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Abstract
The Hessian matrix and its spectrum hold significant theoretical and practical relevance as they cap-
ture the pairwise interaction of the parameters, and as a result have been widely used in building
preconditioned optimizers, measuring generalization performance, studying the effect of learning
rate and other hyperparameters, optimally pruning parameters, and more. Given its versatility and
importance, several prior works have tried to characterize the Hessian spectrum through its spectral
density, rank, description of the outlier and bulk in its spectrum, while often resorting to random ma-
trix theory based approximations. However, grasping how the top eigenvalue precisely behaves has
remained unclear, let alone the corresponding eigenvectors, due to a lack of its closed form for any
non-trivial class of neural networks. Likewise, given the acute costs required to empirically estimate
the Hessian or its various spectral measures (such as the top eigenvalue, trace, and determinant),
our understanding of their behaviour continues to be somewhat muddled. In this work, we derive a
closed form of all the eigenvalues and their corresponding eigenvectors for one-hidden layer, linear
as well as ReLU, uni-dimensional networks with arbitrary hidden-layer width and for the loss ag-
gregated over any number of samples. As a consequence of these theoretical results, we shed light
on the previously undiscovered ‘paired’ nature of the spectrum outlier eigenvalues, the grouped
composition of the trace, and a cell-wise decomposition of the Hessian spectrum with ReLU.

1. Setup & Results

Assume we have a one-hidden layer scalar linear network f : R 7→ R, namely, f(x) = ⟨w,v⟩x,
with the parameters w,v ∈ Rm. Although this is a simplified setting, it has been put to significant
use by past works such as the occurrence of the catapults in loss with large learning rates [5] as well
as understanding the edge-of-stability behaviour [7]. Moving further, let us consider mean-squared
error (MSE) loss ℓ(w,v) = 1

2n

∑n
i=1(⟨w,v⟩ · xi − yi)

2 computed over a set of n data points
{(xi, yi)}ni=1. Further, let us define the shorthands for the (uncentered) input standard deviation as

σ =
√

1
n

∑n
i=1 x

2
i , the (uncentered) input-output covariance as yx = 1

n

∑n
i=1 yixi, and the (un-

centered) residual-input covariance as δx = 1
n

∑n
i=1 xi δi, where the residual δi = ⟨w,v⟩xi − yi

denotes how far off the network is on fitting the datapoint (xi, yi). Then for this network, the Hes-
sian spectrum has the following closed form:

Theorem 1 For the setting of a one-hidden layer scalar linear network f(x) = ⟨w,v⟩x with 2m
parameters and as detailed above, the Hessian HL spectrum consists of m−1 repeated eigenvalues

© S.P. Singh & T. Hofmann.
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Figure 1: Impact of data scaling on the Hessian spectrum for two networks of different width. The
considered task is that of a random Gaussian regression setting.

λbulk = ± δx and two paired outlying eigenvalues defined by the following expression:

λoutlier1,2 =
1

2
(σ2∥w∥2 + σ2∥v∥2)± 1

2

√
(σ2∥w∥2 + σ2∥v∥2)2 + 4(δx

2
+ 2σ2δx⟨w,v⟩) (1)

Firstly, we see that the eigenvalues scale in proportion to the input variance σ2. A common
starting element of machine learning pipelines is to normalize1 the data, and as shown in the Fig-
ure 1, we realize how that can significantly sharpen the Hessian spectrum. Next, by noting that the
trace of the Hessian in this setting is given by Tr(HL) = σ2∥w∥2 + σ2∥v∥2, the above expression
of the outlying eigenvalues can be reformulated as,

λoutlier1,2 =
1

2
Tr(HL)±

√
1

4
Tr2(HL)− λoutlier1λoutlier2 . (2)

Further, the expression −λoutlier1λoutlier2 = (δx
2
+ 2σ2δx⟨w,v⟩) inside the expression of

the outlying eigenvalues can be rewritten as, (⟨w,v⟩σ2 − yx)(3⟨w,v⟩σ2 − yx) which is neg-
ative if ⟨w,v⟩ ≤ yx/σ2 and ⟨w,v⟩ ≥ yx/3σ2 and non-negative otherwise. Note, yx/σ2 =
E [yx]/E [x2] =: θ⋆ is precisely the closed-form solution for the scalar parameter θ in the linear
regression y = θ x. Effectively, the linear network under consideration is nothing but a parameteri-
zation of this scalar in the form of an inner-product between the layer weights w,v.

So, we categorize the phases of learning in three kinds: ‘early phase’: ⟨w,v⟩ ≤ θ⋆/3, ‘late
phase’: θ⋆/3 ≤ ⟨w,v⟩ ≤ θ⋆ and ‘divergent phase’: θ⋆ ≤ ⟨w,v⟩. In early and divergent phases,
λoutlier1 ≥ Tr(HL) and λoutlier2 ≤ 0. In the late phase, we have that λoutlier1 ≤ Tr(HL) and
λoutlier2 ≥ 0. Upon reaching the solution, the Hessian is just rank one, with its spectrum given by
λoutlier1 = Tr(HL) = σ2∥w∥2 + σ2∥v∥2, and with the rest of the eigenvalues being 0.

An interpretation of the top Hessian eigenvalue, or sharpness. We can also express it as,

λ1,2 =
1

2
(σ2∥w∥2 + σ2∥v∥2)± 1

2

√
(σ2∥w∥2 − σ2∥v∥2)2 + 4σ4 (∥w∥2∥v∥2 − ⟨w,v⟩2) + 4 (2⟨w,v⟩σ2 − yx)2

1. Ghorbani et al. [3] have noted how batch normalization (BN) can suppress outlier eigenvalues; but given how BN
would function similar to data normalization albeit within the network, we suspect BN has a wider impact at the
Hessian spectrum and not just the outlier eigenvalues.
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And so, inherently the semantics of sharpness lie in a net quantification of the discrepancy
between the layer parameter norms, making the parameters co-linear, and capturing part of the
target, alongside (the somewhat expected) overall parameter norm.

The structure of eigenvectors. Moving ahead, let us shift our focus on deriving a closed form
and understanding the structure of the eigenvectors, ordered as per θθθ = (v⊤,w⊤)⊤.
Theorem 2 For the above setting, the Hessian eigenvectors corresponding to the outlying eigen-
values, determined up to scaling and sign, take the form, for i ∈ {1, 2}, given below:

zoutlieri =

(
λoutlieri w + δxv

δxw + λoutlieri v

)
= λoutlieri

(
w

v

)
+ δx

(
v

w

)
(3)

Thus, the outlier eigenvectors live in a two-dimensional space spanned by the vectors
{(

w
v

)
,

(
v
w

)}
and, in fact, form its orthonormal basis. When the gradient of the loss is non-zero, we can further
express these eigenvectors as, zoutlieri =

λoutlieri
δx

∇θθθℓ + δxθθθ.
In contrast, the eigenvectors corresponding to the bulk eigenvalues live in a 2m−2 dimensional

subspace, which is essentially determined by the orthogonal complements of the vectors w+v, w−
v. More explicitly, we have that:
Theorem 3 For the above setting, the Hessian eigenvectors corresponding to the bulk eigenvalues
have the form, determined up to scaling and sign, zbulk =

(
ẑ⊤bulk sgn(λbulk) ẑ

⊤
bulk

)⊤ with

ẑbulk =

(
I− (w + sgn(λbulk)v)(w + sgn(λbulk)v)

⊤

∥w + sgn(λbulk)v∥2

)
c , for some vector c

As it turns out, the eigenvector proofs provide another way to derive the closed form of eigenvalues.
Besides, the above expression of the eigenvectors also suggests that they would change smoothly
over the course of training, unless there are rapid changes in the subspace spanned by the parameters.

