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ABSTRACT

The need for training multilingual multi-task automatic speech recognition (ASR)
models is increasingly evident. However, a significant challenge arises from the
conflicts among multiple objectives when using a single model. Multi-objective
optimization (MOO) can address this challenge by facilitating the optimization
of multiple conflicting objectives and aligning the gradient updates in a common
descent direction. While MOO helps avoid conflicting gradient update directions,
a critical issue is that when there are many objectives such as those in multilingual
multi-task ASR, it is often impossible to find such common descent directions.
Therefore, an interesting question is: would it be more effective to separate highly
conflicting objectives into different optimization levels or keep them in one level?
To address this question, this paper investigates three multi-objective ASR training
formulations, which we refer to as objective soup recipes. These formulations use
MOO at different optimization levels to mitigate potential conflicts among all objec-
tives. We conduct an extensive investigation using the LibriSpeech and AISHELL
v1 datasets for ASR, along with the CoVoST v2 dataset for both ASR and speech-
to-text translation (S2TT) tasks, to determine the highly conflicting objectives and
the optimal training recipes among these three MOO training algorithms.

1 INTRODUCTION

Automatic Speech Recognition (ASR) technology is crucial across various applications such as
virtual assistants and voice search (Graves et al., 2013b; Hinton et al., 2012). Its importance
extends to multilingual environments, where there is a growing demand for ASR systems capable
of processing multiple languages efficiently. Multilingual ASR systems find use in international
communication and language learning platforms (Toshniwal et al., 2018; Yadav & Sitaram, 2022).
Ideally, those multilingual systems can perform multiple tasks like transcription and translation
simultaneously (Chen & Mak, 2015). Unified speech models that handle multiple tasks across diverse
languages have emerged as a promising solution (Schultz & Kirchhoff, 2006; Bourlard et al., 2011),
simplifying maintenance efforts and reducing system complexity. However, training a unified model
for multilingual multi-task learning is challenging due to language diversity, task heterogeneity, data
scarcity, and model complexity (Kim et al., 2021; Fu et al., 2022).

A common approach to tackling these challenges is to introduce different objective functions that
represent different performance metrics and integrate them into the ASR training process. For
example, to overcome data scarcity, one can introduce both the self-supervised learning (SSL) loss
and the supervised learning loss in ASR tasks (Oord et al., 2018; Schneider et al., 2019; Baevski
et al., 2019; 2020; Hsu et al., 2021); to address multilingual phonetic diversity, one can introduce
separate objective functions for each language and also enforce fairness across languages. We call this
methodology as objective soup. In this context, multilingual multi-task learning naturally presents a
multi-objective learning problem, but the caveat is that different objectives may conflict with each
other – improvement of some objectives degrades others. Notably, a related work to ours is rewarded
soups (Rame et al., 2024), where the goal is to achieve the Pareto-optimal alignment for foundation
models by a weighted combination of diverse reward model parameters. The resulting reward model
provides an objective for alignment. Different from this, we consider a broader range of MOO
methods to tackle objective conflicts.
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Figure 1: Radar plots of ASR (left, WER) and S2TT (right, BLEU score) performance by optimization
technique for a 100M parameter model. Closer proximity to the origin indicates better ASR
performance, while greater distance indicates better S2TT performance.

To handle conflicts among multiple objectives, recent studies have leveraged multi-objective opti-
mization (MOO) to tackle multilingual multi-tasking ASR problems. Roughly speaking, there are
three primary MOO formulations, specified in Section 3, to model multilingual multi-tasking ASR
problems: i) the single-level vector optimization method; ii) the bilevel hybrid vector optimization
method; and, iii) the multi-level optimization (MLO) method (Miettinen, 1999). However, which
method is most suitable for multilingual multi-task ASR remains unclear, especially when the ob-
jectives exhibit conflict. Selecting an optimal solution from this front involves making challenging
decisions regarding acceptable trade-offs, which can negatively impact the model’s performance.
Therefore, identifying the most appropriate MOO-based algorithm for multilingual multi-task ASR
remains a significant research challenge.

In this context, we aim to thoroughly investigate these three MOO-based algorithms for multilin-
gual multi-task acoustic modeling and determine their effectiveness in handling higher conflicting
objectives. By evaluating their performance, we hope to identify the algorithm that best balances the
trade-offs and enhances the overall model performance.

Our findings and contributions. We conduct extensive experiments on various widely-used bench-
mark datasets, including LibriSpeech, AISHELL, and CoVoST v2, and across models with different
sizes. We find consistent performance gains through MLO of self-supervised and supervised objec-
tives for ASR and S2TT tasks across multiple languages. The findings are summarized below.

F1: MOO methods mitigate gradient conflicts in pre-training (PT) and fine-tuning (FT),
thus improving the performance. Compared to traditional PT+FT methods that are either
implemented in a two-stage manner or through static weighting, the MOO method with
dynamic weighting to handle conflicting gradients performs better. This is because MOO
methods mitigate conflicting multilingual multitask objectives through optimization along
common descent directions. On average, the use of MOO (VC-ASR1) improves the ASR
and S2TT performance over Joint PT+FT without MOO by 3.8% and 4.8%, respectively.
See results in Tables 1 and 2.

F2: Hierarchical objectives enhance ASR performance. Introducing appropriate hierarchy
in multilingual multi-task ASR objectives consistently improves ASR performance. In
particular, the MLO method consistently outperforms both single-level and bilevel optimiza-
tion methods. This suggests that separating highly conflicting objectives across multiple
optimization levels effectively mitigates conflicts. On average, MLO (VM-ASR2) improves
ASR and S2TT performance by 5.6% and 5.9%, respectively, compared to VC-ASR. Refer
to Tables 1 and 2 for details.

F3: Task-based hierarchy outperforms language-based hierarchy in both efficiency and
accuracy. In MLO, a task-based hierarchy requires fewer levels compared to a language-
based hierarchy, thereby reducing the overall complexity of the optimization algorithms.
Moreover, the task-based hierarchy achieves superior accuracy, as task-related objective
conflicts tend to be more significant than language-related objective conflicts. Refer to
Figure 3 for an illustration of gradient conflicts.

1Vectorized objectives with lower-level constraint for ASR
2Vectorized multilevel ASR
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F4: The penalty parameter used in the multilevel reformulation plays a crucial role. Our
studies reveal that, while large penalty parameters used in the reformulation of multilevel
speech optimization theoretically guarantee good convergence of lower-level objectives,
they may adversely affect the generalization performance of the learned ASR model. Well-
calibrated penalty parameters, however, can improve overall ASR and S2TT performance
by 8.3% and 2.2%, respectively. See the results in Tables 3 and 4.

2 RELATED WORK

In this section, we review existing works on multilingual ASR and S2TT, aiming to identify the
current research landscape in these areas.

Multilingual ASR and S2TT. Earlier works in multilingual ASR used deep neural networks, hidden
Markov models, and multilayer perceptron models (Heigold et al., 2013; Thomas et al., 2010; Tüske
et al., 2013; Ghoshal et al., 2013). Later studies showed Long Short-Term Memory (LSTM) models
to be more effective for multilingual ASR (Graves et al., 2013a; Zhou et al., 2017). Recently, Seq2Seq
models with hybrid attention/CTC algorithms and transformer-based models have achieved state-of-
the-art results (Watanabe et al., 2017; Toshniwal et al., 2018; Zhou et al., 2018). Multilingual S2TT
tasks have also gained attention, primarily using transformer-based models with SSL pre-training
(Li et al., 2020; Bapna et al., 2022; Ren et al., 2020). Despite advancements, these systems lack
multi-tasking capabilities, a longstanding challenge in developing a single model for multiple speech-
related tasks. This line of work is orthogonal to the current paper and can potentially be combined
with our multi-objective training recipes.

Multi-task learning for speech recognition. Multi-task learning for joint ASR and S2TT tasks has
been explored in various studies, yet challenges remain in optimizing shared representations and
reducing task interference. The first algorithm for joint ASR and S2TT decoding was introduced
by (Anastasopoulos & Chiang, 2018). Subsequent models improved this by using word embedding
intermediates and two-stage models (Chuang et al., 2020; Sperber et al., 2019). A transformer-based
dual encoder-decoder architecture with separate decoders for each task was also applied (Le et al.,
2020). The Whisper (Radford et al., 2023) model was trained on large-scale audio dataset for
multitask learning. The Mu2SLAM model (Cheng et al., 2023) pre-trains on multilingual speech,
text, and supervised data. Cross-modality learning from multiple self-supervised and supervised
subtasks establishes a robust multi-task algorithm (Tang et al., 2022). Joint pre-training and fine-
tuning is also explored in ASR and multilingual multitask speech-to-text tasks to reduce training
complexity (Bai et al., 2022; Saif et al., 2024; Talnikar et al., 2021). Although these approaches
address multilingual multi-task learning using static weighting or constrained optimization, they do
not explicitly tackle conflicting objectives such as using a conflict-avoidant update direction, which
may lead to suboptimal results.

