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ABSTRACT

In an NBA game scenario, consider the challenge of locating and analyzing the
3D poses of players performing a user-specified action, such as attempting a
shot. Traditional 3D human pose estimation (3DHPE) methods often fall short
in such complex, multi-person scenes due to their lack of semantic integration
and reliance on isolated pose data. To address these limitations, we introduce
Language-Driven 3D Human Pose Estimation (L3DHPE), a novel approach that ex-
tends 3DHPE to general multi-person contexts by incorporating detailed language
descriptions. We present Panoptic-L3D, the first dataset designed for L3DHPE,
featuring 3,838 linguistic annotations for 1,476 individuals across 588 videos,
with 6,035 masks and 91k frame-level 3D skeleton annotations. Additionally, we
propose Cascaded Pose Perception (CPP), a benchmarking method that simulta-
neously performs language-driven mask segmentation and 3D pose estimation
within a unified model. CPP first learns 2D pose information, utilizes a body
fusion module to aid in mask segmentation, and employs a mask fusion module to
mitigate mask noise before outputting 3D poses. Our extensive evaluation of CPP
and existing benchmarks on the Panoptic-L3D dataset demonstrates the necessity
of this novel task and dataset for advancing 3DHPE. Our dataset can be accessed
at https://languagedriven3dposeestimation.github.io/.

1 INTRODUCTION

3D human pose estimation (3DHPE) Pavlakos et al. (2017); Pavllo et al. (2019); Sun et al. (2017);
Zheng et al. (2021); Sun et al. (2022); Su et al. (2022) seeks to accurately localize joints and
reconstruct the body’s representation within a 3D coordinate system based on input images or
videos. This capability to derive detailed motion and geometric information about the human body
underpins a plethora of applications, including video understanding Wang et al. (2021), sports
analytics Bridgeman et al. (2019), and human-robot interaction Xu et al. (2020). However, traditional
approaches have primarily concentrated on identifying poses without integrating high-level semantic
knowledge, which is crucial for meaningful human communication. Despite recent efforts Zhang
et al. (2020); Mazzia et al. (2022); Chi et al. (2022); Delmas et al. (2024); Lin et al. (2024); Feng
et al. (2024) to link human pose with semantic information, these methods still face significant
limitations. The actions they consider are typically simplistic, which results in ordinary and limited
semantic descriptions. Moreover, the input videos are usually restricted to scenarios involving a
single individual engaged in sports activities, thereby limiting the practical applicability of 3DHPE. In
reality, human motion is characterized by diverse and detailed descriptions, highlighting an emerging
need for 3D human pose estimation to address more complex, real-world, and multi-person scenarios.
This necessitates a shift towards incorporating motion grounding, a concept that connects dynamic
human movements with rich semantic context, enabling a more comprehensive understanding of
human activities in natural and multifaceted environments.

In response to these challenges, we introduce a novel task: Language-Driven 3D Human Pose
Estimation (L3DHPE), which can also be referred to as 3D Motion Grounding. It extends the
original 3DHPE problem to encompass more general multi-person scenes and explores the semantic
interplay between human poses and language expressions. L3DHPE addresses a more demanding
yet practical problem, aiming to reconstruct 3D pose sequences for individuals based on detailed
language descriptions that capture aspects such as appearance, behavior, and body movements.
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coach

Please show me the 
multiple views of the 3D 
skeleton of the woman 
who is shooting, so we 
can assess whether her 

motion is correct.

Show me the skeletons of 
two people contesting the 
ball in order to determine 

whether the player is offside.

referee

(a)

(b)

Figure 1: Example applications of the L3DHPE task: Sports coaching and officiating.

We present two notable real-world examples of L3DHPE applications. In the first example (Fig. 1 (a)),
a coach can focus on specific players and view them from multiple angles using language descriptions.
By integrating language understanding with 3D pose reconstruction, L3DHPE enables real-time
analysis of player movements, significantly enhancing feedback and performance. The second
example (Fig. 1 (b)) involves sports officiating. A referee can use language input to quickly isolate the
relevant players’ skeletons, simplifying decisions like offside calls by filtering out irrelevant players.

