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ABSTRACT

Zero-shot anomaly detection has emerged to overcome the limitations of con-
ventional methods, which depend on learning the distribution of normal data and
struggle to generalize to unseen class. However, existing zero-shot methods rely
on anomalous data during training and fail to account for environments where
anomalous data are scarce or nonexistent. To address these limitations, we propose
a novel unsupervised zero-shot anomaly detection framework, self-improvement
anomaly detection with large language model that requires no anomalous data
during training. It leverages self-improvement large language model-based ar-
chitecture that refines textual responses grounded in input images. To support
semantic interpretation, we design stage prompts that guide the large language
model using visual features spanning from local patterns to global semantics. Our
approach not only produces interpretable anomaly maps but also enhances seman-
tic understanding of normality, offering a new direction for zero-shot anomaly de-
tection under realistic anomaly-free constraints. Extensive experiments on nine
real-world datasets from both industrial and medical domains demonstrate the ef-
fectiveness of our approach. Our self-improvement anomaly detection with large
language model outperforms state-of-the-art methods across various unsupervised
zero-shot anomaly detection benchmarks, validating its robustness and generaliz-
ability across diverse datasets.

1 INTRODUCTION

Visual anomaly detection is an important task aimed at identifying abnormal or unexpected patterns
in various fields such as defect inspection in manufacturing processes (Roth et al., 2022; Hyun et al.,
2024; Rudolph et al., 2023; Li et al., 2023a) or the medical imaging diagnosis (Huang et al., 2024;
Hua et al., 2024). Traditional approaches have primarily relied on Unsupervised Anomaly Detection
(UAD) methods (You et al., 2022; Lu et al., 2023a; Guo et al., 2023), which learn the distribution of
normal data and detect deviations from this learned distribution. However, the fundamental limita-
tion of these methods is that they depend exclusively on the distribution of observed normal classes
during training, resulting in the limited sensitivity to previously unseen normal variations. To ad-
dress this limitation, recent advances (Zhou et al., 2023; Cao et al., 2024) in Zero-shot Anomaly
Detection (ZAD) have emerged. As illustrated in Fig. 1, ZAD aims to detect anomalies in unseen
data by learning both normality and abnormality, often leveraging multimodal representations or
large-scale pretrained models. Despite these advances, existing ZAD methods still rely on anoma-
lous data during the training process, which limits their applicability in real-world scenarios where
no anomalous samples are available. In this context, training-free ZAD represents a specific subclass
that removes the need for explicit training on target data. However, although such training-free ap-
proaches bypass the training phase, their heavy reliance on large-scale web-pretrained models often
causes domain mismatch, making it difficult to capture rare, domain-specific anomaly patterns such
as industrial defects or subtle medical imaging abnormalities.

To overcome the limitations of both frameworks, we propose a novel Unsupervised Zero-shot
Anomaly Detection (UZAD), which operates robustly on unseen data without requiring any anoma-
lous samples. As illustrated in Fig. 1, UZAD assumes an anomaly-free training environment in
which only normal samples are used during training, while the model is evaluated on both normal
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Figure 1: Left: Illustrations for target and auxiliary dataset of unsupervised, zero-shot, and un-
supervised zero-shot anomaly detection paradigms. Right: Quantitative comparison with popular
methods by image-level AUROC on industrial and medical datasets.