In this paper, we investigate conflicting objectives in multilingual multitask speech-to-text tasks and
propose MOO-based algorithms to mitigate these conflicts. Our approach demonstrates a significant
improvement over baseline methods, highlighting the effectiveness of MOO in multilingual multitask
speech-to-text tasks.

3 UNIFYING MOO TRAINING METHODS

In this section, we introduce multi-objective optimization and its optimality condition, discuss three
potential problem formulations, and present the corresponding algorithms to solve these problems.

3.1 MULTI-OBJECTIVE OPTIMIZATION: A PRIMER

The goal of MOO is to learn a model that simultaneously optimizes multiple objectives, where
objectives can represent different tasks or learning metrics. Let Θ ∈ Rq denote the model parameter.
Given M objectives, each denoted as lm(Θ), for m ∈ [M ], the general MOO problem solves

min
Θ∈Rq

L(Θ) := [l1(Θ), . . . , lM (Θ)] . (1)

We use the following necessary optimality condition for MOO.

3
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Figure 2: Intensified conflicts among optimization objectives expand the search region for Pareto
optimal points, challenging algorithms. Using a lower-level constraint lu(θ), such as the self-
supervised loss in ASR tasks, effectively reduces this region, simplifying the algorithm’s task.

Definition 1 (Pareto stationary). A model Θ is Pareto stationary if there exists λ ∈ ∆M := {λ ∈
R⊤ | 1⊤λ = 1, λ ≥ 0} such that ∇L(Θ)λ = 0, i.e., minλ∈∆M ∥∇L(Θ)λ∥ = 0.

3.2 THREE MOO FORMULATIONS OF MULTILINGUAL MULTI-TASK ASR

We adopt a joint PT+FT training approach for our MOO-based multilingual multitask speech-to-
text algorithms, facilitating the sequential optimization of PT and FT objectives. This results in
locally matched optima that enhance model convergence and overall performance (Saif et al., 2024).
Unlike (Saif et al., 2024), which employs SSL objective as a lower-level constraint to establish
a feedback loop between PT and FT, we leverage SSL objective to narrow the search space for
identifying the most suitable Pareto optimal point in the Pareto optimal front. Additionally, we
implement MOO to address conflicts between objectives, an aspect not explored in their work.

In our formulation, let Θ := [θ;ϕ], where θ is the parameter of the backbone and ϕ is that of a
language/task-dependent layer of a model. For pre-training shared backbone parameters θ, we use
SSL loss, lu(θ). For language and task specific parameters ϕt,n, we use supervised classification loss,
lctc(θ, ϕt,n), where t ∈ [T ] and n ∈ [N ] represents different languages and tasks, respectively. This
self-supervised loss and multiple supervised losses form the MOO objectives for multilingual ASR.
Note that, for multi-objective ASR, we can represent all the objectives as a vector, L(Θ) containing
supervised losses from different languages and tasks such as multilingual ASR and S2TT where
Θ := [θ, ϕ1,1, · · · , ϕT,N ]; that is, L(Θ) := [lctc(θ, ϕ1,1), . . . , lctc(θ, ϕT,N )].

Our final goal is to learn a multilingual multi-task model with a shared backbone parameterized by θ,
and a task and language-specific part, each parameterized by ϕt,n, ∀t ∈ [T ],∀n ∈ [N ]. To learn these
parameters while avoiding conflicting gradient directions we formulate three MOO ASR problems.
We discuss these formulations below:

Vectorized single-level ASR (VS-ASR). In this formulation, we treat all the objectives as single-level
vectorized objectives without any lower-level constraints. Hence, the problem formulation is,

min
Θ∈Rq

[
lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N )︸ ︷︷ ︸

1-st language with N tasks

, . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N )︸ ︷︷ ︸
T -th language with N tasks

, lu(θ)
]
. (2)

Vectorized objectives with lower-level constraint for ASR (VC-ASR). To mitigate the challenge of
conflicting objectives and reduce the search space for an optimal Pareto stationary point, incorporating
a suitable lower-level constraint, lu(θ), can be beneficial (see Figure 2) (Miettinen, 1999). However,
lu(θ) must possess certain essential properties. Its gradient update direction should have minimal
conflict with the gradient directions of other objectives, as increased conflict would hinder its role
in narrowing the search space for the common optimal point. Moreover, the optimization space
defined by this constraint must be sufficiently flat, ensuring that the common optimal point across
all objectives lies within it. In this context, we incorporate the self-supervised loss as a lower-level
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constraint, as it exhibits these desirable properties (see Appendix C). This approach helps align
the gradient directions and maintain a feasible optimization region, ultimately enhancing overall
performance. By constraining the self-supervised loss to be smaller than a threshold ϵ, our VC-ASR
method can be formulated as

min
Θ∈Rq

[
lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N ), . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N )

]
s.t. lu(θ)−min

θ
lu(θ) ≤ ϵ. (3)

This formulation aims to minimize the vector of the supervised losses, L(Θ), subject to a constraint
that another self-supervised loss function, lu(θ)−minθ lu(θ), remains below a specified threshold ϵ.
Consequently, this ϵ constraint defines the feasible region for the upper-level objectives, ensuring
the attainment of a Pareto stationary point. Our investigation has revealed that employing the self-
supervised objective as a lower-level constraint for ASR tasks yields optimal results. This observation
validates the algorithm of our VC-ASR, where we separate the self-supervised objective from the
supervised objectives and optimize them at the lower and upper levels, respectively. Additionally,
this formulation facilitates joint lower and upper-level training, enhancing the overall optimization
process.

Vectorized multilevel ASR (VM-ASR). Building upon the VC-ASR formulation, we introduce
VM-ASR, a multilevel multilingual multi-task ASR algorithm. Through VM-ASR, we aim to explore
whether extending our VC-ASR algorithm into a MLO framework based on tasks and languages
offers advantages and mitigates the risk of being trapped in sub-optimal Pareto stationary points. In
MLO, decision-making follows a hierarchical structure, with decisions made at different levels within
the hierarchy. The problem formulation for multilevel ASR optimization can be expressed as follows:

argmin
ϕ1∈Rr,ϕ∗

2 ,...,θ
∗
L1(ϕ1, ϕ

∗
2, . . . , θ

∗) . . .

s.t. ϕ∗
p = argmin

ϕp∈Rr,ϕ∗
p+1,...,θ

∗
Lp(ϕ1, · · · , ϕp, ϕ

∗
p+1, . . . , θ

∗) . . .

s.t. θ∗ = argmin
θ∈Rs

LP (ϕ1, ϕ2, . . . , θ),

(4)

where Lp is a vector of ASR objectives and ∀p ∈ [P ] is the optimization level. In VM-ASR, training is
performed on multiple levels, with feedback across different levels. We employ separate classification
heads for each task. They share a backbone encoder layer. it follows that the optimization of all
task-specific parameters, denoted as ϕt,n, is contingent upon optimizing the backbone parameters, θ.
Consequently, the self-supervised objective is placed at the lowest level of the optimization hierarchy.

4 APPLICATIONS OF VS-ASR, VC-ASR, AND VM-ASR

In this section, we evaluate the three multi-objective formulations introduced in Section 3 on the
multilingual multi-task ASR problem, including ASR and S2TT tasks.

4.1 DEFINING OBJECTIVES

Objectives of self-supervised and supervised training. For SSL and supervised learning we use
Contrastive Predictive Coding (CPC)3 loss (Oord et al., 2018), lu(θ) and Connectionist Temporal
Classification (CTC) loss (Graves et al., 2006), lctc(θ, ϕ), respectively. Here, θ represents the
backbone parameters, shared by all the objectives and ϕ is the parameters of the task-specific
classification heads. We formulate the joint SSL and supervised learning as a MOO problem and
solve it using VS-ASR, VC-ASR, and VM-ASR techniques.

Objectives of language-specific outputs. We consider the same loss function on different languages
as distinct objectives, each with its own classification heads and classification loss, denoted as
lctc(θ, ϕt), where t ∈ [T ] represents a specific language.

Objectives of ASR and S2TT. Objectives of ASR and S2TT tasks are considered to be distinct
objectives. We use two different classification heads for ASR and S2TT. We use lctc(θ, ϕt,1) and

3Training results using the more advanced pre-training methods, BEST-RQ and Wav2Vec2, are presented in
Appendix F, in Tables 7 and 8.
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lctc(θ, ϕt,2) losses for ASR and S2TT tasks, respectively, where ϕt,1 and ϕt,2 represent the parameters
of the classification heads for the ASR and S2TT tasks, respectively.