Given the scarcity of pose estimation datasets with precise and richly contextual linguistic annotations,
we developed Panoptic-L3D, the first L3DHPE dataset, to propel advancements in this field. Panoptic-
L3D includes 588 videos featuring 1,476 targeted individuals, 3,838 language descriptions, 6035
mask images, and corresponding 91k frame-level 3D skeleton annotations for all individuals. Each
video is meticulously selected to ensure the presence of at least two individuals, with clearly visible
upper bodies and significant movements by at least one individual. Annotators provide detailed, long-
form descriptions of individuals based on their appearance, behavior, and body movements, ensuring
specificity to eliminate ambiguity. In addition to 3D skeleton annotations for pose information,
we provide individual object masks using the pretrained SAM model Kirillov et al. (2023) for
coarse-level pose guidance. Fig. 2 showcases examples from our Panoptic-L3D dataset, showing its
comprehensive and detailed annotations.

Building upon the proposed Panoptic-L3D dataset, a naive solution for our task is to apply referring
video object segmentation methods to videos. This approach takes both language and video informa-
tion as input to generate masks of the described objects, which are then used in single-person 3D
human pose estimation methods. However, this method has several significant drawbacks: Firstly,
referring video object segmentation methods do not leverage pose information, leading to a poor
understanding of poses and incorrect segmentation of individuals, thus reducing the accuracy of 3D
human pose estimation. Secondly, in multi-person interactions, occlusions between individuals often
occur, and masks may be incomplete, introducing noise that is amplified during 3D pose estimation,
further degrading accuracy. Finally, the workflows of both the reference video object segmentation
and single-person 3D human pose estimation methods are complex. Simply combining them results
in an excessively cumbersome processing flow, limiting their practicality in real-life applications.

To address these issues, we propose Cascaded Pose Perception (CPP), a benchmarking method for
the task we introduce. CPP jointly performs language-driven mask segmentation and 3D pose output
within a single model. Initially, the model is trained to learn 2D pose information. We then design
a body fusion module that utilizes pose information to assist the network in segmenting masks for
specified individuals. Unlike traditional 3DHPE methods, we do not rely solely on the predicted
human root nodes to output 3D poses. Instead, a mask fusion module is incorporated to help the
model identify individuals from human masks while minimizing the impact of mask noise.

Our contributions are summarized below:

• We introduce Language-Driven 3D Human Pose Estimation, a novel yet practical 3D human pose
estimation setting that incorporates language guidance. This setting emphasizes the text-motion
interaction, which holds great potential in several real-life applications.
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The person closed the box 
and looked at other two men 
respectively while 
communicating with them

The person lifts left hand,
 drawing circles in the air

The person in gray sweater 
and jeans is standing, with 
both hands raised in front of 
chest at the beginning of the 
video

① appearance

② behavior

③ body movement

Figure 2: Examples of videos, descriptions, masks, and 3D skeleton of our Panoptic-L3D dataset.

• We construct Panoptic-L3D, the first dataset for L3DHPE, containing 3,838 linguistic annotations
for 1,476 individuals across 588 videos, with 6,035 masks and 91k frame-level 3D skeleton
annotations. We also propose a baseline, CPP, providing potential solutions for L3DHPE task.

• We extensively evaluate CPP and four RVOS benchmarks along with 3DHPE benchmarks on
Panoptic-L3D. Experimental results demonstrate the drawbacks of previous methods and underscore
the necessity of the L3DHPE task and the Panoptic-L3D dataset.

2 RELATED WORKS

3D Human Pose Estimation Datasets. We summarize various public 3D Human Pose Estimation
datasets in Tab. 1. HumanEva-I Sigal et al. (2010) contains 7 calibrated video sequences synchronized
with 3D body poses obtained from a motion capture system. Human3.6M Ionescu et al. (2013)
includes 3.6 million human poses with corresponding frames, offering precise 3D human joint
positions and high-resolution videos captured at 50 Hz by a motion capture system. CMU Panoptic Joo
et al. (2015) features extensive social interactions with up to eight characters per video, making it a
significant choice for our annotations. 3DPW (3D Poses in the Wild) Von Marcard et al. (2018) is the
first dataset with accurate 3D poses for evaluation in the wild, using the Video Inertial Poser (VIP)
method to combine images and IMU readings. EgoBody Zhang et al. (2022) and EgoPW Wang et al.
(2022) focus on egocentric human pose estimation from a first-person perspective. As discussed in
Sec. 3.2, these datasets focus on 3D human gestures without mask assistance or language guidance.
Our Panoptic-L3D dataset provides expressive linguistic descriptions and segmentation masks,
promoting close interactions between dynamic human poses and rich semantic context.

