Preference Leakage: A Contamination Problem in LL.M-as-a-judge

Dawei Li“! Renliang Sun “?> Yue Huang® Ming Zhong* Bohan Jiang'

Jiawei Han*

Abstract

Large Language Models (LLMs) as judges and
LLM-based data synthesis have emerged as
two fundamental LLM-driven data annotation
methods in model development. While their com-
bination significantly enhances the efficiency of
model training and evaluation, little attention has
been given to the potential contamination brought
by this new model development paradigm. In
this work, we expose preference leakage, a
contamination problem in LLM-as-a-judge
caused by the relatedness between the synthetic
data generators and LLLM-based evaluators. To
study this issue, we first define three common
relatednesses between the data generator LLM
and the judge LLM: being the same model,
having an inheritance relationship, and belonging
to the same model family. Through extensive
experiments, we empirically confirm the bias
of judges towards their related student models
caused by preference leakage across multiple
LLM baselines and benchmarks. Further analysis
suggests that preference leakage is a pervasive
and real-world problem that is harder to detect
compared to previously identified biases in
LLM-as-a-judge scenarios. All of these findings
imply that preference leakage is a widespread
and challenging problem in the area of LLM-
as-a-judge. We release all codes and data at:
https://github.com/David-Li0406/

Preference—LeakageL

“Equal contribution 'Arizona State University >University of
California, Los Angeles *University of Notre Dame *University
of Illinois Urbana Champaign. Correspondence to: Dawei Li
<daweili5@asu.edu>.

Proceedings of the 42™¢ International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

"More resources on LLM-as-a-judge are on the website:
https://1llm-as—-a-judge.github.io/

Xiangliang Zhang® Wei Wang? Huan Liu'

1. Introduction

Recent advancements in Large Language Models
(LLMs) (Achiam et al., 2023; Jaech et al., 2024) have
empowered various downstream tasks and applications.
However, this also poses substantial challenges to the
automatic evaluation of these models. Representatively,
LLM-based AI agents’ focus transfer from traditional
natural language processing tasks to real-world (Liu et al.,
2023b; Huang et al., 2023), open-ended response generation
(Wu et al., 2024), which greatly limits the applicability of
traditional n-gram matching methods (e.g., BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004)) (Liu et al., 2016;
Reiter, 2018) or model-based evaluators (Zhang et al., 2020;
Zhong et al., 2022) for evaluation.

To address these challenges, the paradigm of LL.M-as-a-
judge (Zheng et al., 2023; Li et al., 2024a; Jiang et al., 2024a;
Zhong et al., 2024; Li et al., 2025) has been proposed, de-
signed to leverage LLM as evaluators to assess response
quality. By combining powerful LLMs with well-designed
prompting strategies, LLM-as-a-judge enables human-like
evaluation of long-form and open-ended generation in a
more cost-efficient and scalable manner. However, recent
studies point out some weaknesses of such an assessment.
For instance, Ye et al. (2024) explores various biases and vul-
nerabilities of LLM-as-a-judge, highlighting the importance
of developing a reliable LLM-based evaluation system.

In this work, we aim to highlight a subtle yet critical bias
in LLM-as-a-Judge: Preference Leakage. This issue arises
when the LLMs used for data generation and evaluation are
closely related, causing the preference of the LLM evalua-
tors to leak to the student models through synthetic data and
thus inflating the evaluation score (as illustrated in Figure 1).
Synthetic data generated by LLMs (Gan et al., 2023; Tan
et al., 2024; Li et al., 2024b;c) has become a cornerstone
of model training (Lee et al., 2025). When combined with
LLM-as-a-Judge, they offer significant efficiency gains in
model development. However, limited attention has been
given to the potential contamination that occurs when the
generator and evaluator LLMs share a close relationship.
During our preliminary study, we find this issue is particu-
larly pervasive in popular LLM-as-a-judge benchmarks (e.g.,
AlpacaEval 2.0 (Dubois et al., 2024) and Arena-Hard (Li


https://github.com/David-Li0406/Preference-Leakage
https://github.com/David-Li0406/Preference-Leakage
https://llm-as-a-judge.github.io/

Preference Leakage: A Contamination Problem in LLM-as-a-judge

et al., 2024e)) and LLM-relevant studies (more details can
be found in Appendix A), due to the common reliance on
the most advanced LLMs, such as GPT-4 (Achiam et al.,
2023), for both data synthesis and evaluation to ensure the
highest quality outputs. In our work, we reveal this re-
latedness—akin to the overlap between training data and
evaluation sets in traditional data contamination—would
introduce a systematic bias of judge LLMs towards their
related student models (i.e., the model distilled by the data
generator which is related to the judge). Compared to other
biases in LLM-as-a-Judge, such as length bias or egocentric
bias (Ye et al., 2024; Panickssery et al., 2024), preference
leakage is subtler and more challenging to detect, especially
given that most LLMs do not disclose their training data.

To investigate and reveal the preference leakage problem,
we first define three relatednesses between data generator
LLM and judge LLM: being the same model, having an
inheritance relationship, and belonging to the same model
family. Each of these scenarios is commonly encountered
in real-world applications. Then, we pose and answer three
core research questions about preference leakage:

* RQ1: Does preference leakage introduce systematic
biases in LLM-based evaluation? To answer it, we
conduct experiments with various LLM baselines in two
widely recognized LLM-as-a-judge benchmarks, also in-
troduce the preference leakage score to quantify the bias
caused by preference leakage. The analysis results sug-
gest an obvious bias of judging LLMs toward their related
student models due to preference leakage.

* RQ2: What is the severity of preference leakage un-
der various scenarios? We conduct experiments under
various data mixing strategies, relatedness settings, tun-
ing techniques and real-world applications to address it,
finding that preference leakage consistently affects judge
LLMs. Moreover, the severity of preference leakage cor-
relates with the degree of relatedness between the data
generator and LLM judges, as well as the proportion of
synthetic data.

* RQ3: What are the underlying mechanisms causing
preference leakage? For this question, we analyze LLMs’
recognition capabilities on their related student models’
generation as well as the distribution of bias across differ-
ent question types and judgment dimensions. The analysis
reveals that preference leakage is a subtle, hard-to-detect
issue for the LLM evaluators, particularly affecting sub-
jective questions and judgment dimensions.

To summarize, our contributions in this work are as follows:

* For the first time, we introduce preference leakage, a
contamination issue arising from the relatedness between
the data generator and judge LLMs.

* We conduct extensive experiments across various LLMs
and benchmarks to study how and to what extent the bias
brought by preference leakage influences judgment.

* Qur further analysis reveals that preference leakage is
prevalent in diverse scenarios and difficult for judge LLMs
to detect, providing valuable insights for future research
on this challenging issue.

2. Related Work

LLM-as-a-Judge. LLM-as-a-Judge, introduced by Zheng
et al. (2023), leverages LLMs to automatically evaluate
responses and assign rewards. This approach has gained
widespread adoption in areas such as model alignment
(Zhang et al., 2024c) and benchmarking (Liu et al., 2023a;
Zhang et al., 2024a; Gao et al., 2023; Zhong et al., 2024),
driving significant progress in the field. Building on this con-
cept, Zhuge et al. (2024) proposed Agent-as-a-Judge, where
agentic systems are employed to evaluate other agentic sys-
tems. Additionally, Prometheus, a series of open-source
LLMs tailored for LLM-as-a-Judge (Kim et al., 2023; 2024),
addresses the prohibitive costs associated with proprietary
models, further democratizing the technology.

Despite its promising potential, recent studies have
highlighted the vulnerabilities and biases of LLM-as-a-
Judge (Zheng et al., 2023; Ye et al., 2024; Koo et al., 2023;
Chen et al., 2024; Zheng et al., 2023; Huang et al., 2024,
Thakur et al., 2024; Shi et al., 2024). Among these, egocen-
tric bias, where LLM evaluators tend to favor their gener-
ations (Koo et al., 2024; Liu et al., 2024b; Wataoka et al.,
2024; Xu et al., 2024b; Rando et al., 2025; Panickssery
et al., 2024; Chen et al., 2025), is most closely related to the
preference leakage proposed in this work.

However, in contrast to the relatively straightforward set-
ting of egocentric bias, preference leakage presents a more
complex and dynamic challenge. It can arise from various
types of relatedness between data-generating and evaluating
LLMs, as well as the intricate flow of synthetic data among
modern LLMs (Tan et al., 2024). Moreover, detecting pref-
erence leakage is also more challenging, given LLMs often
do not disclose their training data and the difficulty in distil-
lation quantification (Wadhwa et al., 2025; Lee et al., 2025).

