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Abstract—Electroencephalography (EEG) has been proven to
be very effective in seizure detection. However, individual
variability has severely limited its practical use. Due to
differences in brain structure and skin, EEG signals can vary
greatly from one individual to another, which leads to a low
cross-individual seizure detection accuracy. To solve the problem,
two methods are proposed in this work. Firstly, by treating cross-
individual tasks as transfer learning scenarios, template
matching based on multiple source domain adaption neural
network method is proposed. The method selectively eliminate
differences between multiple source domains and target domain
to improve the accuracy. Secondly, considering the fact that
seizure data is much less than non-seizure data, adaptive
calibration data select based on average Pearson correlation
coefficient with principal component analysis method is proposed.
The source domain seizure data is adaptive selected to alternate
the calibration seizure data. With the method, the accuracy
further improved. The proposed methods are validated on CHB-
MIT EEG data set to achieve state-of-the-art performance with
85.21% sensitivity, 93.76% specificity, and 92.50% accuracy.

Keywords—EEG, seizure detection, cross-individual, template
matching, domain adaption

I. INTRODUCTION
Epilepsy, a neurological disorder characterized by recurrent

seizures, affects millions of individuals worldwide, making
accurate and timely diagnosis essential for treatment. Among
the various diagnostic tools available, electroencephalography
(EEG) stands out due to its non-invasive nature and its ability
to provide real-time monitoring of brain activity. EEG works
by recording the electrical activity of the brain through
electrodes placed on the scalp, offering a direct insight into the
brain's functioning. This makes EEG particularly valuable for
detecting abnormal brain wave patterns associated with seizure.

Fig. 1. Wearable EEG recording devices to capture EEG for seizure detection.

Compared to other diagnostic methods such as magnetic
resonance imaging (MRI) or computed tomography (CT)
scans[1][2], EEG offers several distinct advantages in seizure
detection. While MRI and CT scans provide detailed images of
brain structure, they do not capture the dynamic electrical
activity that characterizes seizures. EEG, on the other hand, can
detect even brief and subtle changes in brain activity, making it
highly sensitive to the electrical disturbances that occur during
seizure events. Additionally, EEG can be used for prolonged
monitoring, which is crucial for capturing sporadic seizure
activity that might be missed in a short-term scan[3]. Finally,
the final advantage of using EEG for seizure detection is the
ability to perform real-time detection on wearable devices,
which improves more application scenarios, as shown in Fig.1.

Despite these benefits, a significant challenge in utilizing
EEG for seizure detection is the considerable individual
variability in EEG patterns. Each person's brain wave patterns
can be greatly different from each other due to factors such as
genetics, age, and the presence of other neurological conditions.
This high degree of subject-specific variability restricts the
development of universal algorithms for accurate seizure
detection. For instance, an EEG pattern considered normal for
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one individual can indicate seizure activity in another, leading
to potential misdiagnoses.

Previous research has primarily concentrated on individual-
specific seizure detection, which necessitates the collection and
feature extraction of data for each individual individual
[4][5][6]. Although these algorithms often achieve high
accuracy, the process of gathering extensive EEG signals and
manually labeling them will cost time and manpower.
Furthermore, It is still difficult to difficult to complete EEG
signal generation because of the unpredictable variability[7][8].
The internal mechanism of this difference has not been studied
clearly yet. Consequently, creating algorithms for cross-
individual seizure detection continues to be a major research
challenge.

Many work also considered online calibration for cross-
individual seizure detection[9][10]. With the acceptable small
amount of calibration data to complete model update, those
work received a considerable increase of detection accuracy
compared with no calibration data. However, the work only
considered to use both seizure data and non-seizure data for
online calibration. In real-world seizure detection, non-seizure
data is much more easily available than seizure data. It may
take a long time for a subject's first seizure to arrive, and the
data for non-seizure may already abundant before the seizure
arrives. At the same time, if the calibration is not completed
until the first seizure, the accuracy of the first detection of
seizure will not be guaranteed. Therefore, the online calibration
should be done before the first seizure with only non-seizure
data, which will make it more feasible in practical use.

In order to solve the problem mentioned above. In this
work, firstly, by treating cross-individual seizure detection task
as transfer learning scenario, template matching based on
multiple source domain adaption neural network is proposed
for selectively eliminate differences between multiple source
domains and target domain to improve the accuracy. Secondly,
considering the fact that seizure data is much less than non-
seizure data, adaptive calibration data select based on average
Pearson correlation coefficient of with principal component
analysis method is proposed. With the method, the problem of
no seizure calibration data is well solved and the detection
accuracy is further improved.

