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Abstract

Single-cell RNA sequencing (scRNA-seq) technologies enable the exploration
of cellular heterogeneity and facilitate the construction of cell atlases. However,
scRNA-seq data often contain a large portion of missing values (false zeros)
or noisy values, hindering downstream analyses. To recover these false zeros,
propagation-based imputation methods have been proposed using k-NN graphs.
However they model only associating relationships among genes within a cell,
while, according to well-known genetic evidence, there are both associating and
dissociating relationships among genes. To apply this genetic evidence to gene-gene
relationship modeling, this paper proposes a novel imputation method that newly
employs dissociating relationships in addition to associating relationships. Our
method constructs a k-NN graph to additionally model dissociating relationships
via the negation of a given cell-gene matrix. Moreover, our method standardizes the
value distribution (mean and variance) of each gene to have standard distributions
regardless of the gene. Through extensive experiments, we demonstrate that the
proposed method achieves exceptional performance gains over state-of-the-art
methods in both cell clustering and gene expression recovery across six scRNA-seq
datasets, validating the significance of using complete gene-gene relationships in
accordance with genetic evidence.

1 Introduction

Figure 1: Within a cell,
there are two types of re-
lationships among genes.

Single-cell RNA sequencing (scRNA-seq) has become one of the most
widely used technologies in biomedical research due to its ability to
measure genome-wide gene expression at the single-cell level [1–3].
ScRNA-seq enables us to discover novel cell types [4], analyze cellular
trajectories [5], and improve understanding human disease [6, 7]. How-
ever, scRNA-seq analysis encounters significant challenges due to the
high rate of zero values in scRNA-seq data represented by a cell-gene
matrix. Specifically, owing to the low RNA capture rate, scRNA-seq
data often contain zero values. These zero values represent unobserved
gene expression resulting from both technical omissions (referred to as
dropouts [8]) and true biological absence. Moreover, even non-zero val-
ues in scRNA-seq data suffer from various sources of noise, such as cell
cycle effects and batch effects [9, 10].
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To deal with the missing or noisy gene expression in scRNA-seq data, diverse imputation methods
have been proposed, which can be categorized into non-graph-based, graph neural network (GNN)-
based, and propagation-based methods. Among these methods, propagation-based methods [11, 12]
have been favored due to their outstanding performance. The propagation-based methods construct a
k-nearest neighbor (k-NN) graph on scRNA-seq data represented as a cell-gene matrix, and fill in
missing values by propagating nonzero values on the k-NN graph. Despite their effectiveness, they
overlook well-known genetic evidence [13, 14], which means that there are two types of relationships
between genes: associating relationship and dissociating one. As shown in Figure 1, associating
relationships represent genes that co-occur, whereas dissociating relationships represent genes that
avoid co-occurrence.
However, the existing methods cannot model the dissociating gene-gene relationship by constructing
a simple k-NN graph to connect only the associating genes with similar occurrence patterns. Conse-
quently, these methods fail to connect dissociating genes. Within a cell, when considering the value
to be imputed for gene Q, the value for its associating gene can assist in inferring the value for gene
Q. However, its dissociating gene can also provide crucial information: if its dissociating gene has a
high value, the value for gene Q may be low, as they tend to avoid each other. Additionally, the value
distribution of a gene often differs significantly from that of other genes [15]. Therefore, the sum of
propagated values from other genes may lead to the mixing of values at various scales, which is not
suitable for data recovery.
To resolve the aforementioned problems, we propose a novel propagation-based imputation scheme
called Single-Cell Complete Relationship (scCR) for scRNA-seq data, which models both associating
and dissociating gene-gene relationships. scCR concatenates a given cell-gene matrix and its negation,
then standardizes the value distribution (mean and variance) in each column (i.e., gene) of the
concatenated matrix. Subsequently, we construct a k-NN graph on this concatenated and standardized
matrix to connect both associating and dissociating genes within a cell. Through a propagation
process on this k-NN graph, scCR effectively denoises scRNA-seq data by capturing complete gene-
gene relationships. Extensive experimental results demonstrate that scCR significantly outperforms
state-of-the-art methods in both gene expression recovery and cell clustering. Through experiment,
we further confirm that scCR can model dissociating gene-gene relationships inherent in scRNA-seq
data.
The main contributions of our work are summarized as follows: (1) We newly propose an effective
imputation method for scRNA-seq data, which is based on the genetic evidence. Our method can
model complete gene-gene relationships, including both associating and dissociating relationships;
(2) We employ a standardization step before propagation among genes for additional performance
improvement in downstream tasks on scRNA-seq data; (3) By modeling dissociating gene-gene
relationships and utilizing the standardization step, our scCR significantly improves performance in
various downstream tasks, outperforming the state-of-the-art methods by a large margin.

2 Related Work
Handling noise in scRNA-seq data. Approaches for handling noise in scRNA-seq data can be
categorized into non-graph-based, GNN-based, and propagation-based methods. As pioneering
efforts to impute zero values, non-graph-based methods predominantly employ either statistical
techniques [16, 17] or autoencoder frameworks [17, 18]. Building on this foundation, graph-based
approaches, including GNN-based and propagation-based methods, have received significant at-
tention due to their ability to model relationships among cells and genes through graph structures.
scGNN [19] leverages cell-cell relationships by constructing a cell-cell similarity matrix within a
graph autoencoder framework. scGCL [20] is a graph autoencoder framework that exploits contrastive
learning to capture cell-cell relationships. scTAG [21] is a clustering method that employs a graph
autoencoder framework using a cell-cell k-NN graph, which jointly optimizes clustering loss and
reconstruction loss.
Propagation-based imputation in scRNA-seq data. Propagation-based imputation methods have
shown their superiority in scRNA-seq data imputation. They promote greater similarity in gene ex-
pression among cells that are already similar through iterative propagation steps. While MAGIC [22]
utilizes a diffusion mechanism to denoise scRNA-seq data, updating values through the diffusion of
both zero values and observed nonzero values may be significantly affected by false zero values (i.e.,
dropouts). To address this issue, FP can be a good solution because FP preserves observed values
during diffusion while updates unobserved values through diffusion. Propagation-based imputation
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Figure 2: A brief overview of Single-Cell Complete Relationship (scCR).

methods have shown their superiority in scRNA-seq data imputation. scFP [11] adopts FP developed
for graph-structured data to resolve imputation for scRNA-seq data. scFP constructs a cell-cell k-NN
graph and applies FP for the imputation of zero values. Very recently, [12] proposes scBFP to utilize
gene-gene relationships as well as cell-cell relationships. scBFP consists of two stages, and in each
stage, it applies FP using a gene-gene k-NN graph and a cell-cell k-NN graph, respectively. Although
scBFP is designed to leverage gene-gene relationships, the simple addition of FP using a gene-gene
k-NN graph cannot effectively exploit gene-gene relationships due to the following two reasons: (1)
a gene-gene k-NN graph can connect only associating genes which have co-occurrence relationships
while overlooking the presence of dissociating gene-gene relationships; (2) Since the distributions
for each gene significantly varies, propagation without additional processing will degrade recovery
performance.