2. Extension to the ReLU case

Assume the network is now, f(x) = w⊤(v · x)+, where, (a)+ = 1{a > 0} is the ReLU non-
linearity and is applied elementwise. For this particular network, a hidden neuron j ‘fires’ if vjx >
0, i.e., when either vj > 0, x > 0 and vj < 0, x < 0. Hence, this parameter space partitions in
tandem with the partitions of the input space, the latter will be referred to as cells, which are namely,
the + cell where x > 0 and the − cell where x ≤ 0.

Notice, we can write v = v ⊙ 1{v > 0}+ v ⊙ 1{v ≤ 0} =: v+ + v−, where ⊙ denotes the
Hadamard product and 1{a > 0}j = 1{aj > 0}. Likewise, we can associate the w parameters to
these two cells as, w = w+ +w−, with w+ = w ⊙ 1{v > 0} and w− = w ⊙ 1{v ≤ 0}. Thus,
we can express the network function in the following manner,

f(x) = ⟨w+,v+⟩x1{x > 0}+ ⟨w−,v−⟩x1{x ≤ 0}

We specialize the previously defined shorthands for various data-dependent quantities to each
of the two cells. In particular, let us define the (uncentered) standard deviation of the positive
and negative datapoints as, σ+ =

√
1
n+

∑n
i=1 x

2
i 1{xi > 0} and σ− =

√
1
n−

∑n
i=1 x

2
i 1{xi < 0}

3
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Figure 2: Hessian spectrum for
ReLU networks. The eigenval-
ues are coloured based on their
source cell, i.e., from the positive
cell or the negative. Here, q = 6
neurons are present in the posi-
tive cell, while m − q = 4 in
the negative cell. The dotted gray
line demarcates the negative and
positive eigenvalues.

respectively, and besides, the total number of points can split as n = n+ + n−. Also, denote
the (uncentered) input-output covariance for the positive and negative cells respectively as follows,
yx+ = 1

n+

∑n
i=1 yixi1{xi > 0} , and yx− = 1

n−

∑n
i=1 yixi1{xi ≤ 0} . In this setting, the param-

eter space can be nicely partitioned in such a way that the Hessian can be decoupled.
Theorem 4 For the setting of one-hidden layer ReLU scalar network, the Hessian is decoupled
between the positive and the negative cells, and hence up to row and column permutations is,

HL =

(n+

n HL
+ 0

0 n−
n HL

−

)
(4)

where, the cell-wise Hessian matrices are weighed by the respective density of the cells.

Let us assume that q coordinates of the parameter vector v are positive. Then we have that
the spectrum in this ReLU case is a corollary of the previous Hessian decoupling result and the
eigenvalues in the linear case.
Corollary 5 The bulk Hessian spectrum consists of q − 1 and m− q − 1 repeated eigenvalues in
signed pairs, λ+

bulk = ±n+

n xδ+ , λ−
bulk = ±n−

n xδ− and with the outlying eigenvalues being

λ+
outlier1,2 =

n+

2n
(σ2

+∥w+∥2 + σ2
+∥v+∥2)±

n+

2n

√
(σ2

+∥w+∥2 + σ2
+∥v+∥2)2 + 4(δx

2
+ + 2σ2

+δx+⟨w+,v+⟩)

λ−
outlier1,2 =

n−
2n

(σ2
−∥w−∥2 + σ2

−∥v−∥2)±
n−
2n

√
(σ2

−∥w−∥2 + σ2
−∥v−∥2)2 + 4(δx

2
− + 2σ2

−δx−⟨w−,v−⟩)

We see that just as in the linear case, we obtain a set of paired outlier eigenvalues, with a dependence
on respective cell-wise quantities. Figure 3 highlights the paired nature of the outlying eigenvalues,
for both linear and ReLU, throughout training. Similarly, the eigenvectors from the linear case also
carry over to the ReLU case here.

We can see that in both cases the second outlying eigenvalue starts out negative, but which
subsequently changes sign a little while into training, which would mark the exit of the early phase
in our terminology, and finally converges to zero from the top (the positive side). On the other
hand, when the learning rate is high, we find that the second outlying eigenvalue first drops and
then increases, beyond which it wiggles around 0, and eventually becomes small and negative and
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(a) Linear (b) ReLU

Figure 3: The paired nature of outlying eigenvalues throughout training. For the ReLU network, the
outlying pair of eigenvalues corresponding to the positive cell are shown. Both the cases are with
gradient descent on a synthetic wedge dataset, with a single hidden layer network of width 10 using
a learning rate of 0.18 and momentum 0.9.

remains like that throughout. Hence, in the divergent phase, we can think of the second outlying
eigenvalue approaching zero from the bottom (the negative side).

Impact of ReLU on the Hessian spectrum. First of all, we notice that the eigenvalues scale
in proportion to the density (n+/n or n−/n) of the corresponding cell, i.e., cells which are active
for a small number of samples will be less prominent in the spectrum, and vice versa. This also
suggests a natural principle for the occurrence of numerous spuriously tiny eigenvalues with ReLU,
as opposed to the linear case where there is a much clearer demarcation between zero and non-zero
eigenvalues [6]. Lastly, while the above simple setup only has two partitions of the input space, and
that too even mutually exclusive ones, we can nevertheless expect a non-trivial overlap and cross-
terms to arise between the cells in the general case. But, it would form an interesting question for
future work to see how well would the independent cell-wise Hessian serve as an approximation.
All in all, this cell-wise decomposition of the Hessian hints at how the spectrum with a non-linearity
like ReLU might be structured over and above the spectrum for a network with linear activations.

3. Extension to the bias case

In our analysis hitherto, we have assumed that the bias parameters are absent. By enabling bias
parameters, we will have additional flexibility in the function class, and being a special case of d = 2
inputs, it will also provide us insights into how things change with increasing input dimension. So
assume that our network is now, f(x) = w⊤(vx+ b).

Theorem 6 For the above linear network with bias, assume that ⟨v,b⟩ = 0 and ∥v∥ = ∥b∥, as
well as σ2 = 1 and zero-mean data E [x] = 0,E [y] = 0 and yx = 0. Then the spectrum consists
of the following sets of outlier eigenvalues, the first being the following pair,

λ =
1

2
(∥v∥2 + ∥w∥2)± 1

2

√
(∥v∥2 + ∥w∥2)2 + 12(δx

2
+ δ

2
) (5)
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and the second is the triple λk = tk + (∥v∥2 + ∥w∥2)/3 , where tk for k = 0, 1, 2:

tk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− k

2π

3

)
with, p = −(δx

2
+ δ

2
)− (∥v∥2+ ∥w∥2)2/3 and q = − 2

27(∥v∥
2+ ∥w∥2)3− 1

3∥v∥
2(δx

2
+ δ

2
)+

2
3∥w∥2(δx2+δ

2
) and the rest being the bulk eigenvalues λbulk = ±

√
δx

2
+ δ

2
and 0 eigenvalues.

