
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OBJECTIVE SOUPS: MULTILINGUAL MULTI-TASK
ACOUSTIC MODELING FOR SPEECH PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

The need for training multilingual multi-task automatic speech recognition (ASR)
models is increasingly evident. However, a significant challenge arises from the
conflicts among multiple objectives when using a single model. Multi-objective
optimization (MOO) can address this challenge by facilitating the optimization
of multiple conflicting objectives and aligning the gradient updates in a common
descent direction. While MOO helps avoid conflicting gradient update directions,
a critical issue is that when there are many objectives such as those in multilingual
multi-task ASR, it is often impossible to find such common descent directions.
Therefore, an interesting question is: would it be more effective to separate highly
conflicting objectives into different optimization levels or keep them in one level?
To address this question, this paper investigates three multi-objective ASR training
formulations, which we refer to as objective soup recipes. These formulations use
MOO at different optimization levels to mitigate potential conflicts among all objec-
tives. We conduct an extensive investigation using the LibriSpeech and AISHELL
v1 datasets for ASR, along with the CoVoST v2 dataset for both ASR and speech-
to-text translation (S2TT) tasks, to determine the highly conflicting objectives and
the optimal training recipes among these three MOO training algorithms.

1 INTRODUCTION

Automatic Speech Recognition (ASR) technology is crucial across various applications such as
virtual assistants and voice search (Graves et al., 2013b; Hinton et al., 2012). Its importance
extends to multilingual environments, where there is a growing demand for ASR systems capable
of processing multiple languages efficiently. Multilingual ASR systems find use in international
communication and language learning platforms (Toshniwal et al., 2018; Yadav & Sitaram, 2022).
Ideally, those multilingual systems can perform multiple tasks like transcription and translation
simultaneously (Chen & Mak, 2015). Unified speech models that handle multiple tasks across diverse
languages have emerged as a promising solution (Schultz & Kirchhoff, 2006; Bourlard et al., 2011),
simplifying maintenance efforts and reducing system complexity. However, training a unified model
for multilingual multi-task learning is challenging due to language diversity, task heterogeneity, data
scarcity, and model complexity (Kim et al., 2021; Fu et al., 2022).

A common approach to tackling these challenges is to introduce different objective functions that
represent different performance metrics and integrate them into the ASR training process. For
example, to overcome data scarcity, one can introduce both the self-supervised learning (SSL) loss
and the supervised learning loss in ASR tasks (Oord et al., 2018; Schneider et al., 2019; Baevski
et al., 2019; 2020; Hsu et al., 2021); to address multilingual phonetic diversity, one can introduce
separate objective functions for each language and also enforce fairness across languages. We call this
methodology as objective soup. In this context, multilingual multi-task learning naturally presents a
multi-objective learning problem, but the caveat is that different objectives may conflict with each
other – improvement of some objectives degrades others. Notably, a related work to ours is rewarded
soups (Rame et al., 2024), where the goal is to achieve the Pareto-optimal alignment for foundation
models by a weighted combination of diverse reward model parameters. The resulting reward model
provides an objective for alignment. Different from this, we consider a broader range of MOO
methods to tackle objective conflicts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

EN

FR

DEES

CA

EN

15
20

25
30

FR->EN

DE->EN

ES->EN

CA->EN

FR->EN

15
20

25
30

PT+FT VS-ASR VC-ASR VM-ASR1 VM-ASR2

Figure 1: Radar plots of ASR (left, WER) and S2TT (right, BLEU score) performance by optimization
technique for a 100M parameter model. Closer proximity to the origin indicates better ASR
performance, while greater distance indicates better S2TT performance.

To handle conflicts among multiple objectives, recent studies have leveraged multi-objective opti-
mization (MOO) to tackle multilingual multi-tasking ASR problems. Roughly speaking, there are
three primary MOO formulations, specified in Section 3, to model multilingual multi-tasking ASR
problems: i) the single-level vector optimization method; ii) the bilevel hybrid vector optimization
method; and, iii) the multi-level optimization (MLO) method (Miettinen, 1999). However, which
method is most suitable for multilingual multi-task ASR remains unclear, especially when the ob-
jectives exhibit conflict. Selecting an optimal solution from this front involves making challenging
decisions regarding acceptable trade-offs, which can negatively impact the model’s performance.
Therefore, identifying the most appropriate MOO-based algorithm for multilingual multi-task ASR
remains a significant research challenge.

In this context, we aim to thoroughly investigate these three MOO-based algorithms for multilin-
gual multi-task acoustic modeling and determine their effectiveness in handling higher conflicting
objectives. By evaluating their performance, we hope to identify the algorithm that best balances the
trade-offs and enhances the overall model performance.

Our findings and contributions. We conduct extensive experiments on various widely-used bench-
mark datasets, including LibriSpeech, AISHELL, and CoVoST v2, and across models with different
sizes. We find consistent performance gains through MLO of self-supervised and supervised objec-
tives for ASR and S2TT tasks across multiple languages. The findings are summarized below.

F1: MOO methods mitigate gradient conflicts in pre-training (PT) and fine-tuning (FT),
thus improving the performance. Compared to traditional PT+FT methods that are either
implemented in a two-stage manner or through static weighting, the MOO method with
dynamic weighting to handle conflicting gradients performs better. This is because MOO
methods mitigate conflicting multilingual multitask objectives through optimization along
common descent directions. On average, the use of MOO (VC-ASR1) improves the ASR
and S2TT performance over Joint PT+FT without MOO by 3.8% and 4.8%, respectively.
See results in Tables 1 and 2.

F2: Hierarchical objectives enhance ASR performance. Introducing appropriate hierarchy
in multilingual multi-task ASR objectives consistently improves ASR performance. In
particular, the MLO method consistently outperforms both single-level and bilevel optimiza-
tion methods. This suggests that separating highly conflicting objectives across multiple
optimization levels effectively mitigates conflicts. On average, MLO (VM-ASR2) improves
ASR and S2TT performance by 5.6% and 5.9%, respectively, compared to VC-ASR. Refer
to Tables 1 and 2 for details.

F3: Task-based hierarchy outperforms language-based hierarchy in both efficiency and
accuracy. In MLO, a task-based hierarchy requires fewer levels compared to a language-
based hierarchy, thereby reducing the overall complexity of the optimization algorithms.
Moreover, the task-based hierarchy achieves superior accuracy, as task-related objective
conflicts tend to be more significant than language-related objective conflicts. Refer to
Figure 3 for an illustration of gradient conflicts.

1Vectorized objectives with lower-level constraint for ASR
2Vectorized multilevel ASR

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

F4: The penalty parameter used in the multilevel reformulation plays a crucial role. Our
studies reveal that, while large penalty parameters used in the reformulation of multilevel
speech optimization theoretically guarantee good convergence of lower-level objectives,
they may adversely affect the generalization performance of the learned ASR model. Well-
calibrated penalty parameters, however, can improve overall ASR and S2TT performance
by 8.3% and 2.2%, respectively. See the results in Tables 3 and 4.

2 RELATED WORK

In this section, we review existing works on multilingual ASR and S2TT, aiming to identify the
current research landscape in these areas.

Multilingual ASR and S2TT. Earlier works in multilingual ASR used deep neural networks, hidden
Markov models, and multilayer perceptron models (Heigold et al., 2013; Thomas et al., 2010; Tüske
et al., 2013; Ghoshal et al., 2013). Later studies showed Long Short-Term Memory (LSTM) models
to be more effective for multilingual ASR (Graves et al., 2013a; Zhou et al., 2017). Recently, Seq2Seq
models with hybrid attention/CTC algorithms and transformer-based models have achieved state-of-
the-art results (Watanabe et al., 2017; Toshniwal et al., 2018; Zhou et al., 2018). Multilingual S2TT
tasks have also gained attention, primarily using transformer-based models with SSL pre-training
(Li et al., 2020; Bapna et al., 2022; Ren et al., 2020). Despite advancements, these systems lack
multi-tasking capabilities, a longstanding challenge in developing a single model for multiple speech-
related tasks. This line of work is orthogonal to the current paper and can potentially be combined
with our multi-objective training recipes.

Multi-task learning for speech recognition. Multi-task learning for joint ASR and S2TT tasks has
been explored in various studies, yet challenges remain in optimizing shared representations and
reducing task interference. The first algorithm for joint ASR and S2TT decoding was introduced
by (Anastasopoulos & Chiang, 2018). Subsequent models improved this by using word embedding
intermediates and two-stage models (Chuang et al., 2020; Sperber et al., 2019). A transformer-based
dual encoder-decoder architecture with separate decoders for each task was also applied (Le et al.,
2020). The Whisper (Radford et al., 2023) model was trained on large-scale audio dataset for
multitask learning. The Mu2SLAM model (Cheng et al., 2023) pre-trains on multilingual speech,
text, and supervised data. Cross-modality learning from multiple self-supervised and supervised
subtasks establishes a robust multi-task algorithm (Tang et al., 2022). Joint pre-training and fine-
tuning is also explored in ASR and multilingual multitask speech-to-text tasks to reduce training
complexity (Bai et al., 2022; Saif et al., 2024; Talnikar et al., 2021). Although these approaches
address multilingual multi-task learning using static weighting or constrained optimization, they do
not explicitly tackle conflicting objectives such as using a conflict-avoidant update direction, which
may lead to suboptimal results.

In this paper, we investigate conflicting objectives in multilingual multitask speech-to-text tasks and
propose MOO-based algorithms to mitigate these conflicts. Our approach demonstrates a significant
improvement over baseline methods, highlighting the effectiveness of MOO in multilingual multitask
speech-to-text tasks.

3 UNIFYING MOO TRAINING METHODS

In this section, we introduce multi-objective optimization and its optimality condition, discuss three
potential problem formulations, and present the corresponding algorithms to solve these problems.