The rest of the paper is organized as follows. In Section II,
related work about cross-individual seizure detection are
reviewed. In Section III, the two proposed methods are
introduced in detail. In Section IV, the experimental setup, data
set description and experimental results are presented. And the
conclusion is in Section V.

II. RELATEDWORK

Over the past decade, numerous machine learning
techniques have been developed to enhance cross-individual
seizure detection, often evaluated using leave-one-out cross-
validation. For instance, Chen et al. used DWT to construct
feature vectors from EEG segments and employed SVM as the
classifier [11]. Testing on 18 individuals from the CHB-MIT

dataset, they achieved a peak average accuracy of 92.30% with
seven features on the coif3 wavelet. Jiang et al. applied k-NN,
reducing dimension of individual features to harmonize
training and test sets, resulting in a 74.03% average accuracy
[12]. Similarly, Fergus et al. achieved 88% sensitivity and
specificity using a k-NN approach without prior individual
knowledge, with an 80/20 train-test data split [9].

In contrast to the work applied machine learning mentioned
above, which require significant manual feature extraction
method, deep learning techniques with end to end deep neural
networks avoid the problem of feature extraction. A robust
recurrent convolutional neural network is developed in [13],
achieving 85% average sensitivity. Hossain et al. employed a
deep CNN to extract spectral and temporal EEG features,
surpassing state-of-the-art accuracy in cross-individual
detection and achieving 99.65% in individual-specific
detection [14]. Zhou et al. proposed a self-organizing fuzzy
logic (SOF) classifier, which, through varied distance and
granularity experiments, reached 93.02% sensitivity and
91.24% specificity in individual-specific tasks [15]. However,
in cross-individual detection, dividing 24 individuals into six
groups and using leave-one-group-out validation, the method
achieved only 84.67% sensitivity and 82.06% specificity.
Nasiri et al. utilized GANs to learn transferable features across
individuals, improving sensitivity and specificity by 4%-5%
and reducing latency [16]. In [10], an adaptive fine-grained
template matching is used to adapt template in the process of
test, and achieve 84.75% sensitivity and 92.31% specificity in
cross-individual task.

III. METHODS

A. Template Matching based on Multiple Source Domain
Adaption Neural Network (TM-MDAN)

As mentioned in Section.I, the EEG signal is highly
affected by individual variability, which limited cross-
individual seizure detection accuracy. A model with a high
individual-specific accuracy may be difficult to have a high
cross-individual accuracy, so a calibration method for the
model needs to be introduced. To address this issue, a template
matching based on multiple source domain adaption neural
network method (TM-MDAN) is proposed.

To begin with, the cross-individual seizure detection task
is considered as a transfer learning scenario in this paper. In
this task, subjects from train set is considered as source domain,
which is the knowledge already acquired. In cross-individual
seizure detection task, the source domain generally involves
multiple individuals, and it will be denoted as },{ ss yxS  ,
where sx represents subjects in the source domain, and sy is
the corresponding label. Subject from test set is considered as
target domain, which is a specific subject to test. In our method,
target domain is considered to include two parts because of the
online calibration. The first part is the labeled calibration data
which will be denoted as },{ tltl yxTl  . The amount of



Fig. 2. The structure of our proposed baseline neural network with input
vector segmentation.

samples in Tl is small, and in our work, it is set at 0.5% of the
whole test set, which is consistent with [1]. The second part is
the unlabeled data in the test set that denoted as }{ tuxTu  ,
which is 99.5% of the test set.

In this paper, a convolution neural network (CNN) is
introduced as a baseline model. The structure of the CNN is
shown in Fig.2. In the structure, Input vector segmentation is
used, which has been proved in [17] to effectively reduce the
overall model complexity without decreasing accuracy. The
segmentation method ignores part of marginal effects that do
not reduce accuracy, lead to a effectively reduced in model
complexity. Specifically, after window segment, each window
has 256 samples, and it will be segmented to 4 blocks with 64
samples each. For each input block, it will be put into the
same four convolution layers and two max pooling layer.
After convolution layers, the feature map vectors will be
concatenated into one vector to input the flatten layer and two
full-connected layers. It should be mentioned that FC1 in this
structure will be treated as template layer which will be
introduced in the rest part of section III.A. Each layer in the
structure generate with a batch-normalization layer and 0.05
dropout layer.