The expression of the outlier pair strictly generalizes the case without bias, where the eigenval-
ues would be:

λ =
1

2
(∥v∥2 + ∥w∥2)± 1

2

√
(∥v∥2 + ∥w∥2)2 + 12δx

2
(6)

As fas as the eigenvalue triple is concerned, since cos ∈ [−1, 1], we can upper and lower bound
the above solutions to the cubic as:

1

3
(∥v∥2 + ∥w∥2)− t′ ≤ λ0,1,2 ≤

1

3
(∥v∥2 + ∥w∥2) + t′

with

t′ = 2

√
−p

3
= 2

√
1

3
(δx

2
+ δ

2
) +

1

9
(∥v∥2 + ∥w∥2)2 = 2

3

√
(∥v∥2 + ∥w∥2)2 + 3(δx

2
+ δ

2
) .

The proof technique becomes highly involved and cumbersome in the above case, requiring
solving the roots of a polynomial of degree 6. In general, polynomials of degree 5 or more do
not have solutions in radicals, by the Abel-Ruffini theorem. However, the additional assumptions
made in the theorem allow for a slight simplification of the resulting degree 6 equation, which can,
in turn, be factorized into a product of a quadratic, cubic, and a linear term. Another thing worth
remarking is that here we have a pair of eigenvalues centered at 1/4 ·Tr(HL), and a triplet centered
at 1/6 · Tr(HL), as here Tr(HL) = 2(∥v∥2 + ∥w∥2). Recall, for the D = 1 case, we had a pair of
eigenvalues centered around 1/2 · Tr(HL). We conjecture that such a trend would also hold for the
general d case, although we show it here for D = 1, 2 only.

4. Discussion

Summary. We provide a closed-form of the Hessian spectrum, i.e., all eigenvalues as well as eigen-
vectors, for both linear and ReLU networks in the scalar regression case. The obtained expressions
provide insights into their intriguing nature in an exact manner, as seen via the paired nature of
outlying eigenvalues and cell-wise decomposition of the Hessian for ReLU.

Related work. We would like to remark that the closest work in the literature to ours is that
of [7] , who in their analysis of the Edge of Stability [1], derive the Hessian eigenvalues for an el-
ementary 2-layer linear network with just scalar parameters f(x) = wvx and a single input n = 1.
We starkly go beyond the prior work by not only considering the general case of n inputs and vector
parameters w,v, but we also cover the case of ReLU and bias as well as also derive the closed form
of eigenvectors.

Conclusion. We hope that the wider research community can take advantage of our theoretical
results to provide rigorous insights into the interaction of the maximum eigenvalue with the learn-
ing rate (like that showcased in the edge of stability [1]), the implicit effects of algorithms which
minimize sharpness [2], as well as shed light into the flat minima hypothesis for generalization [4].
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Appendix A. Eigenvalues: Linear, Unidimensional, Multiple datapoints

The loss function can be written as ℓ(w,v) = 1
2n

∑n
i=1(w

⊤v · xi − yi)
2, where n is the number of

data points under consideration. Hence the gradient with respect to the parameters comes out to be:

∇wℓ =

(
1

n

n∑
i=1

xiδi

)
v =: δxv (7)

∇vℓ =

(
1

n

n∑
i=1

xiδi

)
w =: δxw (8)

where, δi = ⟨w,v⟩xi − yi and we use the shorthand xδ to designate the (uncentered) residual-
input covariance. Also, let us denote the input mean as µ = 1

n

∑n
i=1 xi and the (uncentered)

input standard deviation as σ =
√

1
n

∑n
i=1 x

2
i . Besides, let us denote the (uncentered) input-output

covariance as yx = 1
n

∑n
i=1 yixi. The second-order partial derivatives which will constitute the

Hessian matrix turn out to be:

∇2
w,wℓ = σ2 vv⊤ (9)

∇2
v,vℓ = σ2ww⊤ (10)

∇2
w,vℓ =

∂2ℓ

∂w∂v
= δx Im + σ2 vw⊤ = (∇2

v,wℓ)
⊤ (11)

We can also express the above in the matrix form as follows:

HL =


∂

∂v⊤
∂

∂w⊤

∂
∂v σ2ww⊤ σ2wv⊤ + δxIm
∂
∂w σ2 vw⊤ + δxIm σ2 vv⊤

 (12)

Solving the eigenvalues. To solve for the eigenvalues, we solve its characteristic equation, namely
|HL − λIp| = 0, where p = 2m is the number of parameters. Alternatively we have,

∣∣∣∣∣
(
σ2ww⊤ − λIm σ2wv⊤ + δxIm

σ2 vw⊤ + δxIm σ2 vv⊤ − λIm

)∣∣∣∣∣ = 0 (13)

Via the Schur complement, we have
∣∣∣∣(A B

C D

)∣∣∣∣ = |D||A − BD−1C|. We can apply this

to above equation, where D = σ2 vv⊤ − λIm, which is invertible as long as λ is non-zero and
λ ̸= ∥v∥2σ2. Hence determinant of D won’t be zero, and the roots of the equation above (which
will yield us the eigenvalues) will come from the other term, |A − BD−1C| = 0. Let us then
calculate it:∣∣∣σ2ww⊤ − λIm − (σ2wv⊤ + δx Im)(σ2 vv⊤ − λIm)−1(σ2 vw⊤ + δx Im)

∣∣∣ = 0 (14)

8
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Next, we use the Woodbury matrix identity, i.e., (A + UCV)−1 = A−1 − A−1U(C−1 +
VA−1U)−1VA−1, which gives us that:

(σ2vv⊤ − λIm)−1 =
−1

λ
Im − σ2

λ(λ− ∥v∥2σ2)
vv⊤ (15)

Putting this back in the above equation and expanding the product gives us,

∣∣∣∣σ2ww⊤ − λIm + (σ2wv⊤ + δx Im)(
1

λ
Im +

σ2

λ(λ− ∥v∥2σ2)
vv⊤)(σ2vw⊤ + δx Im)

∣∣∣∣ = 0

(16)∣∣∣∣σ2ww⊤ − λIm (17)

+
σ4∥v∥2

λ
ww⊤ +

σ2δx

λ
wv⊤ +

σ6∥v∥4

λ(λ− σ2∥v∥2)
ww⊤ +

σ4δx∥v∥2

λ(λ− σ2∥v∥2)
wv⊤ (18)

+
σ2δx

λ
vw⊤ +

δx
2

λ
Im +

σ4δx∥v∥2

λ(λ− σ2∥v∥2)
vw⊤ +

σ2δx
2

λ(λ− σ2∥v∥2)
vv⊤

∣∣∣∣ = 0 (19)

Let us analyze the coefficients for each of the matrices one by one, starting with ww⊤

σ2 +
σ4∥v∥2

λ
+

σ6∥v∥4

λ(λ− σ2∥v∥2)
=

(σ2λ(λ− σ2∥v∥2) + σ4∥v∥2(λ− σ2∥v∥2) + σ6∥v∥4)
λ(λ− σ2∥v∥2)

(20)

=
σ2λ

λ− σ2∥v∥2
(21)

Next up, both wv⊤ and vw⊤ have the same coefficient:

σ2δx

λ
+

σ4δx∥v∥2

λ(λ− σ2∥v∥2)
=

(λ− σ2∥v∥2)σ2δx+ σ4δx∥v∥2

λ(λ− σ2∥v∥2)
(22)

=
σ2δx

λ− σ2∥v∥2
(23)