3.1 MULTI-OBJECTIVE OPTIMIZATION: A PRIMER

The goal of MOO is to learn a model that simultaneously optimizes multiple objectives, where
objectives can represent different tasks or learning metrics. Let Θ ∈ Rq denote the model parameter.
Given M objectives, each denoted as lm(Θ), for m ∈ [M], the general MOO problem solves

min
Θ∈Rq

L(Θ) := [l1(Θ), . . . , lM (Θ)] . (1)

We use the following necessary optimality condition for MOO.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Intensified conflicts among optimization objectives expand the search region for Pareto
optimal points, challenging algorithms. Using a lower-level constraint lu(θ), such as the self-
supervised loss in ASR tasks, effectively reduces this region, simplifying the algorithm’s task.

Definition 1 (Pareto stationary). A model Θ is Pareto stationary if there exists λ ∈ ∆M := {λ ∈
R⊤ | 1⊤λ = 1, λ ≥ 0} such that ∇L(Θ)λ = 0, i.e., minλ∈∆M ∥∇L(Θ)λ∥ = 0.

3.2 THREE MOO FORMULATIONS OF MULTILINGUAL MULTI-TASK ASR

We adopt a joint PT+FT training approach for our MOO-based multilingual multitask speech-to-
text algorithms, facilitating the sequential optimization of PT and FT objectives. This results in
locally matched optima that enhance model convergence and overall performance (Saif et al., 2024).
Unlike (Saif et al., 2024), which employs SSL objective as a lower-level constraint to establish
a feedback loop between PT and FT, we leverage SSL objective to narrow the search space for
identifying the most suitable Pareto optimal point in the Pareto optimal front. Additionally, we
implement MOO to address conflicts between objectives, an aspect not explored in their work.

In our formulation, let Θ := [θ;ϕ], where θ is the parameter of the backbone and ϕ is that of a
language/task-dependent layer of a model. For pre-training shared backbone parameters θ, we use
SSL loss, lu(θ). For language and task specific parameters ϕt,n, we use supervised classification loss,
lctc(θ, ϕt,n), where t ∈ [T] and n ∈ [N] represents different languages and tasks, respectively. This
self-supervised loss and multiple supervised losses form the MOO objectives for multilingual ASR.
Note that, for multi-objective ASR, we can represent all the objectives as a vector, L(Θ) containing
supervised losses from different languages and tasks such as multilingual ASR and S2TT where
Θ := [θ, ϕ1,1, · · · , ϕT,N]; that is, L(Θ) := [lctc(θ, ϕ1,1), . . . , lctc(θ, ϕT,N)].

Our final goal is to learn a multilingual multi-task model with a shared backbone parameterized by θ,
and a task and language-specific part, each parameterized by ϕt,n, ∀t ∈ [T],∀n ∈ [N]. To learn these
parameters while avoiding conflicting gradient directions we formulate three MOO ASR problems.
We discuss these formulations below:

Vectorized single-level ASR (VS-ASR). In this formulation, we treat all the objectives as single-level
vectorized objectives without any lower-level constraints. Hence, the problem formulation is,

min
Θ∈Rq

[
lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N)︸ ︷︷ ︸

1-st language with N tasks

, . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N)︸ ︷︷ ︸
T -th language with N tasks

, lu(θ)
]
. (2)

Vectorized objectives with lower-level constraint for ASR (VC-ASR). To mitigate the challenge of
conflicting objectives and reduce the search space for an optimal Pareto stationary point, incorporating
a suitable lower-level constraint, lu(θ), can be beneficial (see Figure 2) (Miettinen, 1999). However,
lu(θ) must possess certain essential properties. Its gradient update direction should have minimal
conflict with the gradient directions of other objectives, as increased conflict would hinder its role
in narrowing the search space for the common optimal point. Moreover, the optimization space
defined by this constraint must be sufficiently flat, ensuring that the common optimal point across
all objectives lies within it. In this context, we incorporate the self-supervised loss as a lower-level

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

constraint, as it exhibits these desirable properties (see Appendix C). This approach helps align
the gradient directions and maintain a feasible optimization region, ultimately enhancing overall
performance. By constraining the self-supervised loss to be smaller than a threshold ϵ, our VC-ASR
method can be formulated as

min
Θ∈Rq

[
lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N), . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N)

]
s.t. lu(θ)−min

θ
lu(θ) ≤ ϵ. (3)

This formulation aims to minimize the vector of the supervised losses, L(Θ), subject to a constraint
that another self-supervised loss function, lu(θ)−minθ lu(θ), remains below a specified threshold ϵ.
Consequently, this ϵ constraint defines the feasible region for the upper-level objectives, ensuring
the attainment of a Pareto stationary point. Our investigation has revealed that employing the self-
supervised objective as a lower-level constraint for ASR tasks yields optimal results. This observation
validates the algorithm of our VC-ASR, where we separate the self-supervised objective from the
supervised objectives and optimize them at the lower and upper levels, respectively. Additionally,
this formulation facilitates joint lower and upper-level training, enhancing the overall optimization
process.

Vectorized multilevel ASR (VM-ASR). Building upon the VC-ASR formulation, we introduce
VM-ASR, a multilevel multilingual multi-task ASR algorithm. Through VM-ASR, we aim to explore
whether extending our VC-ASR algorithm into a MLO framework based on tasks and languages
offers advantages and mitigates the risk of being trapped in sub-optimal Pareto stationary points. In
MLO, decision-making follows a hierarchical structure, with decisions made at different levels within
the hierarchy. The problem formulation for multilevel ASR optimization can be expressed as follows:

argmin
ϕ1∈Rr,ϕ∗

2 ,...,θ
∗
L1(ϕ1, ϕ

∗
2, . . . , θ

∗) . . .

s.t. ϕ∗
p = argmin

ϕp∈Rr,ϕ∗
p+1,...,θ

∗
Lp(ϕ1, · · · , ϕp, ϕ

∗
p+1, . . . , θ

∗) . . .

s.t. θ∗ = argmin
θ∈Rs

LP (ϕ1, ϕ2, . . . , θ),

(4)

where Lp is a vector of ASR objectives and ∀p ∈ [P] is the optimization level. In VM-ASR, training is
performed on multiple levels, with feedback across different levels. We employ separate classification
heads for each task. They share a backbone encoder layer. it follows that the optimization of all
task-specific parameters, denoted as ϕt,n, is contingent upon optimizing the backbone parameters, θ.
Consequently, the self-supervised objective is placed at the lowest level of the optimization hierarchy.

4 APPLICATIONS OF VS-ASR, VC-ASR, AND VM-ASR

In this section, we evaluate the three multi-objective formulations introduced in Section 3 on the
multilingual multi-task ASR problem, including ASR and S2TT tasks.

4.1 DEFINING OBJECTIVES

Objectives of self-supervised and supervised training. For SSL and supervised learning we use
Contrastive Predictive Coding (CPC)3 loss (Oord et al., 2018), lu(θ) and Connectionist Temporal
Classification (CTC) loss (Graves et al., 2006), lctc(θ, ϕ), respectively. Here, θ represents the
backbone parameters, shared by all the objectives and ϕ is the parameters of the task-specific
classification heads. We formulate the joint SSL and supervised learning as a MOO problem and
solve it using VS-ASR, VC-ASR, and VM-ASR techniques.

Objectives of language-specific outputs. We consider the same loss function on different languages
as distinct objectives, each with its own classification heads and classification loss, denoted as
lctc(θ, ϕt), where t ∈ [T] represents a specific language.

Objectives of ASR and S2TT. Objectives of ASR and S2TT tasks are considered to be distinct
objectives. We use two different classification heads for ASR and S2TT. We use lctc(θ, ϕt,1) and

3Training results using the more advanced pre-training methods, BEST-RQ and Wav2Vec2, are presented in
Appendix F, in Tables 7 and 8.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

lctc(θ, ϕt,2) losses for ASR and S2TT tasks, respectively, where ϕt,1 and ϕt,2 represent the parameters
of the classification heads for the ASR and S2TT tasks, respectively.

Given this problem, we formulate multilingual VS-ASR, VC-ASR, and VM-ASR for ASR and S2TT.
Remark 1. For MLO, objectives are prioritized based on their importance. In VM-ASR, this includes
task-based and language-based MLO. Task-based MLO experiments with ASR and S2TT, alternating
their primary and secondary levels. Language-based MLO involves English (LibriSpeech) and
Chinese (AISHELL), also alternating their primary and secondary levels.

To update the backbone parameters, θ, and task-specific parameters, ϕ, in the three algorithms, we use
a gradient-based algorithm. Detailed descriptions and derivations of these algorithms are provided in
Appendix A. Below we provide a task-specific update rule for ASR and S2TT tasks.

4.2 VECTORIZED SINGLE-LEVEL ASR (VS-ASR)

For single vectorized objective training, we can optimize the vectorized objectives using Algorithm 1
in Appendix A where the shared backbone parameters are updated using

θk+1=θk − α
T∑

t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αλk

u∇θlu(θ
k). (5)

In this context, α>0 is the learning rate assigned to the backbone parameters. Moreover, λk
t,1 and

λk
t,2 represent the dynamic update directions for ASR and S2TT objectives, respectively, which are

computed using the MoDo algorithm (Chen et al., 2023). Here, λk
u is the dynamic update directions

for self-supervised objective, lu. Similarly, taking the gradients of each of the supervised objective
functions with respect to task-specific output heads, the task-specific output parameters are updated
via

ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k) and ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k) (6)

where β>0 is the learning rate for the task-specific parameter.

4.3 VECTORIZED OBJECTIVES WITH LOWER-LEVEL CONSTRAINT FOR ASR (VC-ASR)

To train a model using the VC-ASR algorithm, the backbone parameters θ are updated using

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (7)

To update task-specific heads, we employ (6); see a summary in Algorithm 2.

