency.
When maximizing the ELBO, we obtain q(W;η) = p(W;θngsm), as the optimization variable θngsm
only affects term c. Consequently, term (c) becomes zero, and Eq. (48) aligns with the optimization
objective outlined in the main text.
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C.4 Proof of Proposition 1

Proof. The proposed two-step reparameterization trick leverages sequential simulation, where wq1 is
first sampled from p(wq1), followed by wq2 drawn from the conditional distribution p(wq2|wq1).

1) Sample from p(wq1): Given that wq1 follows a normal distribution N (µq1,diag(σ
2
q1)), we can

directly use the reparameterization trick to sample from it, i.e.,

w
(l)
q1 = µq1 + σq1 ◦ ϵ1,

where ϵ1 ∼ N (0, I).

2) Sample from p(wq2|wq1): Given w
(l)
q1 , we use the given correlation parameter ρq and a new

standard normal variable ϵ2 to generate w
(l)
q2 :

w
(l)
q2 = µq2 + ρqσq2\σq1 ◦ (w(l)

q1 − µq1) +
√
1− ρ2qσq2 ◦ ϵ2.

Now, we need to proof that the generated w
(l)
q1 and w

(l)
q2 follow the bivariate Gaussian distribution

sq(w1,w2). To this ends, we compute the mean and variance of w(l)
q2 , and the covariance between

w
(l)
q1 and w

(l)
q2 below.

- Mean of w(l)
q2 :

E[w(l)
q2 ] = E

[
µq2 + ρqσq2\σq1 ◦ (w(l)

q1 − µq1) +
√
1− ρ2qσq2 ◦ ϵ2

]
.

Since E[ϵ2] = 0 and E[w(l)
q1 ] = µq1, we have:

E[w(l)
q2 ] = µq2 + ρqσq2\σq1 ◦ (E[w(l)

q1 ]− µq1) +
√
1− ρ2qσq2 ◦ E[ϵ2] = µq2.

- Variance of w(l)
q2 :

Var(w(l)
q2 ) = Var

(
ρqσq2\σq1 ◦ (w(l)

q1 − µq1) +
√
1− ρ2qσq2 ◦ ϵ2

)
.

Since w
(l)
q1 − µq1 and ϵ2 are independent, and Var(ϵ2) = I, we have:

Var(w(l)
q2 ) = ρ2q (σq2\σq1)

2 ◦ Var(w(l)
q1 ) + (1− ρ2q)σ

2
q2 = ρ2qσ

2
q2 + (1− ρ2q)σ

2
q2 = σ2

q2.

- Covariance between w
(l)
q1 and w

(l)
q2 :

Cov(w(l)
q1 ,w

(l)
q2 ) = Cov

(
µq1 + σq1 ◦ ϵ1,µq2 + ρqσq2\σq1 ◦ (w(l)

q1 − µq1) +
√
1− ρ2qσq2 ◦ ϵ2

)
.

(49)
Since µq1 and µq2 are constants, the covariance only depends on σq1 ◦ ϵ1 and ρqσq2 ◦ ϵ1 +√
1− ρ2qσq2 ◦ ϵ2. Thus we can reformulate Eq. (49) as

Cov(σq1◦ϵ1, ρqσq2◦ϵ1+
√
1− ρ2qσq2◦ϵ2) = σq1ρq◦σq2Cov(ϵ1, ϵ1)+σq1

√
1− ρ2q◦σq2Cov(ϵ1, ϵ2).

Given that ϵ1 and ϵ2 are independent, Cov(ϵ1, ϵ2) = 0, and Cov(ϵ1, ϵ1) = I, this covariance is equal
to:

σq1ρq ◦ σq2 ◦ I+ σq1

√
1− ρ2q ◦ σq2 ◦ 0 = ρqσq1 ◦ σq2.

Therefore, the generated w
(l)
q1 and w

(l)
q2 follow the bivariate Gaussian distribution sq(w1,w2).