Given this problem, we formulate multilingual VS-ASR, VC-ASR, and VM-ASR for ASR and S2TT.
Remark 1. For MLO, objectives are prioritized based on their importance. In VM-ASR, this includes
task-based and language-based MLO. Task-based MLO experiments with ASR and S2TT, alternating
their primary and secondary levels. Language-based MLO involves English (LibriSpeech) and
Chinese (AISHELL), also alternating their primary and secondary levels.

To update the backbone parameters, θ, and task-specific parameters, ϕ, in the three algorithms, we use
a gradient-based algorithm. Detailed descriptions and derivations of these algorithms are provided in
Appendix A. Below we provide a task-specific update rule for ASR and S2TT tasks.

4.2 VECTORIZED SINGLE-LEVEL ASR (VS-ASR)

For single vectorized objective training, we can optimize the vectorized objectives using Algorithm 1
in Appendix A where the shared backbone parameters are updated using

θk+1=θk − α
T∑

t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αλk

u∇θlu(θ
k). (5)

In this context, α>0 is the learning rate assigned to the backbone parameters. Moreover, λk
t,1 and

λk
t,2 represent the dynamic update directions for ASR and S2TT objectives, respectively, which are

computed using the MoDo algorithm (Chen et al., 2023). Here, λk
u is the dynamic update directions

for self-supervised objective, lu. Similarly, taking the gradients of each of the supervised objective
functions with respect to task-specific output heads, the task-specific output parameters are updated
via

ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k) and ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k) (6)

where β>0 is the learning rate for the task-specific parameter.

4.3 VECTORIZED OBJECTIVES WITH LOWER-LEVEL CONSTRAINT FOR ASR (VC-ASR)

To train a model using the VC-ASR algorithm, the backbone parameters θ are updated using

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (7)

To update task-specific heads, we employ (6); see a summary in Algorithm 2.

4.4 VECTORIZED MULTILEVEL ASR (VM-ASR)

In VM-ASR, we update the backbone parameters θ using the following equation

θk+1 = θk − α

(
T∑

t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1) + η1

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2) + η∇θlu(θ

k)

)
(8)

where η1 and η are penalty parameters. We update task-specific classification parameters using (6);
see a summary in Algorithm 3.

5 EXPERIMENTAL RESULTS AND FINDINGS

In this section, we conduct numerical simulations for proposed three algorithms, two-stage PT+FT,
static weighting (Gong et al., 2022), parameter efficient fine-tuning (PEFT) and joint PT+FT without
(W/O) MOO (Saif et al., 2024)4, to determine the optimal MOO ASR algorithm when optimizing

4Description of these methods is added in Appendix: D
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Table 1: ASR WERs comparison using CoVoST 2, including PT+FT, Two-stage static, Joint PT+FT
without (W/O) MOO, PEFT, VS-ASR, VC-ASR, and VM-ASR with different model sizes (100M
and 58M). VM-ASR optimizes objectives using UAS (self-supervised → ASR → S2TT) and USA
(self-supervised → S2TT → ASR) sequences.

Param Lang Two-stage
(PT+FT)

Two-stage
static

Joint PT+FT
W/O MOO PEFT VS-

ASR
VC-
ASR

VM-ASR
UAS

VM-ASR
USA

100M

En 26.8% 27.3% 25.2% 27.9% 26.1% 24.6% 23.5% 23.7%
Fr 19.6% 19.4% 17.8% 21.5% 18.9% 17.1% 16.0% 16.6%
De 21.9% 21.8% 20.2% 23.8% 21.2% 19.3% 18.4% 18.5%
Es 17.8% 17.2% 15.9% 19.6% 17.3% 15.2% 14.1% 14.6%
Ca 14.3% 13.7% 13.1% 16.7% 13.8% 12.5% 11.6% 11.8%

Ave. 20.1% 19.9% 18.4% 21.9% 18.8% 17.7% 16.7% 17.0%

58M

En 29.7% 29.8% 28.4% 30.2% 29.2% 27.9% 26.8% 27.1%
Fr 26.5% 26.4% 25.9% 28.2% 26.1% 25.2% 24.3% 24.7%
De 28.8% 28.6% 27.8% 30.1% 28.3% 27.1% 26.2% 26.8%
Es 21.3% 21.2% 20.4% 22.3% 20.9% 19.4% 18.9% 19.1%
Ca 18.2% 17.9% 17.5% 18.8% 18.0% 16.9% 16.2% 16.5%

Ave. 24.9% 24.8% 24.0% 25.9% 24.5% 23.3% 22.1% 22.8%

conflicting objectives. This is crucial to avoid the risk of the model getting stuck in a suboptimal
Pareto stationary point. We analyzed ASR and S2TT performance in a multilingual multi-task setup
using the CoVoST 2 dataset, selecting five languages for ASR (En, Fr, De, Es, Ca)5 and four for S2TT
(Fr, De, Es, Ca). Additionally, we performed experiments with a combination of the LibriSpeech
and AISHELL datasets. Our results demonstrate that the MOO approaches consistently outperforms
the joint PT+FT W/O MOO method and other baselines, confirming their effectiveness in achieving
better ASR and S2TT performance.

Models and hyper-parameters: We use two Conformer models (Gulati et al., 2020) for multilingual
multi-task ASR experiments. The first model has 10 Conformer blocks with a hidden dimension of
612 units and 12 attention heads; the second model has 8 blocks with 512 hidden dimensions and 8
attention heads. Each attention head has a dimension of 51 for the first model and 64 for the second
model. Both configurations use a convolutional kernel size of 31 to capture temporal dependencies
and distinct classification heads with varying output sizes. For VC-ASR, the initial penalty parameter
η is 0, increasing by 0.02 per epoch. For VM-ASR, there are three optimization levels. The penalty
constant η1 used for the second level starts at 0.1, increasing by 0.02 per epoch, while the lower-level
penalty constant η2 starts at 0 and increases by 0.02 per epoch. We use learning rates of α = 5×10−4

for backbone parameters and β = 5× 10−5 for classification parameters.

Training time and memory complexity: Our proposed MOO ASR models exhibit higher training
time and memory complexity compared to traditional PT+FT models. Specifically, the PT+FT model
uses an average of 8.7 GB of GPU memory and takes approximately 2.25 hours per epoch, while
the MOO ASR models require about 11.6 GB of GPU memory and around 2.8 hours per epoch.
This increased memory consumption and training time are primarily due to the additional gradient
calculations needed for computing dynamic weights. However, the higher training cost is justified
by significant performance gains. Moreover, our MOO approach demonstrates scalability as the
number of tasks increases, and in the long run, a single MOO model reduces resource demands during
deployment, making it a more efficient solution overall G.

Based on our experiments, we summarize the following observations6:

5.1 ENHANCING ASR AND S2TT PERFORMANCE WITH MLO

"Multilevel optimization significantly improves ASR and S2TT performance by effectively
balancing learning objectives and narrowing the search for optimal Pareto stationary points."

5English (En), French (Fr), German (De), Spanish (Es), Catalan (Ca)
6Additional result tables and discussion can be found in Appendix: F.
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Table 2: S2TT average(Ave.) BLEU score comparison using the CoVoST 2 dataset, including PT+FT,
Two-stage static, Joint PT+FT without(W/O) MOO, PEFT, VS-ASR, VC-ASR, and VM-ASR with
different parameter sizes (100M and 58M). VM-ASR optimizes objectives using UAS (self-supervised
→ ASR → S2TT) and USA (self-supervised → S2TT → ASR) sequences.

Param Lang→Eng Two-stage
(PT+FT)

Two-stage
static

Joint PT+FT
W/O MOO PEFT VS-

ASR
VC-
ASR

VM-ASR
UAS

VM-ASR
USA

100M

Fr→En 26.8 26.8 27.4 25.3 26.2 28.8 30.9 31.7
De→En 17.4 17.5 18.9 15.9 18.1 19.9 20.8 21.5
Es→En 26.1 26.3 27.3 24.7 27.0 28.2 30.1 30.6
Ca→En 21.9 22.0 23.5 20.2 23.4 24.9 25.8 26.1

Ave. 23.0 23.1 24.3 21.5 23.7 25.4 26.9 27.5

58M

Fr→En 23.4 23.5 24.1 22.2 23.9 25.8 26.5 26.8
De→En 15.0 15.1 15.4 13.6 15.3 16.2 17.1 17.4
Es→En 24.0 24.2 24.4 22.5 24.2 25.1 25.6 25.9
Ca→En 19.4 19.2 19.2 17.9 19.1 20.3 21.4 21.6

Ave. 20.4 20.5 20.8 19.0 20.6 21.8 22.6 22.9

Table 3: Comparison of ASR WERs on the CoVoST 2 dataset between penalty parameter increase
rates (IR) of 0.002 and 0.02 per epoch.