Data Leakage. The possible overlap between training data
and evaluation benchmarks has become a central issue, since
LLMs are usually trained on extensive web corpora (Dodge
et al., 2021). This phenomenon, known as data leakage, can
artificially improve the performance of LLMs and under-
mine the reliability of the assessment (Deng et al., 2024a;
Jiang et al., 2024b). Several researchers have proposed
methods to detect and mitigate data contamination. Deng
et al. (2024b) proposed a retrieval-based approach to assess
the degree of overlap between pre-training text and bench-



Preference Leakage: A Contamination Problem in LLM-as-a-judge

Data leakage

Data Leakage!

’ v )
! Train <— Evaluate - B i
: — % = ) Q=R
| 5= Be=s x |
: — — P i
: Training Trained Evaluation Trained 3 ' (2). Inheritance !
‘ Corpus Model Testset Model i ‘
| Training Evaluation D @ — @ |
I Corpus Testset Overlap o B |

********************************************************************************************* S Synthetic|

****************************************************************************** ! data ]
’ Preference leakage Preference Leakage! ! c!E]p f |
i < L 1
; E] Synthesize ff~——= Train o9 Judge b 1
: L%> =F - R |1 (3). Within the |
i Data Synthetic Trained Judge ! isame model family;
; Generator Data Model Model | ! ;
! LLM for Data LLM-as- i = @ i
i Synthesis a-Judge Relatedness ‘ > ]

Figure 1. Overview of preference leakage. We make a comparison between data leakage and preference leakage and present three types of
relatedness: being the same model, having an inheritance relationship and belonging to the same model family.

mark data. Golchin & Surdeanu (2023) have developed
“guided instruction” to flag contaminated instances. Dong
et al. (2024b) proposed the CDD method to identify peaks in
the output distribution to detect data contamination. Several
studies analyze data leakage for specific LLMs (Balloccu
et al., 2024; Xu et al., 2024a) and report contamination such
as cross-language contamination (Yao et al., 2024) and task
contamination (Li & Flanigan, 2024) that can evade tradi-
tional detection methods. To address data contamination
issues, Ni et al. (2024) have used web user query detection
and benchmark mixture. White et al. (2024) use the most
recent information to update the problem.

3. Preference Leakage

3.1. LLMs as Oracles: A New Avenue for
Contamination

With the advent of LLMs, these models are increasingly
employed as “oracles” in various scenarios: for both syn-
thetic data generation (M) and employed as evaluators
(M) to automate the assessment. While these approaches
enhance scalability and efficiency, they also introduce poten-
tial risks. Specifically, if the LLM used for data generation
(M¢) and the LLM used for evaluation (M ;) are not inde-
pendent, a new contamination—preference leakage—can
emerge, biasing evaluation outcomes.

3.2. Defining Preference Leakage in LLM-based
Evaluation

Formally, to define preference leakage, we consider the
following entities in models development:

* Data Generator LLM, M, defining a conditional dis-
tribution Py, (y|z) for generating an output y given a
prompt x, forming the synthetic dataset D, for student
LLMs training.

* Student LLM, Mg, trained on data generated by Mg,

producing an output distribution Py (y|z).
* Judge LLM, M, providing a scoring function Sy, (y|z)
that assesses output y for prompt x.

Preference leakage occurs when the evaluation score as-
signed by M to Mg’s outputs is inflated due to an under-
lying relatedness between Mg and M ;. This implies that
M ; may favor outputs from Mg not solely based on their
intrinsic quality, but because they exhibit spurious features
(e.g., style, format, wording) inherited from M, to which
M ; is predisposed due to this relatedness:

EmnyNPMS [SM/ (ys\l") ‘ Mg ~rel MJ]

1

> By ysnpPug [SM,, (Ys|z) | Ma #re Myl M
where yg are outputs from Mg. The relation Mg ~,.c; M
denotes that judge M is related to Mg, while Mg ¢
M j denotes that an alternative judge M ;- is not related to
M and possess comparable intrinsic quality assessment
capabilities to M ;. The expectation is taken over the in-
put distribution X" and the trained Student LLM’s output
distribution Py, .

3.3. Type of LLM “Relatedness”

The condition Mg ~... M in Equation 1 encapsulates
several ways the Data Generator LLM and Judge LLM can
be interconnected. We identify three common types in the
real world:

* Being the Same Model: The most direct form of related-
ness occurs when the Data Generator LLM and the Judge
LLM are the exact same model instance:

M G = M. J- (2)

In this scenario, the inherent preferences in the model that

shape its generative distribution Py, (y|z) are precisely



Preference Leakage: A Contamination Problem in LLM-as-a-judge

the same as those guiding its evaluation via the scoring
function Sy, (y|z).

¢ Inheritance Relationship: One model’s development
is directly based on another, either by fine-tuning the
existing model or by training a new model on the other’s
outputs, for instance:

M < FineTune(Mc, Dyain)

or  Mj < FineTune(Mpase, Dsyn,,) )
where Dy.q;n represents general training data used to
adapt Mg into M 7, My is a base model, and Dy,
denotes synthetic data generated by M. This type of
relationship is bidirectional; Mg can similarly inherit
from M through analogous processes. In such cases, the
descendant model is likely to internalize and thus favor
the preferences, styles, or biases of its progenitor.

* Within the Same Model Family: The Data Generator
LLM Mg and Judge LLM M ; belong to the same model
family (e.g., different versions or sizes of GPT). Mod-
els within such a family typically share a common ar-
chitectural blueprint (A x) and are often developed from
foundational models pre-trained on substantially overlap-
ping datasets (Dx). This shared foundation (Ax, Dx)
would lead to correlated preferences and systemic biases
characteristic of the common origin:

My, € Family(Ax,Dx) fork e {G,J}. @

4. Main Experiment
4.1. Experiment Setup

Models. We choose three powerful LLMs as data generator/
judge models. They are GPT-40-2024-11-20 (Achiam et al.,
2023), Gemini-1.5-flash (Team et al., 2024), and LLaMA -
3.3-70B-Instruct-turbo (Dubey et al., 2024). For the student
model, we choose Mistral-7B-v0.1 (Jiang et al., 2023) and
Qwen-2.5-14B (Yang et al., 2024). To avoid potential prefer-
ence leakage due to distilling data from other LLMs during
the instruction-tuning process, we choose to use the -PRE-
TRAINED version rather than the -INSTRUCT version of
these student models.

Evaluation Datasets. We choose two representative pair-
wise evaluation datasets, Arena-Hard (Li et al., 2024e)
and AlpacaEval 2.0 (Dubois et al., 2024), to evaluate the
trained student models. Arena-Hard includes 500 challeng-
ing questions in English. Additionally, the evaluation agree-
ment between Arena-Hard and Chatbot Arena (Zheng et al.,
2023)’s hard prompts achieved a 96.7% Spearman corre-
lation, demonstrating the consistency of Arena-Hard with
human preferences (Li et al., 2024e). AlpacaEval 2.0 is an
improved evaluation method based on AlpacaEval (Li et al.,
2023) and contains 805 questions. Compared to version 1.0,

AlpacaEval 2.0 significantly reduces the effect of text length
on the evaluation results.

Implementation Details. In our main experiment, we ex-
amine the preference leakage introduced by using the same
data generator and evaluator in supervised fine-tuning (SFT).
We will discuss other relatedness and learning methods in
Section 5. To obtain synthetic datasets, We first randomly
sample 30,000 prompts from the Ultrafeedback dataset (Cui
et al., 2024). The Ultrafeedback dataset includes instruc-
tions from several publicly available high-quality datasets
such as Truthful QA (Lin et al., 2022), FalseQA (Hu et al.,
2023), and Evol-Instruct (Xu et al., 2023). For each data gen-
erator model, we provide these prompts for them to produce
synthetic responses, resulting in three synthetic instruction
datasets. We then use each dataset to supervised fine-tune
the student model, obtaining three different versions for each
baseline: Mistral/ Qwen-GPT-40, Mistral/ Qwen-Gemini-
1.5 and Mistral/ Qwen-LLaMA-3.3. After that, we pair each
two student models and obtain three model pairs. For each
model pair, we perform the pairwise comparison using the
three judge models respectively.