and anomalous samples from previously unseen datasets. This setting more accurately reflects real-
world scenarios where anomalous data are scarce or unavailable, and defines a more challenging
tasks than conventional ZAD. Unlike existing ZAD approaches, which aim to learn the boundary
between normality and abnormality, our UZAD aims to generalize abnormality from the concept
of normality. As shown in Figs. 2 (a) and (c), existing ZAD approaches tend to rely on anomalous
data during training, which leads to significant performance degradation under the UZAD setting. In
addition, as shown in Fig. 2 (b), these approaches often fail to accurately localize anomalies. Con-
sidering that UZAD requires learning abnormality without the access to explicitly labeled anomalous
samples, auxiliary mechanisms are needed to help the model learn abnormality indirectly. We em-
pirically observed that augmentation-based approaches (Li et al., 2021; Bae et al., 2018), which treat
normal images as pseudo-anomalies, can be effective under the UZAD setting. However, augmen-
tation is limited in capturing diverse and semantically abnormal patterns. Accordingly, approaches
leveraging Large Language Model (LLM) have gained attention as a promising alternative, offering
rich textual expressiveness and advanced text generation capabilities. Recently, several approaches
have explored leveraging LLM for visual anomaly detection by integrating visual and textual infor-
mation. For instance, (Gu et al., 2024) demonstrated the potential of multimodal anomaly detection
by utilizing an LLM to generate semantic descriptions of input images. However, this approach also
has several limitations. First, they apply a fixed set of predefined text prompt templates uniformly
across all images, which restricts flexible context-aware querying or interpretation. Second, since
the UZAD framework operates under an anomaly-free training environment, aligning an abnormal
prompt with a normal image remains semantically uncertain in relation to actual defects.

To address these limitations, we propose a novel visual anomaly detection framework, Self-
Improvement Anomaly Detection with LLM (SIAD-LLM), which leverages image-grounded tex-
tual question and answering through a LLM. Our framework primarily utilizes textual responses
generated by an LLM given an input image, and embeds the responses into a text encoder to de-
rive semantic textual representations of normality and abnormality. Instead of relying on predefined
text prompt templates, the framework dynamically generates context-aware and informative prompts
through image-grounded question and answering. This allows not only the detection of anomalies
but also enhanced semantic discrimination of normality. The generated textual responses are inte-
grated into the model via the text encoder, refining the internal representations. This process enables
the model to dynamically generate and reuse feedback through the self-improvement mechanism.

Additionally, we observe that the features extracted from each stage of the visual encoder capture
information ranging from local patterns to global semantics. Based on this observation, we design
a novel stage prompt template that integrates stage-wise features into each predefined text prompt.
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Figure 2: (a) Image-level AUROC of zero-shot methods under the ZAD setting. (b) Qualitative re-
sults of zero-shot methods under the UZAD setting. (c) Image-level AUROC for zero-shot methods
under the UZAD setting.

This design enables scale-aware anomaly localization and improves semantic discrimination. As
shown in Fig. 1, this combination of methods enhances both semantic expressiveness and accu-
rate anomaly localization, and demonstrates robust performance under the UZAD setting. Our key
contributions are summarized as follows:

• We present a novel task setting, namely UZAD, to alleviate the challenges of the ZAD
problem. UZAD assumes an anomaly-free training environment and evaluates models on
unseen datasets containing both normal and anomalous samples.

• We propose SIAD-LLM, a self-improvement anomaly detection framework that leverages
image-grounded question and answering with LLM. Instead of relying solely on fixed
prompts, the framework generates context-aware responses to improve the expressiveness
of textual representations, which helps the model to enhance semantic understanding of
normality and abnormality.

• We design a novel stage prompt templates that integrates features extracted from different
stages of the encoder, capturing information ranging from local patterns to global seman-
tics. This design improves the model in terms of scale-aware anomaly localization and
semantic discrimination capabilities.

2 RELATED WORKS

2.1 UNSUPERVISED ANOMALY DETECTION

Unsupervised anomaly detection(UAD) (Deng & Li, 2022; He et al., 2024; Lu et al., 2023b; Roth
et al., 2022; Cao et al., 2022) aims to learn the normal distribution of a target class using only nor-
mal samples, considering real-world scenarios where anomalous samples are scarce or unavailable.
Based on the learned normal distribution, the model captures the characteristics of the target class
and detects outliers that deviate from this representation. However, these approaches often lack ro-
bustness to unseen variations in the normal class distribution, which limits their generalizability in
real-world scenarios.