Hence, the above characteristic equation can be rewritten as,∣∣∣∣ σ2λ

λ− σ2∥v∥2
ww⊤ +

σ2δx

λ− σ2∥v∥2
(wv⊤ + vw⊤) +

σ2δx
2

λ(λ− σ2∥v∥2)
vv⊤ (24)

− (λ− δx
2

λ
)Im

∣∣∣∣ = 0 (25)

Assuming λ ̸= 0, multiply the equation by λ and (λ− σ2∥v∥2) (since |σ2vv⊤ − λIm| ≠ 0) yields,∣∣∣∣σ2λ2ww⊤ + σ2δxλ(wv⊤ + vw⊤) + σ2δx
2
vv⊤ − (λ2 − δx

2
)(λ− σ2∥v∥2)Im

∣∣∣∣ = 0 (26)

9
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Set z = λw + δxv, and ν = (λ2 − δx
2
)(λ − σ2∥v∥2) we can express the above equation more

compactly as

∣∣∣∣σ2zz⊤ − νIm

∣∣∣∣ = 0 (27)

The determinant of the above matrix2 is the product of its eigenvalues, which comes out as:∣∣∣∣σ2zz⊤ − νIm

∣∣∣∣ = νm−1(σ2∥z∥2 − ν) = 0 (28)

This implies that they are m− 1 repeated roots of ν = 0, and once when σ2∥z∥2 − ν = 0.
Since λ ̸= σ2∥v∥2, we get m− 1 repeated solutions of λ2 − δx

2
= 0 or m− 1 times

λ = ±δx = ± 1

n

n∑
i=1

(⟨w,v⟩xi − yi)xi . (29)

The other solution corresponds to solving the following equation in λ:

σ2λ2∥w∥2 + σ2δx
2∥v∥2 + 2σ2δxλ⟨w,v⟩ − λ3 + δx

2∥v∥2 + δx
2 − σ2δx

2∥v∥2 = 0 (30)

− λ3 + (σ2∥w∥2 + σ2∥v∥2)λ2 + λ(δx
2
+ 2σ2δx⟨w,v⟩) (31)

= −λ(λ2 − (σ2∥w∥2 + σ2∥v∥2)λ− (δx
2
+ 2σ2δx⟨w,v⟩)) = 0 (32)

Again, λ ̸= 0 by assumption above. Then solving the quadratic in λ gives us the following two
roots:

λ =
1

2
(σ2∥w∥2 + σ2∥v∥2)± 1

2

√
(σ2∥w∥2 + σ2∥v∥2)2 + 4(δx

2
+ 2σ2δx⟨w,v⟩) (33)

where δx
2
+ 2σ2δx⟨w,v⟩ = δx(δx+ 2σ2⟨w,v⟩), which can be better written as,

(⟨w,v⟩σ2 − yx)(3⟨w,v⟩σ2 − yx) .

Further, notice that the residual input covariance can be upper-bounded in terms of the overall
loss and input variance.

δx =
1

n

n∑
i=1

δixi ≤
1

n

√√√√ n∑
i=1

δ2i

√√√√ n∑
i=1

x2i =

√√√√ 1

n

n∑
i=1

δ2i

√√√√ 1

n

n∑
i=1

x2i (34)

Thus, δx ≤
√
2ℓ σ. Further since the most negative eigenvalue is given by, λmin = −δx, we

have that
λmin ≥ −

√
2ℓ σ .

2. I could also make σ2 part of the vector z above.

10
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Appendix B. Eigenvalues: ReLU

Let us now analyze the case with the ReLU non-linearity. So we have as the network func-
tion, f(x) = w⊤(vx)+, with (z)+ = z1{z > 0}. The loss function is given by, ℓ(w,v) =
1
2(w

⊤(vx)+ − y)2.
Without loss of generality, assume that first q coordinates of the vector v have positive sign as

x and collected in the vector v+, while the rest m − q coordinates being zero. On the other hand,
we can collect the negative coordinates of v in the vector v− whose, first q components are zero
and the rest m − q contain the negative coordinates. Then we can write v = v+ + v−. Since in
this simple network, each parameter of w is coupled with a parameter in v, based on the partition
of v we can also split the w vector into two corresponding parts, (w+)j = wj1{vj > 0} and
(w−)j = wj1{vj < 0}. Alternatively, we can express the effect of non-linearity on w by the
Hadamard product w ⊙ 1{v > 0}. But, to emphasize, the components of w+ need not be positive
neither w− need be negative.

And so, for x > 0, f(x) = ⟨w+,v+⟩x, while for x ≤ 0, we have that f(x) = ⟨w−,v−⟩x. Or
more succinctly,

f(x) = ⟨w+,v+⟩x1{x > 0}+ ⟨w−,v−⟩x1{x ≤ 0}

Hence the gradient with respect to the parameters comes out to be:

∇wℓ = δ · (v+x1{x > 0}+ v−x1{x ≤ 0}) (35)

∇vℓ = δ · (w+x1{x > 0}+w−x1{x ≤ 0}) (36)

where, δ = ⟨w+,v+⟩x1{x > 0}+⟨w−,v−⟩x1{x ≤ 0} −y. The second-order partial derivatives
which will constitute the Hessian matrix turn out to be:

∇2
w,wℓ = (v+x1{x > 0}+ v−x1{x ≤ 0}) (v+x1{x > 0}+ v−x1{x ≤ 0})⊤

∇2
v,vℓ = (w+x1{x > 0}+w−x1{x ≤ 0}) (w+x1{x > 0}+w−x1{x ≤ 0})⊤

∇2
w,vℓ =

∂2ℓ

∂w∂v
= (δ x±) + (v+x1{x > 0}+ v−x1{x ≤ 0}) (w+x1{x > 0}+w−x1{x ≤ 0})⊤

where, (·) denotes a diagonal matrix formed by the corresponding vector, and x± denotes the vector
whose first q coordinates contain equal x1{x > 0} and the other m−q coordinates contain x1{x ≤
0}. Said differently, we have that:

(δ x±) =

(
δ x1{x > 0} Iq 0

0 δ x1{x ≤ 0} Im−q

)
The expressions of the above components of the Hessian can be further simplified as,

∇2
w,wℓ = v+v

⊤
+x

2 1{x > 0}+ v−v
⊤
−x

21{x ≤ 0} (37)

∇2
v,vℓ = w+w

⊤
+x

2 1{x > 0}+w−w
⊤
−x

21{x ≤ 0} (38)

∇2
w,vℓ = (δ x±) + v+w

⊤
+x

2 1{x > 0}+ v−w
⊤
−x

21{x ≤ 0} (39)

11
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Averaging over Multiple datapoints. Let us average the above Hessian components over multi-
ple datapoints,

∇2
w,wL =

n+

n
σ2
+ v+v

⊤
+ +

n−
n

σ2
− v−v

⊤
− (40)

∇2
v,vL =

n+

n
σ2
+w+w

⊤
+ +

n−
n

σ2
−w−w

⊤
− (41)

∇2
w,vL = (δx±) +

n+

n
σ2
+ v+w

⊤
+ +

n−
n

σ2
− v−w

⊤
− (42)

where, we have the the standard deviation of the positive and negative datapoints as, σ+ =√
1
n+

∑n
i=1 x

2
i 1{xi > 0} and σ− =

√
1
n−

∑n
i=1 x

2
i 1{xi < 0} respectively, and besides, n =

n+ + n−.