The two-step reparameterization trick simplifies the sampling process of the bivariate Gaussian
distribution. Specifically, the traditional sampling method [39] requires Cholesky decomposition of
the 2D× 2D covariance matrix, resulting in a computational complexity of O(8D3). In contrast, our
method achieves a computational complexity of O(D) for sampling from p(wq1), while sampling
from p(wq2|wq1) also maintains a complexity of O(D). This results in a total computational cost of
O(D).
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C.5 Proof of Theorem 3

Proof. With the RFF feature map defined in Eq. (15), we can express the inner product of the feature
maps as follows:

φ (x1)
⊤
φ (x2) =

Q∑
q=1

αq

L/2∑
l=1

1

2L
A(l)

q , (50)

where,

A(l)
q =

(
cos
(
w

(l)⊤
q1 x1

)
cos
(
w

(l)⊤
q1 x2

)
+ cos

(
w

(l)⊤
q1 x1

)
cos
(
w

(l)⊤
q2 x2

)
+ cos

(
w

(l)⊤
q2 x1

)
cos
(
w

(l)⊤
q1 x2

)
+ cos

(
w

(l)⊤
q2 x1

)
cos
(
w

(l)⊤
q2 x2

)
+ sin

(
w

(l)⊤
q1 x1

)
sin
(
w

(l)⊤
q1 x2

)
+ sin

(
w

(l)⊤
q1 x1

)
sin
(
w

(l)⊤
q2 x2

)
+ sin

(
w

(l)⊤
q2 x1

)
sin
(
w

(l)⊤
q1 x2

)
+ sin

(
w

(l)⊤
q2 x1

)
sin
(
w

(l)⊤
q2 x2

))
,

(51)

where {wl
1,w

l
2}

L/2
l=1 are independently and identically distributed (i.i.d.) spectral points drawn from

the density function sq(w1,w2) using the two step reparameterization trick. Taking the expectation
with respect to pngsm (w1,w2) =

∏Q
q=1

∏L/2
l=1 sq(w1,w2), we obtain:

Epngsm(w1,w2)

[
φ (x1)

⊤
φ (x2)

]
= Epngsm(w1,w2)

 Q∑
q=1

αq

L/2∑
l=1

1

2L
A(l)

q


=

Q∑
q=1

αqEs(wq1
1:L/2,wq2

1:L/2)

L/2∑
l=1

1

2L
A(l)

q

 , (linearity of expectation)

(52)

=

Q∑
q=1

αq
1

4
Esq(w1,w2) [Aq] (i.i.d. of w(q)

l )

=

Q∑
q=1

αq
1

4
Esq(w1,w2)

[
exp
(
i(w1x

⊤
1 −w2x

⊤
2 )
)
+ exp

(
i(w2x

⊤
1 −w1x

⊤
2 )
)

+ exp
(
i(w1x

⊤
1 −w1x

⊤
2 )
)
+ exp

(
i(w2x

⊤
1 −w2x

⊤
2 )
)]

(Euler’s identity)

=

Q∑
q=1

αqkq(x1,x2)

= kngsm(x1,x2). (NG-SM kernel definition)
(53)

Thus, we conclude that φ (x1)
⊤
φ (x2) provides an unbiased estimator for the NG-SM kernel.

C.6 Proof of Theorem 4

Proof. We primarily rely on the Matrix Bernstein inequality [47] to establish Theorem 4, with the
proof outline depicted in Figure 5.

Lemma 3 (Matrix Bernstein Inequality). Consider a finite sequence {Ei} of independent, random,
Hermitian matrices with dimension N . Assume that

E[Ei] = 0 and ∥Ei∥2 ≤ H for each index i,
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Figure 5: Flowchart for proving Theorem 4

where ∥ · ∥2 denotes the matrix spectral norm. Introduce the random matrix E =
∑

i Ei, and let
v(E) be the matrix variance statistic of the sum:

v(E) =
∥∥E[E2]

∥∥ =

∥∥∥∥∥∑
i

E[E2
i ]

∥∥∥∥∥ .
Then we have

E [∥E∥2] ≤
√
2v(E) logN +

1

3
L logN. (54)

Furthermore, for all ϵ ≥ 0.

P {∥E∥2 ≥ ϵ} ≤ N · exp
(

−ϵ2/2

v(E) +Hϵ/3

)
. (55)

Proof. The proof of Lemma 3 can be found in Theorem 6.6.1 in [47].

Step 1: With the constructed NG-SM kernel matrix approximation, K̂ngsm =

Φngsm(X)Φngsm(X)⊤, where the random feature matrix Φngsm(X) = [φ (x1) , . . . , φ (xN )]
⊤ ∈

RN×QL, we have the following approximation error matrix:

E = K̂ngsm −Kngsm. (56)

We are going to show that E can be factorized as

E =

Q∑
q=1

L/2∑
l=1

E(l)
q , (57)

where E
(l)
q is a sequence of independent, random, Hermitian matrices with dimension N .

Sample w
(l)
q1 ,w

(l)
q2 from sq(w1,w2), and we can show that
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(58)
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Thus, we have K̂ngsm =
∑Q

q=1

∑L/2
l=1

αq

2LA
(l)
q . Based on this factorization and Eq. (52) in Proposition

3, we have that

Kngsm =

Q∑
q=1

L/2∑
l=1

αq

2L
E[A(l)

q ].