4.4 VECTORIZED MULTILEVEL ASR (VM-ASR)

In VM-ASR, we update the backbone parameters θ using the following equation

θk+1 = θk − α

(
T∑

t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1) + η1

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2) + η∇θlu(θ

k)

)
(8)

where η1 and η are penalty parameters. We update task-specific classification parameters using (6);
see a summary in Algorithm 3.

5 EXPERIMENTAL RESULTS AND FINDINGS

In this section, we conduct numerical simulations for proposed three algorithms, two-stage PT+FT,
static weighting (Gong et al., 2022), parameter efficient fine-tuning (PEFT) and joint PT+FT without
(W/O) MOO (Saif et al., 2024)4, to determine the optimal MOO ASR algorithm when optimizing

4Description of these methods is added in Appendix: D

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: ASR WERs comparison using CoVoST 2, including PT+FT, Two-stage static, Joint PT+FT
without (W/O) MOO, PEFT, VS-ASR, VC-ASR, and VM-ASR with different model sizes (100M
and 58M). VM-ASR optimizes objectives using UAS (self-supervised → ASR → S2TT) and USA
(self-supervised → S2TT → ASR) sequences.

Param Lang Two-stage
(PT+FT)

Two-stage
static

Joint PT+FT
W/O MOO PEFT VS-

ASR
VC-
ASR

VM-ASR
UAS

VM-ASR
USA

100M

En 26.8% 27.3% 25.2% 27.9% 26.1% 24.6% 23.5% 23.7%
Fr 19.6% 19.4% 17.8% 21.5% 18.9% 17.1% 16.0% 16.6%
De 21.9% 21.8% 20.2% 23.8% 21.2% 19.3% 18.4% 18.5%
Es 17.8% 17.2% 15.9% 19.6% 17.3% 15.2% 14.1% 14.6%
Ca 14.3% 13.7% 13.1% 16.7% 13.8% 12.5% 11.6% 11.8%

Ave. 20.1% 19.9% 18.4% 21.9% 18.8% 17.7% 16.7% 17.0%

58M

En 29.7% 29.8% 28.4% 30.2% 29.2% 27.9% 26.8% 27.1%
Fr 26.5% 26.4% 25.9% 28.2% 26.1% 25.2% 24.3% 24.7%
De 28.8% 28.6% 27.8% 30.1% 28.3% 27.1% 26.2% 26.8%
Es 21.3% 21.2% 20.4% 22.3% 20.9% 19.4% 18.9% 19.1%
Ca 18.2% 17.9% 17.5% 18.8% 18.0% 16.9% 16.2% 16.5%

Ave. 24.9% 24.8% 24.0% 25.9% 24.5% 23.3% 22.1% 22.8%

conflicting objectives. This is crucial to avoid the risk of the model getting stuck in a suboptimal
Pareto stationary point. We analyzed ASR and S2TT performance in a multilingual multi-task setup
using the CoVoST 2 dataset, selecting five languages for ASR (En, Fr, De, Es, Ca)5 and four for S2TT
(Fr, De, Es, Ca). Additionally, we performed experiments with a combination of the LibriSpeech
and AISHELL datasets. Our results demonstrate that the MOO approaches consistently outperforms
the joint PT+FT W/O MOO method and other baselines, confirming their effectiveness in achieving
better ASR and S2TT performance.

Models and hyper-parameters: We use two Conformer models (Gulati et al., 2020) for multilingual
multi-task ASR experiments. The first model has 10 Conformer blocks with a hidden dimension of
612 units and 12 attention heads; the second model has 8 blocks with 512 hidden dimensions and 8
attention heads. Each attention head has a dimension of 51 for the first model and 64 for the second
model. Both configurations use a convolutional kernel size of 31 to capture temporal dependencies
and distinct classification heads with varying output sizes. For VC-ASR, the initial penalty parameter
η is 0, increasing by 0.02 per epoch. For VM-ASR, there are three optimization levels. The penalty
constant η1 used for the second level starts at 0.1, increasing by 0.02 per epoch, while the lower-level
penalty constant η2 starts at 0 and increases by 0.02 per epoch. We use learning rates of α = 5×10−4

for backbone parameters and β = 5× 10−5 for classification parameters.

Training time and memory complexity: Our proposed MOO ASR models exhibit higher training
time and memory complexity compared to traditional PT+FT models. Specifically, the PT+FT model
uses an average of 8.7 GB of GPU memory and takes approximately 2.25 hours per epoch, while
the MOO ASR models require about 11.6 GB of GPU memory and around 2.8 hours per epoch.
This increased memory consumption and training time are primarily due to the additional gradient
calculations needed for computing dynamic weights. However, the higher training cost is justified
by significant performance gains. Moreover, our MOO approach demonstrates scalability as the
number of tasks increases, and in the long run, a single MOO model reduces resource demands during
deployment, making it a more efficient solution overall G.

Based on our experiments, we summarize the following observations6:

5.1 ENHANCING ASR AND S2TT PERFORMANCE WITH MLO

"Multilevel optimization significantly improves ASR and S2TT performance by effectively
balancing learning objectives and narrowing the search for optimal Pareto stationary points."

5English (En), French (Fr), German (De), Spanish (Es), Catalan (Ca)
6Additional result tables and discussion can be found in Appendix: F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: S2TT average(Ave.) BLEU score comparison using the CoVoST 2 dataset, including PT+FT,
Two-stage static, Joint PT+FT without(W/O) MOO, PEFT, VS-ASR, VC-ASR, and VM-ASR with
different parameter sizes (100M and 58M). VM-ASR optimizes objectives using UAS (self-supervised
→ ASR → S2TT) and USA (self-supervised → S2TT → ASR) sequences.

Param Lang→Eng Two-stage
(PT+FT)

Two-stage
static

Joint PT+FT
W/O MOO PEFT VS-

ASR
VC-
ASR

VM-ASR
UAS

VM-ASR
USA

100M

Fr→En 26.8 26.8 27.4 25.3 26.2 28.8 30.9 31.7
De→En 17.4 17.5 18.9 15.9 18.1 19.9 20.8 21.5
Es→En 26.1 26.3 27.3 24.7 27.0 28.2 30.1 30.6
Ca→En 21.9 22.0 23.5 20.2 23.4 24.9 25.8 26.1

Ave. 23.0 23.1 24.3 21.5 23.7 25.4 26.9 27.5

58M

Fr→En 23.4 23.5 24.1 22.2 23.9 25.8 26.5 26.8
De→En 15.0 15.1 15.4 13.6 15.3 16.2 17.1 17.4
Es→En 24.0 24.2 24.4 22.5 24.2 25.1 25.6 25.9
Ca→En 19.4 19.2 19.2 17.9 19.1 20.3 21.4 21.6

Ave. 20.4 20.5 20.8 19.0 20.6 21.8 22.6 22.9

Table 3: Comparison of ASR WERs on the CoVoST 2 dataset between penalty parameter increase
rates (IR) of 0.002 and 0.02 per epoch.

Param Lang Two-stage
(PT+FT)

VM-ASR
UAS (IR=.02)

VM-ASR
USA (IR=.02)

VM-ASR
UAS (IR=.002)

VM-ASR
USA (IR=.002)

58M

En 29.7% 26.8% 27.1% 29.3% 25.7%
Fr 26.5% 24.3% 24.7% 26.1% 22.6%
De 28.8% 26.2% 26.8% 27.3% 24.3%
Es 21.3% 18.9% 19.1% 20.2% 17.5%
Ca 18.2% 16.2% 16.5% 17.9% 14.3%

Ave. 24.9% 22.1% 22.8% 24.1% 20.9%

This section examines the impact of MLO on ASR and S2TT performance through a comparison
of Two-stage (PT+FT), static weight, joint PT+FT W/O MOO, VS-ASR, VC-ASR, and VM-ASR,
with parameter sizes of 100M and 58M. For VM-ASR, we tested two optimization sequences: UAS
(self-supervised → ASR → S2TT) and USA (self-supervised → S2TT → ASR).

ASR Performance: Table 1 highlights the superior performance of VM-ASR across languages
and parameter sizes. For 100M-parameter models, VM-ASR (USA) achieves the lowest WER,
outperforming Two-stage (PT+FT), Static Weight, Joint PT+FT without MOO, PEFT, VS-ASR, and
VC-ASR by up to 22.3%. VM-ASR (UAS) shows comparable gains, improving by up to 23.7%.
Similarly, for 58M-parameter models, VM-ASR (USA) achieves up to 11.9% improvement, while
VM-ASR (UAS) achieves up to 14.6% improvement. These results affirm VM-ASR’s effectiveness
in multilingual, multitask ASR with its MLO strategy.

S2TT Performance: As shown in Table 2, VM-ASR also excels in S2TT tasks, achieving the highest
BLEU scores for translations task. For 100M-parameter models, VM-ASR (USA) outperforms
Two-stage (PT+FT), Static Weight, Joint PT+FT without MOO, PEFT, VS-ASR, and VC-ASR by up
to 27.9%, with VM-ASR (UAS) achieving up to 25.1% improvement. For 58M-parameter models,
VM-ASR (USA) achieves up to 20.5% improvement, while VM-ASR (UAS) achieves up to 18.9%.
These consistent improvements demonstrate the robustness of VM-ASR in S2TT tasks.

5.2 CONFLICTING ASR AND S2TT OBJECTIVES

"Presence of multiple conflicting objectives degrades the model’s performance."

In this section, we investigate the effect of conflicting objectives on the model’s performance using two
algorithm settings: PT+FT and VS-ASR, with different model sizes. In Appendix C, we investigate
the presence of conflicting objectives in ASR in more detail.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of S2TT average BLEU scores on the CoVoST 2 dataset between penalty
parameter increase rates (IR) of 0.002 and 0.02 per epoch.