3 Preliminaries
Notation. A graph can be represented as G = (V, E), where V = {v1, . . . , vN} is the set of N
nodes and E is the set of edges. The connectivity of G can be represented by the adjacency matrix
A ∈ {0, 1}N×N with Ai,j = 1 iff (vi, vj) ∈ E and Ai,j = 0 otherwise. Given an arbitrary matrix
B ∈ Ra×b, we let kNN(·) : Ra×b → {R}a×a be a function that generates a normalized adjacency
matrix A of the row-row k-NN graph based on cosine similarity. Here, the normalized adjacency
matrix A is obtained by A = D−1/2AD−1/2 where A is the adjacency matrix of the k-NN graph
and D is a degree matrix with diagonal entries Di,i =

∑
j Ai,j . Consequently, while kNN(X) yields

A
cell ∈ {0, 1}C×C of the cell-cell k-NN graph from X, kNN(X⊤) produces A

gene ∈ {0, 1}G×G

of the gene-gene k-NN graph from X. We let Bi,: and B:,j denote the i-th row vector of B and the
j-th column vector of B, respectively.

Feature Propagation. Feature Propagation (FP) is proposed to impute missing features in graph-
structured data. The core idea of FP is to impute missing values by diffusing observed values while
preserving these observed values. Assume that a given graph G = (V, E) has a feature matrix
X ∈ RN×F with missing values, where rows and columns correspond to nodes and F feature
channels, respectively. We use A ∈ RN×N to denote a normalized adjacency matrix of the graph.
To preserve known features during the diffusion process, we mark the positions of the features to be
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preserved with 1 in the mask matrix M ∈ {0, 1}N×F ; here, values of 1 in M indicate the location
of observed features. We express FP as a function by X = FP(X,A,M) where X ∈ RN×F is an
output matrix. A detailed explanation of FP is provided in Appendix A. In summary, FP fills in
missing values in X through diffusion using A while preserving features corresponding to values of 1
in M. It is noteworthy that FP(X,A,M) performs propagation among the rows of X. In scRNA-seq
data imputation, FP-based imputation methods treat zero values as missing values to be imputed via
features diffused from non-zero values.

4 Proposed Method
4.1 Overview of scCR

In this paper, we design a novel imputation framework for scRNA-seq data, namely scCR, which
utilizes complete gene-gene relationships. Unlike existing work, scCR exploits both associating
and dissociating relationships, which contain valuable biological information. Given highly noisy
scRNA-seq data, especially having a high number of false zeros, the goal of scCR is to recover
scRNA-seq data by imputing zero values. As shown in Figure 2, our proposed framework consists
of three stages: pre-imputation, complete relation, and denoising. Throughout these three stages,
we enhance a gene expression matrix by gradually integrating complete gene-gene and cell-cell
relationships.

4.2 Pre-Imputation Stage
We consider a cell-gene matrix X ∈ RC×G, where C and G represent the number of cells and genes,
respectively. We let Acell ∈ {0, 1}C×C denote an adjacency matrix of a cell-cell graph. Similarly,
we let Agene ∈ {0, 1}G×G denote an adjacency matrix of a gene-gene graph. Building a k-NN graph
directly on X can lead to performance degradation in downstream tasks due to the noisy nature of
X. Therefore, scCR begins with the pre-imputation stage, which creates a pre-imputed matrix to be
used for k-NN graph construction in the complete relationship stage. In this stage, scCR imputes
zero values through intercellular (i.e., cell-cell) propagation.

Cell-cell FP. We first construct a cell-cell k-NN graph by A
cell(1)

= kNN(X). scCR then employs
FP to impute zero values by the diffusion of nonzero values among cells. We let MX ∈ {0, 1}C×G

be a mask matrix with MX
i,j = 1 iff Xi,j ̸= 1 and MX

i,j = 0 otherwise, which indicates the positions

of the nonzero features in X to be preserved during the diffusion. Cell-cell FP using A
cell(1)

is
performed as follows,

X
(1)

= FP(X,A
cell(1)

,MX) (1)

where X
(1) ∈ RC×G is an output of the pre-imputation stage, which is utilized in the following

complete relationship stage.

4.3 Complete Relationship Stage

Figure 3: A subset of the
gene expression matrix in
the Baron Human dataset.

In the complete relationship stage, we refine X
(1)

through gene-gene
and cell-cell propagation. ScBFP [12] adopts gene-gene FP on the
k-NN graph constructed based on cosine similarity. However, it over-
looks two key issues: (1) The similarity-based gene-gene k-NN graph
can connect only associating (or co-occurring) genes, excluding highly
correlated dissociating (or avoiding) genes, which can offer important
biological information for imputation. This occurs because associating
genes may have high cosine similarity due to their co-occurrence. These
genes with high cosine similarity may become connected in the cosine-
similarity-based k-NN graph . (2) As shown in Figure 3, since each
gene has the distinct distribution within a gene expression matrix [15],
the value distribution for a gene varies significantly among genes. Al-
though imputation methods for scRNA-seq generally normalize a gene
expression matrix in a cell-wise manner, varying scales across genes
still remain after the cell-wise normalization. Therefore, propagation
across genes may degrade accurate recovery by mixing values with
different scales.
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Figure 4: An illustration of the concatenation and standardization processes in the complete relation-
ship stage. Std denotes standard deviation.

Concatenation. To address these key issues, we propose a novel propagation scheme called gene-gene
standardized FP. The gene-gene standardized FP first produces Xcom ∈ RC×2G by concatenating
X

(1)
and its negative matrix along columns, i.e., Xcom = [X

(1)
,−X

(1)
].