Monocular 3D Human Pose Estimation Methods. Monocular 3D Human Pose Estimation (3DHPE)
aims to reconstruct the 3D coordinates of individuals from a single camera view. One challenging
aspect is depth estimation from a single view. Generally, multiple camera views are required to infer
the exact depth of individuals. However, the size of individuals and camera parameters can be used to
approximate their depth, as explored in studies like Lee & Kim (2019); Li et al. (2019); Li & Snavely
(2018). There are two approaches to monocular 3D pose estimation: single-stage and two-stage
approaches. Single-stage methods Pavlakos et al. (2017); Mehta et al. (2017); Sun et al. (2017);
Kanazawa et al. (2018); Sun et al. (2018) directly localize 3D human joints from input images or
videos. Two-stage methods Akhter & Black (2015); Park et al. (2016); Moreno-Noguer (2017); Yang
et al. (2018); Su et al. (2022); Park et al. (2023) first estimate 2D poses or utilize pre-trained 2D pose
estimators, then lift them to 3D space. Since estimating 2D poses is easier than 3D poses, models can
benefit from the reliable results of 2D pose estimation. Due to its good performance, we also utilize a
two-stage approach in our model. However, traditional methods lack the guidance of language, which
our approach incorporates to enhance 3D pose estimation and interaction.

Referring Video Segmentation. Referring Video Object Segmentation (RVOS) aims to segment
target objects described by given text throughout an entire video clip. A2D Gavrilyuk et al. (2018) first
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Figure 3: The pipeline for dataset collection and annotation involves several steps. First, we obtain
candidate videos from the CMU Panoptic dataset. These videos are then cut and filtered into
informative clips, which are used for subsequent annotation. We implement a multi-round check and
re-annotation process to ensure the accuracy and validity of both the text descriptions and masks.

proposed the RVOS task. Advanced RVOS methods Liu et al. (2021); McIntosh et al. (2020); Wang
et al. (2020); Botach et al. (2022) explore various pipelines to effectively aggregate and align visual,
temporal, and linguistic information in videos and text. URVOS Seo et al. (2020) introduced a large-
scale RVOS benchmark utilizing attention mechanisms and mask propagation. Liang et al. Liang
et al. (2021) presented a top-down approach, first detecting all target trajectories and then selecting
target objects through matching between language and trajectory features. Recently, MTTR Botach
et al. (2022) and ReferFormer Wu et al. (2022) utilized query-based end-to-end frameworks to decode
objects from multi-modal features, achieving outstanding performance. However, these methods
segment prominently appearing objects without focusing on humans, lacking incorporation of human
body pose information. Our approach combines human body pose information, leading to superior
performance in understanding human actions.

3 PANOPTIC-L3D DATASET

Our objective is to enable diverse and fine-grained 3D human pose estimation for in-the-wild scenes.
To achieve this, we introduce Panoptic-L3D, the first publicly available benchmark designed for
language-driven 3D human pose estimation. Panoptic-L3D incorporates multi-modal information,
including videos, language descriptions, and segmentation masks. The annotation pipeline of the
Panoptic-L3D dataset is summarized in Fig. 3.

3.1 DATASET CONSTRUCTION

Video and 3D Skeleton Collection. To construct the language-driven 3D human pose estimation
dataset, we utilize videos from the Panoptic Joo et al. (2015) dataset, a large-scale collection of
indoor human videos that provides 1.5 million 3D skeleton annotations for individuals engaged in
social activities. To simulate complex multi-person interactions found in real life, we select fourteen
activity entries that feature more than one person and span five social interaction categories: Haggling,
Ultimatum, Toddler, Musical Instruments, and Special Events. For each activity entry, we obtain two
variants from different camera viewpoints (cameras No.16 and No.30) to ensure the robustness of 3D
human pose estimation.

Subsequently, these videos are separated into clips and filtered according to the following rules:

• R1: The length of the video clips is standardized to ensure an average length of 5 seconds. This
duration allows individuals to perform a series of actions without being overly complex, making it
suitable for describing the behavior of characters using sentences.