2.2 ZERO-SHOT ANOMALY DETECTION

It is a task in which target to detect anomaly in datasets not used during training. Accordingly,
it leverages the generalization and zero-shot capability of Vision-Language Model (VLM) such
as CLIP (Radford et al., 2021). While VLM are typically trained on large-scale image-text pair
datasets, they are not specifically designed for anomaly detection tasks. To bridge this gap, prior
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Figure 3: Framework of SIAD-LLM. The model extracts visual features from different stages of the
visual encoder, with adapter modules applied at each stage to finetune intermediate representations.
Stage-wise features are used to compute anomaly maps. The LLM receives both visual information
and prompt queries, then generates responses indicating. These responses are fed back into the
model as context-aware prompts, enabling a self-improvement mechanism.

work falls into two families: (i) training-based approaches that learn notions of normality and abnor-
mality from auxiliary data, and (ii) training-free methods that adjust the inference procedure without
additional training. AnomalyCLIP (Zhou et al., 2023) learns a single pair of state prompts through
object-aware prompt learning. In contrast, AdaCLIP (Cao et al., 2024) utilizes image embeddings
as text prompts to dynamically generate appropriate prompts for each input image. However, these
methods still rely on anomalous samples to learn representations of abnormality, which limits their
applicability in data-restricted real-world scenarios where anomalous data are unavailable for train-
ing. Training-free methods like WinCLIP (Jeong et al., 2023) and AnoVL (Deng et al., 2023) craft
prompts and modify computation mechanism, but without optimization-based training their perfor-
mance saturates, especially for pixel-level localization.

2.3 LARGE LANGUAGE MODELS IN VISION TASK

LLM (Koroteev, 2021; Touvron et al., 2023; Chiang et al., 2023) have been applied to a wide range
of tasks by leveraging their powerful reasoning and generative capabilities. Recently, researchers
have extended the reasoning capabilities of LLM to the vision domain, enabling them to process
both textual and visual inputs. This advancement has led to the development of Multimodal Large
Language Model (MLLM) (Alayrac et al., 2022; Li et al., 2023b; Liu et al., 2023; Zhu et al., 2023;
Su et al., 2023). Furthermore, several studies have explored the integration of MLLM into vision-
centric tasks. LISA (Lai et al., 2024) feeds the output of an MLLM into a learnable decoder to
perform reasoning-based segmentation. DSV-LFS (Karimi & Poullis, 2025) improves segmentation
performance by providing class-level descriptions generated by the LLM. In the context of anomaly
detection, AnomalyGPT(Gu et al., 2024) extends the application of LLM by enabling the model to
detect anomalies and generate responses in the context of anomaly detection.

3 METHOD

3.1 OVERVIEW

This paper proposes SIAD-LLM, a novel framework that effectively adapts LLM for UZAD. As il-
lustrated in Fig. 3, SIAD-LLM introduces a stage prompt template, allowing each feature representa-
tion extracted from different stages of the pretrained text encoder to be independently utilized during
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learning. In addition to stage prompts, SIAD-LLM employs text prompt templates to semantically
describe each object under both normal and abnormal conditions. For instance, for a given class
such as a bottle, text prompts are formulated as a photo of a bottle with damaged or
a photo of a bottle without damaged. These prompts are then tokenized to guide the
LLM. To enhance the expressiveness of visual features, we design an Enhancement Module (EM)
that improves the quality of the generated anomaly map and maintains semantic consistency be-
tween the LLM and the anomaly map. The image embedding and anomaly map are fed into the
LLM, which generates a text response that includes a description of the given image. This text re-
sponse is then fed back to the text encoder, enabling refinement of both the anomaly map and the
LLM-generated responses.

3.2 UNSUPERVISED ZERO-SHOT ANOMALY DETECTION

We focus on UZAD settings, which aims to detect anomalies from unseen domains or classes at
inference phase, using only normal data during the training phase. To address this challenge, pseudo-
anomalies are generated through augmentation of normal data, which is then fed into the model
along with the original normal samples. Let Xnormal = {xi}Ni=1 denote the set of normal training
samples.

Xinput = [Xnormal ∥ {ϕ(x) | x ∈ Xnormal}], (1)
Z = F(Xinput), (2)

where ϕ is an augmentation operator that generates pseudo-anomalies, and F denotes a pretrained
visual encoder. In our implementation, ϕ follows a CutPaste (Li et al., 2021) based strategy that
replaces a randomly sampled patch with another patch from a normal image. Poisson smoothing
(Pérez et al., 2023) is applied during this process to reduce boundary artifacts and produce more
natural pseudo anomalies. The concatenated input Xinput consists of both original normal samples
and their augmented pseudo-anomaly counterparts. Z denotes the output of the pretrained visual
encoder. In addition, we apply an adapter module to finetune the pretrained encoder for the anomaly
detection task.