Standardization. Subsequently, to enable every gene to have the same scale during propagation
among genes, we standardize Xcom in a column-wise manner. For b ∈ {1, . . . , 2G}, we standardize
Xcom to X̃com ∈ RC×2G as follows,

X̃com
a,b =

(Xcom
a,b − µb)

σb
where µb =

C∑
a=1

Xcom
a,b , σb =

√√√√ 1

C − 1

C∑
a=1

(Xcom
a,b − µb)2. (2)

Here, µb and σb denote the mean and standard deviation of the b-th column (i.e., gene) of Xcom.
Since all the columns in X̃com are standardized, SFP can effectively perform propagation-based
imputation without the mixing of values at various scales, addressing the aforementioned issue (2).
Furthermore, by concatenating X

(1)
with its negative matrix before the construction of X̃com, SFP

can connect not only associating but also dissociating gene-gene relationships. As demonstrated in
Figure 4, assume that the i-th gene and the j-th gene have strong dissociating relationships, where
i, j ∈ {1, . . . , G}. Within any a-th cell (a ∈ {1, . . . , C}), X

(1)

a,i will be very high when X
(1)

a,j is very
low and vice versa. After the standardization, the cosine similarity between the i-th gene and the j-th
gene will have a large negative value, which cannot be connected in a k-NN graph. However, through
the concatenation, X̃com

:,(G+j) corresponds to −X
(1)

:,j . Thus, the cosine similarity between X̃com
:,i and

X̃com
:,(G+j) has a large positive value, which will be connected in a k-NN graph. Therefore, through

gene-gene propagation using this k-NN graph constructed by using X̃com, we can effectively exploit
complete gene-gene relationships, including associating and dissociating relationships.

Gene-gene FP. We build a gene-gene k-NN graph on (X̃com)⊤ by A
gene

= kNN((X̃com)⊤) where
A

gene ∈ R2G×2G. We then perform the gene-gene standardized FP using A
gene

as follows:

X
com

= (FP((X̃com)⊤,Agene, [MX,MX]⊤))⊤ (3)

where X
com ∈ RC×2G. Since each gene in X

com
does not have its original scale due to the

standardization, we return all the columns in X
com

to their original scale as follows:

X̌com
a,b = σbX

com

a,b + µb (4)

where X̌com ∈ RC×2G is the rescaled matrix. We then reduce X̌com by retaining the first G columns,
and we denote this reduced matrix as X

∗ ∈ RC×G. X
∗

is a final output of the gene-gene standardized
FP.

Cell-cell FP. X∗
containing information from complete gene-gene relationships plays a crucial role

in scCR by contributing the formation of all subsequent cell-gene matrices. To perform additional
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Table 1: Performance on cell clustering, measured by ARI, NMI, and CA. Standard deviation errors
are given. Figures highlighted in green indicate performance improvements over the most competitive
baseline at each setting.

Dataset Baron Mouse Pancreas Mouse Bladder

Method ARI NMI CA ARI NMI CA ARI NMI CA

scTAG 0.565±0.016 0.689±0.023 0.526±0.163 0.678±0.141 0.789±0.011 0.69±0.108 0.604±0.149 0.734±0.047 0.605±0.011

DCA 0.447±0.022 0.710±0.010 0.562±0.002 0.566±0.002 0.786±0.001 0.727±0.002 0.447±0.022 0.710±0.010 0.562±0.002

AutoClass 0.408±0.002 0.699±0.002 0.525±0.004 0.564±0.020 0.795±0.009 0.724±0.030 0.506±0.02 0.732±0.009 0.613±0.029

scGNN 2.0 0.441±0.021 0.734±0.029 0.575±0.019 0.562±0.054 0.793±0.049 0.728±0.061 0.488±0.041 0.717±0.015 0.595±0.033

scGCL 0.478±0.001 0.720±0.000 0.645±0.003 0.645±0.061 0.755±0.042 0.747±0.026 0.529±0.002 0.725±0.005 0.598±0.008

MAGIC 0.419±0.007 0.712±0.007 0.557±0.015 0.595±0.007 0.803±0.004 0.765±0.022 0.565±0.004 0.754±0.001 0.651±0.005

scFP 0.613±0.000 0.817±0.000 0.763±0.000 0.802±0.001 0.872±0.000 0.878±0.000 0.655±0.002 0.767±0.000 0.730±0.001

scBFP 0.660±0.000 0.813±0.001 0.763±0.001 0.864±0.000 0.900±0.001 0.918±0.006 0.694±0.000 0.761±0.002 0.779±0.001

scCR (Ours) 0.827±0.139 0.847±0.034 0.846±0.084 0.812±0.000 0.855±0.000 0.873±0.000 0.704±0.000 0.778±0.000 0.765±0.000

(+25.3%) (+3.7%) (+10.9%) - - - (+1.7%) (+1.4%) -

Dataset Zeisel Worm Neuron Baron Human

Method ARI NMI CA ARI NMI CA ARI NMI CA

scTAG 0.723±0.010 0.716±0.013 0.712±0.029 0.532±0.134 0.641±0.007 0.439±0.003 0.612±0.029 0.718±0.028 0.610±0.158

DCA 0.693±0.005 0.739±0.005 0.764±0.004 0.502±0.017 0.690±0.016 0.700±0.031 0.545±0.001 0.763±0.004 0.558±0.001

AutoClass 0.673±0.006 0.714±0.009 0.746±0.008 0.488±0.002 0.668±0.001 0.699±0.001 0.523±0.02 0.743±0.005 0.553±0.023

scGNN 2.0 0.533±0.050 0.657±0.063 0.666±0.041 0.453±0.061 0.637±0.03 0.653±0.051 0.525±0.031 0.744±0.025 0.569±0.014

scGCL 0.663±0.003 0.715±0.116 0.717±0.001 0.601±0.014 0.676±0.005 0.754±0.012 0.593±0.027 0.744±0.056 0.671±0.077

MAGIC 0.696±0.003 0.747±0.002 0.765±0.002 0.512±0.016 0.719±0.009 0.770±0.013 0.562±0.012 0.788±0.007 0.596±0.012

scFP 0.848±0.000 0.812±0.000 0.886±0.000 0.524±0.330 0.731±0.014 0.766±0.031 0.676±0.000 0.826±0.000 0.732±0.000

scBFP 0.835±0.000 0.792±0.000 0.869±0.000 0.608±0.000 0.715±0.000 0.792±0.000 0.677±0.000 0.827±0.000 0.733±0.000

scCR (Ours) 0.902±0.000 0.863±0.000 0.952±0.000 0.520±0.014 0.711±0.006 0.746±0.012 0.823±0.000 0.858±0.000 0.827±0.000

(+6.4%) (+6.3%) (+7.5%) - - - (+21.6%) (+3.8%) (+12.8%)

cell-cell FP using complete gene-gene relationships inherent in X
∗
, we construct cell-cell a k-NN

graph by A
cell(2)

= kNN(X∗). We perform cell-cell FP using X and A
cell(2)

as follows,

X
(2)

= FP(X,A
cell(2)

,MX) (5)

where X
(2)

is an output of this cell-cell FP.