• R2: To ensure the accuracy of language descriptions referring to the target individuals, each
video clip must include at least two participants with fully exposed upper bodies, and at least one
individual must be undergoing significant movements. This requirement focuses on perceptible
limb movements, providing necessary motion information that matches the descriptions in 3D pose
recognition and estimation.

Fig. 4 shows some invalid and valid samples. By rigorously separating and filtering the videos based
on the above rules, we obtained 588 candidate videos with their corresponding 3D skeletons from the
original Panoptic dataset, with an average duration of 5.17 seconds.

4
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Figure 4: Examples of invalid and valid data.

Annotation and Validation for Linguis-
tic Expression. We employ over 10 an-
notators to label individuals in the videos
according to our developed linguistic ex-
pression annotation system and guidelines.
Specifically, each annotator is required to
provide three sentences describing the at-
tributes (i.e., appearance, behavior, and
body movements) of each person visible
from the waist up.

To ensure concise language descriptions,
we establish the following guidelines for
annotators:

• Shared Rules: 1) Only individuals visible from the waist up should be considered valid subjects
for description. 2) Each description must uniquely refer to only one person in the given video. 3)
Unobtrusive attributes should be omitted to avoid ambiguity.

• Rules for Describing Appearance: Annotators describe the appearance based on the first frame
of the video, focusing on four specified elements: clothes, posture, gender, and initial pose. To
simulate variability in individual perception, two of these four elements are uniformly sampled for
each individual, and annotators are required to base their descriptions on the selected attribute pair.
This procedure enhances the diversity and informativeness of appearance descriptions.

• Rules for Describing Behaviors & Body Movements: Linguistic expressions can describe behav-
iors across multiple frames, encompassing both fleeting and prolonged actions. Annotators must
describe an individual’s behavior and body movements after watching the entire video, ensuring
comprehensive coverage. Descriptions of behaviors must exclude appearance information, while
descriptions of body movements should focus solely on the motion itself, excluding interactions
with environmental elements (e.g., cups, food, pens).

For validation, we follow an interactive game-like approach inspired by ReferIt Kazemzadeh et al.
(2014), involving two participants in an alternating validation process. Initially, the original video
and its corresponding descriptions are presented to the first validator, who must identify the target
person referred to by the statements. If the chosen target matches the annotator’s target, the annotated
video is retained. If there is a discrepancy, the sample is forwarded to a second validator for further
review. If the second validator finds any ambiguity, the description is revised. If ambiguity persists,
the sample is discarded to maintain the accuracy of descriptions.

By adhering to these validation criteria, we ensure the unique referential integrity and high quality of
language statements in our dataset, thereby enabling more robust evaluations and comparisons of
different methods.

Annotation and Validation for Individual Masks. The mask annotations for each referred individual
in our video data are generated using the advanced 2D segmentation model SAM Kirillov et al. (2023).
We utilize the projected joint points of the upper body (i.e., neck and head top) from the 3D skeleton
provided by the original Panoptic dataset as coarse point prompts for SAM. For each video, we
generate a coarse mask every 15 consecutive frames.

However, some misprojected 3D joints may occur during mask generation due to overlapping between
individuals. Additionally, SAM may focus only on the upper part of the referred person since the
joints are mostly located in the upper body. To validate and correct the mask annotations, we perform
a multi-round check and re-annotation process, ensuring completeness and consistency between the
masked individual and the corresponding description.

Dataset Split. The dataset is divided into training, validation, and test sets, consisting of 3,005, 312,
and 521 sentences, respectively, along with their corresponding videos, masks, and 3D skeletons.

3.2 DATASET ANALYSIS

Comparison with Existing Datasets. The Panoptic-L3D dataset consists of 588 videos, 1,476 target
individuals, 3,838 linguistic descriptions, 6,035 mask images, and 91k per-frame 3D skeletons of all
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Table 1: Statistics of representative 3d human pose estimation datasets. Our proposed dataset
Panoptic-L3D has larger number of person in one video. More importantly, Panoptic-L3D has
language and masks annotations while previous 3d human pose estimation datasets don’t include.
Panoptic-L3D enables the investigation of language-guided 3d pose estimation.