Unlike other methods which use the vector output from
the last layer of neural network as a probability to complete
the classification, In this work, a template matching module is
proposed after the neural network. The template matching will
use calibration data to complete model update and as the basis
for the final classification while the neural network is mainly
used for feature extraction. The details are introduced below.
During the calibration, the neural network can be considered
as a feature extraction function f . The input of the function is
the input of the neural network, the output of this function is

the output feature map of a specific layer which will be
considered as template layer. The output of this function, that
is, the input of the template matching module, is )(xfM  .
For a specific calibration data Tlx tlc  where c is the class,

we have )( tl
c
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The data dimension of the feature vectors tl
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as the number of neurons in the template layer of the network.
The template of each class CTem is obtained and stored for
later testing by calculating the mean value of all the feature
vectors tl

cM , that is expressed as below (1):
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Where cN is the number of samples of the class c in Tl .
During testing, the test data tux are fed into the neural
network and feature vectors are generated as )( tutu xfM  .
The Euclidean distance cd between tuM and template of
each cTem is then calculated. After that, the minimum
Euclidean distance kcd for all the classes is obtained, which
completes the classification. (i.e. kc is the final classification
result.).

Template matching uses the neural network as feature
extraction, and since neural network is only trained by source
domain data, the feature extraction capability are source
domain related. With the features extracted, seizure and non-
seizure can be well distinguished in the source domain.
However, if the features itself has individual variability, it may
not have a good capability to distinguish between seizure and
non-seizure in the target domain. Therefore, if the network can
extract features that are invariant with individuals, it can be
better used for the target domain. Based on the analysis above,
a multiple source domain adaption neural network is proposed
for cross-individual seizure detection.

Domain adaption techniques in transfer learning are used
to reduce domain shift by aligning feature distributions
between the source and target domains. By employing adaption
training in the neural network, the method help the model to
learn domain-invariant features, enhancing its ability to
generalize to new data. And the adaption training is applied in
the multiple source domain adaption neural network proposed
in this paper.

The multiple source domain adaption neural network used
in this paper includes one feature extractor, one label classifier
and multiple domain classifiers, as shown in Fig.3. The label
classifier and the domain classifiers are connected to the
feature extractor. The feature extractor is shared by the label
classifier and domain classifiers. The branch of feature
extractors combined with label classifier is the baseline CNN
model introduced in Section III.A paragraph.3. This branch is
for the classification of the class of seizure or non-seizure.
However, the branch of feature extractors combined with each



domain classifier is for domain adaption. These branches is for
domain adaption for multiple source domains and one target
domain. Each domain classifier has a gradient inverse layer
(GRL) as input. The GRL does not perform any operation on
the data in the forward calculation of the neural network. But
in the process of back-propagation training, the GRL will
reverse the gradient generated by domain classifier and then
pass to feature extractor. GRL will make the training of feature
extractor not in the direction of domain classifier loss function
convergence, but in the direction of non-convergence. This will
make the features extracted by feature extractor unable to help
domain classifier identify the target domain or the source
domain. Therefore, the training process above achieves the
goal of training feature extractor to extract more individual
invariant features.

In our scenario, the source domain consists of multiple
individuals with differences that can be considered as multiple
different source domains. Therefore, multiple domain classifier
is applied and the number of domain classifiers is decided by
the number of subject in the train set. The first advantage of
multiple domain classifiers is to separate the internally
different individuals of the source domain, and let them
calculated gradient at the same time to avoid the overwriting of
the training results of different individuals because of the
sequence. Another advantage of multiple domain classifiers is
that gradient generated from different source domains can be
multiplied with different weight iW . In that case, the
influences of different source domain used for domain adaption
can be controlled in different degree. Because the degree of
correlation between individuals is different, and increasing the
influence of individuals in source domain have more similar
data to target domain can better improve the accuracy. The way
of choose best similar subjects will be introduced in III.B.

During the calibration training process, in each data batch,
the target domain calibration data Tl is combined with
different source domain data iS where i is the index of

different source domain. As for label classifier branch, iS has
its own seizure or non-seizure label will be used for label
classifier training, and Tl will not be used for training label
classifier. As for domain classifier branches, each data in iS
will be labeled ‘0’ while each data in Tl will be labeled ‘1’ for
training. Both gradient from label classifier and domain
classifiers will be send to feature extractor at the same time.

With the proposed template matching based on multiple
source domain adaption neural network method, the cross-
individual detection accuracy increase greatly to show the
advantages of our method.

B. Adaptive Calibration Data Selection based on Average
Pearson Correlation Coefficient with Principal
Component Analysis (APCC-PCA)
As mentioned in Section.I, in real-world seizure detection

scenarios, non-seizure data is far more available than seizure
data. A subject's first seizure might take a long time to occur,
while ample non-seizure data is already collected.
Consequently, online calibration should be performed using
only non-seizure data before the first seizure happens,
enhancing practical feasibility.