Weighted sum. X
(3)

, which is a final output of complete relationship stage is produced by the
weighted sum of X

(2)
and X

(1)
as follows:

X
(3)

= αX
(1)

+ (1− α)X
(2)

(6)

where 0 < α < 1 is a hyperparameter. X
(3)

can incorporate valuable biological information since
complete gene-gene relationships are delivered by X

(2)
.

4.4 Denoising Stage

Cell-cell Soft FP. While the pre-imputation and complete relationship stages focus on imputing zero
values, the denoising stage aims to remove noise in the overall values of X via propagation-based
smoothing. To exploit complete gene-gene relationships, the denoising stage utilizes X

(3)
containing

them. We first build a cell-cell k-NN graph by A
cell(3)

= kNN(X
(3)

). To denoise X, we adopt
Soft FP [11] that does not maintain zero values during propagation. We apply Soft FP [11] to X as
follows,

X
(4)

(t) = βA
cell(3)

X
(4)

(t− 1) + (1− β)X, t = 1, · · · ,K, (7)

where K is the total number of propagation steps, X
(4)

(0) = X, X
(4)

(t) ∈ RC×G is the updated
cell-gene matrix after t propagation steps, and 0 < β < 1 is a hyperparameter. An output of the
denoising stage, denoted by X

(4)
(K), is obtained after K steps.

Weighted sum. The final output of our scCR, X̂, is the weighted sum of X
(3)

and X
(4)

(K) as
follows:

X̂ = γX
(3)

+ (1− γ)X
(4)

(K). (8)

where and 0 < γ ≤ 1 is a hyperparameter. In summary, unlike existing propagation-based methods,
our scCR enables the use of complete gene-gene relationships in denoising scRNA-seq.
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Figure 5: Performance on dropout recovery, measured by RMSE. Figures highlighted in green
indicate reduction rates from the most competitive baseline at each setting.

5 Experiments

5.1 Experimental Setup

We performed comparative evaluation of scCR on six widely used scRNA-seq datasets with gold-
standard cell type information: Baron Mouse [23], Pancreas [24], Mouse Bladder [25], Zeisel [2],
Worm Neuron [26], and Baron Human [23]. We compared our scCR with eight state-of-the-art meth-
ods handling noise in scRNA-seq data: (1) non-graph-based methods: DCA [17] and AutoClass [18];
(2) GNN-based methods: scTAG [21], scGNN 2.0 [19], and scGCL [20]; (3) propagation-based
methods: MAGIC [22], scFP [11], and scBFP [12]. We evaluated scTAG only on cell clustering,
since scTAG is a clustering method. To evaluate the cell clustering of scCR and baselines, we utilized
three standard evaluation metrics: Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI), and Clustering Accuracy (CA). For dropout recovery, we employed two standard evaluation
metrics: Root Mean Square Error (RMSE) and Median L1 Distance.

Implementation. In all experiments, the hyperparmeters of scCR are set to default settings, taking
into account the unsupervised nature of the single-cell analysis. For fair comparisons, we set the
hyperparameters of baselines according to specifications in the papers and official codes. We reported
the average performance across three independent runs. Experimental details regarding datasets,
baselines, evaluation metrics, and hyperparameter settings are provided in Appendix G.

5.2 Results

scCR enables improved cell clustering. To validate the effectiveness of scCR in cell clustering,
we evaluated its clustering performance. Table 1 presents the performance comparison. While
FP-based baselines, including scFP and scBFP, outperformed other baselines, scCR delivered the
best or competitive cell clustering performance across all datasets. Specifically, scCR improved ARI
by 25.3%, 1.7%, 6.4%, and 21.6% compared to previous state-of-the-art results on Baron Mouse,
Mouse Bladder, Zeisel, and Baron Human, respectively.

scCR effectively recovers dropout values. Since dropouts can occur at various rates, we generated
false zeros (i.e., dropouts) at non-zero values in datasets by applying varying dropout rates. As shown
in Figure 5, scCR significantly improved dropout recovery performance in various dropout rates
across the datasets. We confirmed that scCR effectively reduced RMSE between imputed values
and their original values with large reduction rates, only except for the Pancreas dataset with 40%
dropout. We provided a recovery performance comparison, measured by the median L1 distance in
Appendix H.2, which also demonstrates the effectiveness of scCR.

7



Figure 6: UMAP visualization using the Baron Human dataset, comparing scCR with the three most
competitive imputation methods. The first row shows the visualization of the raw data and their
imputed results. The second row displays the visualization of data subjected to an 80% dropout rate
and their imputed results.

Figure 7: The first row indicates the percentages of associating and dissociating gene-gene relation-
ships in datasets. The second and third rows represents the percentages of associating and dissociating
relationships within a gene-gene k-NN graph in each method.

scCR identifies rare cell types well. To verify the effectiveness of scCR in identifying rare cell types,
we conducted in-depth analysis using the Baron Human dataset. We visualized the two-dimensional
UMAP [27] repesentations of the raw data and the data with an 80% dropout rate applied. As shown
in the first row in Figure 6, scCR effectively identified rare cell types with few cells, such as ‘gamma’
and ‘Macrophage’. It is noteworthy that even under severe dropouts, scCR separated cell types well
(in the second row), whereas compared methods failed.

Does scCR really model dissociating relationships? To show that scCR models both associating
and dissociating gene-gene relationships, we first investigated the ratio of dissociating relationships to
associating relationships. For this investigation, we define that associating or dissociating relationships
exist when the absolute values of the correlation coefficients between genes exceed the top 25%.
We determine that a positive sign in the correlation coefficients indicates associating relationships,
while a negative sign indicates dissociating relationships. We then measured the percentages of
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Figure 8: Running time comparison of scCR and baselines according to the number of cells.

associating and dissociating relationships within gene-gene k-NN graphs in scBFP and our scCR.
As shown in Figure 7, scBFP hardly models dissociating gene-gene relationships. In contrast, scCR
effectively models dissociating relationships, enabling the use of complete gene-gene relationships in
its imputation.

scCR is even faster than existing imputation methods. To show the advantage of scCR in terms of
imputation time, we measured the running time of scCR and imputation methods on datasets. As
shown in Figure 8, scCR showed the lowest running time across all the datasets, regardless of the
number of cells.

An ablation study (See Appendix C), further experimental results (See Appendix H), and the proof of
convergence of FP (See Appendix B) are provided in Appendix.