Param Lang Two-stage
(PT+FT)

VM-ASR
UAS (IR=.02)

VM-ASR
USA (IR=.02)

VM-ASR
UAS (IR=.002)

VM-ASR
USA (IR=.002)

58M

En 29.7% 26.8% 27.1% 29.3% 25.7%
Fr 26.5% 24.3% 24.7% 26.1% 22.6%
De 28.8% 26.2% 26.8% 27.3% 24.3%
Es 21.3% 18.9% 19.1% 20.2% 17.5%
Ca 18.2% 16.2% 16.5% 17.9% 14.3%

Ave. 24.9% 22.1% 22.8% 24.1% 20.9%

This section examines the impact of MLO on ASR and S2TT performance through a comparison
of Two-stage (PT+FT), static weight, joint PT+FT W/O MOO, VS-ASR, VC-ASR, and VM-ASR,
with parameter sizes of 100M and 58M. For VM-ASR, we tested two optimization sequences: UAS
(self-supervised → ASR → S2TT) and USA (self-supervised → S2TT → ASR).

ASR Performance: Table 1 highlights the superior performance of VM-ASR across languages
and parameter sizes. For 100M-parameter models, VM-ASR (USA) achieves the lowest WER,
outperforming Two-stage (PT+FT), Static Weight, Joint PT+FT without MOO, PEFT, VS-ASR, and
VC-ASR by up to 22.3%. VM-ASR (UAS) shows comparable gains, improving by up to 23.7%.
Similarly, for 58M-parameter models, VM-ASR (USA) achieves up to 11.9% improvement, while
VM-ASR (UAS) achieves up to 14.6% improvement. These results affirm VM-ASR’s effectiveness
in multilingual, multitask ASR with its MLO strategy.

S2TT Performance: As shown in Table 2, VM-ASR also excels in S2TT tasks, achieving the highest
BLEU scores for translations task. For 100M-parameter models, VM-ASR (USA) outperforms
Two-stage (PT+FT), Static Weight, Joint PT+FT without MOO, PEFT, VS-ASR, and VC-ASR by up
to 27.9%, with VM-ASR (UAS) achieving up to 25.1% improvement. For 58M-parameter models,
VM-ASR (USA) achieves up to 20.5% improvement, while VM-ASR (UAS) achieves up to 18.9%.
These consistent improvements demonstrate the robustness of VM-ASR in S2TT tasks.

5.2 CONFLICTING ASR AND S2TT OBJECTIVES

"Presence of multiple conflicting objectives degrades the model’s performance."

In this section, we investigate the effect of conflicting objectives on the model’s performance using two
algorithm settings: PT+FT and VS-ASR, with different model sizes. In Appendix C, we investigate
the presence of conflicting objectives in ASR in more detail.
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Table 4: Comparison of S2TT average BLEU scores on the CoVoST 2 dataset between penalty
parameter increase rates (IR) of 0.002 and 0.02 per epoch.

Param Lang→En Two-stage
(PT+FT)

VM-ASR
UAS (IR=.02)

VM-ASR
USA (IR=.02)

VM-ASR
UAS (IR=.002)

VM-ASR
USA (IR=.002)

58M

Fr→En 23.4 26.5 26.8 27.2 25.1
De→En 15.0 17.1 17.4 17.6 16.2
Es→En 24.0 25.6 25.9 25.8 25.3
Ca→En 19.4 21.4 21.6 21.9 20.2

Ave. 20.4 22.6 22.9 23.1 21.7

From Tables 1 and 2, the VS-ASR method consistently outperforms the PT+FT method. One major
difference between these two methods is the use of MOO. Hence, this experiment indicates the
presence of conflicts in the ASR and S2TT objectives and highlights the effectiveness of MOO in
optimizing conflicting objectives.

5.3 OPTIMIZATION ORDER IN MULTILEVEL OPTIMIZATION

"The order of optimization significantly impacts ASR accuracy in Multilevel Optimization."

Here, we investigate the significance of optimization order in MLO for ASR. By comparing the
performance of different ASR algorithms under varying optimization sequences (UAS and USA), we
aim to elucidate how the optimization order affects ASR accuracy.

From the results in Table 1, we observe that the UAS optimization sequence consistently yields
superior ASR performance compared to the USA (as the penalty parameter of the second level is
gradually increased beyond 1), indicating the importance of prioritizing certain objectives in the
training process. This finding underscores the optimization order when designing MLO methods for
ASR. The same observation can be made from Table 2 for the S2TT task where the USA optimization
sequence provides the best WER. This phenomenon is visually demonstrated in Figure 1.

5.4 EFFECT OF PENALTY PARAMETER

"Penalty parameters play a crucial role in MLO-based ASR training."

In penalty-based MLO problems, selecting the appropriate penalty parameter is crucial. These
methods prioritize upper-level objectives while controlling lower-level objectives through a penalty
term. Using a smaller penalty parameter can weaken constraint enforcement, causing suboptimal
lower-level performance, slower convergence, and imbalanced optimization (Shen & Chen, 2023).
This is evident in our multilingual multi-task ASR experiments. We further conducted experiments
following the same training procedure as other simulations, using a 58M parameter model with two
different penalty parameter increase rates. A lower increase rate of 0.002, capped at 1.5, resulted in
worse WER for lower-level tasks, as shown in Tables 3 and 4. Given the equal importance of ASR

Table 5: ASR WERs (LibriSpeech) and CERs (AISHELL) for PT+FT, Joint PT+FT W/O MOO, VS-
ASR, VC-ASR, and VM-ASR, with VM-ASR using UEC (self-supervised → English → Chinese)
and UCE (self-supervised → Chinese → English) optimization sequences.

Param Lang Two-stage
(PT+FT)

Joint PT+FT
W/O MOO VS-ASR VC-ASR VM-ASR

UEC
VM-ASR

UCE

100M En 6.2% 5.9% 6.1% 5.7% 5.2% 5.4%
Zh 6.0% 5.6% 5.8% 5.5% 5.3% 5.0%

Ave 6.1% 5.7% 5.9% 5.6% 5.2% 5.2%

58M En 7.8% 7.1% 7.3% 6.8% 6.5% 6.6%
Zh 7.4% 6.8% 7.0% 6.5% 6.1% 5.8%

Ave 7.6% 6.9% 7.1% 6.6% 6.3% 6.2%
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and S2TT objectives in our study, we applied a larger penalty parameter increase rate of 0.02 for the
lower levels, with a final value capped at 1.5. This adjustment improved lower-level performance but
slightly degraded upper-level performance. Therefore, selecting the penalty parameter requires careful
consideration of the trade-offs between upper- and lower-level priorities. A detailed explanation of
the process of the selection of penalty parameter is provided in the Appendix: F.

5.5 OUR OBSERVATIONS PERSIST ACROSS DIFFERENT MODEL SIZES

"Our observations are consistent across different model sizes."

We assess the consistency of our observations across different model sizes (100M and 58M parameters)
by evaluating ASR and S2TT performance. Results from Tables 1 and 2 confirm the reliability and
generalizability of our findings, offering insights for scalable ASR system design.

ASR Performance. From Table 1 we observed that the PT+FT approach achieved competitive
performance across all languages. The VS-ASR method consistently outperformed the PT+FT
method. The VC-ASR model demonstrated even better performance. The most notable finding
is the performance of the VM-ASR model, which exhibited significant improvements over other
models. The VM-ASR model optimized with the UAS objective sequence achieved the lowest
average WER, demonstrating its effectiveness in leveraging unlabeled data for improved performance.
These observations are valid for both the 100M and the 58M parameter models.

S2TT Performance. Table 2 illustrates the S2TT WERs comparison for different models. Similar to
ASR, the PT+FT approach demonstrated competitive performance across all language pairs. The
VS-ASR model consistently outperformed other models in the S2TT task. Interestingly, the VM-ASR
model optimized with the USA objective sequence achieved the lowest average WER, outperforming
other models in the S2TT task. Both the 100M parameter model and the 58M parameter model
demonstrate similar improvements.

5.6 CONSISTENT OBSERVATIONS IN LANGUAGE-BASED MLO

To verify our findings, we conduct experiments in both task-based and language-based MLO settings
using similar hyperparameters for the LibriSpeech and AISHELL datasets. In this experiment, we
use a combined dataset of LibriSpeech and AISHELL to perform MLO based on language types,
focusing exclusively on the ASR task. The results, shown in Table 5, reveal a phenomenon similar to
what we observed in task-based MLO. This consistent observation further validates our conclusion
regarding the effectiveness of MLO in optimizing ASR tasks.