3.3 STAGE PROMPT TEMPLATE

Traditional vision-language models typically generate text embeddings by uniformly applying a
fixed predefined text prompt template across all stages of the visual encoder. However, this approach
limits the expressive capacity of the text embeddings, making it difficult to capture fine-grained
semantic variations. To address this limitation, we propose a stage prompt template that reflects
the characteristics of stage-wise representations by assigning different prompts to each stage. We
highlight that the feature representations extracted from different stages of the visual encoder are
inherently distinct, as each stage encodes different aspects of the visual input. Specifically, we em-
bed descriptive phrases such as local feature of, regional feature of and global
feature of into the prompt structure to capture information ranging from local patterns to global
semantics. This design enables the model to leverage complementary information across stages for
the same image. Formally, the proposed prompt templates are defined as follows:

gn = [Sk] [V1][V2] . . . [VE ] [CLS] [without damaged], (3)

ga = [Sk] [W1][W2] . . . [WE ] [CLS] [with damaged], (4)
where [Vi] and [Wi] (i = 1, . . . , E) denote the word embeddings for normality and abnormality, re-
spectively. [Sk] (k = 1, . . . , 4) represents the stage prompt token that aligns with the corresponding
encoder stage, and [CLS] denotes the name of the target category. gn and ga refer to the normal
and abnormal prompt templates, respectively. These stage prompt templates are concatenated with
the base prompt template and used as input to the text encoder. Each prompt is aligned with the
feature map extracted from the corresponding stage of the visual encoder, enabling the generation
of stage-wise anomaly maps. Finally, the anomaly maps from all stages are aggregated to obtain the
final anomaly localization result.

3.4 SELF-IMPROVEMENT LLM

The MLLM interprets visual information through image-grounded question and answering and gen-
erates corresponding textual responses. However, the direct application of LLM-generated textual
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outputs in key components of anomaly detection, such as anomaly scoring and anomaly map gen-
eration, has remained unexplored. Existing studies mainly rely on class-level descriptions of fixed
predefined text prompts, which do not extract the rich semantic information that LLM can gener-
ate. To fill this research gap, we propose a novel self-improvement framework that leverages the
outputs of the LLM to refine the textual prompts dynamically. Unlike conventional approaches that
treat LLM responses as passive outputs, our method reuses them to iteratively enhance the semantic
representations of normality and abnormality. This design allows for more flexible and adaptive
learning in anomaly detection. The textual responses generated by the LLM include image-specific
descriptions, which are used to augment static prompt templates, serving as context-aware textual
prompts. Since these responses are grounded in the visual characteristics of each individual image,
they significantly improve the diversity and expressiveness of the prompts. To explicitly indicate
normality or abnormality, we append phrases such as with damaged or without damaged
to the generated descriptions. These context-aware prompts are subsequently embedded via a text
encoder and processed through the same inference pipeline to obtain the final LLM response. Since
the pretrained encoder is trained on large-scale web dataset (Girdhar et al., 2023), embedding the
LLM-generated responses back into the model may result in semantic misalignment with the image
representations. To alleviate this, we introduce an adapter module that is integrated into the encoder.
This adapter is finetuned to align the semantic features derived from the LLM responses with the
corresponding visual representations. The adapter process can be formally described as follows:

S′
i = Norm(LeakyReLU(Linear(Si))), i = 1, 2, 3, 4 (5)

Ŝi = λ · S′
i + (1− λ) · Si, (6)

where Si denotes the feature from the i-th stage of the encoder, and Norm(·) represents L2 normal-
ization. λ is a weighting coefficient, which is set to 0.1 in our experiments.