Dataset No. of frames/videos No. of person Language Masks
HumanEva-I Sigal et al. (2010) 12 sequences 1 ✗ ✗
Human3.6M Ionescu et al. (2013) 3.6M frames 1 ✗ ✗
MARCOnI Elhayek et al. (2016) 12 sequences 1 or 2 ✗ ✗
CMU Panoptic Joo et al. (2015) 1.5M frames 1 to 8 ✗ ✗
Total Capture Trumble et al. (2017) 1.892M frames 1 ✗ ✗
3DPW Von Marcard et al. (2018) 60 sequences 1 or 2 ✗ ✗
EgoBody Zhang et al. (2022) 219k frames 1 or 2 ✗ ✗
EgoPW Wang et al. (2022) 318k frames 1 or 2 ✗ ✗
Our Panoptic-L3D 588 sequences / 91k frames 2 to 7 ✓ ✓

individuals. Statistical comparisons are presented in Tab. 1. Compared to existing 3D human pose
estimation datasets, our Panoptic-L3D dataset offers several notable advantages.

Firstly, Panoptic-L3D provides expressive linguistic descriptions and segmentation masks for in-
dividuals, which markedly differ from previous datasets that only offer 3D skeletons and action
categories. The inclusion of linguistic descriptions is crucial for facilitating language-guided 3D pose
estimation. Additionally, the videos in the Panoptic-L3D dataset are more practical and provide a
better simulation of real-life scenarios.

Figure 5: Distribution of the number of people present
in videos for Panoptic Joo et al. (2015), 3DPW Von Mar-
card et al. (2018), and our dataset.

As shown in Fig. 5, the video samples fea-
ture more characters and complex inter-
actions among multiple individuals. The
carefully clipped and filtered videos also
ensure better alignment with the provided
linguistic expressions, benefiting the com-
prehensive evaluation under our proposed
language-guided 3D pose estimation set-
ting.

Linguistic Expression. We introduce a
novel set of linguistic expressions that de-
scribe human motion in terms of appear-
ance, behavior, and body movements, facilitating multi-modal interaction in 3D human pose estima-
tion tasks. The linguistic descriptions are categorized into three distinct statements, each focusing
on one of the three aspects, enabling systematic evaluation of the model’s comprehension of varied
language descriptions.

Fig. 6(a) shows the distribution of these categories, highlighting the balanced representation of diverse
data types. While behavioral descriptions encompass a wide range of activities, body movement
descriptions specifically address joint movements, imposing significant demands on model accuracy.
The lengths of these linguistic expressions are depicted in Fig. 6(b), ranging from 6 to 39 words,
demonstrating the diversity of linguistic expressions and presenting additional challenges for models.

We utilize word clouds to visualize the differences between descriptions in the behavioral and body
movement aspects. As shown in Fig. 6(c) and 6(d) , behavioral descriptions emphasize semantic
actions such as “put”, “talk”, and “listen”, while body movement descriptions focus on specific joints
and movements, e.g., “right”, “hands”, and “arms”.

4 CASCADED POSE PERCEPTION

Problem Definition. Given a video V = {vi}Li=1, the corresponding camera parameters P , and the
referring text description T , the goal of L3DHPE is to estimate the 3D skeleton S ∈ R15×3 for the
individual referred to by T .

Overview. The most relevant tasks are 3D human pose estimation (3DHPE) and referential video
object segmentation (RVOS). Recent progresses in 3DHPE focus on accurately determining the spatial
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(a) (b)

(c) (d)

Figure 6: Statistics of annotations: (a) The number of description annotations and their distribution
across various categories, i.e., Clothes, Posture, Gender, and Initial pose. (b) Length distribution of
descriptions, highlighting the diversity of Panoptic-L3D. Word clouds of the words in the Panoptic-
L3D dataset are presented in (c) for behavioral descriptions and (d) for body movement descriptions.

positions of joints in 3D space, while less effort has been made to explore multi-modal interactions
incorporating linguistic information. Conversely, RVOS models primarily emphasize the integration
of language and appearance-level information but often overlook behavior-level information, leading
to a diminished capacity to capture text-motion interaction for accurate 3D pose estimation.

To address these limitations, we propose a baseline, Cascaded Pose Perception (CPP), for language-
driven 3D human pose estimation. CPP integrates pose features with video features in a two-stage
manner. It first learns the 2D pose information and generates multiple levels of information, including
root depth maps, 2D joints maps, and box detection maps, to support 3D human pose estimation. We
then design a body fusion module to utilize this pose information to generate masks for specified
individuals. Based on the generated masks, we further incorporate a 3D root estimator and a mask
fusion block to improve the precision of 3D human pose estimation and reduce the impact of mask
noise. The overall architecture of CPP is illustrated in Fig. 7.