Param Lang→En Two-stage
(PT+FT)

VM-ASR
UAS (IR=.02)

VM-ASR
USA (IR=.02)

VM-ASR
UAS (IR=.002)

VM-ASR
USA (IR=.002)

58M

Fr→En 23.4 26.5 26.8 27.2 25.1
De→En 15.0 17.1 17.4 17.6 16.2
Es→En 24.0 25.6 25.9 25.8 25.3
Ca→En 19.4 21.4 21.6 21.9 20.2

Ave. 20.4 22.6 22.9 23.1 21.7

From Tables 1 and 2, the VS-ASR method consistently outperforms the PT+FT method. One major
difference between these two methods is the use of MOO. Hence, this experiment indicates the
presence of conflicts in the ASR and S2TT objectives and highlights the effectiveness of MOO in
optimizing conflicting objectives.

5.3 OPTIMIZATION ORDER IN MULTILEVEL OPTIMIZATION

"The order of optimization significantly impacts ASR accuracy in Multilevel Optimization."

Here, we investigate the significance of optimization order in MLO for ASR. By comparing the
performance of different ASR algorithms under varying optimization sequences (UAS and USA), we
aim to elucidate how the optimization order affects ASR accuracy.

From the results in Table 1, we observe that the UAS optimization sequence consistently yields
superior ASR performance compared to the USA (as the penalty parameter of the second level is
gradually increased beyond 1), indicating the importance of prioritizing certain objectives in the
training process. This finding underscores the optimization order when designing MLO methods for
ASR. The same observation can be made from Table 2 for the S2TT task where the USA optimization
sequence provides the best WER. This phenomenon is visually demonstrated in Figure 1.

5.4 EFFECT OF PENALTY PARAMETER

"Penalty parameters play a crucial role in MLO-based ASR training."

In penalty-based MLO problems, selecting the appropriate penalty parameter is crucial. These
methods prioritize upper-level objectives while controlling lower-level objectives through a penalty
term. Using a smaller penalty parameter can weaken constraint enforcement, causing suboptimal
lower-level performance, slower convergence, and imbalanced optimization (Shen & Chen, 2023).
This is evident in our multilingual multi-task ASR experiments. We further conducted experiments
following the same training procedure as other simulations, using a 58M parameter model with two
different penalty parameter increase rates. A lower increase rate of 0.002, capped at 1.5, resulted in
worse WER for lower-level tasks, as shown in Tables 3 and 4. Given the equal importance of ASR

Table 5: ASR WERs (LibriSpeech) and CERs (AISHELL) for PT+FT, Joint PT+FT W/O MOO, VS-
ASR, VC-ASR, and VM-ASR, with VM-ASR using UEC (self-supervised → English → Chinese)
and UCE (self-supervised → Chinese → English) optimization sequences.

Param Lang Two-stage
(PT+FT)

Joint PT+FT
W/O MOO VS-ASR VC-ASR VM-ASR

UEC
VM-ASR

UCE

100M En 6.2% 5.9% 6.1% 5.7% 5.2% 5.4%
Zh 6.0% 5.6% 5.8% 5.5% 5.3% 5.0%

Ave 6.1% 5.7% 5.9% 5.6% 5.2% 5.2%

58M En 7.8% 7.1% 7.3% 6.8% 6.5% 6.6%
Zh 7.4% 6.8% 7.0% 6.5% 6.1% 5.8%

Ave 7.6% 6.9% 7.1% 6.6% 6.3% 6.2%

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and S2TT objectives in our study, we applied a larger penalty parameter increase rate of 0.02 for the
lower levels, with a final value capped at 1.5. This adjustment improved lower-level performance but
slightly degraded upper-level performance. Therefore, selecting the penalty parameter requires careful
consideration of the trade-offs between upper- and lower-level priorities. A detailed explanation of
the process of the selection of penalty parameter is provided in the Appendix: F.

5.5 OUR OBSERVATIONS PERSIST ACROSS DIFFERENT MODEL SIZES

"Our observations are consistent across different model sizes."

We assess the consistency of our observations across different model sizes (100M and 58M parameters)
by evaluating ASR and S2TT performance. Results from Tables 1 and 2 confirm the reliability and
generalizability of our findings, offering insights for scalable ASR system design.

ASR Performance. From Table 1 we observed that the PT+FT approach achieved competitive
performance across all languages. The VS-ASR method consistently outperformed the PT+FT
method. The VC-ASR model demonstrated even better performance. The most notable finding
is the performance of the VM-ASR model, which exhibited significant improvements over other
models. The VM-ASR model optimized with the UAS objective sequence achieved the lowest
average WER, demonstrating its effectiveness in leveraging unlabeled data for improved performance.
These observations are valid for both the 100M and the 58M parameter models.

S2TT Performance. Table 2 illustrates the S2TT WERs comparison for different models. Similar to
ASR, the PT+FT approach demonstrated competitive performance across all language pairs. The
VS-ASR model consistently outperformed other models in the S2TT task. Interestingly, the VM-ASR
model optimized with the USA objective sequence achieved the lowest average WER, outperforming
other models in the S2TT task. Both the 100M parameter model and the 58M parameter model
demonstrate similar improvements.

5.6 CONSISTENT OBSERVATIONS IN LANGUAGE-BASED MLO

To verify our findings, we conduct experiments in both task-based and language-based MLO settings
using similar hyperparameters for the LibriSpeech and AISHELL datasets. In this experiment, we
use a combined dataset of LibriSpeech and AISHELL to perform MLO based on language types,
focusing exclusively on the ASR task. The results, shown in Table 5, reveal a phenomenon similar to
what we observed in task-based MLO. This consistent observation further validates our conclusion
regarding the effectiveness of MLO in optimizing ASR tasks.

6 CONCLUSIONS AND LIMITATIONS

In conclusion, our study highlights the substantial advantages of integrating self-supervised loss
as constraining objectives within a multilevel multi-objective optimization (MOO) structure for
multilingual multi-task ASR training. Our findings strongly indicate that segregating highly con-
flicting objectives into different optimization levels yields significant benefits for ASR and S2TT
tasks. This approach not only enhances the effectiveness of MOO but also underscores its potential
for optimizing complex tasks across diverse linguistic boundaries. While our results are based on
extensive simulations, further theoretical analysis would be an interesting direction for future research.

7 FUTURE WORK

Our study demonstrates the effectiveness of MOO methods in addressing conflicting objectives for
multilingual, multi-task ASR and S2TT tasks. However, there remain areas for further exploration.
Specifically, we hypothesize that when objectives are highly conflicting, their optimal solutions are
far apart in the parameter space, resulting in a large and spread-out Pareto front that represents diverse
trade-offs. Investigating this hypothesis and its implications for optimization strategies, particularly in
highly conflicting scenarios, would provide deeper insights into managing such trade-offs effectively.

8 REPRODUCIBILITY STATEMENT

We document implementation details in Section 5 and Appendix E. The code is included in the
supplemental materials, and we will publish it on GitHub upon acceptance of the paper.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Antonios Anastasopoulos and David Chiang. Tied multitask learning for neural speech translation.
arXiv preprint arXiv:1802.06655, 2018.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika
Singh, Patrick Von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and Michael
Auli. Xls-r: Self-supervised cross-lingual speech representation learning at scale. arXiv preprint
arXiv:2111.09296, 2021.

Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised learning of
discrete speech representations. arXiv preprint arXiv:1910.05453, 2019.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

Junwen Bai, Bo Li, Yu Zhang, Ankur Bapna, Nikhil Siddhartha, Khe Chai Sim, and Tara N Sainath.
Joint unsupervised and supervised training for multilingual asr. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6402–6406, 2022.

Ankur Bapna, Colin Cherry, Yu Zhang, Ye Jia, Melvin Johnson, Yong Cheng, Simran Khanuja, Jason
Riesa, and Alexis Conneau. mslam: Massively multilingual joint pre-training for speech and text.
arXiv preprint arXiv:2202.01374, 2022.

Herve Bourlard, John Dines, Mathew Magimai-Doss, Philip N Garner, David Imseng, Petr Motlicek,
Hui Liang, Lakshmi Saheer, and Fabio Valente. Current trends in multilingual speech processing.
Sadhana, 36:885–915, 2011.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In conference of the oriental chapter of the
international coordinating committee on speech databases and speech I/O systems and assessment,
pp. 1–5, 2017.

Dongpeng Chen and Brian Kan-Wing Mak. Multitask learning of deep neural networks for low-
resource speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
23(7):1172–1183, 2015.

Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi Chen. Three-way trade-off in multi-objective
learning: Optimization, generalization and conflict-avoidance. arXiv preprint arXiv:2305.20057,
2023.

Yong Cheng, Yu Zhang, Melvin Johnson, Wolfgang Macherey, and Ankur Bapna. Mu 2 slam:
Multitask, multilingual speech and language models. In International Conference on Machine
Learning, pp. 5504–5520, 2023.

Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised learning
with random-projection quantizer for speech recognition. In International Conference on Machine
Learning, pp. 3915–3924, 2022.

Shun-Po Chuang, Tzu-Wei Sung, Alexander H Liu, and Hung-yi Lee. Worse wer, but better bleu?
leveraging word embedding as intermediate in multitask end-to-end speech translation. arXiv
preprint arXiv:2005.10678, 2020.

Jinlan Fu, See-Kiong Ng, and Pengfei Liu. Polyglot prompt: Multilingual multitask promptraining.
arXiv preprint arXiv:2204.14264, 2022.

Arnab Ghoshal, Pawel Swietojanski, and Steve Renals. Multilingual training of deep neural networks.
In IEEE international conference on acoustics, speech and signal processing, pp. 7319–7323,
2013.