6 CONCLUSIONS AND LIMITATIONS

In conclusion, our study highlights the substantial advantages of integrating self-supervised loss
as constraining objectives within a multilevel multi-objective optimization (MOO) structure for
multilingual multi-task ASR training. Our findings strongly indicate that segregating highly con-
flicting objectives into different optimization levels yields significant benefits for ASR and S2TT
tasks. This approach not only enhances the effectiveness of MOO but also underscores its potential
for optimizing complex tasks across diverse linguistic boundaries. While our results are based on
extensive simulations, further theoretical analysis would be an interesting direction for future research.

7 FUTURE WORK

Our study demonstrates the effectiveness of MOO methods in addressing conflicting objectives for
multilingual, multi-task ASR and S2TT tasks. However, there remain areas for further exploration.
Specifically, we hypothesize that when objectives are highly conflicting, their optimal solutions are
far apart in the parameter space, resulting in a large and spread-out Pareto front that represents diverse
trade-offs. Investigating this hypothesis and its implications for optimization strategies, particularly in
highly conflicting scenarios, would provide deeper insights into managing such trade-offs effectively.

8 REPRODUCIBILITY STATEMENT

We document implementation details in Section 5 and Appendix E. The code is included in the
supplemental materials, and we will publish it on GitHub upon acceptance of the paper.
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A ALGORITHM DEVELOPMENT

After formalizing the three training algorithms in 3.2, our subsequent objective is to devise a
gradient-based algorithm capable of addressing large-scale, high-dimensional multilingual multi-task
challenges while ensuring guaranteed convergence to Pareto stationary solutions. We will focus on
the algorithm development of VC-ASR, as this can be easily extended to the other two methods
(VS-ASR, VM-ASR). To achieve a gradient-based algorithm for VC-ASR that can avoid conflicting
update directions, we leverage recent advances in unconstrained MOO (Chen et al., 2023) and
employ a penalty-based approach to convert the constrained MOO problem in 3 into an unconstrained
MOO problem. This approach simultaneously conducts self-supervised pre-training and supervised
multi-objective learning, as defined in Equation (3); that is,

min
θ∈Rs,ϕ∈Rr

Lη(Θ) :=[lctc(θ, ϕ1,1) + ηlu(θ), · · · , lctc(θ, ϕ1,N ) + ηlu(θ), . . . , (9)

lctc(θ, ϕT,1) + ηlu(θ), · · · , lctc(θ, ϕT,N ) + ηlu(θ)]

where η is a penalty parameter. This penalty parameter integrates the self-supervised constrained
objective with the supervised objectives and ensures that the feasible region of the supervised objective
remains within certain bounds.

Limitation of static weighting. To guarantee Pareto stationary for supervised objectives, we can
employ either static or dynamic weighting MOO methods. In static weighting, we optimize the
(weighted) average of the multiple objectives (Kurin et al., 2022; Xin et al., 2022). This method is
simple but it may suffer from conflicting objectives where gradients of multiple objectives may have
conflicting directions. For instance, considering lt,n(Θ) = lctc(θ, ϕt,n) + ηlu(θ) and lt′,n′(Θ) =
lctc(θ, ϕt′,n′) + ηlu(θ) two objectives having conflicting directions, (t, t′) ∈ [T ] and (n, n′) ∈ [N ],
then ⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩ < 0.
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Notation Description
Θ ∈ Rq Model parameter including backbone and classification head parameter.
θ ∈ Rs Backbone parameter.
θk ∈ Rs Backbone parameter at k-th iteration.
θ∗ ∈ Rs Optimum backbone parameter.
ϕ ∈ Rr Parameter of the task-specific classification head.
ϕt,n ∈ Rr Classification head parameter of n-th task and t-th language.
ϕk
t,n ∈ Rr Classification head parameter of n-th task and t-th language at k-th

iteration.
ϕp ∈ Rr A group of all classification head parameters of level p.
ϕ∗ ∈ Rr Optimum parameter of the task-specific classification head.
L Vector of all objectives.
Lη Vector of all objectives with penalized lower level constrained objective

used for VC-ASR method.
Lp Vector of all objectives in level p used for VM-ASR method.
lm,m ∈ [M ] m-th objective.
lctc CTC loss with supervised data.
lu self-supervised loss.
t ∈ [T ] Represents a specific language (For example: English, German, etc.).
n ∈ [N ] Represents a specific task (For example: ASR or S2TT.).
k ∈ [K] Current iteration number.
p ∈ [P ] Optimization level.
ϵ Constraint defines the feasible region for the upper-level objectives
d Conflict avoiding update direction.
γ Learning rate of λ update.
α Learning rate of backbone parameter.
β Learning rate of task-specific classification parameter.
λ Dynamic weight to combine gradient.
λk Dynamic weight at k-th iteration.
λk
u Dynamic weight of self-supervised objective at k-th iteration.

λk
t,n Dynamic weight of n-th task and t-th language at k-th iteration.

λ∗ Optimum dynamic weight to combine gradient.
ηp−1, p ≥ 2 Penalty parameter of p-th level of multilevel optimization (VM-ASR).
η = ηp × ηp−1 Combined penalty constant for the lowest level (VM-ASR).
ζk Stochastic unlabeled sample during training at iteration k.
ξk Stochastic labeled sample during training at iteration k.
D Labeled dataset.

Table 6: List of notations used in this paper

Proposed dynamic weighting. To avoid conflicting directions we can employ dynamic weighting
method which uses dynamically weighted gradients from individual objectives to avoid conflict and
enables optimization in conflict-avoiding (CA) direction (Chen et al., 2023). Specifically, a CA
direction d is the steepest common descent direction that maximizes the worst descent, given by

d(Θ) = argmax
d

min
λ∈∆NT

−⟨∇Lη(Θ)λ, d⟩ − 1

2
||d||2. (10)

By reformulation, such a direction is equal to dynamically weighted gradients of different objec-
tives (Chen et al., 2023), given by d(Θ) = −∇Lη(Θ)λ∗(Θ) with weight λ∗(Θ) computed by

λ∗(Θ) = argmin
λ∈∆NT

∥∇Lη(Θ)λ∥2. (11)

However, finding the true gradients of ∇Lη(Θ) is computationally expensive. Hence, in our problem,
we employ a stochastic variant of MGDA, the MoDo algorithm (Chen et al., 2023), which obtains an
unbiased stochastic gradient estimate for (11) via a double sampling technique.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

At each iteration k, denote ξk1 and ξk2 as two independent samples from labeled dataset D, and
∇l(ξk1 ; Θ

k) and ∇l(ξk2 ; Θ
k) as the stochastic gradients. We leverage the MoDo update in (Chen et al.,

2023) by

λk+1 =Π∆NT

(
λk − γk

(
∇Lη(ξ

k
1 ; Θ

k)⊤∇Lη(ξ
k
2 ; Θ

k)
)
λk
)

(12)

where γk is step size, Π∆NT (·) denotes the projection to ∆NT .

Parameters update. Using the dynamic weighting and penalization method, we update the backbone
parameters, θ, of the ASR model. Next, we describe the backbone parameters and task-specific
classification parameters update rules for VS-ASR, VC-ASR, and VM-ASR.

VS-ASR. For single vectorized objective training, we only need to consider if the objectives have
conflicting update directions. As in multilingual multi-task training we are using separate language
dataset, we can assume that the objectives have conflicting update direction. We can also prove this
assumption by calculating ⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩ < 0. We optimize this vectorized objectives
using algorithm: 1 where the shared backbone parameters are updated using the following equations,

θk+1 = θk − α
T∑

t=1

N∑
n=1

λk
t,n∇θlctc(θ

k, ϕk
t,n)− αλu∇θlu(θ

k). (13)

In this context, α> 0 denotes the learning rate specifically assigned to the backbone parameters.
Moreover, λk

t,n and λu represent the dynamic update directions for supervised and self-supervised
objectives, respectively, which are computed using the MoDo algorithm. Similarly, taking the
gradients of each of the supervised objective functions with respect to parameters of task-specific
output heads, task-specific output layers are updated via,

ϕk+1
t,n = ϕk

t,n − β∇ϕlctc(ϕ
k
t,n, θ

k) (14)

where β>0 is the learning rate for the task-specific parameter.

VC-ASR. To train a model using VC-ASR algorithm, the backbone parameters θ is updated using,

θk+1 = θk − α

T∑
t=1

N∑
n=1

λk
t,n∇θlctc(θ

k, ϕk
t,n)− αη∇θlu(θ

k). (15)

To update task-specific classification heads, we employ (14); see a summary in Algorithm 2.