Besides, we let us denote the (uncentered) input-output covariance for the positive and negative
cells respectively as follows,

yx+ =
1

n+

n∑
i=1

yixi1{xi > 0}

yx− =
1

n−

n∑
i=1

yixi1{xi ≤ 0}

Hessian decouples across ReLU cells. If we look at the equations above carefully, we will notice
that the coordinates for v+ ,w+ are mutually exclusive from the coordinates for v− ,w−. And
hence, up to column and row permutations the Hessian can be written as a block-diagonal matrix
with Hessian for the individual cells respectively in these diagonal blocks. In fact, the column space
itself is a direct sum of the column space across the cells. And, so the eigenvectors will also be non-
zero on mutually exclusive coordinates. As a result, we can solve the Hessian spectrum separately
for the two cells.

We can also express the above in the matrix form rather compactly as follows:

n+

n
HL

+ =

( ∂
∂v⊤

+

∂
∂w⊤

+

∂
∂v+

n+

n σ2
+w+w

⊤
+

n+

n σ2
+w+v

⊤
+ + n+

n xδ+Iq
∂

∂w+

n+

n σ2
+ v+w

⊤
+ + n+

n xδ+Iq
n+

n σ2
+ v+v

⊤
+

)

where, xδ+ = σ2
+ ⟨w+,v+⟩ − yx+. Likewise, we have that

n−
n

HL
− =

( ∂
∂v⊤

−

∂
∂w⊤

−
∂

∂v−
n−
n σ2

−w−w
⊤
−

n−
n σ2

−w−v
⊤
− + n−

n xδ− Im−q

∂
∂w−

n−
n σ2

− v−w
⊤
− + n−

n xδ− Im−q
n−
n σ2

− v−v
⊤
−

)
To emphasize, the Hessian is equivalent to:

HL =

(n+

n HL
+ 0

0 n−
n HL

−

)

12
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Essentially, the row and column permutations correspond to a different ordering of the parame-
ters when forming the Hessian matrix.

Solving the eigenvalues. For solving the eigenvalues, we can depend on the result for the linear
case and do so separately: once for the positive cell and another time for the negative cell. The
eigenvalues for the overall Hessian will just be a union of the eigenvalues obtained from solving the
eigenspectrum for the cells. We will just have to multiply the obtained eigenvalues for HL

+ and
HL

− by the weights n+

n and n−
n respectively.

Positive Cell Eigenvalues. Here we obtain as the bulk eigenvalue, λ+
bulk = ±n+

n xδ+ repeated
q − 1 times, while as the outlier eigenvalues we have:

λ+
outlier =

n+

2n
(σ2

+∥w+∥2 + σ2
+∥v+∥2)±

n+

2n

√
(σ2

+∥w+∥2 + σ2
+∥v+∥2)2 + 4(xδ

2
+ + 2σ2

+xδ+⟨w+,v+⟩)
(43)

Negative Cell Eigenvalues. Here we obtain as the bulk eigenvalue, λ−
bulk = ±n−

n xδ− repeated
m− q − 1 times, while as the outlier eigenvalues we have:

λ−
outlier =

n−
2n

(σ2
−∥w−∥2 + σ2

−∥v−∥2)±
n−
2n

√
(σ2

−∥w−∥2 + σ2
−∥v−∥2)2 + 4(xδ

2
− + 2σ2

−xδ−⟨w−,v−⟩)
(44)

Appendix C. Solving for Eigenvectors

C.1. Linear, Unidimensional network with multiple datapoints

Let us recall the Hessian considered in Eq. 12 for the multiple datapoints setting in the case of linear
networks.

HL =


∂

∂v⊤
∂

∂w⊤

∂
∂v σ2ww⊤ σ2wv⊤ + δxIm
∂
∂w σ2 vw⊤ + δxIm σ2 vv⊤

 (45)

While we have solved for the eigenvalues, the form of the eigenvectors is still not apparent. In
this section, we aim to work towards a closed form for the eigenvectors. For starters, let us assume

an eigenvector of the Hessian matrix above, z, is of the form z =

(
z1
z2

)
. Then in order to obtain

the eigenvectors we need to solve the following system of equations:

(
σ2ww⊤ σ2wv⊤ + δxIm

σ2 vw⊤ + δxIm σ2 vv⊤

)(
z1
z2

)
= λ

(
z1
z2

)
(46)

which can be expressed as,

13
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σ2⟨w, z1⟩w + σ2⟨v, z2⟩w + δx z2 = λz1 (47)

σ2⟨w, z1⟩v + σ2⟨v, z2⟩v + δx z1 = λz2 (48)

Taking the inner-product with v on both sides of first equation and with w in second equation yields,

σ2⟨w, z1⟩ ⟨w,v⟩+ σ2⟨v, z2⟩ ⟨w,v⟩+ δx ⟨z2,v⟩ = λ ⟨z1,v⟩ (49)

σ2⟨w, z1⟩ ⟨v,w⟩+ σ2⟨v, z2⟩ ⟨v,w⟩+ δx ⟨z1,w⟩ = λ ⟨z2,w⟩ (50)

Subtracting the second equation from the first and rearranging gives,

δx ⟨z2,v⟩ − λ ⟨z1,v⟩ = δx ⟨z1,w⟩ − λ ⟨z2,w⟩ (51)

Alternatively,

⟨δx z2 − λ z1,v⟩ = ⟨δx z1 − λ z2,w⟩ (52)

Thus we have an equation of the form ⟨a,b⟩ = ⟨c,d⟩, whose possible solutions are:

1. ⟨a,b⟩ = 0 and ⟨c,d⟩ = 0. While this is a general condition, there are also some specific
instantiations of this when this is possible as listed below.

(a) a = 0 and c = 0.

(b) a = 0 and d = 0.

(c) b = 0 and c = 0.

(d) b = 0 and d = 0.

The grayed out possibilities require the parameter vectors to be zero, so we discard them as
that need not be the case.

2. a = c and b = d, and a,b, c,d ̸= 0 (up to scale, since α a and α−1b, for α ̸= 0 is also a
valid solution).

Again this requires the parameter vectors to be equal, which may not be the case necessarily.

3. a = d and b = c, and a,b, c,d ̸= 0 (up to scale).

Outlier Eigenvectors. Considering that v ̸= w and v,w ̸= 0. Then using the (3) option above,
we get (for some α ̸= 0):

δx z2 − λz1 = αw (53)

δxz1 − λ z2 = αv (54)

Then solving this pair of equations for z1 and z2 gives:

(δx
2 − λ2) z1 = αλw + αδxv (55)

(δx
2 − λ2) z2 = αδxw + αλv (56)

14
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Hence, at last, the eigenvector is of the following form:

z =
α

δx
2 − λ2

(
λw + δxv

δxw + λv

)
(57)

In order to check the validity of the above solution, let us multiply the Hessian with it. Besides,
from there we may also see the eigenvalue corresponding to this eigenvector.(

σ2ww⊤ σ2wv⊤ + δxIm

σ2 vw⊤ + δxIm σ2 vv⊤

)(
λw + δxv

δxw + λv

)
α

δx
2 − λ2

=

λσ2⟨w,w⟩w + δxσ2⟨w,v⟩w + δxσ2⟨w,v⟩w + λσ2⟨v,v⟩w + δx
2
w + λδxv

λσ2⟨w,w⟩v + δxσ2⟨w,v⟩v + λδxw + δx
2
v + δxσ2⟨w,v⟩v + λσ2⟨v,v⟩v

 α

δx
2 − λ2

The above can be simplified to:(λσ2∥w∥2 + λσ2∥v∥2 + 2δxσ2⟨w,v⟩+ δx
2
)
w + λδxv

λδxw +
(
λσ2∥w∥2 + λσ2∥v∥2 + 2δxσ2⟨w,v⟩+ δx

2
)
v

 α

δx
2 − λ2

For this to be a valid eigenvector, the term in brackets should be equal to λ2, i.e.,

λσ2∥w∥2 + λσ2∥v∥2 + 2δxσ2⟨w,v⟩+ δx
2
= λ2

Solving this yields,

λ =
1

2
(σ2∥w∥2 + σ2∥v∥2)± 1

2

√
(σ2∥w∥2 + σ2∥v∥2)2 + 4(2δxσ2⟨w,v⟩+ δx

2
)

which is precisely the solution for the eigenvalues we had obtained by solving the characteristic
equation.