Zhuo Gong, Daisuke Saito, Longfei Yang, Takahiro Shinozaki, Sheng Li, Hisashi Kawai, and
Nobuaki Minematsu. Self-adaptive multilingual asr rescoring with language identification and
unified language model. In Odyssey, pp. 415–420, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the international conference on Machine learning, pp. 369–376, 2006.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition with deep
bidirectional lstm. In IEEE workshop on automatic speech recognition and understanding, pp.
273–278, 2013a.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In IEEE international conference on acoustics, speech and signal processing, pp.
6645–6649, 2013b.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, and Yonghui Wu. Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100, 2020.

Georg Heigold, Vincent Vanhoucke, Alan Senior, Patrick Nguyen, Marc’Aurelio Ranzato, Matthieu
Devin, and Jeffrey Dean. Multilingual acoustic models using distributed deep neural networks. In
IEEE international conference on acoustics, speech and signal processing, pp. 8619–8623, 2013.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

Wei-Ning Hsu, Yao-Hung Hubert Tsai, Benjamin Bolte, Ruslan Salakhutdinov, and Abdelrahman
Mohamed. Hubert: How much can a bad teacher benefit asr pre-training? In IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 6533–6537, 2021.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and efficient
moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 66–71, 2018.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. Advances in Neural Information
Processing Systems, 35:12169–12183, 2022.

Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab, and Laurent Besacier. Dual-decoder
transformer for joint automatic speech recognition and multilingual speech translation. arXiv
preprint arXiv:2011.00747, 2020.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing Tang, Juan Pino, Alexei Baevski, Alexis
Conneau, and Michael Auli. Multilingual speech translation with efficient finetuning of pretrained
models. arXiv preprint arXiv:2010.12829, 2020.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In IEEE international conference on acoustics, speech and
signal processing, pp. 5206–5210, 2015.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on
machine learning, pp. 28492–28518, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
lating weights fine-tuned on diverse rewards. Advances in Neural Information Processing Systems,
36, 2024.

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Simulspeech:
End-to-end simultaneous speech to text translation. In Annual Meeting of the Association for
Computational Linguistics, pp. 3787–3796, 2020.

AFM Saif, Xiaodong Cui, Han Shen, Songtao Lu, Brian Kingsbury, and Tianyi Chen. Joint unsu-
pervised and supervised training for automatic speech recognition via bilevel optimization. arXiv
preprint arXiv:2401.06980, 2024.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

Tanja Schultz and Katrin Kirchhoff. Multilingual speech processing. Elsevier, 2006.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Matthias Sperber, Graham Neubig, Jan Niehues, and Alex Waibel. Attention-passing models for
robust and data-efficient end-to-end speech translation. Transactions of the Association for
Computational Linguistics, 7:313–325, 2019.

Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Collobert, and Gabriel Synnaeve. Joint masked
cpc and ctc training for asr. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 3045–3049, 2021.

Yun Tang, Hongyu Gong, Ning Dong, Changhan Wang, Wei-Ning Hsu, Jiatao Gu, Alexei Baevski,
Xian Li, Abdelrahman Mohamed, and Michael Auli. Unified speech-text pre-training for speech
translation and recognition. arXiv preprint arXiv:2204.05409, 2022.

Samuel Thomas, Sriram Ganapathy, and Hynek Hermansky. Cross-lingual and multi-stream posterior
features for low resource lvcsr systems. In Annual Conference of the International Speech
Communication Association, 2010.

Shubham Toshniwal, Tara N Sainath, Ron J Weiss, Bo Li, Pedro Moreno, Eugene Weinstein,
and Kanishka Rao. Multilingual speech recognition with a single end-to-end model. In IEEE
international conference on acoustics, speech and signal processing, pp. 4904–4908, 2018.

Zoltán Tüske, Joel Pinto, Daniel Willett, and Ralf Schlüter. Investigation on cross-and multilin-
gual mlp features under matched and mismatched acoustical conditions. In IEEE international
conference on acoustics, speech and signal processing, pp. 7349–7353. IEEE, 2013.

Changhan Wang, Anne Wu, and Juan Pino. Covost 2 and massively multilingual speech-to-text
translation. arXiv preprint arXiv:2007.10310, 2020.

Shinji Watanabe, Takaaki Hori, and John R Hershey. Language independent end-to-end architecture
for joint language identification and speech recognition. In IEEE Automatic Speech Recognition
and Understanding Workshop, pp. 265–271, 2017.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task
optimization methods in deep learning even help? Advances in Neural Information Processing
Systems, 35:13597–13609, 2022.

Hemant Yadav and Sunayana Sitaram. A survey of multilingual models for automatic speech
recognition. arXiv preprint arXiv:2202.12576, 2022.

Shiyu Zhou, Yuanyuan Zhao, Shuang Xu, Bo Xu, et al. Multilingual recurrent neural networks with
residual learning for low-resource speech recognition. In INTERSPEECH, pp. 704–708, 2017.

Shiyu Zhou, Shuang Xu, and Bo Xu. Multilingual end-to-end speech recognition with a single
transformer on low-resource languages. arXiv preprint arXiv:1806.05059, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Supplementary Material for “ Objective Soups: Multilingual Multi-Task
Acoustic Modeling for Speech Processing "

Table of Contents
A Algorithm Development 14

B Task Specific Formulation and Update Rule 16
B.1 VS-ASR for single vectorized objectives . 17
B.2 VC-ASR for vectorized objectives with constraint lower level 17
B.3 VM-ASR for multilevel ASR optimization . 17

C Gradient Conflict 19

D Baseline Training Methods 20
D.1 Pre-training + Fine-tuning (PT+FT) . 20
D.2 Static Weighting . 21
D.3 Parameter-Efficient Fine-Tuning (PEFT) . 21

E Experimental setup 21

F Ablation Study 22
F.1 Impact of Pre-training Method . 23
F.2 Impact of VM-ASR on fine-tuning speech foundation model 23
F.3 Impact of penalty parameter . 24

G Resource Efficiency of the MOO Model 24

A ALGORITHM DEVELOPMENT

After formalizing the three training algorithms in 3.2, our subsequent objective is to devise a
gradient-based algorithm capable of addressing large-scale, high-dimensional multilingual multi-task
challenges while ensuring guaranteed convergence to Pareto stationary solutions. We will focus on
the algorithm development of VC-ASR, as this can be easily extended to the other two methods
(VS-ASR, VM-ASR). To achieve a gradient-based algorithm for VC-ASR that can avoid conflicting
update directions, we leverage recent advances in unconstrained MOO (Chen et al., 2023) and
employ a penalty-based approach to convert the constrained MOO problem in 3 into an unconstrained
MOO problem. This approach simultaneously conducts self-supervised pre-training and supervised
multi-objective learning, as defined in Equation (3); that is,

min
θ∈Rs,ϕ∈Rr

Lη(Θ) :=[lctc(θ, ϕ1,1) + ηlu(θ), · · · , lctc(θ, ϕ1,N) + ηlu(θ), . . . , (9)

lctc(θ, ϕT,1) + ηlu(θ), · · · , lctc(θ, ϕT,N) + ηlu(θ)]

where η is a penalty parameter. This penalty parameter integrates the self-supervised constrained
objective with the supervised objectives and ensures that the feasible region of the supervised objective
remains within certain bounds.

Limitation of static weighting. To guarantee Pareto stationary for supervised objectives, we can
employ either static or dynamic weighting MOO methods. In static weighting, we optimize the
(weighted) average of the multiple objectives (Kurin et al., 2022; Xin et al., 2022). This method is
simple but it may suffer from conflicting objectives where gradients of multiple objectives may have
conflicting directions. For instance, considering lt,n(Θ) = lctc(θ, ϕt,n) + ηlu(θ) and lt′,n′(Θ) =
lctc(θ, ϕt′,n′) + ηlu(θ) two objectives having conflicting directions, (t, t′) ∈ [T] and (n, n′) ∈ [N],
then ⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩ < 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Notation Description
Θ ∈ Rq Model parameter including backbone and classification head parameter.
θ ∈ Rs Backbone parameter.
θk ∈ Rs Backbone parameter at k-th iteration.
θ∗ ∈ Rs Optimum backbone parameter.
ϕ ∈ Rr Parameter of the task-specific classification head.
ϕt,n ∈ Rr Classification head parameter of n-th task and t-th language.
ϕk
t,n ∈ Rr Classification head parameter of n-th task and t-th language at k-th

iteration.
ϕp ∈ Rr A group of all classification head parameters of level p.
ϕ∗ ∈ Rr Optimum parameter of the task-specific classification head.
L Vector of all objectives.
Lη Vector of all objectives with penalized lower level constrained objective

used for VC-ASR method.
Lp Vector of all objectives in level p used for VM-ASR method.
lm,m ∈ [M] m-th objective.
lctc CTC loss with supervised data.
lu self-supervised loss.
t ∈ [T] Represents a specific language (For example: English, German, etc.).
n ∈ [N] Represents a specific task (For example: ASR or S2TT.).
k ∈ [K] Current iteration number.
p ∈ [P] Optimization level.
ϵ Constraint defines the feasible region for the upper-level objectives
d Conflict avoiding update direction.
γ Learning rate of λ update.
α Learning rate of backbone parameter.
β Learning rate of task-specific classification parameter.
λ Dynamic weight to combine gradient.
λk Dynamic weight at k-th iteration.
λk
u Dynamic weight of self-supervised objective at k-th iteration.

λk
t,n Dynamic weight of n-th task and t-th language at k-th iteration.

λ∗ Optimum dynamic weight to combine gradient.
ηp−1, p ≥ 2 Penalty parameter of p-th level of multilevel optimization (VM-ASR).
η = ηp × ηp−1 Combined penalty constant for the lowest level (VM-ASR).
ζk Stochastic unlabeled sample during training at iteration k.
ξk Stochastic labeled sample during training at iteration k.
D Labeled dataset.