Metrics Based on our hypothesis, preference leakage would
lead to bias of judge LLMs towards their related student
models. Following this principle, we design the preference
leakage score PLS(4, j) to measure the bias in model pair
(4, j) caused by preference leakage:

(WR<i,i)—AvG(i,j>) n (WR(j,j>—AYG<j,i>)
PLS(Z,]) _ AVG(%,7) 5 AVG(j7,7) 7
. o ®)
AVG(i, ) = WR(i,14) —;WR(Z,]). ©)

Here WR(4, j) represents the win-rate score from judge
model 5 to student model :. Intuitively, a large preference
leakage score indicates that the two judge models demon-
strate strong bias toward their related student models, sug-
gesting a significant preference leakage phenomenon.

More details about model training and metric explanation
can be found in Appendix B.

Model Data Generator/ Judge Pair Arena-Hard AlpacaEval 2.0  Avg.
GPT-40 & Gemini-1.5 28.7% 18.4% 23.6%

Mistral-7B GPT-40 & LLaMA-3.3 -1.5% 1.4% -0.1%
LLaMA-3.3 & Gemini-1.5 13.1% 19.8% 16.4%
GPT-40 & Gemini-1.5 37.1% 18.6% 27.9%

Qwen-2.5-14B  GPT-40 & LLaMA-3.3 1.0% 2.3% 1.7%
LLaMA-3.3 & Gemini-1.5 25.4% 18.4% 21.9%

Table 1. Preference leakage score result on Arena-Hard and Al-
pacaEval 2.0. The blue background indicates a negative prefer-
ence leakage score value and the background indicates a

positive value. The deeper the color, the larger the absolute value.

4.2. Main Results

In our main experiment, we aim to provide insights into

RQI.



Preference Leakage: A Contamination Problem in LLM-as-a-judge

Preference leakage exists in most model pairs. The
calculated preference leakage scores is shown in Table 1.
As the results demonstrate, in most model pairs (except
Mistral-GPT-40 vs Mistral-LLaMA-3.3 and Qwen-GPT-40
vs Qwen-LLaMA-3.3), the judge LLMs exhibit a strong
preference toward their related student models, leading to
large positive values in the preference leakage scores. This
finding suggests that preference leakage, along with the re-
sulting bias, is widespread in SFT when the data generator
and evaluator are the same.

Smaller student models cause even more bias from judge
LLMs. To investigate the impact of student model size on
the degree of preference leakage, we conduct additional ex-
periments using various sizes of the Qwen-2.5 and Qwen-3
models. As shown in Figure 4.2 (a), a notable finding is
that the smallest models (Qwen-2.5-3B and Qwen-3-1.7B)
exhibit the highest PL scores than their larger counterparts,
indicating greater bias from preference leakage. This trend
contrasts with the influence of model size in data contam-
ination, where larger models are typically more suscepti-
ble (Bordt et al., 2024). We assume that this gap arises from
the differing learning capabilities and behaviors of large and
small LLMs: while larger models are more prone to memo-
rizing (Duan et al., 2024) information that exacerbates data
contamination, smaller models may only be able to learn
those spurious features that repeatedly occurs (e.g., format),
leading to more serious preference leakage.

Different benchmarks result in varying degrees of bias
under preference leakage. Another observation from Ta-
ble 1 and Figure 4.2 (a) is that the PL scores in ArenaHard
are generally higher than those in AlpacaEval 2.0. One
possible explanation is the difference in question difficulty
between the two benchmarks, as ArenaHard contains more
challenging questions. Additionally, it may also stem from
differences in the distribution of question types, the impact
of which will be further analyzed in Section B.6.

5. Further Analysis

In this section, we conduct data mixing analysis, related-
ness analysis, learning method analysis (Section 5.1 - C) to
answer RQ2. Due to the space Limitation, we put further ex-
periments on recognition analysis and category analysis to
answer RQ3 in Appendix B.5 - B.6, and the influence of pref-
erence leakage to real-world application in Appendix B.4.

5.1. Data Mixing Analysis

In real-world applications, synthetic data from a single LLM
is often mixed with manually-written data or other multi-
source synthetic data to train student models. To mimic
these scenarios and explore how much synthetic data could
lead to preference leakage, we conduct a data mixing anal-

Arena-Hard AlpacaEval 2.0  Avg.
Same Model 28.7% 18.4% 23.6%
Inher1tanc§ 17.8% 20.7% 19.3%
- w/ same ins.
Inherl.tance ) 18.3% 26.3% 22.3%
- w/ different ins.
Same Famlly' 10.1% 7.6% 8.9%
- w/ same series
Same Family 33% 2.2% 2.8%

- w/ different series

Table 2. Preference leakage score in different relatedness between
the data generator and the judging LLM.

ysis. Specifically, we randomly sample 10%, 30%, 50%,
and 70% from the original synthetic dataset and mix it with
manually-written data and multi-source synthetic data, re-
spectively, in order to maintain a consistent total volume of
training data (30,000). For the manually-written data, we
sample from the data pool collected in Section 5.3. For the
multi-source synthetic data, we use the original synthetic
data from Ultrafeedback, which includes responses gener-
ated by various LLMs (e.g., WizardLM, Flcon, etc.). After
obtaining the mixing training data, we train the student mod-
els using SFT and calculate their preference leakage scores
based on the judgment results. Figure 4.2 (b) presents the
results with two mixing strategies across two benchmarks.

The degree of preference leakage is directly proportional
to the amount of synthetic data. We observe a strong
correlation between the proportion of synthetic data in the
mixture and the preference leakage score, with no clear
threshold separating cases with preference leakage from
those without. This suggests that preference leakage can
occur even with a small amount of leaked synthetic data,
posing significant challenges for its detection.

5.2. Relatedness Analysis

We demonstrate the impact of different relatedness condi-
tions between the data generator and the judge LLM on the
preference leakage problem, as shown in Table 2.

Preference leakage under inheritance settings causes ob-
vious bias of judges towards their related students. For
the inheritance relationship, we consider the situation where
the data generator is inherited from the judge model. We
conducted the following two experiments: (1). we give the
same instructions again as in the SFT stage (Inheritance w/
same ins.), or (2). we sample the same number of different
instructions from the Ultrafeedback (Inherence w/ different
ins.). Then, we let the fine-tuned Mistral model generate
the answers and use these generated data to fine-tune a new
Mistral student model. From the results, with the same in-
structions, the average preference leakage score is 19.3%. In
comparison, the score with different instructions is 22.3%.
Firstly, in an inheritance setting, data generators can inherit
judges’ preferences, which are then passed on to new stu-



Preference Leakage: A Contamination Problem in LLM-as-a-judge

v
o
]
i

B AlpacaEval 2.0
ArenaHard

PL Score

w B
o o
1 1

i i

v

i

H

i

i

1 )

1 ]

H

1

i

1

T

1

H

N
o

-
o

o

(a) PLS on models with various sizes. We conduct the
experiment with GPT-40 and Gemini as data genera-
tors and judges.

w
o

N
w

N
o

=
o

—e— AlpacaEval2.0 - Manual

Preference Leakage Score (%)
=
w

/
> ,4’,/’ —#— ArenaHard - Manual
,,::” =¥- AlpacaEval2.0 - Synthetic
of-£-~ —4- ArenaHard - Synthetic
20 40 60 80 100

Contamination Ratio (%)

(b) Experiment results on data mixing. ‘Manual’ and
‘Synthetic represent mixing with manually-written data
and other synthetic data, respectively.

Figure 2. Experiment results on additional models and data mixing settings.

Arena-Hard AlpacaEval 2.0  Avg.
SFT 28.7% 18.4% 23.6%
DPO 7.7% 2.7% 5.2%
ICL -4.2% -1.1% -2.7%

Table 3. Preference leakage score in different learning methods.
dent models, thereby compromising the fairness of their

evaluation. Second, even when different instructions are
used, judges’ preferences leaked to data generators can still
be transferred to the new student model through synthetic
data, leading to a high preference leakage score.

Models within the same series tend to cause more sig-
nificant bias. For two models within the same family, we
consider two settings: (1) Same series, where training data
is generated by GPT-40 and Gemini-1.5-flash, and judged
by GPT-4-turbo and Gemini-1.5-pro; (2) Different series,
where training data is still generated by GPT-40 and Gemini-
1.5-flash, but judged by GPT-3.5-turbo and Gemini-1.0-pro.
In the same series setting, the average preference leakage
score is 8.9%, indicating that despite using different mod-
els for data generation and judgment, their relatedness in
terms of model family leads to some preference leakage.
In contrast, the different series setting yields a significantly
lower leakage score of 2.8%, likely due to differences in
architecture, training data, and other factors, reducing the
influence of model-related biases in evaluation.