In the absence of calibration seizure data, the best
alternative data may come from the source domain, in fact,
because of the large number of individuals in the source
domain, there is a high probability that there is a good
alternative data. Because of the individual variability, the best
way for select alternative data is to carry out online adaptive
data selection through the calibration set non-seizure data that
can be collected easily. Based on that, two main goals are
proposed for looking for the best alternative seizure data.
Firstly, the alternative seizure data should be very different
from the non-seizure data of the calibration set, which can
better make the difference between the two classes of templates
large enough. Secondly, the non-seizure data of the individual
selected should be little different from the non-seizure data of

Fig. 3. The overall structure of our proposed method including Template Matching based on Multiple Source Domain Adaption Neural Network and Adaptive
Calibration Data Selection based on Average Pearson Correlation Coefficient with Principal Component Analysis.



the calibration set, because this can enable the model to have a
high accuracy in the classification of non-seizure at the
baseline before the MDAN training. The use of data in the two
goals is also shown in Fig.3.

Based on the two goals, three types of features is selected
for determining correlation of different data: 1. Time domain
features included Mean Absolute Value, Mean Absolute Value
Slope, Zero Crossings and Waveform Length. 2. Wavelet
domain features which is the Wavelet Coefficient]. 3. Power
spectral density (PSD). As for three types of features, the
feature extraction is applied on every samples in the data. The
above features are selected because many work have prove that
during seizure and non-seizure, as well as between people,
EEG features differ in the time domain, frequency domain, and
wavelet domain. Therefore, the above characteristics can
effectively characterize seizure and non-seizure EEG of
different people[18][19][20].

As for each subject in source domain iS , its seizure data
will be denoted as izS ,while non-seizure data will be denoted
as zinS  . And the non-seizure data of calibration data will be
denoted as znTl 

. As mentioned in Section III.A, znTl 
is only

0.5% of the whole test set non-seizure data, which is much less
than izS and zinS  . After feature extraction, the feature sample
number in znTl 

is also much less izS and zinS  . In order to
calculate to overall feature correlation of the two different size
data, average pearson correlation coefficient of sliding window
with principal component analysis (APCC-PCA) is calculated,
which is shown in Algorithm 1.

In Algorithm1, firstly, three types of feature extraction are
first applied on every input data. Secondly, A PCA will be

applied on every flattened features because of the high
dimension. Because the dimensions of a single input window
are too large (One input window contains 256 samples of 18
channels data, the detailed will be introduced in Section IV.A),
the extracted features also have large dimensions. Specifically,
for the time domain features, Wavelet Coefficient and PSD, 90,
2307, 4600 dimensions of features will be extracted for each
input window respectively. Because the correlation will be
calculated between every two window, the large dimensions
would cost large computation, which may highly limit the time
for online calibration after data collection. Therefore, PCA will
be used to reduce the dimension to 64 for the three features.
Thirdly, in order to calculate correlation of two different
sample number of data, a segmentation with sliding window on
time scale will be applied on features from source domain. At
last, two Pearson Correlation Coefficient (PCC) will be
calculated between every two window. PCC2 is calculated for
the goal that the alternative seizure data should be very
different from the non-seizure data of the calibration set. And
PCC1 is calculated for the goal that the non-seizure data of the
individual selected should be little different from the non-
seizure data of the calibration set. PCC2-PCC1 represents the
average performance of the two goals, and since the magnitude
of the two PCC is close after average, no weight is used. The
mean of all PCC2-PCC1 will be the last output. It should also
be mentioned that different weight iW for gradient generated
from different source domains is calculated from APCC-PCA,
the APCC-PCA of the selected people will be normalized to be
weight iW .

After calculation of (APCC-PCA), the top n subjects will
be selected for both source domain training and template
generating because of the relatively high correlation. (The
effect of different n values on the final result will be shown in
Section IV.B.)

IV. EXPERIMENTS RESULTS

A. Data Set Description and Experimental Setup
The Children's Hospital Boston-Massachusetts Institute of

Technology (CHB-MIT) Scalp EEG Database [21] is applied
in this paper. The CHB-MIT data set includes 686 EEG
recordings from 24 individuals, with 198 seizures manually
annotated by experts. All signals were sampled at 256Hz with a
16-bit resolution. The electrodes' positions and nomenclature
adhered to the international 10-20 system. The EEG recordings
contained channel number of 18 or 23. For the 23 channel
recordings, the 18 channels are also included and the same.