Method. Initially, following Voxelpose Tu et al. (2020), we employ a backbone of 2D pose estimation
to extract 2D pose information from the relevant frame of the input video. This procedure yields
box detection maps Mb ∈ RW×H×4, root (waist) depth maps Mr ∈ RW×H , and 2D joints maps
Mj ∈ RW×H×Nj for all individuals in the frame. Here, Nj indicates the number of human joints,
and W , H are the width and height of the output maps.

Next, we extract both video and textual features and design a body fusion block to integrate them
with the 2D pose information, specifically the 2D joints maps Mj . The body fusion block blends
the video features with pose information, enhancing the understanding of pose and the precision of
individual segmentation.

The integrated features are then processed by a transformer-based auto-encoder to capture com-
prehensive information about all individuals present. Specifically, the human box detection maps
Mb are utilized to create object queries Oq ∈ RNq×D that encapsulate each person’s information,
where Nq is the number of object queries and D is the dimension of object queries. By providing
precise locational data, our method efficiently eliminates ambiguity in masks, achieving more precise
identification and extraction of specified human features. These object queries are further transformed
into bounding boxes, masks, and categories for all individuals, unified for outputting the candidate
masks and corresponding confidence scores. The mask with the highest confidence is then selected
as the final mask M ∈ RW×H for the referred person, which is also a side output of our CPP.

After deriving the referring mask M , the human box detection maps Mb, root depth maps Mr, and
camera parameters P are transmitted to the 3D root estimator, which determines the 3D positions of

7
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Figure 7: The overview of the proposed baseline approach, Cascaded Pose Perception (CPP). Given a
video and corresponding textual description, an image encoder first generates spatial intermediate
representations (e.g., 2D joints, bounding boxes, and depth maps). These features are fused with
text features using a Body Fusion Block. The fused features and bounding boxes generate object
queries, which are transformed into masks and confidence scores with the video features. Finally, a
Mask Fusion Block and a 3D Root Estimator predict skeleton features and root position, which are
processed by the 3D Skeleton Block for the final 3D skeleton estimation.

the human root nodes. Instead of relying solely on the 3D human root nodes for 3D pose estimation,
we incorporate a mask fusion block for integrating the referring masks and human joint maps for all
individuals, providing additional spatial features for understanding the human pose. The use of masks
for identifying the referred person and selecting the individual’s joints enables the model to pinpoint
the person’s nodes with enhanced accuracy and clarity. Finally, a 3D skeleton block is adopted to
estimate a complete 3D human skeleton S ∈ R15×3.

5 EXPERIMENTS

Implementation Details. The architectures of text encoder, video encoder, and pose encoder in our
framework are pretrained RoBERTa Liu et al. (2019), Tiny Swin-Transformer Liu et al. (2022), and
ResNet-152 He et al. (2016), respectively. The number of object queries is set to 10 by default. During
training and testing, we feed the model windows of w = 6 frames. The models are trained using a
24GB NVIDIA 4090 GPU. Both stage 1 and stage 2 are trained for 10 epochs with a learning rate of
1e-4; each epoch for stage 1 and stage 2 takes approximately 1.5 hours and 2 hours, respectively. The
input frames are resized to have a minimum size of 512 pixels on the shorter side and a maximum
length of 960 pixels on the longer side to ensure efficient memory usage on the GPU.

Evaluation Metrics. The metrics employed in our proposed L3DHPE task are twofold: the Percent-
age of Individuals Correctly Identified (PICI) and the Mean Per Joint Position Error (MPJPE-L) in
millimeters. PICI calculates the proportion of correct cases in referring to individual identification.
MPJPE-L measures the accuracy of 3D skeleton estimation by calculating the mean Euclidean
distance between the predicted and ground truth joint positions across all joints. The calculation
approach for MPJPE-L is the same as that for MPJPE (usually used in 3DHPE task). The added
’L’ indicates that this evaluation protocol simultaneously considers the tasks of text-referred person
identification and minimizing the predicted pose’s deviation. Note that when the identified person is
not the actual person referred to in the text description, the predicted joints exhibit significantly larger
variations compared to the ground truth, leading to a larger value of MPJPE-L than the normal MPJPE.
We believe MPJPE-L is a more straightforward and comprehensive metric for evaluating methods in
our L3DHPE task. A detailed discussion of these metrics is provided in the supplementary.