Therefore, the approximation error matrix E can be factorized as E =
∑Q

q=1

∑L/2
l=1 E

(l)
q where

E(l)
q =

αq

2L

(
A(l)

q − E[A(l)
q ]
)

(59)

is a sequence of independent, random, Hermitian matrices with dimension N that satisfy the condition
of E[E(l)

q ] = 0.

Step 2: We can bound the ∥E(l)
q ∥2 by following.

∥E(l)
q ∥2 =

αq

2L

∥∥∥A(l)
q − E

[
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2
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L
, (60e)

where C =
√∑Q

q=1 α
2
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We are interested in bounding the spectral norm of A(l)
q , where

A(l)
q =

(
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• c
(ℓ)
qk and s

(ℓ)
qk are N -dimensional vectors, where each element is given by a cosine or sine

function. Thus, we have: ∥c(ℓ)qk ∥2 ≤
√
N, ∥s(ℓ)qk ∥2 ≤

√
N.

• For any vector a,b ∈ RN , the spectral norm of ab⊤ satisfies: ∥ab⊤∥2 = ∥a∥2 · ∥b∥2. Note
that each term in A

(ℓ)
q is of the form ab⊤. Therefore, since ∥a∥2 ≤

√
N and ∥b∥2 ≤

√
N

as shown earlier, we have: ∥ab⊤∥2 ≤ N, for all terms in A
(ℓ)
q .

Since A
(ℓ)
q is the sum of 8 such terms, we apply the subadditivity of the spectral norm::

∥A(ℓ)
q ∥2 ≤

8∑
j=1

∥ajb⊤
j ∥2 ≤ 8N.

The inequality (C.6) serves as a valid upper bound. However, it is not necessarily tight, since the
spectral norm of a sum of rank-one matrices is typically less than the sum of their individual norms
unless the corresponding vectors are perfectly aligned. At last, this upper bound leads directly to the
inequality in Eq. (60d).
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Step 3 : We first have the following bound:
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where
∑

k =
∑2

k1=1

∑2
k2=1

∑2
k3=1

∑2
k4=1, and the notation A ≼ B denotes that B−A is a PSD

matrix. To ensure the validity of the inequality in Eq. (62b), it is necessary to show that
(
E[A(l)

q ]
)2

is a positive semi-definite (PSD) matrix.

Since A
(ℓ)
q is a real symmetric matrix, its expectation E[A(ℓ)

q ] is also real symmetric. Therefore, we
can apply the following result:

Lemma 4 (Square of a Real Symmetric Matrix is PSD). Let M ∈ Rn×n be a real symmetric matrix.
Then its square M2 := MM is positive semi-definite, i.e., M2 ⪰ 0.

Proof. Since M is symmetric, it admits an eigendecomposition of the form M = UΛU⊤, where
U ∈ Rn×n is an orthogonal matrix and Λ ∈ Rn×n is a real diagonal matrix of eigenvalues. Then,

M2 = MM = UΛU⊤UΛU⊤ = UΛ2U⊤,

where Λ2 is the diagonal matrix of squared eigenvalues of M . Since the square of any real number is
non-negative, all eigenvalues of M2 are non-negative. Therefore, M2 is PSD.

Applying Lemma 4 to E[A(l)
q ], we conclude that

(
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)2

is PSD. This confirms that the inequality
in Eq. (62b) holds.
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is a PSD matrix.
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Then we are able to bound the variance,
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where the last inequality is because that
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and
∑Q

q=1 αq ≤ C
√
Q by the Cauchy–Schwarz inequality.

Step 4 : We can now apply the derived upper bounds, given by Eqs. (60) and (64), to H and v(E)
in Lemma 3,

P
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which completes the proof of Theorem 4.
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D Experimental Details

All experiments were conducted on a cloud server equipped with 2 NVIDIA Tesla V100 GPUs (16GB
memory each), a 10-core Intel Xeon Platinum 81xx series CPU, 64GB RAM, and 200GB storage.

D.1 Dataset Description

This section presents a detailed overview of the datasets used in our experiments, covering the
generation process of synthetic data, the description of real-world data, and the applied preprocessing
steps.

D.1.1 Synthetic Data

The datasets are generated using a 2-view MV-GPLVM with an S-shaped latent variable, employing
two different kernel configurations: (1) both views use the RBF kernel, and (2) one view uses the
RBF kernel while the other uses the Gibbs kernel. Detailed descriptions of the kernels are provided
below.