3.5 ENHANCED MODULE

3.5.1 STAGE-WISE ENHANCED MODULE

We enhance the contextual information of visual feature representations by integrating the features
from the final stage of the visual encoder into all stages. Since the final stage captures global se-
mantic information, we apply convolution and projection layers to the final stage features to adjust
the spatial resolution of other stages, then fuse them with the corresponding stage features. The
stage-wise enhanced module process can be formally described as follows:

Semd = Ŝi + Conv (Proj(S∗)) , i = 1, 2, 3, 4 (7)

where Ŝi denotes the visual feature map at stage i, and S∗ denotes the feature map from the final
stage of the visual encoder. The projection operator Proj(·) adjusts the spatial resolution of S∗ to
match that of Ŝi, and Conv(·) further refines the projected features. The resulting enhanced feature
map Semd incorporates both local and global semantic information, improving the ability of the
model to reason about context-aware anomalies.

3.5.2 PATCH-WISE ENHANCED MODULE

We introduce a Patch-wise Enhanced Module (PEM) with a Multi-Layer Perceptron (MLP) net-
work. This module is designed to enhance the representational capacity of each patch through MLP
during the training phase. In addition, as argued in (Gu et al., 2024), PEM helps maintain semantic
consistency between the anomaly map and the LLM. The PEM process can be formally described
as follows:

pi = Flatten(x[:, :, hi : hi + P,wi : wi + P ]) ∈ RB×(P 2·C), (8)

P = MLP(Norm([pi]
N
i=1)) ∈ RB×N×D, (9)

Preduced
k =

1

|Gk|
∑
i∈Gk

pi, k = 1, . . . ,K (10)

Pfinal = [Preduced
1 , . . . ,Preduced

K ] ∈ RB×K×D, (11)
where x is the input anomaly map, P denotes the patch size, C is the number of channels, B is
the number of batch size, N represents the number of spatial locations in the feature map, and Gk
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represents the set of patch indices assigned to the k-th group. To obtain a compact and semantically
rich representation from the anomaly map x ∈ RB×C×H×W , the map is divided into patches of
size P × P , each of which is flattened into a vector pi. These vectors are then normalized and
passed through an MLP to produce patch-level embeddings P. To reduce computational overhead,
the embeddings are grouped into K clusters, and a mean representation is computed for each group.
The final representation Pfinal is obtained by concatenating these group-wise averaged features.

Algorithm 1 Self-Improvement Mechanism for Anomaly Detection
Require: Image I , Visual Encoder V , Text Encoder T , LLM L
Ensure: Final Response R′, Anomaly Score S′, Anomaly Map M ′

1: Vfeat ← V (I)
2: P ← InitialTextPrompt()
3: Tfeat ← T (P )
4: Z ← Fuse(Vfeat, Tfeat)
5: M ← PredictAnomalyMap(Z)
6: S ← ComputeScore(M)
7: R← L(M)
8: Tres ← T (R)
9: Z ′ ← Fuse(Vfeat, Tres)

10: M ′ ← PredictAnomalyMap(Z ′)
11: S′ ← ComputeScore(M ′)
12: R′ ← L(M ′)
13: Return R′, S′,M ′

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

To evaluate the proposed model under the UZAD setting, we conducted experiments on nine bench-
mark datasets. These included MVTecAD (Bergmann et al., 2021), Visa (Zou et al., 2022), MPDD
(Jezek et al., 2021), DTD (Aota et al., 2023), SDD (Tabernik et al., 2020), and BTAD (Mishra et al.,
2021) for the industrial domain, as well as BrainMRI (Kanade & Gumaste, 2015), HeadCT (Kita-
mura, 2018), and Br35H (Hamada, 2020) for the medical domain. All input images were resized
to 224 × 224 pixel resolution before being fed into the model. As the primary evaluation metric,
we adopted the Area Under the Receiver Operating Characteristic (AUROC), which is widely used
in anomaly detection to assess model performance. For implementation, we used ImageBind-Huge
(Girdhar et al., 2023) as the image encoder and Vicuna-7B (Chiang et al., 2023) as the inference
LLM. A linear projection layer was employed to bridge the modalities. The model was initialized
with the pretrained weights from PandaGPT (Su et al., 2023). Training was conducted for one
epoch using a single NVIDIA RTX 4090 GPU, with a batch size of 8 and a learning rate of 0.001.
We employed the AdamW optimizer. We trained the model on MVTecAD and evaluated it on other
industrial datasets, using weights pretrained on Visa for the MVTecAD evaluation. For the medical
domain, we trained on Br35H and evaluated on other medical datasets, with the BrainMRI trained
weights used to evaluate Br35H.