Quantitative Results. We conduct a quantitative comparison between CPP and existing four
RVOS+3DHPE baselines for language-driven 3D human pose estimation on the Panoptic-L3D
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Table 2: Quantitative evaluations for L3DHPE on the Panoptic-L3D dataset. The best results are
highlighted in bold. App., Beh. and Mov. are the abbreviation of appearance, behavior and body
movement, respectively, denoting three kinds of attributes of our language annotations.

PICI MPJPE-LMethods Pub. App. Beh. Mov. App. Beh. Mov.
URVOS Seo et al. (2020)+VP ECCV20 35.5% 35.1% 34.9% 1298.0 1323.2 1325.9

MTTR Botach et al. (2022)+VP CVPR22 36.1% 35.7% 35.6% 1223.5 1256.7 1261.3
Referformer Wu et al. (2022)+VP CVPR22 37.0% 36.6% 36.5% 1104.6 1133.6 1139.4

SOC Luo et al. (2024)+VP NeurIPS24 38.7% 37.6% 37.5% 965.1 992.8 1004.3
CPP (Ours) - 42.6% 41.3% 41.2% 853.7 885.4 886.3

dataset. Since RVOS methods only produce segmented masks for the referred object, we equip them
with the state-of-the-art 3D human pose estimation (3DHPE) method Virtualpose Su et al. (2022)
(VP) to estimate 3D skeletons. As shown in Tab. 2, our proposed CPP captures more interaction
between the given text description and the pose of the referring individuals. Naively combining
RVOS models with a 3D human pose estimation backbone does not produce satisfactory performance
in the language-driven 3D human pose estimation task, demonstrating the necessity and potential
contribution of our Panoptic-L3D dataset in promoting the development of a more coherent and
language-perceptible 3D pose analysis system.

Table 3: Quantitative evaluations for 3DHPE+Refer and CPP
on the Panoptic-L3D dataset. The best results are highlighted in
bold.

methods PICI MPJPE-L FPSApp. Beh. Mov. App. Beh. Mov.
3DHPE+Refer 37.1% 37.6% 40.1% 1091.4 1003.9 901.3 2.0

CPP (Ours) 42.6% 41.3% 41.2% 853.7 885.4 886.3 3.5

To investigate the advantages of
selecting the referred subject first,
rather than performing 3DHPE
for all subjects, we implemented
a variant of our method called
3DHPE+Refer. This approach
performed 3DHPE for all subjects
and then selected the referred in-
dividual. Specifically, we removed the text branch and estimated the 3D skeletons of every individual
in each video frame. Next, we applied the Hungarian Algorithm to associate individuals across
multiple frames. After detecting all individuals, we stacked several transformer blocks to fuse the text
information with the skeleton features. The fused features were then used to generate probabilities
for each individual, ultimately selecting the subject with the highest probability. The results are
shown in Tab. 3. Our pipeline outperforms the 3DHPE+Refer approach in our L3DHPE task, because
estimating poses for all individuals before grounding introduces cumulative pose estimation errors.
Additionally, 3DHPE+Refer requires explicit aggregation of individuals across the entire video,
which introduces another potential source of error in subject detection. In contrast, CPP maintains
better temporal continuity with the video backbone, reducing this risk. Furthermore, CPP is more
efficient than 3DHPE+Refer, as it avoids the time-consuming process of estimating poses for all
individuals in the video.

Table 4: Comparison of state-of-the-art methods on the CMU
Panoptic dataset for the 3D human pose estimation task, using
MPJPE (mm) as the metric. The best and second-best results
are highlighted in bold and underline, respectively.