- RBF Kernel: The kernel function is expressed as:

k(x1,x2) = ℓo exp

(
−∥x1 − x2∥2

2ℓ2l

)
where ℓo = 1 denotes the outputscale, and ℓl = 1 represents the lengthscale.

- Gibbs Kernel: As a non-stationary kernel, the kernel function is formulated as:

k(x1,x2) =

√
2ℓx1

ℓx2

ℓ2x1
+ ℓ2x2

exp

(
−∥x1 − x2∥2

ℓ2x1
+ ℓ2x2

)
In this context, ℓx is dynamic length scales derived from the positions of the input point x, specifically
defined as:

ℓx = exp (−0.5 · ∥x∥) .

D.1.2 Real-World Data

Table 4: Description of real-world datasets.
DATASET # SAMPLES (N) # DIMENSIONS (M) # LABELS

BRIDGES 214 4 2
CIFAR 60,000 20 × 20 10

R-CIFAR 2,000 20 × 20 5
MNIST 70,000 28 × 28 10

R-MNIST 1,000 28 × 28 10
NEWSGROUPS 2752 19 3

YALE 165 1850 15
CHANNEL 1,000 64 10
BRENDAN 2,000 20 × 28 -

The detailed preprocessing steps and descriptions of the real-world datasets are provided below. For
convenience, key information about the datasets is summarized in Table 4.

• 1) BRIDGES: This dataset is a collection of data documenting the daily bicycle counts
crossing four East River bridges in New York City9 (Brooklyn, Williamsburg, Manhattan,
and Queensboro). We classify the data into weekdays and weekends, treating these as binary
labels. This classification aims to examine the variations in bicycle counts on weekdays
versus weekends, exploring whether significant differences exist in the traffic patterns
between the two.

• 2) CIFAR: This dataset comprises 60,000 color images with a resolution of 32×32 pixels,
categorized into 10 distinct classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. These images were further resized from 32 × 32 pixels to 20 × 20 pixels
and converted to grayscale for training.

9https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/
gua4-p9wg
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• 3) R-CIFAR: We sample this dataset from the CIFAR dataset, specifically selecting five
categories: airplane, automobile, bird, cat, and deer. For each category, 400 images are
sampled, and each 32×32 pixel image is converted into a 20×20 pixel image.

• 4) MNIST: It is a classic handwritten digit recognition dataset. It consists of 70,000 grayscale
images with a resolution of 28 × 28 pixels, divided into 60,000 training samples and 10,000
testing samples. Each image represents a handwritten digit ranging from 0 to 9.

• 5) R-MNIST: We select 1,000 randomly handwritten digit images from the classic MNIST
dataset.

• 6) NEWSGROUPS: It is a dataset for text classification, containing articles from multiple
newsgroups10. We restrict the vocabulary to words that appear within a document frequency
range of 10% to 90%. For our analysis, we specifically select text from three classes:
comp.sys.mac.hardware, sci.med, and alt.atheism.

• 7) YALE: The Yale Faces Dataset11 consists of face images from 15 different individuals,
captured under various lighting conditions, facial expressions, and viewing angles.

• 8) BRENDAN: The dataset contains 2,000 photos of Brendan’s face12.
• 9) MNIST–SVHN: Two paired views: MNIST digits (784 dimensions) and SVHN digits

(3072 dimensions), each belonging to one of 10 classes.
• 10) MOVIES: Extracted from IMDb, where each movie is represented by a keyword vector

(1878 dimensions) and an actor vector (1398 dimensions)13. The dataset consists of 617
movies categorized into 17 genre classes.

• 11) CORA: A citation network dataset in which each document is described by two views:
a bag-of-words content vector (1433 dimensions) and a citation structure vector (2708
dimensions). It contains 2708 documents spanning 7 research topic classes14.

D.1.3 Channel Data

To evaluate model performance under realistic wireless environments, we simulate channel data using
the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa)15, a widely-used geometry-based
stochastic channel simulator. The parameter settings used in our experiments are listed in Table 5.

The simulation scenario emulates a typical urban communication setting, where the user equipment
(UE) moves at a constant speed of 30 km/h. QuaDRiGa accounts for both the speed and the direction
of movement, which significantly influence the channel behavior. Specifically, the relative motion
between the UE and the base station (BS) introduces Doppler shifts and time-varying path loss. As
the UE moves through the environment, the geometry between the transmitter, receiver, and scatterers
changes over time, leading to dynamic variations in multipath components such as delays, angles,
and Doppler frequencies.