Besides, we need to ensure that eigenvectors are unit norm, which should give us:

Remark 1. The expression in Eqn. 57 matches the empirically obtained eigenvectors.

Remark 2. Given the decoupling of the Hessian spectrum in ReLU cells, the above eigenvector
derivation should also generalize for the ReLU case.

Bulk Eigenvectors. We have the possibility (1a) remaining, and we find that as the bulk eigen-
values are λ = ±δx, this would fit neatly with constraint from Eqn. ??. Moreover we obtain the
following:

λ = δx : z1 = z2 (58)

λ = −δx : z1 = −z2 (59)

15



CLOSED FORM OF THE HESSIAN SPECTRUM FOR SOME NEURAL NETWORKS

Further as the bulk eigenvectors have to be orthogonal to the outlier eigenvectors, we get the fol-
lowing constraint:

λoutlier⟨w, z1⟩+ δx⟨v, z1⟩+ δx⟨w, z2⟩+ λoutlier⟨v, z2⟩ = 0 (60)

⟨w, λoutlierz1 + δxz2⟩+ ⟨v, δxz1 + λoutlierz2⟩ = 0 (61)

(a) Bulk eigenvalue and residual-input covariance have same signs: Let us now consider z1 =
z2, then we get the following constraint:

(λoutlier + δx)⟨w + v, z1⟩ = 0 (62)

Hence, in this case z1 is of the form
(
I − (w+v)(w+v)⊤

∥w+v∥2

)
c for some vector c, and they can

simply be obtained by computing the eigenvectors of this matrix, corresponding to non-zero eigen-
values.

(b) Bulk eigenvalue and residual-input covariance have opposite signs: While plugging in z1 =
−z2 for the other half of the bulk, we get the following constraint:

(λoutlier − δx)⟨w − v, z1⟩ = 0 (63)

Hence, in this case z1 is of the form
(
I− (w−v)(w−v)⊤

∥w−v∥2

)
c for some vector c, and they can simply

be obtained by computing the eigenvectors of this matrix, corresponding to non-zero eigenvalues.

Finally, the bulk eigenvectors from the cases (a) and (b) are orthogonal between themselves
since,

(
z1 z1

)⊤( z1
−z1

)
= 0

16



CLOSED FORM OF THE HESSIAN SPECTRUM FOR SOME NEURAL NETWORKS

C.2. ReLU, Unidimensional, multiple datapoints

We simply follow our strategy for the linear case, and since the Hessian for ReLU decouples into
that along the positive and negative cell, we obtain the following set of eigenvectors for the outlier
and bulk eigenvalues corresponding to the respective cells.

Let us briefly recall our shorthand from before, w+ = w ⊙ 1{v > 0}, w− = w ⊙ 1{v ≤ 0},
v+ = v ⊙ 1{v > 0} and v− = v ⊙ 1{v ≤ 0}.

C.2.1. POSITIVE CELL EIGENVECTORS

The outlier eigenvectors are given by,

z+ =
α

xδ
2
+ − λ2

+

(
λ+

outlierw+ + xδ+v+

xδ+w+ + λ+
outlierv+

)
(64)

with, λ+
outlier =

n+

2n (σ
2
+∥w+∥2+σ2

+∥v+∥2)±n+

2n

√
(σ2

+∥w+∥2 + σ2
+∥v+∥2)2 + 4(xδ

2
+ + 2σ2

+xδ+⟨w+,v+⟩).

The bulk eigenvectors depend whether their eigenvalue is λ+
bulk = xδ+ or λ+

bulk = −xδ+. In

the former case, we have eigenvectors of the form
(
z1
z2

)
, where z1 = z2 is of the form

(
I −

(w++v+)(w++v+)⊤

∥w++v+∥2

)
c for some vector c, and they can simply be obtained by computing the eigen-

vectors of this matrix, corresponding to non-zero eigenvalues. In the latter case, we have that

z1 = −z2 with, z1 of the form
(
I− (w+−v+)(w+−v+)⊤

∥w+−v+∥2

)
c for some vector c.

C.2.2. NEGATIVE CELL EIGENVECTORS

The outlier eigenvectors are given by,

z− =
α

xδ
2
− − λ2

−

(
λ−

outlierw− + xδ−v−

xδ−w− + λ−
outlierv−

)
(65)

with, λ−
outlier =

n−
2n (σ

2
−∥w−∥2+σ2

−∥v−∥2)±n−
2n

√
(σ2

−∥w−∥2 + σ2
−∥v−∥2)2 + 4(xδ

2
− + 2σ2

−xδ−⟨w−,v−⟩) .

The bulk eigenvectors depend whether their eigenvalue is λ−
bulk = xδ− or λ−

bulk = −xδ−. In

the former case, we have eigenvectors of the form
(
z1
z2

)
, where z1 = z2 is of the form

(
I −

(w−+v−)(w−+v−)⊤

∥w−+v−∥2

)
c for some vector c, and they can simply be obtained by computing the eigen-

vectors of this matrix, corresponding to non-zero eigenvalues. In the latter case, we have that

z1 = −z2 with, z1 of the form
(
I− (w−−v−)(w−−v−)⊤

∥w−−v−∥2

)
c for some vector c.
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Appendix D. Proof for the bias case

Let us start with the linear case and assume that our network is now given by,

f(x) = w⊤(vx+ b)

.
The expressions of the loss gradient are:

∇wℓ = δ · (vx+ b) (66)

∇vℓ = δ · wx (67)

∇bℓ = δ · w (68)

where, δ = f(x)− y = w⊤(vx+ b)− y. The Hessian terms are then as follows3:

∇2
w,wℓ = (vx+ b)(vx+ b)⊤ (69)

∇2
w,vℓ = δxIm + x(vx+ b)w⊤ (70)

∇2
w,bℓ = δIm + (vx+ b)w⊤ (71)

∇2
v,vℓ = x2ww⊤ , ∇2

v,bℓ = xww⊤ (72)

∇2
b,bℓ = ww⊤ (73)

Next, let us aggregate the above expression over the entire dataset, with the assumption that the
data is centered (which is anyways carried out in practice), i.e., E [x] = 0, yielding :

∇2
w,wL = σ2vv⊤ + bb⊤ (74)

∇2
w,vL = δxIm + σ2vw⊤ (75)

∇2
w,bL = δIm + bw⊤ (76)