VM-ASR. In VM-ASR, we separate highly conflicting objectives into distinct optimization levels.
Here, we assume that all objectives at level p function as lower-level objectives for those at level
p− 1. Consequently, we can update the backbone parameters using the penalize method, that is

θk+1 = θk − α

T1∑
t1=1

N1∑
n1=1

λk
t1,n1

∇θlctc(θ
k, ϕk

t1,n1
)− αη2

(
T2∑

t2=1

N2∑
n2=1

λk
t2,n2

∇θlctc(θ
k, ϕk

t2,n2
) + · · ·

(16)

αηp−1

(
Tp∑

tp=1

Np∑
np=1

λk
tp,np

∇θlctc(θ
k, ϕk

tp,np
) + · · ·αηP−1

(
TP∑

tP=1

NP∑
nP=1

λk
tP ,nP

∇θlctc(θ
k, ϕk

tP ,nP
) + αη∇θlu(θ

k)

)))
.

Update task-specific classification parameters using

ϕk+1
tp,np

= ϕk
tp,np

− β∇ϕlctc(ϕ
k
tp,np

, θk) (17)

where Np and Tp represent the total number of tasks and languages at level p, respectively. We
represent the penalty parameter at level p as ηp and for self-supervised objective, the penalty parameter
is η.

B TASK SPECIFIC FORMULATION AND UPDATE RULE

In this section, we will explore in detail the three MOO setups in ASR and S2TT tasks and establish
the parameter update rules for each of them.
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B.1 VS-ASR FOR SINGLE VECTORIZED OBJECTIVES

For single vectorized objective training, we only need to consider if the objectives have conflicting
update directions. As in the multilingual multi-task training, we use separate language datasets, so we
can assume that the objectives have conflicting update directions. We can also verify this assumption
by calculating ⟨∇Θlt,1(Θ),∇Θlt′,2(Θ)⟩ < 0. We can formulate this single vectorized objectives for
ASR and S2TT tasks following (2) as follows,

min
Θ∈Rq

[lctc(θ, ϕ1,1), · · · , lctc(θ, ϕ1,N ), . . . , lctc(θ, ϕT,1), · · · , lctc(θ, ϕT,N ), lu(θ)]. (18)

As there is no lower-level constrain, we optimize this vectorized objectives using algorithm: 1 where
the shared backbone parameters are updated using the following equations

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αλk

u∇θlu(θ
k) (19)

where λt,1 and λt,2 are dynamic update directions for ASR and S2TT tasks, respectively, and λu is
the dynamic update direction for self-supervised objective calculated using MoDo algorithm. We
update the classification heads using

ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k). (20a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k). (20b)

B.2 VC-ASR FOR VECTORIZED OBJECTIVES WITH CONSTRAINT LOWER LEVEL

In this setup, we use self-supervised CPC loss, lu(θ), as a lower-level constraint to shrink the search
region for the optimal Pareto stationary point for supervised CTC loss, lctc(θ, ϕ). The problem
formulation for VC-ASR in ASR and S2TT tasks can be written as follows:

min
Θ∈Rq

[lctc(θ, ϕ1,1), lctc(θ, ϕ1,2), . . . , lctc(θ, ϕT,1), lctc(θ, ϕT,2)]

s.t. lu(θ)−min
θ

lu(θ) ≤ ϵ. (21)

The backbone parameters θ is updated using,

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− α

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (22)

The task specific classification parameters are updated using (20a) and (20b)

B.3 VM-ASR FOR MULTILEVEL ASR OPTIMIZATION

In MLO problem, there is a hierarchy of objectives. We can reformulate the multilingual multi-task
ASR optimization task into different MLO problems based on the tasks, languages, or language
families to which they belong. We study these set-ups and solve these optimization problems using
penalty-based gradient descent method.

Multilevel optimization based on tasks. We can extend the ASR optimization problem into three
levels based on the tasks: ASR, S2TT, and self-supervised task. We always place the self-supervised
objective at the lowest level and optimize it first, as the optimization of all other objectives directly
depends on the optimization of the self-supervised objective.

argmin
ϕ1,1,··· ,ϕT,1∈Rr,ϕ∗

1,2,...,ϕ
∗
T,2,θ

∗
Lctc(ϕ1,1, ϕ2,1, . . . , ϕ

∗
1,2, ϕ

∗
2,2, · · · , θ∗)

s.t. ϕ∗
1,2, · · · , ϕ∗

T,2 = argmin
ϕ1,2,··· ,ϕT,2∈Rr,θ∗

Lctc(ϕ1,1, ϕ2,1, . . . , ϕ1,2, ϕ2,2, · · · , θ∗)

s.t. θ∗ = argmin
θ∈Rs

lu(θ).

(23)
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We apply a penalty-based method to convert this multilevel multi-objective optimization problem
into a single-level optimization problem and apply dynamic MOO to update the parameters in a
conflict-avoiding direction.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− αη1

(
T∑

t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2) + αη2∇θlu(θ

k)

)
.

(24)

Here, η1 and η2 are penalty parameters. We can combine η1 and η2 and get η = η1 × η2 for
self-supervised loss.

θk+1 = θk − α

T∑
t=1

λk
t,1∇θlctc(θ

k, ϕk
t,1)− αη1

T∑
t=1

λk
t,2∇θlctc(θ

k, ϕk
t,2)− αη∇θlu(θ

k). (25)

Next, we update the classification heads via
ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k). (26a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k). (26b)

We provide a detailed algorithm of multilevel ASR optimization in 3. We also do experiment altering
the optimization order of ASR and S2TT tasks.

Multilevel optimization based on language. We can also extend ASR optimization problem into
multiple level based on languages

argmin
ϕ1,1,ϕ1,2∈Rr,ϕ∗

2,1,ϕ
∗
2,2,...,θ

∗
Lctc(ϕ1,1, ϕ1,2, ϕ

∗
2,1, ϕ

∗
2,2, · · · , θ∗)

. . .

s.t. ϕ∗
T,1, ϕ

∗
T,2 = argmin

ϕT,1,ϕT,2∈Rr,θ∗
Lctc(ϕ1,1, ϕ1,2, . . . , ϕT,1, ϕT,2, θ

∗)

s.t. θ∗ = argmin
θ∈Rs

Lu(θ).

(27)
In this setup, we optimize all the objectives of one language in one optimization level and optimize
other languages’ objectives in other optimization levels. For simplicity of implementation, we will
consider two languages. We can update the model parameters using the following penalty-based
update rules

θk+1 = θk − α

N∑
n=1

λk
1,n∇θlctc(θ

k, ϕk
1,n)− αη1

N∑
n=1

λk
2,n∇θlctc(θ

k, ϕk
2,n)− αη∇θlu(θ

k). (28)

In this equation, η1 and η2 are penalty parameters. We can combine η1 and η2 to obtain η = η1 × η2,
which is used for the self-supervised loss. The parameter N = 2 represents the total number of
tasks (in this experiment, ASR and S2TT). The terms λk

1,n and λk
2,n represent the dynamic update

directions for languages 1 and 2, respectively, during the k-th iteration for task n.

Figure 3: Heat-map of Cosine similarities among ASR and
S2TT objectives.

Next, we update the classification
heads via
ϕk+1
t,1 = ϕk

t,1 − β∇ϕlctc(ϕ
k
t,1, θ

k).

(29a)

ϕk+1
t,2 = ϕk

t,2 − β∇ϕlctc(ϕ
k
t,2, θ

k).

(29b)
In both task-based and language-
based MLO, we alter the order of ob-
jectives at the optimization level to
examine the effects of their arrange-
ment. By doing so, we can better un-
derstand how the sequence of objec-
tives influences the optimization pro-
cess and outcomes.
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Algorithm 1 VS-ASR for multilingual multi-task ASR.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α and β;
for k = 1 to K do

sample ζk1 = xk
1,u, ζk2 = xk

2,u, ξk1 = (xk
1 , y

k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇lu(ζ
k
1 ; θ

k), ∇lu(ζ
k
2 ; θ

k), ∇lctc(ξ
k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (13)
update ϕk+1

t,n by (14) ∀t ∈ [T ],∀n ∈ [N ]
end for
Output: θK , {ϕK

t,n}

C GRADIENT CONFLICT

In this setup, we aim to separate
highly conflicting objectives into up-
per and lower optimization levels. However, a sub-question arises within this setup: which objectives
are highly conflicting? To address this question, we need to establish a boundary or threshold that
distinguishes objectives with significant conflicts. We can create such a threshold by calculating
the degree of conflict using the cosine similarity of the gradients of the objectives. If the cosine
similarity of two objectives is smaller than a certain threshold, they are optimized at different levels.
If ∇Θlt,n(Θ) and ∇Θlt′,n′(Θ) are gradients of two objectives then we can calculate the cosine
similarity using

cosω =
⟨∇Θlt,n(Θ),∇Θlt′,n′(Θ)⟩
∥∇Θlt,n(Θ)∥∥∇Θlt′,n′(Θ)∥

(30)

where ω is the angle between the gradients of two different objectives. To calculate the similarity
between update directions, we use the same conformer model and train it using two different languages
and objectives simultaneously. We train the model for 20 epochs using both objectives and then
average the gradients of their updates separately. We follow the same process for all languages and
record their average gradients for 20 epochs. We can now calculate the cosine similarity between
the gradient update direction of two objectives from these recorded gradients. We also compare the
cosine similarity between self-supervised and supervised losses.