It is worth noting that no explicit additive noise (e.g., Gaussian noise) is introduced in the simulation.
Instead, the randomness in the channel arises naturally from QuaDRiGa’s stochastic modeling of
multipath fading, spatial non-stationarity, and time dynamics. These controlled yet realistic variations
ensure consistency across different simulation runs while providing sufficient complexity to evaluate
the robustness of the proposed model.

D.2 Benchmark Methods

We provide a description of the benchmark methods as follows:

• 1) PCA: A classical linear dimensionality reduction method that projects data to orthogonal
components maximizing variance.

• 2) LDA: A supervised linear method that finds projections maximizing class separability.
10http://qwone.com/~jason/20Newsgroups/
11http://vision.ucsd.edu/content/yale-face-database
12https://cs.nyu.edu/~roweis/data/frey_rawface.mat
13https://lig-membres.imag.fr/grimal/data.html
14https://lig-membres.imag.fr/grimal/data.html
15https://quadriga-channel-model.de
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Table 5: Parameters settings of QUADRIGA.

PARAMETER DESCRIPTION VALUES

Overall Setup
# samples 1000

# user equipment (UE) 10
# receive antennas 1

Moving speed (km/h) 30
Proportion of indoor UEs 1

Time sampling interval (seconds) 5e-3
Total duration of sampling (seconds) 5

Channel type 3GPP_3D_UMa

Channel Configuration
Center frequency (Hz) 1.84e9

Use random initial phase False
Use geometric polarization False

Use spherical waves False
Show progress bars False

Base Station (BS) Antenna Configuration
# vertical elements per antenna 4

# horizontal elements per antenna 1
# rows in the antenna array 2

# columns in the antenna array 8
Electrical tilt angle (degrees) 7

# carriers 1
# transmit antennas 32

UE Antenna Configuration
UE antenna array omni

# subcarriers 1
Subcarrier spacing (Hz) 1e6

# loops (simulations) 1
Minimum UE distance from BS (meters) 35
Maximum UE distance from BS (meters) 300

Layout Configuration
# base stations 1

Base station position (x, y, z) (meters) (0, 0, 30)
UE movement path length (meters) 41.667

• 3) ISOMAP: A nonlinear manifold learning method that preserves geodesic distances
between data points.

• 4) HPF: A hierarchical poisson factorization model for probabilistic matrix factorization,
commonly used in recommendation systems.

• 5) BGPLVM: A bayesian formulation of GPLVM that places a prior over latent variables
and infers their posterior using variational inference.

• 6) GPLVM-SVI: A scalable GPLVM variant using stochastic variational inference to handle
large datasets.

• 7) VAE: A deep generative model that learns latent representations via amortized variational
inference.

• 8) NBVAE: A probabilistic model for sparse, overdispersed count data, combining a Gaus-
sian process prior with a negative binomial likelihood for flexible, non-linear modeling.

• 9) DCA: The deep count autoencoder is designed to denoise single-cell RNA sequencing
data by accounting for count distribution, overdispersion, and sparsity, using a zero-inflated
negative binomial noise model.

• 10) CVQ-VAE: The clustering vector quantised variational aautoencoder is an enhanced
VQ-VAE model designed to prevent codebook collapse by utilizing an online clustered
codebook.

• 11) RFLVM: GPLVM extension using random feature approximation for scalable inference.
• 12) DGPLVM: A deep extension of GPLVM that stacks multiple GP layers to learn hierar-

chical nonlinear mappings from latent space, typically trained via variational inference.
• 13) ARFLVM: An advised GPLVM using kernel learning and latent regularization for

flexible representation learning.
• 14) MVAE: Multi-modal VAE using a product-of-experts (PoE) to infer shared latent

representations from multiple modalities.
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Table 6: Descriptions of benchmark methods.
METHOD REFERENCE IMPLEMENTATION CODE

PCA [48] Using the scikit-learn library [49].
LDA [50] Using the scikit-learn library [49].

ISOMAP [51] Using the scikit-learn library [49].
HPF [52] https://github.com/david-cortes/hpfrec

BGPLVM [53] https://github.com/SheffieldML/GPy
GPLVM-SVI [23] https://github.com/vr308/Generalised-GPLVM

VAE [15] https://github.com/pytorch/examples/blob/main/vae/main.py
NBVAE [54] https://github.com/ethanheathcote/NBVAE

DCA [55] https://github.com/theislab/dca
CVQ-VAE [56] https://github.com/lyndonzheng/CVQ-VAE

RFLVM [24, 57] https://github.com/gwgundersen/rflvm
DGPLVM [58] https://github.com/UCL-SML/Doubly-Stochastic-DGP
ARFLVM [21] https://github.com/zhidilin/advisedGPLVM

MVAE [11] https://github.com/mhw32/multimodal-vae-public
MMVAE [12, 16] https://github.com/OpenNLPLab/MMVAE-AVS

Table 7: Default Hyperparameter Settings.