Table 6: List of notations used in this paper

Proposed dynamic weighting. To avoid conflicting directions we can employ dynamic weighting
method which uses dynamically weighted gradients from individual objectives to avoid conflict and
enables optimization in conflict-avoiding (CA) direction (Chen et al., 2023). Specifically, a CA
direction d is the steepest common descent direction that maximizes the worst descent, given by

d(Θ) = argmax
d

min
λ∈∆NT

−⟨∇Lη(Θ)λ, d⟩ − 1

2
||d||2. (10)

By reformulation, such a direction is equal to dynamically weighted gradients of different objec-
tives (Chen et al., 2023), given by d(Θ) = −∇Lη(Θ)λ∗(Θ) with weight λ∗(Θ) computed by

λ∗(Θ) = argmin
λ∈∆NT

∥∇Lη(Θ)λ∥2. (11)

However, finding the true gradients of ∇Lη(Θ) is computationally expensive. Hence, in our problem,
we employ a stochastic variant of MGDA, the MoDo algorithm (Chen et al., 2023), which obtains an
unbiased stochastic gradient estimate for (11) via a double sampling technique.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

At each iteration k, denote ξk1 and ξk2 as two independent samples from labeled dataset D, and
∇l(ξk1 ; Θ

k) and ∇l(ξk2 ; Θ
k) as the stochastic gradients. We leverage the MoDo update in (Chen et al.,

2023) by

λk+1 =Π∆NT

(
λk − γk

(
∇Lη(ξ

k
1 ; Θ

k)⊤∇Lη(ξ
k
2 ; Θ

k)
)
λk
)

(12)

where γk is step size, Π∆NT (·) denotes the projection to ∆NT .

Parameters update. Using the dynamic weighting and penalization method, we update the backbone
parameters, θ, of the ASR model. Next, we describe the backbone parameters and task-specific
classification parameters update rules for VS-ASR, VC-ASR, and VM-ASR.

VS-ASR. For single vectorized objective training, we only need to consider if the objectives have
conflicting update directions. As in multilingual multi-task training we are using separate language
dataset, we can assume that the objectives have conflicting update direction. We can also prove this
assumption by calculating ⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩ < 0. We optimize this vectorized objectives
using algorithm: 1 where the shared backbone parameters are updated using the following equations,

θk+1 = θk − α
T∑

t=1

N∑
n=1

λk
t,n∇θlctc(θ

k, ϕk
t,n)− αλu∇θlu(θ

k). (13)

In this context, α> 0 denotes the learning rate specifically assigned to the backbone parameters.
Moreover, λk

t,n and λu represent the dynamic update directions for supervised and self-supervised
objectives, respectively, which are computed using the MoDo algorithm. Similarly, taking the
gradients of each of the supervised objective functions with respect to parameters of task-specific
output heads, task-specific output layers are updated via,

ϕk+1
t,n = ϕk

t,n − β∇ϕlctc(ϕ
k
t,n, θ

k) (14)

where β>0 is the learning rate for the task-specific parameter.

VC-ASR. To train a model using VC-ASR algorithm, the backbone parameters θ is updated using,

θk+1 = θk − α

T∑
t=1

N∑
n=1

λk
t,n∇θlctc(θ

k, ϕk
t,n)− αη∇θlu(θ

k). (15)

To update task-specific classification heads, we employ (14); see a summary in Algorithm 2.

VM-ASR. In VM-ASR, we separate highly conflicting objectives into distinct optimization levels.
Here, we assume that all objectives at level p function as lower-level objectives for those at level
p− 1. Consequently, we can update the backbone parameters using the penalize method, that is

θk+1 = θk − α

T1∑
t1=1

N1∑
n1=1

λk
t1,n1

∇θlctc(θ
k, ϕk

t1,n1
)− αη2

(
T2∑

t2=1

N2∑
n2=1

λk
t2,n2

∇θlctc(θ
k, ϕk

t2,n2
) + · · ·

(16)

αηp−1

(
Tp∑

tp=1

Np∑
np=1

λk
tp,np

∇θlctc(θ
k, ϕk

tp,np
) + · · ·αηP−1

(
TP∑

tP=1

NP∑
nP=1

λk
tP ,nP

∇θlctc(θ
k, ϕk

tP ,nP
) + αη∇θlu(θ

k)

)))
.

Update task-specific classification parameters using

ϕk+1
tp,np

= ϕk
tp,np

− β∇ϕlctc(ϕ
k
tp,np

, θk) (17)

where Np and Tp represent the total number of tasks and languages at level p, respectively. We
represent the penalty parameter at level p as ηp and for self-supervised objective, the penalty parameter
is η.

B TASK SPECIFIC FORMULATION AND UPDATE RULE

In this section, we will explore in detail the three MOO setups in ASR and S2TT tasks and establish
the parameter update rules for each of them.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.1 VS-ASR FOR SINGLE VECTORIZED OBJECTIVES

For single vectorized objective training, we only need to consider if the objectives have conflicting
update directions. As in the multilingual multi-task training, we use separate language datasets, so we
can assume that the objectives have conflicting update directions. We can also verify this assumption
by calculating ⟨∇Θlt,1(Θ),∇Θlt′,2(Θ)⟩ < 0. We can formulate this single vectorized objectives for
ASR and S2TT tasks following (2) as follows,

min
Θ∈Rq

[lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N), . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N), lu(θ)]. (18)

As there is no lower-level constrain, we optimize this vectorized objectives using algorithm: 1 where
the shared backbone parameters are updated using the following equations

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αλk

u∇θlu(θ
k) (19)

where λt,1 and λt,2 are dynamic update directions for ASR and S2TT tasks, respectively, and λu is
the dynamic update direction for self-supervised objective calculated using MoDo algorithm. We
update the classification heads using

ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k). (20a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k). (20b)

B.2 VC-ASR FOR VECTORIZED OBJECTIVES WITH CONSTRAINT LOWER LEVEL

In this setup, we use self-supervised CPC loss, lu(θ), as a lower-level constraint to shrink the search
region for the optimal Pareto stationary point for supervised CTC loss, lctc(θ, ϕ). The problem
formulation for VC-ASR in ASR and S2TT tasks can be written as follows:

min
Θ∈Rq

[lctc(θ, ϕ1,1), lctc(θ, ϕ1,2), . . . , lctc(θ, ϕT,1), lctc(θ, ϕT,2)]

s.t. lu(θ)−min
θ

lu(θ) ≤ ϵ. (21)

The backbone parameters θ is updated using,

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (22)

The task specific classification parameters are updated using (20a) and (20b)

B.3 VM-ASR FOR MULTILEVEL ASR OPTIMIZATION

In MLO problem, there is a hierarchy of objectives. We can reformulate the multilingual multi-task
ASR optimization task into different MLO problems based on the tasks, languages, or language
families to which they belong. We study these set-ups and solve these optimization problems using
penalty-based gradient descent method.

Multilevel optimization based on tasks. We can extend the ASR optimization problem into three
levels based on the tasks: ASR, S2TT, and self-supervised task. We always place the self-supervised
objective at the lowest level and optimize it first, as the optimization of all other objectives directly
depends on the optimization of the self-supervised objective.

argmin
ϕ1,1,··· ,ϕT,1∈Rr,ϕ∗

1,2,...,ϕ
∗
T,2,θ

∗
Lctc(ϕ1,1, ϕ2,1, . . . , ϕ

∗
1,2, ϕ

∗
2,2, · · · , θ∗)

s.t. ϕ∗
1,2, · · · , ϕ∗

T,2 = argmin
ϕ1,2,··· ,ϕT,2∈Rr,θ∗

Lctc(ϕ1,1, ϕ2,1, . . . , ϕ1,2, ϕ2,2, · · · , θ∗)

s.t. θ∗ = argmin
θ∈Rs

lu(θ).

(23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We apply a penalty-based method to convert this multilevel multi-objective optimization problem
into a single-level optimization problem and apply dynamic MOO to update the parameters in a
conflict-avoiding direction.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− αη1

(
T∑

t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2) + αη2∇θlu(θ

k)

)
.

(24)

Here, η1 and η2 are penalty parameters. We can combine η1 and η2 and get η = η1 × η2 for
self-supervised loss.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− αη1

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (25)

Next, we update the classification heads via
ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k). (26a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k). (26b)

We provide a detailed algorithm of multilevel ASR optimization in 3. We also do experiment altering
the optimization order of ASR and S2TT tasks.

Multilevel optimization based on language. We can also extend ASR optimization problem into
multiple level based on languages

argmin
ϕ1,1,ϕ1,2∈Rr,ϕ∗

2,1,ϕ
∗
2,2,...,θ

∗
Lctc(ϕ1,1, ϕ1,2, ϕ

∗
2,1, ϕ

∗
2,2, · · · , θ∗)

. . .

s.t. ϕ∗
T,1, ϕ

∗
T,2 = argmin

ϕT,1,ϕT,2∈Rr,θ∗
Lctc(ϕ1,1, ϕ1,2, . . . , ϕT,1, ϕT,2, θ

∗)

s.t. θ∗ = argmin
θ∈Rs

Lu(θ).

(27)
In this setup, we optimize all the objectives of one language in one optimization level and optimize
other languages’ objectives in other optimization levels. For simplicity of implementation, we will
consider two languages. We can update the model parameters using the following penalty-based
update rules

θk+1 = θk − α

N∑
n=1

λk
1,n∇θlctc(θ

k, ϕk
1,n)− αη1

N∑
n=1

λk
2,n∇θlctc(θ

k, ϕk
2,n)− αη∇θlu(θ

k). (28)

In this equation, η1 and η2 are penalty parameters. We can combine η1 and η2 to obtain η = η1 × η2,
which is used for the self-supervised loss. The parameter N = 2 represents the total number of
tasks (in this experiment, ASR and S2TT). The terms λk

1,n and λk
2,n represent the dynamic update

directions for languages 1 and 2, respectively, during the k-th iteration for task n.