6 Conclusion

In this paper, we proposed a novel imputation framework called Single-Cell Complete Relationship
(scCR) for scRNA-seq data imputation. scCR utilized complete gene-gene relationships by con-
catenating a given cell-gene matrix with its negation and facilitated effective gene-gene propagation
through the standardization of the cell-gene matrix in a gene-wise manner. These processes, grounded
in genetic evidence, led to significant performance improvements over state-of-the-art methods in
various downstream tasks on scRNA-seq data, with fast imputation times. Furthermore, our work is
not limited to simply utilizing genetic evidence to design a framework. We validated this evidence
within real scRNA-seq datasets, and confirmed that our scCR effectively leveraged this insight. Like
other scRNA-seq imputation methods, scCR is specifically designed for scRNA-seq data. However,
since scRNA-seq data are inherently matrix-formatted, scCR can be extended to general tabular data
imputation. We expect that the concatenation process will be effective even for general tabular data,
as there are often both positive and negative correlation coefficients between channels in such data.
The extension of scCR to other domains is left for future work.

Broader Impacts

Our work provides an important insight that, when applying machine learning to the biomedical
domain, it is crucial to approach with biological grounding rather than focusing solely on applying
existing cutting-edge machine learning techniques. Since scRNA-seq has opened a new frontier
for understanding biological systems [15, 28, 29], we believe that our work will contribute to the
biomedical domains by enhancing the analysis of human diseases and the discovery of new genetic
observations. We have not identified any negative impacts of our work on society.
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A Feature Propagation

Assume that a given graph G = (V, E) has a feature matrix X ∈ RN×F with missing values, where
rows and columns correspond to nodes and F feature channels, respectively. We use A ∈ RN×N to
denote a normalized adjacency, which is an input for feature propagation (FP). To preserve known
features during the diffusion process, we mark the positions of the features to be preserved with 1 in
the mask matrix M ∈ {0, 1}N×F . Here, values of 1 in M indicate the location of observed features,
where feature values will be preserved.

To formally explain the diffusion process of FP in detail, we temporarily reorder nodes for notational
convenience. Since observed values may differ across channels, we reorder the nodes for each
channel. When we consider the a-th channel, based on the values of 1 in M:,a, we let Va

k be the set
of nodes whose a-th values are known (observed). Similarly, by examining zero values in M:,a, Va

u
denotes the set of nodes whose a-th values are unknown (missing). By reordering the nodes in the
order of Va

k and Va
u , the entire feature values and the adjacency matrix for the a-th channel can be

expressed as

xa =

[
xa
k

xa
u

]
, A

(a)
=

[
A

(a)

kk A
(a)

ku

A
(a)

uk A
(a)

uu

]
, (9)

where xa is a column vector representing features for the a-th channel in X in the order of Va
k and

Va
u . Here, xa

k ∈ R|Va
k | and xa

u ∈ R|Va
u |. Similarly, A

(a)
consists of four sub-matrices related to Va

k

and Va
u . It is noteworthy that although A

(a) ∈ RN×N and A ∈ RN×N is different due to reordering,
they represent the same graph structure.

To preserve observed values during the diffusion process, we replace the first |Va
k | rows in A

(a)
with

one-hot vectors indicating Va
k . Consequently, we obtain a transition matrix Ã(a) ∈ RN×N expressed

by

Ã(a) =

[
Ikk 0ku

A
(a)

uk A
(a)

uu

]
, (10)

where Inn ∈ R|Va
n|×|Va

n| is an identity matrix and 0nz ∈ R|Va
n|×|Va

z | is a zero matrix. The diffusion
process of FP is implemented by iterative propagation steps utilizing Ã(a) as

x̄a(t) = Ã(a)x̄a(t− 1), t = 1, · · · ,K;

x̄a(0) =

[
xa
k

0a
u

]
,

(11)

where x̄a(t) is an imputed feature vector after t propagation steps and 0a
u denotes a zero vector of the

same length as |Va
k |. As K → ∞, this recursion converges and x̄a(t) reaches a steady state (the proof

can be found in Appendix B). We use x̄a(K) with large enough K to approximate the steady state.

After this diffusion process for the entire channels, we attain {x̄a(K)}Fa=1. Since these vectors
have different ordering due to channel-wise reordering, we rearrange {x̄a(K)}Fa=1 in the original
order and construct X ∈ RN×F by stacking the originally ordered vectors in {x̄a(K)}Fa=1 along the
channels. In summary, FP fills in missing values in X through diffusion using A while preserving
features corresponding to values of 1 in M.

B Proof of Convergence of Feature Propagation

Feature propagation (FP) [30] utilize symmetrically normalized transition matrix for the diffusion
process implemented by iterative propagation steps. We prove the convergence of this diffusion
process as follows.

Proposition 1. The transition matrix for the a-th channel is defined by

Ã(a) =

[
Ikk 0ku

A
(a)

uk A
(a)

uu

]
,
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where Ã(a) is symmetrically normalized. Using Ã(a), the diffusion process in the a-th channel is
defined by

x̄a(t) = Ã(a)x̄a(t− 1), t = 1, · · · ,K;

x̄a(0) =

[
xa
k

0a
u

]
,

Then, lim
K→∞

x̄(a)(K) converges.

The proof of Proposition 1 refers to [30]. We begin with two lemmas.

Lemma 1. A
(a)

is the symmetrically normalized matrix calculated by A
(a)

=
(D(a))−1/2A(a)(D(a))−1/2 where D(a) is a diagonal matrix that has diagonal entities

D
(a)
ii =

∑
j A

(a)
i,j . A

(a)

uu is the |x̄(a)
u | × |x̄(a)

u | bottom-right submatrix of A
(a)

and let ρ(·)
denote spectral radius. Then, ρ(A

(a)

uu ) < 1.

Proof. Consider A
(a)

uu0 ∈ RN×N , where the bottom right submatrix is equal to A
(a)

uu and all other
elements are zero. That is,

A
(a)

uu0 =

[
0kk 0ku

0uk A
(a)

uu

]
where 0kk ∈ {0}|x̄

(a)
k |×|x̄(a)

k |, 0ku ∈ {0}|x̄
(a)
k |×|x̄(a)

u |, and 0uk ∈ {0}|x̄(a)
u |×|x̄(a)

k |. Given that A
(a)

represents the weighted adjacency matrix of the connected graph G, A
(a)

uu0 ≤ A
(a)

element-wise

and A
(a)

uu0 ̸= A
(a)

. Furthermore, considering that A
(a)

uu0 +A
(a)

constitutes the weighted adjacency

matrix of a strongly connected graph, we can conclude that A
(a)

uu0 + A
(a)

is irreducible based

on Theorem 2.2.7 in [31]. Consequently, applying Corollary 2.1.5 in [31], ρ(A
(a)

uu0) < ρ(A
(a)

).