PARAMETER DESCRIPTION VALUES

NG-SM Kernel Setup
# Mixture densities (Q) 2

Dim. of random feature (L/2) 50
Dim. of latent space (D) 2

Optimizer Setup (Adam)
Learning rate 0.01

Beta (0.9, 0.99)
# Iterations 10000

1 2 4 6 8 10
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20
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0
L

0.9821 0.9886 0.9866 0.9850 0.9837 0.9898

0.9850 0.9889 0.9874 0.9947 0.9951 0.9952

0.9724 0.9873 0.9934 0.9936 0.9955 0.9974

0.9769 0.9945 0.9935 0.9939 0.9894 0.9932

0.9843 0.9958 0.9941 0.9962 0.9919 0.9959

0.9838 0.9953 0.9954 0.9957 0.9961 0.9954

0.9736 0.9969 0.9965 0.9981 0.9962 0.9986

0.9877 0.9945 0.9941 0.9932 0.9908 0.9896
0.975

0.980

0.985

0.990

0.995

Figure 6: Heatmap of R2 in latent manifold learning.
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21.23 27.44 45.26 66.20 89.18 149.50

21.93 34.98 75.67 122.09 192.46 393.37

24.90 58.74 112.49 205.06 365.12 446.50

29.99 74.07 163.96 320.60 408.16 554.29

34.80 93.03 242.36 392.19 442.31 647.36

41.04 120.71 346.90 410.79 493.09 850.47

48.47 120.99 377.32 451.15 533.76 928.11

70.02 231.12 435.04 570.43 863.22 1401.74
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Figure 7: Heatmap of wall-time (seconds) in latent
manifold learning.

• 15) MMVAE: Mixture-of-experts (MoE) based VAE that balances shared and private repre-
sentations for multi-modal learning.

Table 6 provides the references and implementation details for each benchmark method, aiming to
enhance reproducibility.

D.3 Hyperparameter Settings

Figure 11 depicts the latent manifold learning outcomes of NG-RFLVM for varying values of Q and
L on synthetic single-view data. Figure 6 shows a heatmap of R2 scores, quantifying the similarity
between the learned and ground truth latent variables, with values closer to 1 indicating better
alignment. Figure 7 displays a heatmap of wall-time across varying values of Q and L. These results
demonstrate that larger values of Q and L typically improve model performance, albeit at the cost
of higher computational complexity. To balance computational efficiency with latent representation
quality, we select Q = 2 and L = 50. The default hyperparameter settings are summarized in Table
7.
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Table 8: Classification accuracy (%) is evaluated by fitting a KNN classifier (k = 1) with five-fold cross-
validation. Mean and standard deviation are computed over five experiments, and the top performance is in
bold.

DATASET PCA LDA ISOMAP HPF BGPLVM GPLVM-SVI DGPLVM

BRIDGES 84.10 ± 0.76 66.81 ± 5.31 79.77 ± 2.58 54.42 ± 10.96 81.85 ± 3.71 79.61 ± 1.93 64.75 ± 4.80
R-CIFAR 26.78 ± 0.22 22.78 ± 0.66 27.23 ± 0.66 20.80 ± 0.64 27.13 ± 1.46 25.12 ± 1.24 28.16 ± 1.86
R-MNIST 36.56 ± 1.23 23.38 ± 2.69 44.45 ± 2.14 31.49 ± 4.02 56.75 ± 3.37 34.41 ± 5.48 74.82 ± 2.24

NEWSGROUPS 39.24 ± 0.52 39.14 ± 1.89 39.79 ± 1.04 33.44 ± 1.91 38.52 ± 1.05 37.84 ± 1.88 37.63 ± 2.48
YALE 54.37 ± 0.87 33.86 ± 2.38 58.84 ± 1.72 51.17 ± 1.96 55.35 ± 3.65 52.17 ± 1.59 76.06 ± 2.60