Figure 3: Heat-map of Cosine similarities among ASR and
S2TT objectives.

Next, we update the classification
heads via
ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k).

(29a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k).

(29b)
In both task-based and language-
based MLO, we alter the order of ob-
jectives at the optimization level to
examine the effects of their arrange-
ment. By doing so, we can better un-
derstand how the sequence of objec-
tives influences the optimization pro-
cess and outcomes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 VS-ASR for multilingual multi-task ASR.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α and β;
for k = 1 to K do

sample ζk1 = xk
1,u, ζk2 = xk

2,u, ξk1 = (xk
1 , y

k
1) and ξk2 = (xk

2 , y
k
2)

compute ∇lu(ζ
k
1 ; θ

k), ∇lu(ζ
k
2 ; θ

k), ∇lctc(ξ
k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (13)
update ϕk+1

t,n by (14) ∀t ∈ [T],∀n ∈ [N]
end for
Output: θK , {ϕK

t,n}

C GRADIENT CONFLICT

In this setup, we aim to separate
highly conflicting objectives into up-
per and lower optimization levels. However, a sub-question arises within this setup: which objectives
are highly conflicting? To address this question, we need to establish a boundary or threshold that
distinguishes objectives with significant conflicts. We can create such a threshold by calculating
the degree of conflict using the cosine similarity of the gradients of the objectives. If the cosine
similarity of two objectives is smaller than a certain threshold, they are optimized at different levels.
If ∇Θlt,n(Θ) and ∇Θlt′,n′(Θ) are gradients of two objectives then we can calculate the cosine
similarity using

cosω =
⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩
∥∇Θlt,n(Θ)∥∥∇Θlt′,n′(Θ)∥

(30)

where ω is the angle between the gradients of two different objectives. To calculate the similarity
between update directions, we use the same conformer model and train it using two different languages
and objectives simultaneously. We train the model for 20 epochs using both objectives and then
average the gradients of their updates separately. We follow the same process for all languages and
record their average gradients for 20 epochs. We can now calculate the cosine similarity between
the gradient update direction of two objectives from these recorded gradients. We also compare the
cosine similarity between self-supervised and supervised losses.

In Figure 3 and 4, we depict the cosine similarity of supervised objective gradients across five
languages, along with the self-supervised objective gradient for ASR and S2TT. The heat map
displays the similarity values, while the scatter plot, with points colored by their cluster assignments,
helps visualize which objectives are closely related (high similarity) and which are not. The size and
color of the points represent the similarity values and cluster assignments, respectively.

Figure 4: Scatter plot of cosine similarities between ASR
and S2TT objectives.

From the analysis of these figures,
it is evident that tasks with lower
similarities exhibit higher conflicts.
Notably, the self-supervised gradi-
ents show significantly higher sim-
ilarity with other objectives. This
finding supports our decision to use
the self-supervised loss as a lower-
level constraint, thereby shrinking
the search region for finding optimal
Pareto points.

Moreover, segregating the highly con-
flicting ASR and S2TT tasks into dif-
ferent optimization levels reduced the
overall conflict among the gradients
of the objectives. Consequently, this
approach improved the WER scores.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 VC-ASR for multilingual multi-task ASR

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty parameter η;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1) and ξk2 = (xk

2 , y
k
2)

compute ∇lu(ζ
k; θk)

compute ∇lctc(ξ
k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (15)
update ϕk+1

t,n by (14) ∀t ∈ [T],∀n ∈ [N]
end for
Output: θK , {ϕK

t,n}

Algorithm 3 VM-ASR for multilingual multi-task ASR.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty η1, · · · , ηP ;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1) and ξk2 = (xk

2 , y
k
2)

compute ∇lu(ζ
k; θk), ∇lctc(ξ

k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (16)
update ϕk+1

tp,np
by (17)∀tp ∈ [Tp],∀np ∈ [Np]

end for
Output: θK , {ϕK

t,n}

D BASELINE TRAINING METHODS

In this section, we outline the baseline methods used to compare against our MOO algorithms.

D.1 PRE-TRAINING + FINE-TUNING (PT+FT)

This method involves two sequential steps:

1. Pre-training: The model is first pre-trained on a self-supervised learning (SSL) objective, such as
CPC or Wav2Vec2, to learn general-purpose representations from unlabeled speech data. During this
stage, the backbone parameters are updated using:

θk+1 = θk − α∇θlu(θ
k), (31)

where lu represents the SSL loss, and α is the learning rate.

2. Fine-tuning: After pre-training, the model is fine-tuned on a supervised task (e.g., ASR or S2TT)
using the CTC loss to adapt the learned representations to task-specific objectives. During fine-tuning:

• The backbone parameters are updated using:

θk+1 = θk − β

NT

T∑
t=1

N∑
n=1

∇θlctc(θ
k, ϕk

t,n), (32)

where β is the learning rate, N and T denote the number of tasks and languages, respectively.

• The parameters of the individual classification heads are updated using:

ϕk+1
t,n = ϕk

t,n − β∇ϕlctc(ϕ
k
t,n, θ

k), (33)

where ϕt,n denotes the parameters for task n and language t.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 STATIC WEIGHTING

This method follows the same process as PT+FT but introduces static weighting during fine-tuning.
Instead of using equal weights for all supervised objectives, a grid search is performed to assign
suitable weights to each objective. The backbone parameters are updated using:

θk+1 = θk − β

T∑
t=1

N∑
n=1

µt,n∇θlctc(θ
k, ϕk

t,n), (34)

where µt,n represents the static weight assigned to the supervised objective for task n and language t.
For our experiments, the following language-specific weights were used:

[En, Fr, De, Es, Ca] = [0.18, 0.19, 0.27, 0.16, 0.20].

JOINT PT+FT WITHOUT MOO

This method follows the same process as VC-ASR but does not incorporate MOO (Saif et al., 2024).
Instead, all supervised objectives are optimized jointly without dynamic weighting or conflict-aware
gradient alignment, resulting in a simpler optimization process.

D.3 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

In the PEFT method, the backbone is first pre-trained following Equation 31. Afterward, the backbone
is frozen, and the fine-tuning is performed in a sequential manner:

1. A single set of classification heads is fine-tuned using Equation 33.
2. The fine-tuned classification heads are then frozen, and the next set is optimized.

This process continues iteratively for each set of classification heads.

E EXPERIMENTAL SETUP

In this section, we outline the dataset, models, hyper-parameters, and data pre-processing techniques
employed in evaluating our VS-ASR, VC-ASR, and VM-ASR algorithms.

Dataset. We evaluate our training algorithms on a combined dataset of LibriSpeech (Panayotov et al.,
2015), AISHELL v1 (Bu et al., 2017), and CoVoST v2 (Wang et al., 2020). LibriSpeech is an English
speech dataset consisting of 960 hours of data along with transcripts. AISHELL v1 is a 178-hour
multi-channel Mandarin speech corpus designed for various speech/speaker processing tasks. We
have combined these two datasets to create a single multilingual dataset. Our approach involved
splitting the LibriSpeech dataset, allocating 860 hours for self-supervised pre-training and using
the 100-hour train-clean-100 subset for supervised training. The trained models are tested on the
AISHELL test dataset and the LibriSpeech test-clean dataset. During training using CoVoST dataset,
we use equal batch sizes across all languages and tasks to ensure balanced training. For high-resource
En, we fix a subset of data (top 50% from the provided CSV), while applying upsampling for low-
resource languages—4x for Ca and Es and 2x for Fr and De. The same En subset is consistently used
across all runs to maintain fairness.

In the first experiment, we use combined LibriSpeech and AISHELL multilingual dataset and train a
multi-head conformer for multilingual ASR tasks. In the second experiment, we use the CoVoST v2
training dataset for multilingual ASR and S2TT training. The CoVoST v2 test set is used to evaluate
the trained models. CoVoST v2 is a widely-used benchmark multilingual S2TT corpus covering
translations from 21 languages into English and from English into 15 languages.

Models. We use two configurations of the Conformer model (Gulati et al., 2020), each with a different
number of Conformer blocks and hidden units. The first model has 10 Conformer blocks with a
hidden dimension of 612 units and 12 attention heads; the second model has 8 blocks with 512 hidden
dimensions and 8 attention heads. Each attention head has a dimension of 51 for the first model and
64 for the second model. Both configurations use a convolutional kernel size of 31, enhancing the
model’s ability to discern temporal dependencies and capture long-range dependencies in the input

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: Multi-head conformer model for multilingual multi-task ASR.

sequences. Additionally, distinct classification heads are used for different tasks, each configured
with varying output sizes (see Figure: 5).

Hyper-parameters. We use grid search to optimize hyperparameters, including learning rate, batch
size, step size of MoDo, and penalty parameter increasing rate. For both SSL pre-training and
supervised fine-tuning, the backbone learning rate is consistently set higher than the classification
parameter learning rate. The SSL pre-training phase starts with a learning rate of α = 5 × 10−4

for 100 epochs, annealed by a factor of 0.1 every 20 epochs. Fine-tuning uses a maximum learning
rate of β = 5× 10−5, with a scheduler reducing the learning rate by a factor of 0.1 if the test loss
does not improve within 10 epochs. All MOO models (VS-ASR, VC-ASR, and VM-ASR) and joint
PT+FT models are trained for 200 epochs. For PT+FT, we pre-train the model for 200 epochs and
fine-tune it for an additional 100 epochs. A batch size of 256 and AdamW optimizer are used for
both self-supervised and supervised training. The same hyperparameter settings are applied across all
training methods to ensure consistency and comparability.