∇2
v,vL = σ2ww⊤ , ∇2

v,bL = 0 (77)

∇2
b,bL = ww⊤ (78)

In summary, the Hessian can be written as:

HL =


σ2vv⊤ + bb⊤ δxIm + σ2vw⊤ δIm + bw⊤

δxIm + σ2wv⊤ σ2ww⊤ 0

δIm +wb⊤ 0 ww⊤

 (79)

For starters, assume σ2 = 1. Then we need to solve the characteristic equation, i.e.,∣∣∣∣∣∣∣∣

vv⊤ + bb⊤ − λIm δxIm + vw⊤ δIm + bw⊤

δxIm +wv⊤ ww⊤ − λIm 0

δIm +wb⊤ 0 ww⊤ − λIm


∣∣∣∣∣∣∣∣ = 0 (80)

3. The term ∇2
v,bℓ = xww⊤ can be generalized to the case of having a 2-dimensional input with coordinates x1, x2

with x2 ̸= 1 and then we would get ∇2
v1,v2

ℓ = x1x2ww⊤.
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Instead of computing the determinant using the Schur complement, let us first rewrite the matrix
above in a simpler form:4

HL − λI3m =

v
w
0

v
w
0

⊤

+

b
0
w

b
0
w

⊤

+

−λ δx δ

δx −λ 0

δ 0 −λ

⊗ Im (81)

=

v b
w 0
0 w

v b
w 0
0 w

⊤

+

−λ δx δ

δx −λ 0

δ 0 −λ

⊗ Im (82)

Then using the fact that |Am×m+Um×nV
⊤
n×m| = |A| · |In+V⊤

n×mA−1Um×n|. Let’s apply

this to the above matrix, with A =

−λ δx δ

δx −λ 0

δ 0 −λ

⊗ Im and U = V =

v b
w 0
0 w

. First, by using

the fact (C⊗D)−1 = C−1 ⊗D−1, we have that

A−1 = − 1

λ
(
λ2 − (δx

2
+ δ

2
)
)
 λ2 λδx λδ

λδx λ2 − δ
2

δ δx

λδ δ δx λ2 − δx
2

⊗ Im (83)

Next, A−1V comes out to:

− 1

λ
(
λ2 − (δx

2
+ δ

2
)
)
 λ2v + λδxw λ2b+ λδw

λδxv + (λ2 − δ
2
)w λδxb+ δ δxw

λδv + δ δxw λδb+ (λ2 − δx
2
)w

 (84)

Further, the quadratic form V⊤A−1V is given by − 1

λ
(
λ2−(δx

2
+δ

2
)
)B, with B being:

B =

(
(∥v∥2 + ∥w∥2)λ2 + 2δx⟨w,v⟩λ− δ

2∥w∥2 ⟨v,b⟩λ2 + δ⟨v,w⟩λ+ δx⟨b,w⟩λ+ δ δx∥w∥2

⟨v,b⟩λ2 + δ⟨v,w⟩λ+ δx⟨b,w⟩λ+ δ δx∥w∥2 (∥b∥2 + ∥w∥2)λ2 + 2δ⟨w,b⟩λ− δx
2∥w∥2

)
(85)

Then, |I2 − 1

λ
(
λ2−(δx

2
+δ

2
)
)B| = (−1)2

λ2
(
λ2−(δx

2
+δ

2
)
)2 |B − λ

(
λ2 − (δx

2
+ δ

2
)
)
I2|, and the de-

terminant of the remaining 2× 2 matrix is given by:

(
(∥v∥2 + ∥w∥2)λ2 + 2δx⟨w,v⟩λ− δ

2∥w∥2 − λ
(
λ2 − (δx

2
+ δ

2
)
))

×(
(∥b∥2 + ∥w∥2)λ2 + 2δ⟨w,b⟩λ− δx

2∥w∥2 − λ
(
λ2 − (δx

2
+ δ

2
)
))

−
(
⟨v,b⟩λ2 + δ⟨v,w⟩λ+ δx⟨b,w⟩λ+ δ δx∥w∥2

)2
In the case when σ2 = 1, we have that δx = ⟨w,v⟩ − yx and δ = ⟨w,b⟩ − y.

4. If this does not work, I could start with assuming that the v and b are orthogonal.
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Expanding the above equation and setting it to zero yields the following:

λ6 + (δx
2
+ δ

2
)2 λ2 − 2(δx

2
+ δ

2
)λ4 − (∥v∥2 + ∥b∥2 + 2∥w∥2)λ5 (86)

− 2(δx⟨w,v⟩+ δ⟨w,b⟩)λ4 + (δx
2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2)λ3 (87)

+ 2(δx
2
+ δ

2
)(δx⟨w,v⟩+ δ⟨w,b⟩)λ2 − (δx

2
+ δ

2
)2∥w∥2λ (88)

+ (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)λ4 + 4δx δ⟨w,v⟩⟨w,b⟩λ2
�������
+δx

2
δ
2∥w∥4 (89)

+ 2δ⟨w,b⟩(∥v∥2 + ∥w∥2)λ3 + 2δx⟨w,v⟩(∥b∥2 + ∥w∥2)λ3 (90)

− 2δx
3⟨w,v⟩∥w∥2λ− 2δ

3⟨w,b⟩∥w∥2λ (91)

− (∥v∥2 + ∥w∥2)∥w∥2δx2λ2 − (∥b∥2 + ∥w∥2)∥w∥2δ2λ2 (92)

−
(
⟨v,b⟩2λ4 + ⟨δv + δxb,w⟩2λ2

�������
+δ

2
δx

2∥w∥4 (93)

+ 2⟨v,b⟩ ⟨δv + δxb,w⟩λ3 + 2⟨v,b⟩δ δx∥w∥2λ2 (94)

+ 2⟨δv + δxb,w⟩δ δx∥w∥2λ
)

(95)

= 0 (96)

The constant terms get cancelled, and rewriting the above expression by collecting the coeffi-
cients of various degree terms separately gives us:

λ6 − (∥v∥2 + ∥b∥2 + 2∥w∥2)λ5

+
[
−2(δx

2
+ δ

2
) − 2(δx⟨w,v⟩+ δ⟨w,b⟩) + (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)− ⟨v,b⟩2

]
λ4

+
[
(δx

2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2) + 2δ⟨w,b⟩(∥v∥2 + ∥w∥2) + 2δx⟨w,v⟩(∥b∥2 + ∥w∥2)

]
λ3

−
[
2⟨v,b⟩ ⟨δv + δxb,w⟩

]
λ3

+
[
(δx

2
+ δ

2
)2 + 2(δx

2
+ δ

2
)(δx⟨w,v⟩+ δ⟨w,b⟩) + 4δx δ⟨w,v⟩⟨w,b⟩

]
λ2

−
[
(∥v∥2 + ∥w∥2)∥w∥2δx2 + (∥b∥2 + ∥w∥2)∥w∥2δ2 + ⟨δv + δxb,w⟩2 + 2⟨v,b⟩δ δx∥w∥2

]
λ2

−
[
(δx

2
+ δ

2
)2∥w∥2 + 2δx

3⟨w,v⟩∥w∥2 + 2δ
3⟨w,b⟩∥w∥2 + 2⟨δv + δxb,w⟩δ δx∥w∥2

]
λ1

= 0

Let us try to first solve the above equation in a simpler setting. To do so, we assume: yx = 0
and y = 0. This means that: δx = ⟨w,v⟩ and δ = ⟨w,b⟩. We get the following simplified form:
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λ6 − (∥v∥2 + ∥b∥2 + 2∥w∥2)λ5