DATASET VAE NBVAE DCA CVQ-VAE RFLVM ARFLVM OURS

BRIDGES 75.15 ± 1.63 75.85 ± 3.88 70.21 ± 3.63 68.86 ± 1.38 84.61 ± 3.95 84.64 ± 1.54 85.30 ± 1.27
R-CIFAR 26.65 ± 0.25 25.97 ± 0.50 25.51 ± 1.90 22.45 ± 1.23 28.47 ± 10.34 29.02 ± 0.62 31.44 ± 0.68
R-MNIST 64.37 ± 2.16 28.18 ± 1.20 17.19 ± 7.54 12.87 ± 0.53 60.20 ± 5.53 79.59 ± 1.52 80.99 ± 0.59

NEWSGROUPS 38.52 ± 0.29 39.87 ± 1.00 39.97 ± 3.41 35.60 ± 1.96 41.35 ± 0.95 41.82 ± 0.75 40.10 ± 1.48
YALE 61.16 ± 2.04 45.60 ± 4.68 28.49 ± 5.40 33.89 ± 0.28 65.37 ± 6.79 76.56 ± 1.02 76.60 ± 1.96

D.4 Additional Experiments

To explore more general scenarios, we first conduct single-view experiments to validate our model’s
representation capability (App. D.4.1), and then extend the evaluation to more complex multi-view
settings, including synthetic data (App. D.1.1), multi-view MNIST with a large number of views
(App. D.4.3) and more challenging multi-view datasets (App. D.4.4). Finally, we provide qualitative
visualization of the learned representations (App. D.4.5).

D.4.1 Single-View Data
In this section, we first examine the following single-view data types: images (R-MNIST, YALE,
R-CIFAR), text (NEWSGROUPS), and structured data (BRIDGES). To accommodate the high
computational costs of RFLVM, the dataset sizes for CIFAR and MNIST are reduced and denoted
with the prefix ‘R-’ (see details in App. D.1.2).

The results16 in Table 8 present the mean and standard deviation of classification accuracy from a
five-fold cross-validated K-nearest neighbor (KNN) classification, performed on the learned latent
variables for each dataset and method.

Based on this experiment, our method is capable of capturing informative latent representations
across various datasets due to its superior modeling and learning capacities. The inferior performance
of classic approaches is primarily due to their insufficient learning capacity. The GPLVM variants
perform slightly inferior to our approach, primarily due to the assumption of kernel stationarity.

While DGPLVM addresses the modeling limitation by incorporating deep structures, its performance
is hindered by more complex model optimization processes [43]. Similarly, VAE-based methods
inherently suffer from posterior collapse, making them prone to generating uninformative latent
representations, partly due to overfitting [19, 20].

D.4.2 Multi-View Synthetic Data

As the number of views increases, Figures 8a and 8b present the unified latent representations
generated by our method and the corresponding R2 scores, respectively. These results show that with
more views, the unified latent representations learned by our model progressively align more closely
with the ground truth.

D.4.3 Multi-View MNIST

We generated a four-view dataset derived from the MNIST dataset using a rotation operation, as
illustrated on the left-hand side of Figure 9, alongside reconstruction results obtained with our method.
The right-hand side of Figure 9 displays the KNN accuracy evaluated using the latent variables learned
by various methods on MV-MNIST. These results highlight that our approach not only achieves
superior performance in downstream classification tasks but also effectively reconstructs data form
each view through the shared latent space.

16Comparison benchmarks include various classic dimensionality reduction approaches [9, 48, 50, 52],
GPLVM-based approaches [21, 23, 24, 53], and VAE-based models [15, 54–56]. See further details in Table 6.
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Figure 8: Comparison of latent manifold learning and R2 against the number of views.

Figure 9: (Left) MV-MNIST reconstruction task. (Right) Classification accuracy (%) evaluated using KNN
classifier with five-fold cross-validation. Mean and standard deviation of the accuracy is computed over five
experiments.

Table 9: Classification accuracy (%) evaluated by KNN (k = 1) and NN classifiers with five-fold cross-
validation. Mean and standard deviation are computed over five experiments; the top performance is in
bold.

MODEL MNIST-SVHN MOVIES CORA

KNN NN KNN NN KNN NN

OURS 93.13 ± 0.84 96.86 ± 0.69 20.64 ± 0.57 43.44 ± 2.35 46.13 ± 0.51 57.81 ± 0.58
MV-ARFLVM 91.16 ± 1.16 94.62 ± 1.56 19.44 ± 1.00 41.71 ± 0.49 43.61 ± 0.58 56.16 ± 0.74
MV-DGPLVM 85.67 ± 0.72 72.72 ± 1.18 15.15 ± 0.55 38.70 ± 0.21 25.17 ± 2.87 30.65 ± 1.95

MVAE 80.23 ± 1.02 88.21 ± 0.94 14.32 ± 0.68 40.78 ± 1.26 38.85 ± 0.23 34.29 ± 1.63

D.4.4 Experiments on More Challenging Multi-View Datasets

In this section, we evaluate our method on more challenging multi-view datasets, including
MNIST–SVHN, MOVIES, and CORA17.