Furthermore, ρ(A
(a)

) ≤ 1 since we can write A
(a)

= I − (D(a))−1/2A(D(a))−1/2, where

(D(a))−1/2A(D(a))−1/2 has eigenvalues in the range [0, 2] [32]. Note that since both A
(a)

uu0 and A
(a)

uu

share the same non-zero eigenvalues, it follows that ρ(A
(a)

uu0) = ρ(A
(a)

uu ). Ultimately, combining

these inequalities leads to the result ρ(A
(a)

uu ) = ρ(A
(a)

uu0) < ρ(A
(a)

) = 1.

Lemma 2. Iuu −A
(a)

uu is invertible where Iuu is the |x̄(a)
u | × |x̄(a)

u | identity matrix.

Proof. Since 1 is not an eigenvalue of A
(a)

uu by Lemma 1, 0 is not an eigenvlaue of Iuu −A
(a)

uu . Thus

Iuu −A
(a)

uu is invertible.

We now prove Propostion 1 as follows.

Proof. The recursive relation can be written as

x̄(a)(t) =

[
x̄
(a)
k (t)

x̄
(a)
u (t)

]
=

[
Ikk 0ku

A
(a)

uk A
(a)

uu

] [
x̄
(a)
k (t− 1)

x̄
(a)
u (t− 1)

]
=

[
x̄
(a)
k (t− 1)

A
(a)

uk x̄
(a)
k (t− 1) +A

(a)

uu x̄
(a)
u (t− 1)

]
.

Since x̄
(a)
k (t) = x̄

(a)
k (t − 1) in the first |x̄(a)

k | rows, it follows that x̄(a)
k (K) = . . . = x̄

(a)
k . That is,

x̄
(a)
k (K) retains the values of x(a)

k . Therefore, lim
K→∞

x̄
(a)
k (K) converges to x

(a)
k .
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Table 2: Ablation study. Con and Sta denote the concatenation and standardization, respectively,
which enable capturing dissociating gene-gene relationships.

Con Sta Baron Mouse Zeisel Baron Human
ARI NMI CA ARI NMI CA ARI NMI CA

✗ ✗ 0.625±0.001 0.777±0.001 0.719±0.003 0.789±0.000 0.738±0.000 0.851±0.000 0.805±0.000 0.837±0.000 0.813±0.000

✗ ✓ 0.623±0.000 0.788±0.001 0.710±0.001 0.898±0.000 0.856±0.000 0.948±0.000 0.816±0.000 0.846±0.002 0.819±0.001

✓ ✗ 0.629±0.001 0.791±0.000 0.731±0.002 0.821±0.000 0.794±0.000 0.839±0.000 0.808±0.002 0.841±0.001 0.818±0.002

✓ ✓ 0.827±0.093 0.847±0.034 0.846±0.084 0.902±0.000 0.863±0.000 0.952±0.000 0.823±0.000 0.858±0.000 0.827±0.000

Table 3: Further ablation study of scCR on cell clustering measured by ARI. PRE, COM, and DEN
denote the pre-imputation stage, the complete relation stage, and the denosing stage, respectively.

PRE COM DEN Baron Mouse Zeisel Baron Human

✓ ✗ ✗ 0.437± 0.061 0.682± 0.024 0.580± 0.036
✓ ✓ ✗ 0.409± 0.008 0.732± 0.001 0.571± 0.007
✓ ✗ ✓ 0.584± 0.000 0.822± 0.000 0.681± 0.000
✓ ✓ ✓ 0.827± 0.093 0.902± 0.000 0.823± 0.000

We now focus solely on the convergence of lim
K→∞

x̄
(a)
u (K). When we unroll the recursion for the last

|x̄(a)
u | rows,

x̄(a)
u (K) = A

(a)

uk x
(a)
k +A

(a)

uu x̄
(a)
u (K − 1)

= A
(a)

uk x
(a)
k +A

(a)

uu (A
(a)

uk x
(a)
k +A

(a)

uu x̄
(a)
u (K − 2))

= . . .

= (

K−1∑
t=0

(A
(a)

uu )
t)A

(a)

uk x
(a)
k + (A

(a)

uu )
K x̄(a)

u (0)

By Lemma 1, lim
K→∞

(A
(a)

uu )
K = 0. Therefore, lim

K→∞
(A

(a)

uu )
K x̄

(a)
u (0) = 0, regardless of the initial

state for x̄(a)
u (0). (we replace x̄

(a)
u (0) with a zero column vector for simplicity.) Hence, our focus

shifts to lim
K→∞

(
∑K−1

t=0 (A
(a)

uu )
t)A

(a)

uk x
(a)
k .

Given that Lemma 1 establishes ρ(A
(a)

uu ) < 1, and Lemma 2 affirms the invertibility of (Iuu −
A

(a)

uu )
−1, the geometric series converges as follows

lim
K→∞

x̄(a)
u (K) = lim

K→∞
(

K−1∑
t=0

(A
(a)

uu )
t)A

(a)

uk x
(a)
k = (Iuu −A

(a)

uu )
−1A

(a)

uk x
(a)
k .

In conclusion, the recursion in FP converges.

C Ablation Study

We conducted an ablation study to analyze the effectiveness of each component in scCR. We
performed cell clustering on the Baron Mouse, Zeisel, and Baron Human datasets. As shown in
Table 2, both concatenation and standardization contributed to performance improvement, and the
combination of the two components led to significant performance improvement.

We conducted an additional ablation study to assess the effectiveness of each stage of scCR. Table 3
presents the results of the ablation study in terms of cell clustering, measured by ARI. As shown in the
table, adding the complete relation stage and the denoising stage significantly improved performance
compared to using only the pre-imputation stage. These results confirm that the complete relation
and denoising stages contributed substantially to the high performance of scCR, underscoring the
well-founded design of our approach.
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Table 4: Performance on dropout recovery under Missing Not At Random (MNAR) settings, measured
by RMSE.

Dataset scFP scBFP scCR (ours)

Baron Mouse 0.517± 0.000 0.465± 0.000 0.304± 0.000
Pancreas 0.537± 0.001 0.506± 0.001 0.352± 0.000
Mouse Bladder 0.374± 0.000 0.374± 0.001 0.170± 0.000
Zeisel 0.580± 0.001 0.538± 0.000 0.489± 0.000
Worm Neuron 0.330± 0.000 0.190± 0.000 0.049± 0.000
Baron Human 0.493± 0.000 0.475± 0.000 0.328± 0.000

D Missing Not at Random Settings

Existing studies [11, 12] simulate dropout by randomly sampling non-zero values in a cell-gene matrix
from a uniform distribution and setting them to zero (i.e., missing completely at random (MCAR)).
However, in real scRNA-seq data, dropouts occur more frequently in genes with low expression
levels rather than those with high variance [33]. This is because the probability of capturing RNA
transcripts of low-expression-level genes during sequencing is lower. Based on this dropout pattern,
we selected the 1,000 genes with the lowest expression levels and simulated dropout only in these
genes. We randomly sampled non-zero values of these genes from a uniform distribution and replaced
the sampled values with zero (i.e., missing not at random (MNAR)).