Method Haggling Mafia Ultimatum Pizza Mean
MubyNet Zanfir et al. (2018) 72.4 78.8 66.8 94.3 78.1

SMAP Zhen et al. (2020) 63.1 60.3 56.6 67.1 61.8
BEV Sun et al. (2022) 90.7 103.7 113.1 125.2 108.2

VirtualPose Su et al. (2022) 54.1 61.6 54.6 65.4 58.9
POTR-3D Park et al. (2023) 60.0 57.0 55.5 58.9 57.8

CPP (Ours) 54.0 60.4 54.6 62.1 57.8

We also evaluate the performance
of CPP compared to existing state-
of-the-art methods on the traditional
3DHPE task. Since there are no text
descriptions provided, we design a
variant of CPP by discarding the text
encoder. We adopt Virtualpose Su
et al. (2022) as the backbone 3D esti-
mation network and equip it with ad-
ditional mask interaction. Previous
state-of-the-art models are trained
on multiple datasets simultaneously.
For a fair comparison, we employ a selective parameter-tuning strategy to fine-tune our model, train-
ing only the blocks associated with mask processing. Specifically, we first fine-tune Detectron2 Wu
et al. (2019) to generate human masks. Next, we use and freeze the parameters of the Image Encoder
and 3D Skeleton Block from Virtualpose. Finally, we train the 3D Root Estimation and Mask Fusion
Block to estimate the 3D skeletons. As presented in Tab. 4, CPP achieves competitive performance
with specifically designed 3DHPE models, demonstrating the effectiveness of incorporating spatial
information in 3D pose understanding.
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Table 5: Ablation study of CPP.

ID Text Body Fus. Mask Fus. PICI MPJPE-L
App. Beh. Mov. App. Beh. Mov.

i ✓ ✗ ✗ 40.3% 39.4% 39.2% 918.1 936.7 937.8
ii ✓ ✓ ✗ 42.5% 41.2% 41.2% 887.3 920.4 922.3
iii ✓ ✓ ✓ 42.6% 41.3% 41.2% 853.7 885.4 886.3

(a). A person on the left wearing blue shirt and jeans

(b). The person pinches the ruler with hand, extending 
it forward

(c). The person extends the right hand, leans forward, then 
retracts the right hand and raises the left hand

(d). The person lowered right arm, then turned head to the 
left and back again

Figure 8: Visualization of successful (left) and failed (right) cases of CPP. The output mask and 3D
skeleton of CPP are shown in orange, while the ground truth 3D skeletons are shown in red.

Ablation Study of CPP. In Tab. 5, we present an ablation study for the proposed CPP. Specifically,
we design two variants of CPP to evaluate the functions of the feature interaction in the Body Fusion
Block and the Mask Fusion Block. Compared to the vanilla baseline, which uses only the input
language queries for 3D human pose estimation, equipping the Body Fusion Block with additional
pose information from the 2D joint features enables more accurate spatial localization for the referred
individual, thereby improving the PICI by 2% (i vs. ii). Furthermore, utilizing the Mask Fusion Block
introduces spatial locational features from the referring mask, facilitating more precise 3D human
pose estimation with an average improvement of 34.7 in MPJPE-L (ii vs. iii).

Visualizations. We provide visualizations of both successful and failed cases of CPP. As shown in
Fig. 8 (a) and (b), CPP effectively generates clear boundary masks and accurate 3D poses based on
the given expressions. However, CPP may fail to detect the referred individual in complex scenarios
with multiple individuals, substantial occlusion, and swift body movements. The results in Fig. 8
(c) and (d) demonstrate the challenging nature of Panoptic-L3D, emphasizing the importance of
capturing the semantic interaction between poses and language expressions under severe occlusion.

6 CONCLUSION AND DISCUSSION

Imagine a future where machines understand human actions and intentions through language. This
paper introduces Language-Driven 3D Human Pose Estimation and the Panoptic-L3D dataset, blend-
ing video data with linguistic annotations. The Cascaded Pose Perception baseline demonstrates the
power of integrating textual descriptions with visual data. While acknowledging the manual nature
of our annotation process as a challenge for future work, we see L3DHPE enhancing fields from
sports analytics to advanced robotics. By releasing Panoptic-L3D and CPP, we invite the research
community to build on our foundation, exploring and improving language-guided 3D pose estimation.

Limitations and Future Work. There are many interesting research directions and remaining
challenges to be addressed with the Panoptic-L3D dataset and L3DHPE task. These include but are
not limited to: (i) designing more efficient models to increase running speed, (ii) designing more
accurate and elegant models to recognize and understand complex motions, (iii). designing robust
cross-modal fusion methods to better leverage motion information and language information.
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