4.2 MAIN RESULTS

This section presents a quantitative evaluation of the proposed SIAD-LLM, comparing its perfor-
mance with representative existing anomaly detection methods. A total of nine benchmark datasets
were used in the experiments, spanning industrial and medical domains. The evaluation metrics
include image-level AUROC, which evaluates anomaly detection performance at the image-level,
and pixel-level AUROC, which evaluates the accuracy of localizing anomalous regions at the pixel-
level. Pixel-level results on the medical datasets (BrainMRI, Br35H, HeadCT) are not reported,
since ground-truth segmentation masks are not available for these datasets.

Table 1 shows the image and pixel-level AUROC results, where SIAD-LLM consistently outper-
forms existing methods across most datasets. Pixel-level AUROC results, in which SIAD-LLM
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Table 1: Comparison of UZAD methods with image and pixel-level AUROC metric. Bold and
underlining indicate best results and second-best results, respectively.

Task Method Industrial domain Medical domain Average
MVTecAD Visa MPDD DTD SDD BTAD BrainMRI HeadCT Br35H

Image-level

CLIP 60.9 49.1 44.9 75.2 40.1 59.3 91.0 56.5 80.2 61.9
AdaCLIP 42.1 44.2 56.8 36.6 27.4 33.8 75.0 38.8 37.7 43.6
AnomalyCLIP 52.0 39.4 49.3 59.7 30.9 68.3 76.1 81.5 59.4 57.4
AnomalyGPT 71.1 63.1 59.6 88.9 55.5 70.4 90.1 58.2 87.0 71.5
FiLo 40.2 48.5 53.2 45.7 19.8 67.7 74.3 68.3 25.2 49.2
AA-CLIP 44.5 56.7 52.3 66.0 52.4 45.0 75.7 67.1 86.1 60.6
Ours 72.8 62.2 66.9 93.7 62.6 73.1 93.9 76.0 83.1 76.0

Pixel-level

CLIP 53.4 51.3 63.1 28.3 12.3 47.5 - - - 42.7
AdaCLIP 53.6 49.9 51.1 51.2 53.6 59.4 - - - 53.1
AnomalyCLIP 56.7 66.7 48.7 77.6 77.6 51.3 - - - 63.1
AnomalyGPT 84.8 85.9 90.3 94.4 81.0 80.2 - - - 86.1
FiLo 53.1 60.0 60.1 72.1 55.4 59.9 - - - 60.1
AA-CLIP 84.3 87.7 92.0 83.3 96.0 81.5 - - - 87.5
Ours 86.0 88.1 93.2 97.2 87.5 88.2 - - - 90.0

Table 2: Comparison of UZAD methods with pseudo anomaly using image and pixel-level AUROC.

Task Method Industrial domain Medical domain Average
MVTecAD Visa MPDD DTD SDD BTAD BrainMRI HeadCT Br35H

Image-level

AdaCLIP 79.8 71.5 65.4 96.1 87.2 81.3 85.4 91.0 90.7 83.2
AnomalyCLIP 79.2 69.1 76.0 96.3 97.5 77.5 97.9 99.1 94.8 87.5
FiLo 73.3 65.2 56.9 95.8 81.0 85.1 78.9 52.9 69.9 76.2
AA-CLIP 69.6 49.1 42.9 66.1 59.0 44.2 76.3 59.5 94.7 62.4
Ours 72.8 62.2 66.9 93.7 62.6 73.1 93.9 76.0 83.1 76.0

Pixel-level

AdaCLIP 67.2 48.0 44.0 73.9 55.7 62.1 - - - 58.5
AnomalyCLIP 87.6 93.5 94.0 97.8 98.1 93.6 - - - 94.1
FiLo 83.7 89.2 85.2 95.9 97.3 85.8 - - - 89.5
AA-CLIP 79.6 73.1 83.7 67.6 89.6 74.6 - - - 78.0
Ours 86.0 88.1 93.2 97.2 87.5 88.2 - - - 90.0

achieves the highest localization performance on most datasets, with particularly notable improve-
ments observed on datasets characterized by complex structures or high visual diversity. These
results highlight the limitations of ZAD-based approaches, which suffer from reduced generaliz-
ability in the UZAD setting due to the absence of anomaly data during training. In contrast, the
proposed SIAD-LLM demonstrates strong performance in both anomaly detection and localization,
even without any access to anomalous samples, indicating its high generalizability across diverse
domains and data distributions.