+
[
−2(δx

2
+ δ

2
) − 2(δx

2
+ δ

2
) + (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)− ⟨v,b⟩2

]
λ4

+
[
(δx

2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2) + 2δ

2
(∥v∥2 + ∥w∥2) + 2δx

2
(∥b∥2 + ∥w∥2)

]
λ3

−
[
4⟨v,b⟩ δx δ

]
λ3

+
[
(δx

2
+ δ

2
)2 + 2(δx

2
+ δ

2
)2 +����

4δx
2
δ
2
]
λ2

−
[
(∥v∥2 + ∥w∥2)∥w∥2δx2 + (∥b∥2 + ∥w∥2)∥w∥2δ2 +����

4δx
2
δ
2
+ 2⟨v,b⟩δ δx∥w∥2

]
λ2

−
[
(δx

2
+ δ

2
)2∥w∥2 + 2δx

4∥w∥2 + 2δ
4∥w∥2 + 4δ

2
δx

2∥w∥2
]
λ1

= 0

which can be further simplified as,

λ6 − (∥v∥2 + ∥b∥2 + 2∥w∥2)λ5

+
[
−4(δx

2
+ δ

2
) + (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)− ⟨v,b⟩2

]
λ4

+
[
(δx

2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2) + 2δ

2
(∥v∥2 + ∥w∥2) + 2δx

2
(∥b∥2 + ∥w∥2)− 4⟨v,b⟩ δx δ

]
λ3

+
[
3(δx

2
+ δ

2
)2 − (∥v∥2 + ∥w∥2)∥w∥2δx2 − (∥b∥2 + ∥w∥2)∥w∥2δ2 − 2⟨v,b⟩δ δx∥w∥2

]
λ2

− 3(δx
2
+ δ

2
)2∥w∥2λ1

= 0

We effectively have a quintic equation above and quintic equations, in general, do not have roots
in radicals due to the Abel-Ruffini theorem. Although this specific equation might still be solvable
in radicals. Let’s assume that the underlying quintic is of the form:

(λ2 +Aλ+B)(λ3 + Cλ2 +Dλ+ E)

which we can be expressed as:

λ5 + (A+ C)λ4 + (B +AC +D)λ3 + (E +AD +BC)λ2 + (AE +BD)λ+BE

Matching this with the above equation with λ factored out, we get the following series of equations:

A+ C = −(∥v∥2 + ∥b∥2 + 2∥w∥2)

B +AC +D = −4(δx
2
+ δ

2
) + (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)− ⟨v,b⟩2

E +AD +BC = (δx
2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2) + 2δ

2
(∥v∥2 + ∥w∥2) + 2δx

2
(∥b∥2 + ∥w∥2)− 4⟨v,b⟩ δx δ

AE +BD = 3(δx
2
+ δ

2
)2 − (∥v∥2 + ∥w∥2)∥w∥2δx2 − (∥b∥2 + ∥w∥2)∥w∥2δ2 − 2⟨v,b⟩δ δx∥w∥2

BE = −3(δx
2
+ δ

2
)2∥w∥2
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And to remind again the above quintic is:

λ5 − (∥v∥2 + ∥b∥2 + 2∥w∥2)λ4

+
[
−4(δx

2
+ δ

2
) + (∥v∥2 + ∥w∥2)(∥b∥+ ∥w∥2)− ⟨v,b⟩2

]
λ3

+
[
(δx

2
+ δ

2
)(∥v∥2 + ∥b∥2 + 3∥w∥2) + 2δ

2
(∥v∥2 + ∥w∥2) + 2δx

2
(∥b∥2 + ∥w∥2)− 4⟨v,b⟩ δx δ

]
λ2

+
[
3(δx

2
+ δ

2
)2 − (∥v∥2 + ∥w∥2)∥w∥2δx2 − (∥b∥2 + ∥w∥2)∥w∥2δ2 − 2⟨v,b⟩δ δx∥w∥2

]
λ1

− 3(δx
2
+ δ

2
)2∥w∥2

= 0

Based on the above equations, let us employ two additional assumptions, i.e., ⟨v,b⟩ = 0 and
∥v∥ = ∥b∥. We have as the choice of the coefficients::

A = −(∥v∥2 + ∥w∥2) (97)

B = −3(δx
2
+ δ

2
) (98)

C = −(∥v∥2 + ∥w∥2) (99)

D = −(δx
2
+ δ

2
) (100)

E = (δx
2
+ δ

2
)∥w∥2 (101)

We get as a factored quadratic:

λ2 − (∥v∥2 + ∥w∥2)λ− 3(δx
2
+ δ

2
) = 0

λ =
1

2
(∥v∥2 + ∥w∥2)± 1

2

√
(∥v∥2 + ∥w∥2)2 + 12(δx

2
+ δ

2
) (102)

This strictly generalizes the case without bias, where we had the solution:

λ =
1

2
(∥v∥2 + ∥w∥2)± 1

2

√
(∥v∥2 + ∥w∥2)2 + 12δx

2
(103)

Remember, under our assumptions δx = ⟨w,v⟩ and δ = ⟨w,b⟩. Hence this forms for an
interesting generalization in the case with multi-dimensional input, with term in the square root
being the sum of squares of the inner-product of the second layer weight w and the columns of the
first layer matrix.

Solving the cubic. Other than the solutions from the above quadratic, we should also check for
solutions in:

λ3 − (∥v∥2 + ∥w∥2)λ2 − (δx
2
+ δ

2
)λ+ (δx

2
+ δ

2
)∥w∥2 = 0

We can put this into depressed form, i.e., t3 + pt+ q = 0, by making the substitution:

λ = t+
(∥v∥2 + ∥w∥2)

3
.
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Here, p and q come out to be:

p = −(δx
2
+ δ

2
)− (∥v∥2 + ∥w∥2)2

3
(104)

q =
1

27

[
−2(∥v∥2 + ∥w∥2)3 − 9(∥v∥2 + ∥w∥2)(δx2 + δ

2
) + 27(δx

2
+ δ

2
)∥w∥2

]
(105)

The coefficient q can be further simplified as:

q = − 2

27
(∥v∥2 + ∥w∥2)3 − 1

3
∥v∥2(δx2 + δ

2
) +

2

3
∥w∥2(δx2 + δ

2
) (106)

Using Viète’s trigonometric expression of the roots in three-real roots case, we have that the
solutions to t are given by tk for k = 0, 1, 2:

tk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− k

2π

3

)
(107)

Since cos ∈ [−1, 1], we can upper and lower bound the above solutions to the cubic as:

1

3
(∥v∥2 + ∥w∥2)− t′ ≤ λ0,1,2 ≤

1

3
(∥v∥2 + ∥w∥2) + t′

with t′ = 2

√
1
3(δx

2
+ δ

2
) + 1

9(∥v∥2 + ∥w∥2)2 = 2
3

√
(∥v∥2 + ∥w∥2)2 + 3(δx

2
+ δ

2
).

Notice, that ∥v∥2 + ∥w∥2 is 1/2 · Tr(HL). So, the two solutions to the quadratic on the page
before are centered at 1/4 · Tr(HL), while the three solutions to the cubic get centered around
1/6 · Tr(HL).
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