Table 4 presents the performance comparison under the aforementioned MNAR settings in terms of
data recovery, measured by RMSE. We compared our scCR to the two most competitive baselines,
scFP [11] and scBFP [12]. The dropout rate was set to 20% of the total number of values in the
cell-gene matrix. As shown in the table, scCR outperformed the compared methods by significant
margins in the realistic dropout settings, demonstrating the robustness of scCR in realistic scenarios.
Considering realistic dropout simulation can help pre-assess the generalizability of techniques in
practical scRNA-seq applications.

E Memory Usage Analysis

Table 5: Comparison of input and memory complexity. X ∈ RG×C denote a cell-gene matrix, where
C and G represent the number of cells and genes, respectively. Acell ∈ RC×C and Agene ∈ RG×G

denote cell-cell and gene-gene adjacency matrices, respectively. θ denotes trainable parameters. B
represents the batch size for batch-wise k-NN graph construction.

Method Input Big-O

scTAG X, Acell, θ O(GC) +O(Ecell) +O(θ)
DCA X, θ O(GC) +O(θ)
AutoClass X, θ O(GC) +O(θ)
scGNN 2.0 X, θ O(GC) +O(Ecell) +O(θ)
scGCL X, Acell, θ O(GC) +O(Ecell) +O(θ)
MAGIC X, Acell O(GC) +O(Ecell)
scFP X, Acell O(BC) +O(Ecell)
scBFP X, Acell, Agene O(BC) +O(Egene) +O(BG) +O(Ecell)
scCR (Ours) X, Acell, Agene O(BC) +O(Egene) +O(BG) +O(Ecell)

We analyzed the memory complexity of all methods used in this paper and conducted additional
experiments to examine the memory usage of our scCR. Table 5 compares the input and memory
complexity of scCR with other state-of-the-art methods. To alleviate the high memory demands
during k-NN graph construction, we adopted the batch-wise k-NN graph construction strategy from
[12]. When constructing k-NN graphs among genes, we divided the genes into batches of size B
and computed k-nearest neighbors for each batch. We applied the same batch-wise strategy when
constructing k-NN graphs among cells. This approach reduces memory requirements by avoiding
the need to store distances between all points in the entire dataset simultaneously. Specifically, in
the memory complexity of scCR, batch-wise k-NN graph construction changes O(G2) and O(C2)
to O(BG) and O(BC), respectively. Consequently, batch-wise k-NN graph construction enables
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Table 6: Memory usage of scCR for different datasets, measured by gigabytes (GB).

Baron Mouse Pancreas Mouse Bladder Zeisel Worm Neuron Baron Human

Memory usage (GB) 1.811 1.837 1.957 2.037 1.927 3.861

processing of large datasets that would otherwise be infeasible due to memory constraints. Moreover,
scCR does not require any trainable parameters, unlike other deep-learning-based methods.

We further measured the memory usage of scCR across various datasets, as shown in Table 6. The
results in the table indicate that the advantages of scCR extend beyond its superior performance and
time efficiency, showcasing its scalability as well.

F Hyperparameter Sensitivity

Table 7: Performance of scCR on cell clustering measured by ARI for different values of α.

α Baron Mouse Zeisel Baron Human

0.01 0.627± 0.000 0.903± 0.000 0.823± 0.000
0.05 (used) 0.827± 0.093 0.902± 0.000 0.823± 0.000
0.1 0.727± 0.141 0.904± 0.000 0.824± 0.000
0.5 0.701± 0.000 0.901± 0.000 0.681± 0.000
0.9 0.448± 0.001 0.825± 0.000 0.683± 0.001

Table 8: Performance of scCR on cell clustering measured by ARI for different values of β.

β Baron Mouse Zeisel Baron Human

0.1 0.440± 0.046 0.659± 0.058 0.553± 0.040
0.5 0.476± 0.049 0.724± 0.000 0.560± 0.001
0.9 0.509± 0.004 0.740± 0.000 0.657± 0.000
0.95 0.498± 0.002 0.910± 0.000 0.666± 0.011
0.99 (used) 0.827± 0.093 0.902± 0.000 0.823± 0.000
0.999 0.925± 0.000 0.900± 0.000 0.819± 0.000

Table 9: Performance of scCR on cell clustering measured by ARI for different values of γ.

γ Baron Mouse Zeisel Baron Human

0.001 0.927± 0.001 0.902± 0.000 0.824± 0.000
0.01 (used) 0.827± 0.093 0.902± 0.000 0.823± 0.000
0.05 0.635± 0.000 0.903± 0.000 0.822± 0.000
0.1 0.595± 0.000 0.903± 0.000 0.667± 0.001
0.5 0.469± 0.003 0.740± 0.000 0.627± 0.011
0.9 0.409± 0.009 0.749± 0.000 0.586± 0.006

Table 10: Performance of scCR on cell clustering measured by ARI for different values of k.

k Baron Mouse Zeisel Baron Human

1 0.628± 0.000 0.905± 0.000 0.827± 0.000
2 (used) 0.827± 0.093 0.902± 0.000 0.823± 0.000
3 0.631± 0.000 0.903± 0.000 0.819± 0.000
5 0.625± 0.002 0.902± 0.001 0.818± 0.000
10 0.621± 0.000 0.903± 0.000 0.818± 0.000
15 0.630± 0.000 0.902± 0.000 0.817± 0.000

We conducted additional experiments to provide a comprehensive analysis of the impact of different
hyperparameters, including α, β, γ, and k, on the performance of scCR. We report ARI in cell
clustering on three datasets by varying α, β, γ, and k within the ranges of {0.01, 0.05, 0.1, 0.5,
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0.9}, {0.1, 0.5, 0.9, 0.95, 0.99, 0.999}, {0.001, 0.01, 0.05, 0.1, 0.5, 0.9}, and {1, 2, 3, 5, 10, 15},
respectively. When varying a target parameter, other hyperparameters were fixed to their default
settings. Table 7, Table 8, Table 9, and Table 10 illustrate how these hyperparameter choices impact
scCR performance. As shown in the tables, the values of α, β, γ, and k used in this study generally
resulted in strong performance.

In terms of sensitivity, when the runner-up ARI scores are 0.660±0.00, 0.848±0.00, and 0.677±0.00
for Baron Mouse, Zeisel, Baron Human, respectively, scCR demonstrated robustness against hyper-
parameter variations. Specifically, α ∈ {0.05, 0.1, 0.5}, β ∈ {0.99, 0.999}, and γ ∈ {0.001, 0.01}
yielded state-of-the-art performance across the datasets. For k, scCR showed strong performance
across all values, except in the case of Baron Human. Additionally, some parameter adjustments led
to performance surpassing that of the default settings. However, given the unsupervised nature of
single-cell analysis, we retain default hyperparameter settings that generally perform well.