5.3. Learning Method Analysis

We also compare three learning methods, supervised
fine-tuning (SFT), direct preference optimization (DPO)
(Rafailov et al., 2024), and in-context learning (ICL) (Dong
et al., 2024a), to explore the different influences to them un-
der preference leakage. We first build a data pool based on
human-written instruction-tuning data from OASST (Ko6pf
et al., 2024), LIMA (Zhou et al., 2024), and MOSS (Sun
et al., 2024b) to supervised fine-tune the pre-trained model.
For DPO, we sample 2 responses for each instruction from

sampled UltraFeedback instruction and prompt each data
generator to produce the pairwise feedback. Then we use
the DPO loss to further train the fine-tuned policy on each
synthetic pairwise dataset. Appendix C shows the prompt
we use to craft synthetic pairwise feedback. For ICL, we
sample 4 instruction-response pairs from each LLMs’ syn-
thetic dataset as the demonstration during inference.

Tuning approaches would leak judges’ preference to the
student models. Various learning methods show significant
differences in preference leakage scores across learning
methods. SFT exhibits the highest average leakage score
at 23.6%. In contrast, DPO achieves a much lower score
of 5.2%, which is consistent with previous studies in data
contamination that pairwise optimization can reduce the
risk of memorizing or contaminating sensitive training data
compared to straightforward supervised fine-tuning (Hayes
et al.). Meanwhile, ICL, which relies on contextual exam-
ples without model tuning, is least affected by the data gen-
erator’s preferences, resulting in the lowest leakage scores.

6. Conclusion

In this work, we formally highlight the preference leakage
problem in LL.M-as-a-judge systems. The results of our
main experiment, measured using the proposed preference
leakage score, reveal a clear bias in each judge toward their
respective student model. We also observe that this bias is
more pronounced in certain question types and smaller stu-
dent models. Furthermore, we conduct additional analysis
on various factors, including the relationship between the
data generator and judge LLLMs, model tuning techniques,
data mixing strategies, and real-world applications. Our
findings suggest that preference leakage can cause signifi-
cant bias across diverse scenarios. In the future, we aim to
explore methods for detecting, preventing, and mitigating
this evolving challenge in LLM-as-a-judge systems.



Preference Leakage: A Contamination Problem in LLM-as-a-judge

Impact Statements

By revealing preference leakage, this work could help build
more trustworthy and ethically grounded Al systems. The
relatedness between data generators and evaluators can sys-
tematically bias evaluations, potentially compromising the
fairness and reliability of the automatic evaluation paradigm.
These biased evaluations may indirectly affect downstream
tasks such as Al alignment and decision-making systems,
leading to unintended ethical risks. To mitigate preference
leakage, we hope that researchers will propose more reli-
able evaluation methods, diversify training data sources, and
develop contamination-resistant benchmarks in the future.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. ArXiv preprint,
abs/2303.08774, 2023. URL https://arxiv.org/
abs/2303.08774.

Balloccu, S., Schmidtov4, P., Lango, M., and Dusek, O.
Leak, cheat, repeat: Data contamination and evaluation
malpractices in closed-source llms. In Proceedings of the
18th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 67-93, 2024.

Bordt, S., Nori, H., and Caruana, R. Elephants never forget:
Testing language models for memorization of tabular data.
In NeurlIPS 2023 Second Table Representation Learning
Workshop, 2024.

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B.
Humans or llms as the judge? a study on judgement
biases. arXiv preprint arXiv:2402.10669, 2024.

Chen, W.-L., Wei, Z., Zhu, X., Feng, S., and Meng, Y. Do
Ilm evaluators prefer themselves for a reason? arXiv
preprint arXiv:2504.03846, 2025.

Cui, G., Yuan, L., Ding, N., Yao, G., He, B., Zhu, W., Ni, Y.,
Xie, G., Xie, R., Lin, Y., et al. Ultrafeedback: Boosting
language models with scaled ai feedback. In Forty-first
International Conference on Machine Learning, 2024.

Deng, C., Zhao, Y., Heng, Y., Li, Y., Cao, J., Tang, X.,
and Cohan, A. Unveiling the spectrum of data contami-
nation in language models: A survey from detection to
remediation. arXiv preprint arXiv:2406.14644, 2024a.

Deng, C., Zhao, Y., Tang, X., Gerstein, M., and Cohan, A.
Investigating data contamination in modern benchmarks
for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language

Technologies (Volume 1: Long Papers), pp. 8698-8711,
2024b.

Dodge, J., Sap, M., Marasovi¢, A., Agnew, W., Ilharco, G.,
Groeneveld, D., Mitchell, M., and Gardner, M. Docu-
menting large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language
Processing, pp. 12861305, 2021.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R,, Xia,
H., Xu, J., Wu, Z., Chang, B., et al. A survey on in-
context learning. In Proceedings of the 2024 Conference

on Empirical Methods in Natural Language Processing,
pp. 1107-1128, 2024a.

Dong, Y., Jiang, X., Liu, H,, Jin, Z., Gu, B., Yang, M., and
Li, G. Generalization or memorization: Data contamina-
tion and trustworthy evaluation for large language models.
arXiv preprint arXiv:2402.15938, 2024b.

Duan, S., Khona, M., Iyer, A., Schaeffer, R., and Fiete, I. R.
Uncovering latent memories: Assessing data leakage and
memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Gan, R., Wu, Z., Sun, R., Lu, J., Wu, X., Zhang, D.,
Pan, K., Yang, P., Yang, Q., Zhang, J., et al. Ziya2:
Data-centric learning is all llms need. arXiv preprint
arXiv:2311.03301, 2023.

Gao, M., Ruan, J., Sun, R., Yin, X., Yang, S., and Wan,
X. Human-like summarization evaluation with chatgpt.
arXiv preprint arXiv:2304.02554, 2023.

Golchin, S. and Surdeanu, M. Time travel in 1lms: Trac-
ing data contamination in large language models. arXiv
preprint arXiv:2308.08493, 2023.

Hayes, J., Shumailov, 1., Porter, W. P., and Pappu, A. Mea-
suring memorization in rlhf for code completion. In The
Thirteenth International Conference on Learning Repre-
sentations.

Hu, S., Luo, Y., Wang, H., Cheng, X., Liu, Z., and Sun, M.
Won’t get fooled again: Answering questions with false
premises. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 5626-5643, 2023.


https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Huang, Y., Shi, J., Li, Y., Fan, C., Wu, S., Zhang, Q., Liu, Y.,
Zhou, P, Wan, Y., Gong, N. Z., et al. Metatool benchmark
for large language models: Deciding whether to use tools
and which to use. arXiv preprint arXiv:2310.03128, 2023.

Huang, Y., Sun, L., Wang, H., Wu, S., Zhang, Q., Li, Y.,
Gao, C., Huang, Y., Lyu, W., Zhang, Y., et al. Posi-
tion: Trustllm: Trustworthiness in large language models.

In International Conference on Machine Learning, pp.
20166-20270. PMLR, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. 1., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, B., Li, D., Tan, Z., Zhou, X., Rao, A., Lerman, K.,
Bernard, H. R., and Liu, H. Assessing the impact of
conspiracy theories using large language models. arXiv
preprint arXiv:2412.07019, 2024a.

Jiang, M., Liu, K. Z., Zhong, M., Schaeffer, R., Ouyang,
S., Han, J., and Koyejo, S. Investigating data contami-
nation for pre-training language models. arXiv preprint
arXiv:2401.06059, 2024b.

Kim, S., Shin, J., Cho, Y., Jang, J., Longpre, S., Lee, H., Yun,
S., Shin, S., Kim, S., Thorne, J., et al. Prometheus: Induc-
ing fine-grained evaluation capability in language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, ],
Welleck, S., Neubig, G., Lee, M., Lee, K., and Seo, M.
Prometheus 2: An open source language model special-

ized in evaluating other language models. arXiv preprint
arXiv:2405.01535, 2024.