While the existing ZAD method learns both normal and abnormal boundaries, UZAD is designed
to infer abnormality solely from the concept of normality. To investigate the impact of explicitly
specifying abnormality, we conducted experiments to facilitate abnormality inference by providing
pseudo anomalies to ZAD-based approaches, as shown in Table 2. In this process, AnomalyCLIP
achieved high performance, whereas AdaCLIP and AA-CLIP, despite the explicit specifying of ab-
normality, still failed to sufficiently learn abnormality. These results demonstrate that the proposed
UZAD task is considerably more challenging than ZAD and independent research value.

As shown in Fig. 4, we compared the qualitative results of our proposed model with existing meth-
ods. It is evident that CLIP (Radford et al., 2021), AnomalyCLIP (Zhou et al., 2023), and AdaCLIP
(Cao et al., 2024) fail to accurately detect anomalies in the UZAD setting. In particular, CLIP tends
to highlight only class-specific semantic regions of the object, revealing the limitations of directly
applying a foundation model without task-specific finetuning. Although AA-CLIP (Ma et al., 2025)
shows improved performance in detecting defect regions, it still attends to irrelevant class semantics
and introduces considerable background noise, likely due to the absence of explicit anomaly super-
vision. In contrast, our SIAD-LLM effectively localizes defective regions while exhibiting strong
robustness against background noise, demonstrating its superiority in both precision and contextual
awareness.
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Table 3: Ablation experiments of enhanced text prompt and module selection on industrial domain
dataset. Results are reported using image and pixel-level AUROC.

(a) Ablation experiments of SI (Self-improvement) and SP (Stage Prompt)

Method MVTecAD VisA MPDD DTD SDD BTAD Average

w/o SI (70.9, 84.8) (60.9, 84.8) (64.0, 93.2) (93.2, 97.2) (65.1, 78.2) (61.0, 77.2) (69.2, 85.9)

w/o SP (66.6, 80.2) (58.7, 87.8) (65.1, 91.1) (92.7, 96.1) (62.0, 88.2) (71.9, 82.9) (69.5, 87.7)

Full Model (72.8, 86.0) (62.2, 88.1) (66.9, 93.2) (93.7, 97.2) (62.6, 87.5) (73.1, 88.2) (71.9, 90.0)

(b) Ablation experiments of EM and Adapter

Method MVTecAD VisA MPDD DTD SDD BTAD Average

w/o EM (68.7, 84.0) (62.8, 87.1) (62.9, 91.0) (93.9, 96.9) (59.2, 85.1) (70.0, 82.1) (69.6, 87.7)

w/o SEM (71.4, 85.9) (65.8, 88.3) (62.8, 92.8) (94.3, 97.3) (61.0, 87.2) (73.3, 88.0) (71.4, 89.9)

w/o PEM (69.8, 86.2) (62.1, 87.3) (65.6, 92.9) (92.8, 96.8) (65.0, 83.4) (74.0, 81.7) (71.6, 88.1)

w/o Adapter (70.4, 82.7) (68.9, 88.3) (58.4, 92.6) (95.6, 97.9) (57.9, 89.7) (70.6, 82.6) (70.3, 89.0)

Full Model (72.8, 86.0) (62.2, 88.1) (66.9, 93.2) (93.7, 97.2) (62.6, 87.5) (73.1, 88.2) (71.9, 90.0)

Figure 4: Qualitative results for anomaly localization on various domain datasets. From left to right:
anomalous sample, ground-truth, predicted anomaly maps from other models, and our predicted
anomaly map.