G Experimental Details

G.1 Implementation Details

We conducted all the experiments on a single NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core
I5-6600 CPU at 3.30 Hz. The number of neighbors (k) in cell-cell and gene-gene k-NN graphs were
set to 15 and 2, respectively. The total number of propagation steps K was set to 40 for both cell-cell
and gene-gene FP. We set α, β, and γ to 0.05, 0.99, and 0.01, respectively. We found that the choice
between row-stochastic normalization and symmetric normalization applied to A

cell(3)
within Soft

FP [11] affected performance, and we reported the best result. For dropout recovery, we excluded the
denoising stage (i.e., γ = 1).

G.2 Datasets

For our experiments, we utilized six real scRNA-seq datasets, including Baron Mouse [23], Pan-
creas [24], Mouse Bladder [25], Zeisel [2], Worm Neuron [26], and Baron Human [23]. Table 11
summarizes the dataset statistics. We downloaded all the datasets from the GitHub repository2

for [11]. These publicly available datasets and the repository have no public declaration of license.

We leveraged a commonly used pre-processing procedure for scRNA-seq data as described in recent
studies [11, 12]. We performed minimal quality control (QC) using SCANPY [34], a toolkit for
scRNA-seq analyses. Cells and genes exhibiting no gene expression (i.e., with all zero values) were
removed from a given cell-gene matrix. We retained the 2,000 genes with the highest variance in
each dataset. We then normalized each cell by total counts over all genes to ensure that every cell had
an equal total count of 1.0. That is, every row vector was divided by its library size, which is the sum
of its values. After scaling by the median library size, log(x+ 1) transformation was applied to all
values in the cell-gene matrix, resulting in a pre-processed cell-gene matrix.

Table 11: Dataset statistics.
Dataset Protocol #Cells #Genes #Cell Type

Baron Mouse inDrop 1,886 14,861 13
Pancreas inDrop 1,937 15,575 14

Mouse Bladder Microwell-seq 2,746 19,771 16
Zeisel STRT-seq UMI 3,005 19,972 7

Worm Neuron sci-RNA-seq 4,186 13,488 10
Baron Human inDrop 8,569 17,499 14

2https://github.com/Junseok0207/scFP
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G.3 Baselines

For all the baselines, we used the code released by the author of the respective papers. Table 12 shows
the URL links for the baselines. scTAG and scGNN 2.0 are under the MIT license. The licenses of
DCA, AutoClass, and MAGIC are Apache-2.0, GPL-3.0, and GPL-2.0, respectively. The code for
scGCL, scFP, and scBFP has no public declaration of license. For each baseline, we adhered the
hyperpameter/parameter setting in the released code or its respective paper.

Table 12: URL links for baselines.
Baseline URL Link
scTAG https://github.com/Philyzh8/scTAG
DCA https://github.com/theislab/dca
AutoClass https://github.com/datapplab/AutoClass
scGNN 2.0 https://github.com/OSU-BMBL/scGNN2.0
scGCL https://github.com/zehaoxiong123/scGCL
MAGIC https://github.com/KrishnaswamyLab/MAGIC
scFP https://github.com/Junseok0207/scFP
scBFP https://github.com/Junseok0207/scBFP

G.4 Evaluation Metrics

G.4.1 Clustering

Higher ARI, NMI, and CA indicate better performance in cell clustering.

ARI. The Adjusted Rand Index (ARI) is the corrected-for-chance version of the Rand Index (RI). RI
is computed as follows:

RI =
TP + TN(

N
2

) (12)

where TP is the number of true positives and TN is the number of true negatives. True positive
indicates the number of cell pairs correctly assigned to the same cluster, and TP indicates the number
of cell pairs correctly assigned to different clusters. ARI can be calculated as follows:

ARI =
RI − E(RI)

max(RI)− E[RI]
(13)

While RI produces a value between 0 and 1, ARI can produce negative values if the index is less than
the expected index.

NMI. Normalized Mutual Information (NMI) is a normalization of the Mutual Information (MI)
score to scale the scores between 0 and 1. NMI is computed as follows:

NMI =
2× I(S;C)

H(S) +H(C)
(14)

where S is ground-truth cell types, I(·, ·) is the mutual information between two input distributions,
and H(·) is the entropy function. Here, all logs are base-2. Higher NMI indicates the distribution of
predicted cluster distribution is more similar to ground-truth cell type distribution.

CA. Clustering Accuracy is calculated as follows:

CA = max
m

∑N
i=1 1si=m(ci)

N
(15)

where si is the ground-truth cell type of the i-th cell, ci is predicted cluster assignment of the i-th
cell, and m(·) is the matching function responsible for mapping predicted cluster assignments to
ground-truth cell types.

G.4.2 Recovery

Lower Median L1 Distance and RMSE indicate better performance in data recovery. Consider two
set X = {x1, . . . , xn} and Y = {y1, . . . , yn}, where X is the set of imputed values and Y is the set
of their ground-truth values.
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Median L1 Distance. Median L1 Distance is calculated as follows:

Median L1 Distance = median(|x1 − y1|, . . . , |xn − yn|). (16)

RMSE. Root Mean Square Error (RMSE) is computed as follows:

RMSE(X ,Y) =

√∑N
i=1(xi − yi)2

N
(17)

H Additional Experimental Results

H.1 Varying Scales across Genes

Figure 9: An heatmap of the cell-gene matrix in the Baron Human dataset. We randomly selected 10
genes (columns).
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H.2 Dropout Recovery

Figure 10: Performance on dropout recovery, measured by L1 Median Distance. Figures highlighted
in green indicate reduction rates from the most competitive baseline at each setting.

21



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarified the scope of our work in the abstract and Sec. 1. The contributions
of our paper are summarized in Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Sec. 6 as follows: Like other
scRNA-seq imputation methods, scCR is specifically designed for scRNA-seq data.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the proof of convergence of FP in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results of our work. See Appendix G.1 and Appendix G.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the publicly available sources of datasets and baselines in Ap-
pendix G.2 and Table 12 in Appendix G.3, respectively.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Sec. 5.1 and Appendix G.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the average performance with standard deviation errors across
independent three runs. See Table 1 and Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the computer resources in Appendix G.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both potential positive societal impacts and negative societal
impacts of our work in the Broader Impacts section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We specify the sources and licenses for all the baselines and datasets in
Appendix G.3 and Appendix G.2, respectively.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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