Koo, R., Lee, M., Raheja, V., Park, J. 1., Kim, Z. M.,
and Kang, D. Benchmarking cognitive biases in

large language models as evaluators. arXiv preprint
arXiv:2309.17012, 2023.

Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M., and
Kang, D. Benchmarking cognitive biases in large lan-
guage models as evaluators. In ACL (Findings), 2024.

Kopf, A., Kilcher, Y., von Riitte, D., Anagnostidis, S.,
Tam, Z. R., Stevens, K., Barhoum, A., Nguyen, D., Stan-
ley, O., Nagyfi, R., et al. Openassistant conversations-
democratizing large language model alignment. Advances
in Neural Information Processing Systems, 36, 2024.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J.,
Lu, K. R., Bishop, C., Hall, E., Carbune, V., Rastogi,
A., et al. Rlaif vs. rlhf: Scaling reinforcement learning
from human feedback with ai feedback. In Forty-first
International Conference on Machine Learning, 2024.

Lee, S.,Zhou, J., Ao, C.,Li, K., Du, X., He, S., Liu, J., Yang,
M., Wen, Z., and Ni, S. Distillation quantification for

large language models. arXiv preprint arXiv:2501.12619,
2025.

Li, C. and Flanigan, J. Task contamination: Language mod-
els may not be few-shot anymore. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp- 18471-18480, 2024.

Li, D., Jiang, B., Huang, L., Beigi, A., Zhao, C., Tan, Z.,
Bhattacharjee, A., Jiang, Y., Chen, C., Wu, T,, et al. From
generation to judgment: Opportunities and challenges of
llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024a.

Li, D., Tan, Z., Chen, T., and Liu, H. Contextualization dis-
tillation from large language model for knowledge graph
completion. arXiv preprint arXiv:2402.01729, 2024b.

Li, D., Yang, S., Tan, Z., Baik, J. Y., Yun, S., Lee, J.,
Chacko, A., Hou, B., Duong-Tran, D., Ding, Y., et al.
Dalk: Dynamic co-augmentation of llms and kg to an-
swer alzheimer’s disease questions with scientific litera-
ture. arXiv preprint arXiv:2405.04819, 2024c.

Li, D., Tan, Z., and Liu, H. Exploring large language models
for feature selection: A data-centric perspective. ACM
SIGKDD Explorations Newsletter, 26(2):44-53, 2025.

Li, M., Chen, L., Chen, J., He, S., Gu, J., and Zhou, T. Selec-
tive reflection-tuning: Student-selected data recycling for
Ilm instruction-tuning. arXiv preprint arXiv:2402.10110,
2024d.

Li, T., Chiang, W.-L., Frick, E., Dunlap, L., Wu, T., Zhu, B.,
Gonzalez, J. E., and Stoica, I. From crowdsourced data to
high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024e.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacaeval:
An automatic evaluator of instruction-following models,
2023.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74-81, 2004.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. In Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3214—
3252, 2022.



Preference Leakage: A Contamination Problem in LLM-as-a-judge

Liu, C.-W., Lowe, R., Serban, 1., Noseworthy, M., Charlin,
L., and Pineau, J. How NOT to evaluate your dialogue sys-
tem: An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Su, J., Duh, K.,
and Carreras, X. (eds.), Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pp. 2122-2132, Austin, Texas, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1230.
URL https://aclanthology.org/D16-1230.

Liu, W,, Zeng, W., He, K., Jiang, Y., and He, J. What makes
good data for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. In The Twelfth

International Conference on Learning Representations,
2024a.

Liu, X., Lei, X., Wang, S., Huang, Y., Feng, Z., Wen, B.,
Cheng, J., Ke, P, Xu, Y., Tam, W. L., et al. Alignbench:
Benchmarking chinese alignment of large language mod-
els. arXiv preprint arXiv:2311.18743, 2023a.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y.,
Ding, H., Men, K., Yang, K., et al. Agentbench: Evalu-
ating llms as agents. arXiv preprint arXiv:2308.03688,
2023b.

Liu, Y., Moosavi, N. S., and Lin, C. Llms as narcissistic
evaluators: When ego inflates evaluation scores. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pp. 12688-12701, 2024b.

Ni, J., Xue, F, Yue, X., Deng, Y., Shah, M., Jain, K., Neu-
big, G., and You, Y. Mixeval: Deriving wisdom of the
crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565, 2024.

Panickssery, A., Bowman, S. R., and Feng, S. Llm evalu-
ators recognize and favor their own generations. arXiv
preprint arXiv:2404.13076, 2024.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311-318,
2002.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,
2024.

Rando, J., Zhang, J., Carlini, N., and Tramer, F. Adversarial
ml problems are getting harder to solve and to evaluate.
arXiv preprint arXiv:2502.02260, 2025.

Reiter, E. A structured review of the validity of BLEU.
Computational Linguistics, 44(3):393-401, 2018. doi: 10.
1162/coli_a_00322. URL https://aclanthology.
org/J18-3002.

Shi, J., Yuan, Z., Liu, Y., Huang, Y., Zhou, P, Sun,
L., and Gong, N. Z. Optimization-based prompt in-
jection attack to llm-as-a-judge. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, CCS ’24, pp. 660-674,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400706363. doi: 10.1145/
3658644.3690291. URL https://doi.org/10.
1145/3658644.3690291.

Sun, R., Liu, M., Yang, S., Wang, R., He, J., and Zhang, J.
Fostering natural conversation in large language models
with nico: a natural interactive conversation dataset. arXiv
preprint arXiv:2408.09330, 2024a.

Sun, T., Zhang, X., He, Z., Li, P,, Cheng, Q., Liu, X,
Yan, H., Shao, Y., Tang, Q., Zhang, S., Zhao, X., Chen,
K., Zheng, Y., Zhou, Z., Li, R., Zhan, J., Zhou, Y.,
Li, L., Yang, X., Wu, L., Yin, Z., Huang, X., Jiang,
Y.-G., and Qiu, X. Moss: An open conversational
large language model. Machine Intelligence Research,
2024b. ISSN 2731-5398. URL https://github.
com/OpenMOSS/MOSS.

Tan, Z., Li, D., Wang, S., Beigi, A., Jiang, B., Bhattacharjee,
A., Karami, M., Li, J., Cheng, L., and Liu, H. Large
language models for data annotation and synthesis: A sur-
vey. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 930-957,
2024.

Team, G., Georgiev, P., Lei, V. I, Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Thakur, A. S., Choudhary, K., Ramayapally, V. S.,
Vaidyanathan, S., and Hupkes, D. Judging the judges:
Evaluating alignment and vulnerabilities in llms-as-
judges. arXiv preprint arXiv:2406.12624, 2024.

Wadhwa, S., Shaib, C., Amir, S., and Wallace, B. C. Who
taught you that? tracing teachers in model distillation.
arXiv preprint arXiv:2502.06659, 2025.

Wang, S., Tong, Y., Zhang, H., Li, D., Zhang, X., and Chen,
T. Bpo: Towards balanced preference optimization be-
tween knowledge breadth and depth in alignment. arXiv
preprint arXiv:2411.10914, 2024.


https://aclanthology.org/D16-1230
https://aclanthology.org/J18-3002
https://aclanthology.org/J18-3002
https://doi.org/10.1145/3658644.3690291
https://doi.org/10.1145/3658644.3690291
https://github.com/OpenMOSS/MOSS
https://github.com/OpenMOSS/MOSS

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Wataoka, K., Takahashi, T., and Ri, R. Self-preference
bias in llm-as-a-judge. arXiv preprint arXiv:2410.21819,
2024.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Wu, S., Huang, Y., Gao, C., Chen, D., Zhang, Q., Wan, Y.,
Zhou, T., Zhang, X., Gao, J., Xiao, C., et al. Unigen: A
unified framework for textual dataset generation using
large language models. arXiv preprint arXiv:2406.18966,
2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Xu, C., Guan, S., Greene, D., Kechadi, M., et al. Benchmark
data contamination of large language models: A survey.
arXiv preprint arXiv:2406.04244, 2024a.

Xu, W., Zhu, G., Zhao, X., Pan, L., Li, L., and Wang,
W. Pride and prejudice: Llm amplifies self-bias in self-
refinement. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15474—15492, 2024b.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C, Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, S., Sun, R., and Wan, X. A new dataset and empirical
study for sentence simplification in chinese. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
8306-8321, 2023.

Yao, F., Zhuang, Y., Sun, Z., Xu, S., Kumar, A., and Shang,
J. Data contamination can cross language barriers. arXiv
preprint arXiv:2406.13236, 2024.