Penalty parameter for ASR and S2TT. For VC-ASR, the initial penalty parameter η is set to 0 and
increases at a rate of 0.02 per epoch. The increase stops once the penalty reaches a maximum value
of 1.5. For VM-ASR, the second-level penalty parameter η1 is initially set to 0.1 and increases by
0.02 per epoch, while the lower-level penalty constant η2 starts at 0 and also increases by 0.02 per
epoch. The increase for both penalty constants stops once they reach a maximum value of 1.5. A
higher increase rate for the lower level ensures equal importance of both upper-level and lower-level
objectives.

Data pre-processing. Our experiment involves both supervised and self-supervised training; however,
preprocessing is applied only for the supervised training phase. For self-supervised training, we
use raw speech data directly, enabling the model to learn representations from the audio without
additional preprocessing. Specifically, we use a context length of 20 frames (200 ms) and predict the
next 12 frames, employing 12 negative samples for contrastive loss. For supervised training, we apply
standard preprocessing steps, including feature extraction and normalization. The raw audio files are
converted into 80-dimensional log-mel features, a widely used representation in speech recognition
tasks that effectively captures both temporal and spectral information. The data is then normalized to
zero mean and unit variance to facilitate faster model convergence. We also employ SpecAug for data
augmentation to improve model robustness. In terms of text processing, we utilize SentencePiece
(Kudo & Richardson, 2018) as the tokenizer and detokenizer. We use word-based tokens, with the
token vocabulary size set to 1000 for all languages except Chinese, where it is character-based with
a vocabulary size of 5000. This ensures an appropriate balance between model complexity and
performance. All training methods employ the same pre-processing steps.

Computational Resources. All simulations were run on two NVIDIA A5000 GPUs and two NVIDIA
A4500 GPUs, with an Intel i9-7920X CPU and 128 GB of DDR4 memory.

F ABLATION STUDY

In this section, we study the impact of different pre-training methods and provide a detailed explana-
tion of the effect of the penalty parameter on the overall training process.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: ASR WERs and S2TT BLEU score comparison between CPC and BEST-RQ pre-training
methods. For S2TT we do Lang → En translation.

Param Lang
VM-ASR-UAS

(ASR-CPC-
WER)

VM-ASR-UAS
(S2TT-CPC-

BLEU)

VM-ASR-UAS
(ASR-BEST-RQ-

WER)

VM-ASR-UAS
(S2TT-BEST-RQ-

BLEU)

100M

En 23.5% – 21.8% –
Fr 16.0% 30.9 14.9% 31.6
De 18.4% 20.8 17.6% 21.4
Es 14.1% 30.1 13.2% 31.2
Ca 11.6% 25.8 10.8% 26.9

Ave. 16.7% 26.9 15.8% 27.8

Table 8: Comparison of ASR WERs and S2TT BLEU scores between Wav2Vec2 with and without
VM-ASR methods. For S2TT, we perform translation from Lang → En.

Param Lang Wav2Vec2-ASR
Without VM-ASR

Wav2Vec2-S2TT
Without VM-ASR

Wav2Vec2-ASR
With VM-ASR

Wav2Vec2-S2TT
With VM-ASR

300M

En 19.4% – 17.9% –
Fr 14.1% 32.4 12.8% 33.2
De 16.2% 26.2 15.1% 27.7
Es 11.1% 33.7 9.7% 35.0
Ca 9.8% 28.1 8.9% 31.4

Ave. 14.1% 30.1 12.9% 31.8

F.1 IMPACT OF PRE-TRAINING METHOD

In this ablation study, we assess the impact of two different pre-training techniques—CPC and
BEST-RQ (Chiu et al., 2022)—on the performance of our VM-ASR method. The purpose of this
ablation is to isolate the contribution of the pre-training method to the overall performance of the
ASR and S2TT tasks. We keep the settings consistent across both methods, with the model containing
100 million parameters in all cases. The tasks evaluated include ASR in various languages and S2TT
for translating from different source languages into English.

The results in Table 7 compare CPC and BEST-RQ across five languages. The results indicate a
consistent improvement when using the BEST-RQ pre-training method. Specifically, BEST-RQ leads
to a 5.4% absolute improvement in the average WER compared to CPC across all languages. The
improvement is most pronounced in English and French, where the WER reductions reach 7.2% and
6.9%, respectively. For Spanish and German, the improvements are slightly smaller but still notable
at 6.4% and 4.3%, respectively.

On the S2TT task, BEST-RQ also outperforms CPC, resulting in a 3.3% absolute increase in the
average BLEU score across the evaluated languages. The highest BLEU score improvements are
observed for Catalan and Spanish, with BEST-RQ providing increases of 4.3% and 3.7%, respectively.
This indicates that BEST-RQ not only improves the ASR task but also enhances the downstream
translation quality, likely due to the richer representations learned during pre-training.

Overall, these results suggest that the pre-training method plays a crucial role in enhancing both ASR
and S2TT performance. The BEST-RQ approach, with its enhanced capability to model complex
speech patterns, proves to be more effective than CPC, thus making it the more suitable choice for
the VM-ASR algorithm.

F.2 IMPACT OF VM-ASR ON FINE-TUNING SPEECH FOUNDATION MODEL

We evaluate our VM-ASR (UAS) method using the pre-trained Wav2Vec2-XLS-R7 model (Babu
et al., 2021). In this approach, we utilize the pre-trained model as the backbone and add linear layers
for each task and language to predict the output vocabulary, training with the CTC method. All other

7https://huggingface.co/facebook/wav2vec2-xls-r-300m

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Comparison of resource requirements between a single MOO model and multiple single-
objective models during deployment.

Model Encoder
Param

Classification
Heads

Total
Param

Storage
Size

Loading
Time (s)

Single MOO
Model ~100M ~2.5M ~102.5M ~654.4 MB ~0.27

Five Single-
Objective Models ~500M ~2.5M ~502.5M ~3.2 GB ~1.25

hyperparameters remain consistent with our previous training protocols. In the first experiment, we
fine-tune the Wav2Vec2 model across all languages for ASR and S2TT tasks, following the same
procedure as our earlier PT+FT training. In the second experiment, we perform joint pre-training
and fine-tuning (PT+FT) with MOO, similar to the VM-ASR (USA) training approach. For both
experiments, the model is trained for 50 epochs. The results are summarized in Table 8. On average,
the Wav2Vec2 model trained with VM-ASR outperforms the standard Wav2Vec2 model by 8.5% in
the ASR task and by 5.6% in the S2TT task.

F.3 IMPACT OF PENALTY PARAMETER

In our multilingual multi-task ASR experiments, we investigated the effects of different penalty
parameter increase rates to balance the ASR and S2TT tasks. We tested two configurations:

• A lower increase rate of 0.002, which led to worse WER/BLEU score for lower-level tasks,
as shown in Tables 3 and 4.

• A higher increase rate of 0.02, which improved lower-level performance but slightly
degraded upper-level performance.

Choice of capped value for the penalty parameter: We capped the penalty parameter at 1.5 based
on our observed trade-off between upper- and lower-level tasks. A penalty higher than 1.5 could
have improved lower-level performance further, but it would have significantly degraded upper-level
metrics. Thus, 1.5 was chosen as an optimal balance point.

Post-Maximum Penalty Effects: The penalty parameter reached its maximum value of 1.5 after
75 epochs, but training continued for another 25 epochs. During this time, we observed further
improvements in lower-level WER/BLEU scores, while upper-level performance deteriorated. This
reinforces the critical role that penalty parameter selection plays in balancing competing objectives.

G RESOURCE EFFICIENCY OF THE MOO MODEL

This section addresses the question: How does a single MOO model reduce resource demands
during deployment, making it a more efficient solution overall?

• Reduced Storage Requirements: A single MOO model is highly memory-efficient due
to parameter sharing across tasks, see Table: 9. The largest MOO model used in our
experiments has a size of 654.4 MB, comprising an encoder (~100M parameters) shared
across all objectives and five lightweight classification heads (~0.5M parameters each) for
five different tasks (considering the ASR for five languages). In contrast, deploying five
separate models for these tasks would require 5× more backbone parameters, resulting
in significantly higher storage demands. Assuming each single-objective model uses an
encoder of similar size, the total storage requirement for separate models would reach
approximately 3.2 GB.

• Efficient Inference: The MOO model also minimizes latency and computational overhead
during inference. In our system, it takes only 0.27s to load the single MOO model, whereas
loading five separate models takes 1.25s (5× 0.25 s). This reduction in loading time directly
translates to faster response times and improved computational efficiency.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By consolidating multiple objectives into a single model, the MOO approach not only achieves
significant memory savings but also ensures faster deployment and reduced computational demands,
making it a scalable and efficient solution for real-world applications.

25

	Introduction
	Related Work
	Unifying MOO Training Methods
	Multi-objective optimization: a primer
	Three MOO formulations of multilingual multi-task ASR

	Applications of VS-ASR, VC-ASR, and VM-ASR
	Defining objectives
	 Vectorized single-level ASR (VS-ASR)
	Vectorized objectives with lower-level constraint for ASR (VC-ASR)
	Vectorized multilevel ASR (VM-ASR)

	Experimental Results and Findings
	Enhancing ASR and S2TT performance with MLO
	Conflicting ASR and S2TT objectives
	Optimization order in multilevel optimization
	Effect of penalty parameter
	Our observations persist across different model sizes
	Consistent observations in language-based MLO

	Conclusions and Limitations
	Future Work
	Reproducibility Statement
	
	Algorithm Development
	Task Specific Formulation and Update Rule
	VS-ASR for single vectorized objectives
	VC-ASR for vectorized objectives with constraint lower level
	VM-ASR for multilevel ASR optimization

	Gradient Conflict
	Baseline Training Methods
	Pre-training + Fine-tuning (PT+FT)
	Static Weighting
	Parameter-Efficient Fine-Tuning (PEFT)

	Experimental setup
	Ablation Study
	Impact of Pre-training Method
	Impact of VM-ASR on fine-tuning speech foundation model
	Impact of penalty parameter

	Resource Efficiency of the MOO Model