In Figure 3 and 4, we depict the cosine similarity of supervised objective gradients across five
languages, along with the self-supervised objective gradient for ASR and S2TT. The heat map
displays the similarity values, while the scatter plot, with points colored by their cluster assignments,
helps visualize which objectives are closely related (high similarity) and which are not. The size and
color of the points represent the similarity values and cluster assignments, respectively.

Figure 4: Scatter plot of cosine similarities between ASR
and S2TT objectives.

From the analysis of these figures,
it is evident that tasks with lower
similarities exhibit higher conflicts.
Notably, the self-supervised gradi-
ents show significantly higher sim-
ilarity with other objectives. This
finding supports our decision to use
the self-supervised loss as a lower-
level constraint, thereby shrinking
the search region for finding optimal
Pareto points.

Moreover, segregating the highly con-
flicting ASR and S2TT tasks into dif-
ferent optimization levels reduced the
overall conflict among the gradients
of the objectives. Consequently, this
approach improved the WER scores.
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Algorithm 2 VC-ASR for multilingual multi-task ASR

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty parameter η;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇lu(ζ
k; θk)

compute ∇lctc(ξ
k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (15)
update ϕk+1

t,n by (14) ∀t ∈ [T ],∀n ∈ [N ]
end for
Output: θK , {ϕK

t,n}

Algorithm 3 VM-ASR for multilingual multi-task ASR.

Input: Labeled data (x, y), unlabeled data Xu := {x1
u, x

2
u, · · · , xE

u }, learning rates α, β, and
penalty η1, · · · , ηP ;
for k = 1 to K do

sample ζk = xk
u, ξk1 = (xk

1 , y
k
1 ) and ξk2 = (xk

2 , y
k
2 )

compute ∇lu(ζ
k; θk), ∇lctc(ξ

k
1 ; θ

k, ϕk), ∇lctc(ξ
k
2 ; θ

k, ϕk)
update λk+1 by (12)
update θk+1 by (16)
update ϕk+1

tp,np
by (17)∀tp ∈ [Tp],∀np ∈ [Np]

end for
Output: θK , {ϕK

t,n}

D BASELINE TRAINING METHODS

In this section, we outline the baseline methods used to compare against our MOO algorithms.

D.1 PRE-TRAINING + FINE-TUNING (PT+FT)

This method involves two sequential steps:

1. Pre-training: The model is first pre-trained on a self-supervised learning (SSL) objective, such as
CPC or Wav2Vec2, to learn general-purpose representations from unlabeled speech data. During this
stage, the backbone parameters are updated using:

θk+1 = θk − α∇θlu(θ
k), (31)

where lu represents the SSL loss, and α is the learning rate.

2. Fine-tuning: After pre-training, the model is fine-tuned on a supervised task (e.g., ASR or S2TT)
using the CTC loss to adapt the learned representations to task-specific objectives. During fine-tuning:

• The backbone parameters are updated using:

θk+1 = θk − β

NT

T∑
t=1

N∑
n=1

∇θlctc(θ
k, ϕk

t,n), (32)

where β is the learning rate, N and T denote the number of tasks and languages, respectively.

• The parameters of the individual classification heads are updated using:

ϕk+1
t,n = ϕk

t,n − β∇ϕlctc(ϕ
k
t,n, θ

k), (33)

where ϕt,n denotes the parameters for task n and language t.
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D.2 STATIC WEIGHTING

This method follows the same process as PT+FT but introduces static weighting during fine-tuning.
Instead of using equal weights for all supervised objectives, a grid search is performed to assign
suitable weights to each objective. The backbone parameters are updated using:

θk+1 = θk − β

T∑
t=1

N∑
n=1

µt,n∇θlctc(θ
k, ϕk

t,n), (34)

where µt,n represents the static weight assigned to the supervised objective for task n and language t.
For our experiments, the following language-specific weights were used:

[En, Fr, De, Es, Ca] = [0.18, 0.19, 0.27, 0.16, 0.20].

JOINT PT+FT WITHOUT MOO

This method follows the same process as VC-ASR but does not incorporate MOO (Saif et al., 2024).
Instead, all supervised objectives are optimized jointly without dynamic weighting or conflict-aware
gradient alignment, resulting in a simpler optimization process.

D.3 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

In the PEFT method, the backbone is first pre-trained following Equation 31. Afterward, the backbone
is frozen, and the fine-tuning is performed in a sequential manner:

1. A single set of classification heads is fine-tuned using Equation 33.
2. The fine-tuned classification heads are then frozen, and the next set is optimized.

This process continues iteratively for each set of classification heads.

E EXPERIMENTAL SETUP

In this section, we outline the dataset, models, hyper-parameters, and data pre-processing techniques
employed in evaluating our VS-ASR, VC-ASR, and VM-ASR algorithms.

Dataset. We evaluate our training algorithms on a combined dataset of LibriSpeech (Panayotov et al.,
2015), AISHELL v1 (Bu et al., 2017), and CoVoST v2 (Wang et al., 2020). LibriSpeech is an English
speech dataset consisting of 960 hours of data along with transcripts. AISHELL v1 is a 178-hour
multi-channel Mandarin speech corpus designed for various speech/speaker processing tasks. We
have combined these two datasets to create a single multilingual dataset. Our approach involved
splitting the LibriSpeech dataset, allocating 860 hours for self-supervised pre-training and using
the 100-hour train-clean-100 subset for supervised training. The trained models are tested on the
AISHELL test dataset and the LibriSpeech test-clean dataset. During training using CoVoST dataset,
we use equal batch sizes across all languages and tasks to ensure balanced training. For high-resource
En, we fix a subset of data (top 50% from the provided CSV), while applying upsampling for low-
resource languages—4x for Ca and Es and 2x for Fr and De. The same En subset is consistently used
across all runs to maintain fairness.

In the first experiment, we use combined LibriSpeech and AISHELL multilingual dataset and train a
multi-head conformer for multilingual ASR tasks. In the second experiment, we use the CoVoST v2
training dataset for multilingual ASR and S2TT training. The CoVoST v2 test set is used to evaluate
the trained models. CoVoST v2 is a widely-used benchmark multilingual S2TT corpus covering
translations from 21 languages into English and from English into 15 languages.

Models. We use two configurations of the Conformer model (Gulati et al., 2020), each with a different
number of Conformer blocks and hidden units. The first model has 10 Conformer blocks with a
hidden dimension of 612 units and 12 attention heads; the second model has 8 blocks with 512 hidden
dimensions and 8 attention heads. Each attention head has a dimension of 51 for the first model and
64 for the second model. Both configurations use a convolutional kernel size of 31, enhancing the
model’s ability to discern temporal dependencies and capture long-range dependencies in the input
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Figure 5: Multi-head conformer model for multilingual multi-task ASR.

sequences. Additionally, distinct classification heads are used for different tasks, each configured
with varying output sizes (see Figure: 5).

Hyper-parameters. We use grid search to optimize hyperparameters, including learning rate, batch
size, step size of MoDo, and penalty parameter increasing rate. For both SSL pre-training and
supervised fine-tuning, the backbone learning rate is consistently set higher than the classification
parameter learning rate. The SSL pre-training phase starts with a learning rate of α = 5 × 10−4

for 100 epochs, annealed by a factor of 0.1 every 20 epochs. Fine-tuning uses a maximum learning
rate of β = 5× 10−5, with a scheduler reducing the learning rate by a factor of 0.1 if the test loss
does not improve within 10 epochs. All MOO models (VS-ASR, VC-ASR, and VM-ASR) and joint
PT+FT models are trained for 200 epochs. For PT+FT, we pre-train the model for 200 epochs and
fine-tune it for an additional 100 epochs. A batch size of 256 and AdamW optimizer are used for
both self-supervised and supervised training. The same hyperparameter settings are applied across all
training methods to ensure consistency and comparability.