Ye, J., Wang, Y., Huang, Y., Chen, D., Zhang, Q., Moniz, N.,
Gao, T., Geyer, W., Huang, C., Chen, P.-Y,, et al. Justice
or prejudice? quantifying biases in llm-as-a-judge. arXiv
preprint arXiv:2410.02736, 2024.

Zhang, H., Wu, Y., Li, D., Yang, Z., Zhao, R., Jiang, Y., and
Tan, F. Balancing speciality and versatility: a coarse to
fine framework for supervised fine-tuning large language
model. arXiv preprint arXiv:2404.10306, 2024a.

Zhang, Q., Gao, C., Chen, D., Huang, Y., Huang, Y.,
Sun, Z., Zhang, S., Li, W., Fu, Z., Wan, Y., and Sun,
L. LLM-as-a-coauthor: Can mixed human-written and
machine-generated text be detected? In Duh, K., Gomez,

H., and Bethard, S. (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 409—
436, Mexico City, Mexico, June 2024b. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.29. URL https://aclanthology.
org/2024.findings—-naacl.29/.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert. In
International Conference on Learning Representations,
2020.

Zhang, X., Peng, B., Tian, Y., Zhou, J., Jin, L., Song,
L., Mi, H., and Meng, H. Self-alignment for fac-
tuality: Mitigating hallucinations in LLMs via self-
evaluation. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1946—1965, Bangkok, Thailand,
August 2024c. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.107. URL https:
//aclanthology.org/2024.acl-long.107/.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
Ilm-as-a-judge with mt-bench and chatbot arena. Ad-

vances in Neural Information Processing Systems, 36:
46595-46623, 2023.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng, Z.,
and Ma, Y. Llamafactory: Unified efficient fine-tuning of
100+ language models. arXiv preprint arXiv:2403.13372,
2024.

Zhong, M., Liu, Y., Yin, D., Mao, Y., Jiao, Y., Liu, P,
Zhu, C., Ji, H., and Han, J. Towards a unified multi-
dimensional evaluator for text generation. In Gold-
berg, Y., Kozareva, Z., and Zhang, Y. (eds.), Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pp- 2023-2038. Association for Computational Linguis-
tics, 2022. doi: 10.18653/V1/2022. EMNLP-MAIN.
131. URL https://doi.org/10.18653/v1/
2022 .emnlp-main.131.

Zhong, M., Zhang, A., Wang, X., Hou, R., Xiong, W., Zhu,
C., Chen, Z., Tan, L., Bi, C., Lewis, M., et al. Law of the
weakest link: Cross capabilities of large language models.
arXiv preprint arXiv:2409.19951, 2024.

Zhou, C., Liu, P,, Xu, P, Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P, Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.


https://aclanthology.org/2024.findings-naacl.29/
https://aclanthology.org/2024.findings-naacl.29/
https://aclanthology.org/2024.acl-long.107/
https://aclanthology.org/2024.acl-long.107/
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131

Preference Leakage: A Contamination Problem in LLM-as-a-judge

Zhuge, M., Zhao, C., Ashley, D., Wang, W., Khizbullin, D.,
Xiong, Y., Liu, Z., Chang, E., Krishnamoorthi, R., Tian,
Y., et al. Agent-as-a-judge: Evaluate agents with agents.
arXiv preprint arXiv:2410.10934, 2024.

11



Preference Leakage: A Contamination Problem in LLM-as-a-judge

A. Preliminary Study of Preference Leakage in Real World

In our preliminary study, we investigate whether preference leakage is a real-world issue in mainstream leaderboards and
benchmarks. To this end, we examine two widely used LLM-as-a-judge leaderboards (AlpacaEval 2.0 and Arena-Hard) and
a well-known benchmark (MTBench). All three rely on GPT-4 as the judge model and report pairwise judgment results for
various LLMs. Our analysis reveals that several candidate models distilled from GPT-4 or other GPT-series models (e.g.,
Vicuna and Alpaca) appear across all these leaderboards and benchmarks, suggesting that preference leakage is a pervasive
issue in these datasets. Besides, we also examine if preference leakage exists in LLM-relevant research studies and also find
a bunch of work utilizing the same or related model(s) to do distillation/ data synthesis and evaluation (Yang et al., 2023;
Liu et al., 2024a; Lee et al., 2024; Li et al., 2024d; Wang et al., 2024; Sun et al., 2024a). All of these suggest preference
leakage to be a widespread problem in both LLM-as-a-judge datasets and LLM-relevant research.

B. Experiment Details
B.1. Training Details

We use LLaMA-Factory (Zheng et al., 2024), an efficient LLM tuning library for our experiment. The maximum sequence
length is set to 1024 tokens, and a cutoff length of 1024 tokens is enforced to prevent excessive tokenization. The data
preprocessing will be done in parallel with 16 workers to speed up the preparation process. The training use a per-device
batch size of 2, with gradient accumulation over 2 steps to simulate a larger batch size for SFT and a per-device batch size of
1, with gradient accumulation over 4 steps to simulate a larger batch size for DPO. The learning rate is set to 1.0e-5 and each
model will be trained for 3 epochs. A cosine learning rate scheduler is used with a warmup ratio of 0.1 to gradually increase
the learning rate during the initial steps. All of the experiments use BF16 precision to speed up training while maintaining
numerical stability. All the experiments are conducted in an 8 Nvidia A100 GPU cluster with CUDA version 11.8.

Mistral-GPT-40 vs Mistral-Gemini-1.5

Judge Model

Mistral-GPT-40 Wins =~ Mistral-Gemini-1.5 Wins
GPT-40 55.1% 44.9%
Gemini-1.5 36.8% 63.2%
Preference Leakage Score 18.4%

Table 4. A case on AlpacaEval 2.0 with the model pair Mistral-GPT-40 vs Mistral-Gemini-1.5 to demonstrate how the preference leakage
score is calculated.

B.2. Detailed Explanation for Preference Leakage Score

We present a case in Table 4 to show how we calculate the preference leakage score for the Mistral-GPT-40 vs Mistral-
Gemini-1.5 pair on AlpacaEval 2.0. Based on the definition of preference leakage score, we first calculate:

95.1 4+ 36.8
AVG(Mistral-GPT-40, Mistral-Gemini-1.5) = + = 45.95% @)
63.2 4+ 44.9
AVG(Mistral-Gemini-1.5, Mistral-GPT-40) = + = 54.05% ®)
After that, we calculate the preference leakage score:
(55.1745.95) + (63.2754.05)
PLS(Mistral-GPT-40, Mistral-Gemini-1.5) = ~—45:9 5 2405 2 = 18.4% Q)

B.3. Manual Annotation Details & Results

While we have concluded that student model pairs with similar performance or more powerful student models tend to exhibit
greater preference leakage, we also examine whether different data generator and judge LLMs contribute to varying degrees
of preference leakage. We randomly sample 100 questions from AlpacaEval 2.0 and ask three well-trained annotators to

12



Preference Leakage: A Contamination Problem in LLM-as-a-judge

conduct pairwise comparisons of the responses from each model pair for these questions. For annotation efficiency, we also
develop an annotation tool that involves the function of uploading multiple model responses, jumping to specific problems,
and downloading annotation results (Figure 7). After annotation, we adopt the majority voting to get the final label for each

response pair. We also calculate the average agreement of three annotators and find it to be 78.6, indicating a relatively
consistent annotation result.

Analyzing the manual annotation results presented in Figure 3, we observe that Gemini-1.5 shows a strong bias toward its
students, followed by GPT-40, with LLaMA-3.3 displaying the least bias. This variation in preference leakage may stem
from differences in the level of leaked preference in the synthetic responses generated by the data generator LLMs. For
instance, an LLM with a distinctive style or format in its responses offers more opportunities for student models to learn
these characteristics, potentially leading to more pronounced preference leakage during evaluation. Future work could
further quantify the extent of leaked preference for each data generator model.