We evaluate the models through five-fold cross-validation with two types of classifiers: KNN and
a neural network (NN). The averaged classification accuracy and its standard deviation across
different datasets are reported in Table 9. The results show that our method learns high-quality latent
representations. MVAE variants perform worse due to large parameterization and posterior collapse,
which lead to uninformative latents and overfitting. MV-GPLVM models alleviate these issues and
generally surpass MVAE, though often at higher cost. Our approach mitigates this overhead while
maintaining accuracy, with gains over MV-NGPLVM stemming from the NG-SM kernel. In contrast,
MV-DGPLVM is unstable and computationally prohibitive due to its heavy parameterization.

D.4.5 Visualization of Learned Representation

We visualize the clustering structure of the learned representation to enhance interpretability. Since
the latent space is set to 2D by default, we directly visualize it for BRIDGES, MNIST, and NEWS-
GROUPS in multi-view setting in Figure 10, and observe that a clearer cluster structure corresponds
to higher classification accuracy.

17See App. D.1.2 for detailed dataset descriptions.
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Figure 10: Visualization of learned representations of BRIDGES, MNIST, and NEWSGROUPS datasets in a
multi-view setting.

MNIST BRIDGES NEWSGROUPS

Table 10: Quantitative comparison of reconstruction quality on image-based datasets, measured by MSE. Each
entry reports the mean and standard deviation over five runs. The best performance is highlighted in bold.

MODEL MNIST CIFAR MNIST–SVHN (MNIST view) MNIST–SVHN (SVHN view)

OURS 0.023 ± 0.0004 0.021 ± 0.0002 0.019 ± 0.0002 0.040 ± 0.0003
MV-ARFLVM 0.025 ± 0.0002 0.022 ± 0.0008 0.020 ± 0.0016 0.041 ± 0.0016
MV-DGPLVM 0.064 ± 0.0031 0.044 ± 0.0009 0.024 ± 0.0013 0.057 ± 0.0054

MVAE 0.077 ± 0.0040 0.031 ± 0.0010 0.031 ± 0.0021 0.044 ± 0.0015

D.5 Data Reconstruction

In this section, we evaluate our model on data reconstruction tasks, including image reconstruction
(App. D.5.1) and missing data imputation (App. D.5.2).

D.5.1 Image Data Reconstruction

We evaluate the reconstruction capability of our model on image-based datasets. We first assess
single-view reconstruction quality on MNIST and CIFAR, where each model reconstructs images
from their respective latent representations. We then extend the evaluation to the multi-view setting
using the MNIST–SVHN dataset: from the learned shared latent variables, we reconstruct both
the MNIST and SVHN views. Reconstruction quality is measured using the MSE. Each model is
trained and evaluated over five independent runs, and we report the averaged MSE along with the
corresponding standard deviation in Table 10.

Our method consistently achieves the lowest MSE across all datasets, indicating superior reconstruc-
tion quality compared with existing baselines. These results demonstrate the effectiveness of our
approach in capturing complex image structures while maintaining robustness across both single-
and multi-view settings.

D.5.2 Missing Data Imputation

In this section, we evaluate our model’s capability for missing data imputation using the single-view
datasets MNIST and BRENDAN. We randomly set various proportions of the observed data Y to zero
(denoted as Yobs), ranging from 0% to 60%. Using the incomplete datasets Yobs, our model estimates
the underlying latent variable X, and the missing values are imputed as Ŷmiss = E[Ymiss | X,Yobs].
Figures 12 and 13 illustrate the reconstruction tasks on the MNIST and BRENDAN datasets with
varying proportions of missing values, showing superior ability of our model to restore missing
pixels.18

E Limitation

18In the future, we particularly interested in expressing a factorized latent space where each view is paired
with an additional private space, alongside a shared space to capture unaligned variations across different views
[59, 60].
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Figure 11: Latent manifold learning results with different Q and L.
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While the proposed NG-MVLVM framework effectively captures informative unified latent rep-
resentations, there remains room for further enhancement. In particular, the current model does
not explicitly account for cross-view dependencies, which may limit its performance in scenarios
with structured dependencies across views. As a future direction, we plan to incorporate cross-view
interaction terms to further enhance the model’s capacity for multi-view representation learning.
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Figure 12: MNIST reconstruction task.

Figure 13: BRENDAN reconstruction task.
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