Penalty parameter for ASR and S2TT. For VC-ASR, the initial penalty parameter η is set to 0 and
increases at a rate of 0.02 per epoch. The increase stops once the penalty reaches a maximum value
of 1.5. For VM-ASR, the second-level penalty parameter η1 is initially set to 0.1 and increases by
0.02 per epoch, while the lower-level penalty constant η2 starts at 0 and also increases by 0.02 per
epoch. The increase for both penalty constants stops once they reach a maximum value of 1.5. A
higher increase rate for the lower level ensures equal importance of both upper-level and lower-level
objectives.

Data pre-processing. Our experiment involves both supervised and self-supervised training; however,
preprocessing is applied only for the supervised training phase. For self-supervised training, we
use raw speech data directly, enabling the model to learn representations from the audio without
additional preprocessing. Specifically, we use a context length of 20 frames (200 ms) and predict the
next 12 frames, employing 12 negative samples for contrastive loss. For supervised training, we apply
standard preprocessing steps, including feature extraction and normalization. The raw audio files are
converted into 80-dimensional log-mel features, a widely used representation in speech recognition
tasks that effectively captures both temporal and spectral information. The data is then normalized to
zero mean and unit variance to facilitate faster model convergence. We also employ SpecAug for data
augmentation to improve model robustness. In terms of text processing, we utilize SentencePiece
(Kudo & Richardson, 2018) as the tokenizer and detokenizer. We use word-based tokens, with the
token vocabulary size set to 1000 for all languages except Chinese, where it is character-based with
a vocabulary size of 5000. This ensures an appropriate balance between model complexity and
performance. All training methods employ the same pre-processing steps.

Computational Resources. All simulations were run on two NVIDIA A5000 GPUs and two NVIDIA
A4500 GPUs, with an Intel i9-7920X CPU and 128 GB of DDR4 memory.

F ABLATION STUDY

In this section, we study the impact of different pre-training methods and provide a detailed explana-
tion of the effect of the penalty parameter on the overall training process.
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Table 7: ASR WERs and S2TT BLEU score comparison between CPC and BEST-RQ pre-training
methods. For S2TT we do Lang → En translation.

Param Lang
VM-ASR-UAS

(ASR-CPC-
WER)

VM-ASR-UAS
(S2TT-CPC-

BLEU)

VM-ASR-UAS
(ASR-BEST-RQ-

WER)

VM-ASR-UAS
(S2TT-BEST-RQ-

BLEU)

100M

En 23.5% – 21.8% –
Fr 16.0% 30.9 14.9% 31.6
De 18.4% 20.8 17.6% 21.4
Es 14.1% 30.1 13.2% 31.2
Ca 11.6% 25.8 10.8% 26.9

Ave. 16.7% 26.9 15.8% 27.8

Table 8: Comparison of ASR WERs and S2TT BLEU scores between Wav2Vec2 with and without
VM-ASR methods. For S2TT, we perform translation from Lang → En.

Param Lang Wav2Vec2-ASR
Without VM-ASR

Wav2Vec2-S2TT
Without VM-ASR

Wav2Vec2-ASR
With VM-ASR

Wav2Vec2-S2TT
With VM-ASR

300M

En 19.4% – 17.9% –
Fr 14.1% 32.4 12.8% 33.2
De 16.2% 26.2 15.1% 27.7
Es 11.1% 33.7 9.7% 35.0
Ca 9.8% 28.1 8.9% 31.4

Ave. 14.1% 30.1 12.9% 31.8

F.1 IMPACT OF PRE-TRAINING METHOD

In this ablation study, we assess the impact of two different pre-training techniques—CPC and
BEST-RQ (Chiu et al., 2022)—on the performance of our VM-ASR method. The purpose of this
ablation is to isolate the contribution of the pre-training method to the overall performance of the
ASR and S2TT tasks. We keep the settings consistent across both methods, with the model containing
100 million parameters in all cases. The tasks evaluated include ASR in various languages and S2TT
for translating from different source languages into English.

The results in Table 7 compare CPC and BEST-RQ across five languages. The results indicate a
consistent improvement when using the BEST-RQ pre-training method. Specifically, BEST-RQ leads
to a 5.4% absolute improvement in the average WER compared to CPC across all languages. The
improvement is most pronounced in English and French, where the WER reductions reach 7.2% and
6.9%, respectively. For Spanish and German, the improvements are slightly smaller but still notable
at 6.4% and 4.3%, respectively.

On the S2TT task, BEST-RQ also outperforms CPC, resulting in a 3.3% absolute increase in the
average BLEU score across the evaluated languages. The highest BLEU score improvements are
observed for Catalan and Spanish, with BEST-RQ providing increases of 4.3% and 3.7%, respectively.
This indicates that BEST-RQ not only improves the ASR task but also enhances the downstream
translation quality, likely due to the richer representations learned during pre-training.

Overall, these results suggest that the pre-training method plays a crucial role in enhancing both ASR
and S2TT performance. The BEST-RQ approach, with its enhanced capability to model complex
speech patterns, proves to be more effective than CPC, thus making it the more suitable choice for
the VM-ASR algorithm.

F.2 IMPACT OF VM-ASR ON FINE-TUNING SPEECH FOUNDATION MODEL

We evaluate our VM-ASR (UAS) method using the pre-trained Wav2Vec2-XLS-R7 model (Babu
et al., 2021). In this approach, we utilize the pre-trained model as the backbone and add linear layers
for each task and language to predict the output vocabulary, training with the CTC method. All other

7https://huggingface.co/facebook/wav2vec2-xls-r-300m
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Table 9: Comparison of resource requirements between a single MOO model and multiple single-
objective models during deployment.

Model Encoder
Param

Classification
Heads

Total
Param

Storage
Size

Loading
Time (s)

Single MOO
Model ~100M ~2.5M ~102.5M ~654.4 MB ~0.27

Five Single-
Objective Models ~500M ~2.5M ~502.5M ~3.2 GB ~1.25

hyperparameters remain consistent with our previous training protocols. In the first experiment, we
fine-tune the Wav2Vec2 model across all languages for ASR and S2TT tasks, following the same
procedure as our earlier PT+FT training. In the second experiment, we perform joint pre-training
and fine-tuning (PT+FT) with MOO, similar to the VM-ASR (USA) training approach. For both
experiments, the model is trained for 50 epochs. The results are summarized in Table 8. On average,
the Wav2Vec2 model trained with VM-ASR outperforms the standard Wav2Vec2 model by 8.5% in
the ASR task and by 5.6% in the S2TT task.

F.3 IMPACT OF PENALTY PARAMETER

In our multilingual multi-task ASR experiments, we investigated the effects of different penalty
parameter increase rates to balance the ASR and S2TT tasks. We tested two configurations:

• A lower increase rate of 0.002, which led to worse WER/BLEU score for lower-level tasks,
as shown in Tables 3 and 4.

• A higher increase rate of 0.02, which improved lower-level performance but slightly
degraded upper-level performance.

Choice of capped value for the penalty parameter: We capped the penalty parameter at 1.5 based
on our observed trade-off between upper- and lower-level tasks. A penalty higher than 1.5 could
have improved lower-level performance further, but it would have significantly degraded upper-level
metrics. Thus, 1.5 was chosen as an optimal balance point.

Post-Maximum Penalty Effects: The penalty parameter reached its maximum value of 1.5 after
75 epochs, but training continued for another 25 epochs. During this time, we observed further
improvements in lower-level WER/BLEU scores, while upper-level performance deteriorated. This
reinforces the critical role that penalty parameter selection plays in balancing competing objectives.

G RESOURCE EFFICIENCY OF THE MOO MODEL

This section addresses the question: How does a single MOO model reduce resource demands
during deployment, making it a more efficient solution overall?

• Reduced Storage Requirements: A single MOO model is highly memory-efficient due
to parameter sharing across tasks, see Table: 9. The largest MOO model used in our
experiments has a size of 654.4 MB, comprising an encoder (~100M parameters) shared
across all objectives and five lightweight classification heads (~0.5M parameters each) for
five different tasks (considering the ASR for five languages). In contrast, deploying five
separate models for these tasks would require 5× more backbone parameters, resulting
in significantly higher storage demands. Assuming each single-objective model uses an
encoder of similar size, the total storage requirement for separate models would reach
approximately 3.2 GB.

• Efficient Inference: The MOO model also minimizes latency and computational overhead
during inference. In our system, it takes only 0.27s to load the single MOO model, whereas
loading five separate models takes 1.25s (5× 0.25 s). This reduction in loading time directly
translates to faster response times and improved computational efficiency.
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By consolidating multiple objectives into a single model, the MOO approach not only achieves
significant memory savings but also ensures faster deployment and reduced computational demands,
making it a scalable and efficient solution for real-world applications.
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