Mistral-GPT4o0 vs Mistral-Gemini-1.5 Mistral-GPT4o0 vs Mistral-LLaMA-3.3 Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5
3
=
]
2
00%  200% 40.0%  60.0% 80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0% 100.0%
B Model A Wins Model B Wins
Figure 3. Manual annotation result on 100 randomly selected samples from AlpacaEval 2.0.
Mistral-GPT4o vs Mistral-Gemini-1.5 Mistral-GPT4o0 vs Mistral-LLaMA-3.3 Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5
Gemini-1.5 {REPA 39.8% 42.0% 46.2% 42.7% 11.1% 59.4%
) h . ) . . ! h ) ) . . ! h ) . ) . !
s 0.0% 20.0%  40.0%  60.0%  80.0% 100.0% 0.0% 20.0%  40.0%  60.0%  80.0%  100.0% 0.0% 20.0%  40.0%  60.0%  80.0%  100.0%
= (a). Mistral-7B
]
_g’ Qwen-GPT40 vs Qwen-Gemini-1.5 Qwen-GPT40 vs Qwen-LLaMA-3.3 Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5
F]
Gemini-1.5 T 33.5% 44.5% 52.1% 40.7% 7.2% F10.0%  29.4% 60.6%

0.0%  200% 40.0%  60.0%  80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0%  100.0%
(b). Qwen-2.5-14B
B Model A Wins . Tie Model B Wins

Figure 4. Judgment results with GPT-40, LLaMA-3.3 and Gemini-1.5 on Arena-Hard.

B.4. Real-world Impact Analysis

Bias Type Evaluator Target Models Ranking Difference
Egocentric Bias GPT.4 Preview . GPT-4 Preview 1.00
Preference Leakage Vicuna 7B/ 13B/ 33B 1.33

Table 5. Impact analysis of preference leakage in real-world LLM-as-a-Judge leaderboards. For each bias type, we assess its impact by
calculating the ranking difference of the corresponding model in Chatbot Arena and AlpacaEval 2.0, obtained by subtracting the ranking
in AlpacaEval 2.0 from that in Chatbot Arena. A larger positive ranking difference indicates AlpacaEval 2.0 ranks the target models in
higher positions, denoting a greater impact of the corresponding bias.

In this section, we investigate the impact of preference leakage in real-world LLM-as-a-Judge leaderboards. We take
AlpacaEval 2.0 as a case study and compare preference leakage with egocentric bias. To quantify the effect of each bias

13



Preference Leakage: A Contamination Problem in LLM-as-a-judge

Mistral-GPT4o vs Mistral-Gemini-1.5 Mistral-GPT4o vs Mistral-LLaMA-3.3 Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

GPT-40 55.1% 44.9% 61.6% 38.4% 43.1% 56.9%

LLaMA-3.3 49.5% 50.5% 60.3% 39.7% 39.5% 60.5%

Gemini-1.5 36.8% 63.2% 65.8% 34.2% 22.6% 77.4%

] . ; . . . \ . ; ; ; . \ . ; . . . \

'g 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
= (a). Mistral-7B

L]

g’ Qwen-GPT40 vs Qwen-Gemini-1.5 Qwen-GPT40 vs Qwen-LLaMA-3.3 Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5

3

=

GPT-40 57.8% 42.2% 61.5% 38.5% 50.1% 49.9%

LLaMA-3.3 52.4% 47.6% 59.3% 40.7% 42.9% 57.1%

w
©
o
W
N
o

Gemini-1.5 .3% 60.7% 3% 36.7% 2% 73.8%

0.0%  20.0%  40.0%  60.0%  80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0% 100.0% 0.0%  20.0% 40.0%  60.0%  80.0%  100.0%
(b). Qwen-2.5-14B

B Model A Wins Model B Wins

Figure 5. Judgment results with GPT-40, LLaMA-3.3 and Gemini-1.5 on AlpacaEval 2.0. Different from Arena-Hard, there is no tie in
AlpacaEval 2.0.

A
Task  Model ceuracy

Pointwise Pairwise
GPT-40 41.0% 52.0%
SR Gemini-1.5 53.2% 44.2%
LLaMA-3.3 41.8% 29.8%
RC BERT 82.4%

Table 6. Student recognition (binary classification) and response classification results (three-class classification). SR: Student Recognition,
RC: Response Classification.

type, we calculate the ranking difference of each target model in Chatbot Arena and AlpacaEval 2.0.

As shown in Table 5, both egocentric bias and preference leakage result in a positive ranking difference, indicating that both
lead to evaluator bias favoring the target models. Notably, the ranking difference associated with preference leakage is even
higher than that of egocentric bias, highlighting the substantial impact of preference leakage on real-world LLM-as-a-Judge
leaderboards.

B.5. Can Judges Recognize Student Models?

Previous studies demonstrate the LLM judges can recognize and thus prefer their own generation (Panickssery et al., 2024).
In this work, we pose a similar question: Does preference leakage also source from the LLM judges’ recognition of their
related student models’ generation? To study this, we follow Panickssery et al. (2024) to prompt the three judge LLMs
and test whether they could recognize their related student models’ generation. Additionally, we split three student models’
generation into training and testing sets, and train a BERT classifier to perform a three-class classification inspired by the
previous study on detecting human-Al text (Zhang et al., 2024b). For student recognition, we follow Panickssery et al.
(2024) to use both pointwise and pairwise settings. Due to the space limitation, more detailed prompting and training
settings can be found in Appendix E.

Judge LLLMs do not show good performance in recognizing the generation of their student models. As the result
presented in Table 6, we find that the recognition performance of each judge LLM in the content of related students is poor,
with accuracy around the performance of random guess. This suggests that preference leakage is subtler and harder-to-detect
for judge LLMs, in contrast to the more obvious egocentric bias.

Certain features embedded in student models through synthetic data. Although judge LLMs do not perform well in
related student recognition, we notice the fine-tuned BERT classification demonstrates a high accuracy score in classifier
responses generated by each student model. This suggests that certain characteristics—such as style and format—are
embedded in the student models through the synthetic responses. This finding further supports the existence of preference
leakage and lays the groundwork for future research aimed at detecting and preventing it.

14



Preference Leakage: A Contamination Problem in LLM-as-a-judge

B.6. Impact on Question Type & Judgment Dimension

S 314 S 32.4

;30 332

s 30.7

S 238 8 30.2 304

%] : n 29.0 29.2

[J) 21.0 ) 28.6 28.8 .

820 Oogl 279

% 16.5 17.2 17.3 %

] ]

- -

] ]

210 77 §24

S .

o o

(9] (9]

= y=SinX % o . Cm— ‘S - Ly PN i, 2

: B A-= -1t =

e B & 2 QE &, @ MR & & & 60 527

5 . % Q> O . 3

<& & & '&9 L O & & S RO & \4\@. (\é,
Q2 & & \ N S N NG & C S O & xS R
& \)5\ ’\\* (,’(} $‘ 0" < Q’,\'z C \é\ . r,‘)\'b & \/0 S ° Q’b\

& % &P & & @ )

N4 L )

(a) Question Type (b) Judgment dimension

Figure 6. Category analysis results on question type and judgment dimension.

In this section, we explore the impact of preference leakage across various question types and judgment dimensions. For
the question type analysis, we first propose several general question types based on the question clusters introduced by
Arena-Hard. Then, we prompt GPT-40 to map each question in Arena-Hard and AlpacaEval to one of the question types
and calculate the preference leakage score for each question category. For the judgment dimension analysis, we follow the
judgment dimensions introduced by Liu et al. (2023a) and also utilize GPT-40 to map the rationale generated by judge

LLM:s to one or multiple judgment dimensions. More detailed prompt can be found in Appendix F. The analysis results are
presented in Figure 6.

Subjective question and judgment dimension tend to lead to more bias. For question type analysis, we find objective
questions with a definitive answer, like mathematical ones, demonstrate the least preference leakage. By contrast, subjective
questions that have more than one standard answer, such as programming and writing, usually lead to a more obvious
preference leakage. This observation is also applied to judgment dimension analysis, as objective dimensions (like
completeness) have an overall lower leakage degree compared with subjective ones (like fairness). This suggests that

preference leakage tends to be more significant in objective questions and dimensions, where the contaminated model is
more likely to receive biased preference.

C. Learning Method Analysis Details

The table below presents the prompt we use to generate synthetic pairwise feedback from each model.

Pairwise Feedback Prompt

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. Your evaluation should
consider correctness and helpfulness. You will be given assistant A’s answer,

and assistant B’s answer. Your job is to evaluate which assistant’s answer is
better. You should independently solve the user question step-by-step first.

Then compare both assistants’ answers with your answer. Identify and correct

any mistakes. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. After providing your explanation, output
your final verdict by strictly following this format: "[[A]]" if assistant A is
better, "[[B]]" if assistant B is better.