Based on that, we extracted all 186 seizure recordings that
included the 18 channels mentioned above, amounting to
approximately 3 hours of data, along with around 44 hours of
corresponding non-seizure recordings. For the training dataset,
the EEG signals were divided into1-second segments without
overlapping. For the test data set, a sliding time window of 1
second with a overlap size of 0.875 seconds is applied.
Majority vote is also applied with the size of 33.With majority



Fig. 4. Performance of accuracy, sensitivity and specificity with proposed
template matching and MDAN.

Fig. 5. Performance of accuracy, sensitivity and specificity with subjects
selected by the proposed APCC-PCA.

vote, the classifier independently analyzes the signal and casts
a vote for a particular class. The class that receives the majority
of votes is chosen as the final classification. Majority vote has
a good effect on seizure detection with a certain duration of
onset and non-onset

The commonly used leave-one-out cross-validation is also
applied for cross-individual seizure detection[10]. With total
24 individuals, data from 23 individuals is used for train set,
while data from the remaining individual is used for test set.
The overall sensitivity, specificity, and accuracy are calculated
by averaging the results from all 24 test scenarios.

The training hyper-parameters of neural network are set as
below. Sparse categorical cross-entropy is used for both label
classifier and domain classifier as loss function. The learning
rate is set to 1e-3 with 1e-6 decay, epoch for both baseline
model and MDAN are set to 20 and batch-size for both
baseline model and MDAN are set to 48.

B. Results
In order to show the improvement brought by template

matching and MDAN, Fig.4 shows the accuracy result of
baseline model and template matching. "Base" denotes
accuracy of baseline model which the classification is
completed directly using the neural network, and the result is
obtained through the probability calculation of the output of
last fully-connected layer. "Tem" denotes accuracy of using
template matching for classification. "Base+MDAN" denotes

Fig. 6. Performance of accuracy, sensitivity and specificity with different
number of subject selected by the proposed APCC-PCA.

accuracy of baseline model after MDAN training. "Tem+
MDAN" denotes accuracy of template matching after MDAN
training. All the results here used adaptive data selection with
the best features which will be introduced in the next paragraph.
The results indicate that the "Tem" method is 3.05%, 1.46%
and 1.71% higher than that of the "Base" method on accuracy,
sensitivity and specificity, and the "Tem+MDAN" method is
2.56%, 2.44% and 2.42% higher than that of the
"Base+MDAN" method on accuracy, sensitivity and specificity.
It can be seen that template matching can improve the accuracy
both with or without MDAN. And based on template matching,
with MDAN achieves 8.44%, 2.61% and 8.77% of
improvement on accuracy, sensitivity and specificity with no
MDAN. The result shows that MDAN can effectively improve
both three performance.

In order to show the improvement brought by adaptive data
select for non-seizure supervised transfer learning, Fig.5 shows
the accuracy of using source domain subjects chosen by
different types of features. "No select" denotes accuracy of
model using all the source domain subjects for training and as
alternative seizure calibration data. "Time-features" denotes
accuracy of using top 5 subjects chosen by time-features.
"Wavelet-features" denotes accuracy of using top 5 subjects
chosen by wavelet domain features. "PSD" denotes accuracy of
using top 5 subjects chosen by power spectral density. The
results shows that with time-features selected, it reaches the
best accuracy, sensitivity and specificity compared with no
select and other features. Therefore time domain features is
chosen to be the best features and applied in final result.

However, the number of subjects chosen can make a big
difference in accuracy. Fig.6 shows the accuracy of using
different number of source domain subjects selected by time
features. It should be mentioned that the number of domain
classifier equals to the subject numbers here. The results shows
that with 5 subject number, the result reaches the best.
Therefore, 5 is chosen as subject number in final result.

The benchmark table is shown in Table I. From Table 1, it
can be seen that the result of our work outperform other work
in the three performance metrics especially accuracy and
sensitivity.



TABLE I. BENCHMARK TABLE

Work Method Sensitivit
y(%)

Specificit
y(%)

Accuracy
(%)

[13] CNN,
RNN 85.00 - -

[12] KNN - - 74.03

[9] KNN 88.00 88.00 -

[16] SOF 84.67 82.06 -

[10] CNN+TM 84.75 92.31 91.92

Our
work

MDAN+
TM+ 85.21 93.76 92.50

V. CONCLUSION
In this work, two methods are proposed. Firstly, by treating

cross-individual tasks as transfer learning scenarios, template
matching based on multiple source domain adaption neural
network method is proposed. Secondly, considering the fact
that seizure data is much less than non-seizure data, adaptive
calibration data select based on average Pearson correlation
coefficient with principal component analysis method is
proposed. On CHB-MIT data set, method proposed achieves a
state-of-the-art performance of 85.21% sensitivity, 93.76%
specificity and 92.50% accuracy.
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