## Instruction:
[The Start of Assistant A’s Answer]

[RESPONSE A]
[The End of Assistant A’s Answer]

15



Preference Leakage: A Contamination Problem in LLM-as-a-judge

[The Start of Assistant B’s Answer]
[RESPONSE B]
[The End of Assistant B’s Answer]

Please output the generated content in a json format, for example: { "reason": //
string, reasons behind the chosen preferred answer "prefered answer": // string,
the prefered answer you selected, [[A]] or [[B]] }

Formatted the abovementioned schema and produce the reason and preferred answer:

D. Real-world Impact Analysis Details

In the real-world impact analysis section, we use the models that appear in both Chatbot Arena and AlpacaEval 2.0
leaderboard, including: GPT-40-2024-05-13, GPT-40-mini-2024-07-18, Meta-Llama-3.1-405B-Instruct-bf16, GPT-4-Turbo-
2024-04-09, GPT-4-1106-preview, Meta-Llama-3.1-70B-Instruct, Claude 3 Opus, Llama-3-70B-Instruct, Claude 3 Sonnet,
Qwen2-72B-Instruct, GPT-4-0314, Meta-Llama-3.1-8B-Instruct, GPT-4-0613, Mistral-Large-2402, Llama-3-8B-Instruct,
Command R (04-2024), Mistral Medium, Mixtral-8x22b-Instruct-v0.1, Qwen1.5-72B-Chat, Gemini Pro, Yi-34B-Chat,
Mixtral-8x7B-Instruct-v0.1, Qwen1.5-14B-Chat, GPT-3.5-Turbo-0125, DBRX-Instruct-Preview, Tulu-2-DPO-70B, Llama-
2-70B-chat, Vicuna-33B, Gemma-1.1-7B-it, OpenHermes-2.5-Mistral-7B, Mistral-7B-Instruct-v0.2, Qwen1.5-7B-Chat,
GPT-3.5-Turbo-1106, Llama-2-13b-chat, WizardLM-13b-v1.2, Vicuna-13B, Llama-2-7B-chat, Guanaco-33B, Vicuna-7B,
Gemma-2B-it, OpenAssistant-Pythia-12B.

E. Recogniton Analysis Details

The table below presents the pointwise and pairwise prompts we use for the recognition analysis.

Recognition Prompt

Given an instruction and a response, your task is to judge whether this response
is generated by a model that is trained on a synthetic dataset you produced (your
student model) .

## Instruction: [INSTRUCTION]

## Response: [Response]

Please output the generated content in a json format, for example: "reason": //
string, reasons behind the judgment "Jjudgment": // string, whether the answer is

generated by your student model, choose from yes or no

Formatted the abovementioned schema and produce the reason and judgment:

Pairwise Recognition Prompt

Given an instruction and two responses, your task is to judge which response is
generated by a model that is trained on a synthetic dataset you produced (your
student model) .

## Instruction: [INSTRUCTION]

## Responsel: [Response 1]

## Response2: [Response 2]

Please output the generated content in a json format, for example: "reason": //
string, reasons behind the judgment "judgment": // int, 1 or 2, means responsel or

16



Preference Leakage: A Contamination Problem in LLM-as-a-judge

response2 1is from your student model

Formatted the abovementioned schema and produce the reason and judgment:

For response classification, we split all the response from three student models into training (80%) and testing (20%) subsets.
Then, we finetune a BERT-base-uncased model in the training set. The model is trained for 3 epochs with a learning rate of
2e-5, a batch size of 16 for both training and evaluation, and a weight decay of 0.01, with evaluations conducted at the end
of each epoch.

F. Category Analysis Details

The tables below present the prompt we use for question type and judgment dimension cateogory analysis.

Question Type Categorization Prompt

Given a question, please categorize it to one of the following categories:

Computer Science & Programming
Mathematics & Statistics
Science & Engineering

Business & Finance

Writing & Communication

Social & Daily Life

Others

~N oUW

## Question: [QUESTION]

Please output the generated content in a json format, for example: { "question
category": // string, specific category name, such as "Computer Science &
Programming" }

Formatted the abovementioned schema and categorize the given question:

Judgment Dimension Categorization Prompt

| r
\

Given a pairwise comparison judgment made by an AI, please categorize each
considered aspect in the rationale to one of the following categories:

{

"Factuality": "Whether the information provided in the response is accurate, based
on reliable facts and data.",

"User Satisfaction": "Whether the response meets the user’s question and needs, and
provides a comprehensive and appropriate answer to the question.",

"Logical Coherence": "Whether the response maintains overall consistency and
logical coherence between different sections, avoiding self-contradiction.",

"Richness": "Whether the response includes rich info, depth, context, diversity,
detailed explanations and examples to meet user needs and provide a comprehensive
understanding.",

"Creativity": "Whether the response is innovative or unique, providing novel
insights or solutions.",

"Fairness and Responsibility": "Whether the advice or information provided in the
response is feasible, carries acertain degree of responsibility, and considers
potential risks and consequences.",

"Completeness": "Whether the response provides sufficient information and details
to meet the user’s needs, and whether it avoids omitting important aspects.",

17



Preference Leakage: A Contamination Problem in LLM-as-a-judge

"Clarity": "Whether the response is clear and understandable, and whether it uses
concise language and structure so that the user can easily understand it.",

"Others":

}

## Judgment:

"Other aspects which is not listed above."

[JUDGMENT]

Please output the generated content in a json format,
// list, all aspects that belong to this category,
"mistakes"] ... }

for example:
such as

{ "Factuality":
["correctness",

Formatted the abovementioned schema and categorize aspects in the judgment:

Annotator Tool
Model Response Upload [&&f| 3 1xzes
Annotation Result Upload [ | wisszs

‘Select models to compare: [1oGiA o v od3C on v]
Instruction:

Create a short, concise summary of the paper based on its abstract. Few-shot learning (FSL) is one of the key future steps in machine learning and raises a lot of attention. In this paper, we focus on the FSL problem of dialogue understanding, which contains
two closely related tasks: intent detection and slot filling. Dialogue understanding has been proven to benefit a lot from jointly learning the two sub-tasks. However, such joint learning becomes challenging in the few-shot scenarios: on the one hand, the sparsity
of samples greatly magnifies the difficulty of modeling the connection between the two tasks; on the other hand, how to jointly learn multiple tasks in the few-shot setting is still less investigated. In response to this, we introduce FewJoint, the first FSL

for joint dialogue 1g. FewdJoint provides a new corpus with 59 different dialogue domains from real industrial APl and a code platform to ease FSL experiment set-up, which are expected to advance the research of this field. Further, we
find that insufficient performance of the few-shot setting often leads to noisy sharing between two sub-task and disturbs joint learning. To tackle this, we guide slot with explicit intent information and propose a novel trust gating mechanism that blocks low-

confidence intent information to ensure high quality sharing. Besides, we introduce a Reptile-based meta-learning strategy to achieve better generalization in unseen few-shot domains. In the experiments, the proposed method brings significant improvements
on two datasets and achieve new state-of-the-art performance.

Response A: Response B:

This paper introduces FewJoint, a new FSL benchmark for joint dialogue the of joint
learning in few-shot scenarios. The benchmark provides a new dataset and a platform for easy experiment setup. The authors
that in the few-shot setting often stems from noisy slot filling, and introduce a trust gating

The paper introduces FewJoint, a benchmark for few-shot learning (FSL) in dialogue understanding, which consists of 59
dialogue domains from real industrial APIs. The authors propose a novel approach, FewJoint, which provides a corpus for FSL.
experiments and a code platform to set up FSL experiments. They also introduce a trust gating mechanism to block low-

mechanism to improve the quality of intent information sharing. Finally, they a novel Reptile-based meta-I g
strategy that improves generalization to unseen domains. The paper by highli the si
benchmark and its contributions to the field.

of the new

intent i and a Reptile-based meta-| ing strategy to achieve better generalization in unseen few-shot
domains. The results show that FewJoint achieves significant i its on two datasets, existing methods
and achieving new state-of-the-art performance.

[eton] [mer]
[

sample: 1/100

Sample 1 Not Annotated

Dounioad Exsing Amnotaton Resuts

D0 oD o000 0D00 0000000000000 00000000000000OD0D 0O e
000000000000 00000 000000000 00000000000 000000000G0Oam

Figure 7. The annotation tool we develop for annotation efficiency.

18