4.2.1 TEXT PROMPTS ENHANCEMENTS

As shown in Table 3 (a), we validate the effectiveness of structurally enhancing the expression
and utilization of textual information on anomaly detection performance through ablation studies
conducted on industrial-domain datasets. The results show that removing the self-improvement
mechanism significantly degrades both image and pixel-level AUROC, indicating that using LLM-
generated responses as text prompts is critical for learning normality and abnormality. Furthermore,
excluding the stage prompt template notably lowers image-level AUROC, suggesting that introduc-
ing stage-wise variation in textual-visual interactions promotes diversity in the perceived scale of
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Table 4: Ablation study under different adaptor coefficient(λ) Values.
λ MVTecAD VisA MPDD DTD SDD BTAD Average

0.1 (72.8, 86.0) (62.2, 88.1) (66.9, 93.2) (93.7, 97.2) (62.6, 87.5) (73.1, 88.2) (72.8, 86.0)
0.3 (56.8, 63.4) (53.7, 68.1) (53.5, 67.6) (72.2, 66.7) (71.3, 68.5) (55.2, 56.5) (60.5, 65.1)
0.5 (49.6, 68.5) (56.2, 62.8) (62.6, 86.5) (59.8, 78.0) (71.2, 68.5) (52.7, 64.8) (58.7, 71.5)

information within the image. These results demonstrate that not relying on predefined templates
can support both representation and learning of normality and abnormality.

4.2.2 ENCODER ARCHITECTURE ENHANCEMENTS

As shown in Table 3 (b), we validate the effectiveness of encoder architecture enhancements through
ablation studies on industrial datasets. Removing the EM leads to clear performance drops, indicat-
ing that strengthening visual representations is essential for accurate anomaly detection. The addi-
tional ablations on PEM and SEM further show that both patch-level and stage-level enhancements
contribute individually to performance, confirming that multi-scale refinement of encoder features
plays a crucial role in improving anomaly sensitivity. Moreover, the performance degradation ob-
served when the adapter is removed highlights the necessity of finetuning the pretrained encoder
for the anomaly detection task. Taken together, these findings demonstrate that finetuning the en-
coder and enhancing feature representations at multiple levels are both essential for achieving robust
anomaly detection performance.

4.2.3 EFFECT OF ADAPTOR COEFFICIENT

The influence of the adaptor coefficient is examined through an ablation study summarized in Ta-
ble 4. The adaptor controls the balance between the pretrained encoder features and the updated
features produced through self-improvement, thereby regulating how strongly the text-driven signal
alters the visual pathway. The results show that increasing the coefficient consistently reduces both
image-level and pixel-level AUROC, indicating that amplifying the LLM-derived updates distorts
the encoder representation and weakens its ability to capture normality. In contrast, the configu-
ration with set to 0.1, which is the value used in all main experiments, preserves the stability of
the pretrained encoder while allowing controlled refinement through the adaptor. These observa-
tions confirm that the coefficient functions as a structural stabilizer rather than a performance-tuning
hyperparameter, and that maintaining a small value is essential for reliable anomaly detection.

5 CONCLUSION

This paper introduced SIAD-LLM, a novel framework for UZAD that requires no anomalous sam-
ples during training. By incorporating LLM-based self-improvement and stage prompt templates,
the proposed method improved detection and localization. Extensive experiments on nine bench-
marks across industrial and medical domains shows that SIAD-LLM consistently outperforms exist-
ing methods in both image and pixel-level anomaly detection, demonstrating strong generalization
in anomaly-free settings. Although SIAD-LLM achieves strong zero-shot anomaly detection, the
LLM backbone incurs high computational and time costs during both training and inference. As
future work, we plan to explore lightweight or distilled LLM variants to reduce latency and memory
usage while preserving detection accuracy.
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SUPPLEMENTARY MATERIAL

A USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) exclusively for grammar correction and minor typographical
editing of the manuscript.

B LOSS FORMULATION AND SCORING DETAILS

We provide the full formulation of the loss used to optimize the model during training. The total
loss combines focal, dice, and cross-entropy terms as follows:

Ltotal = α · Lfocal + β · Ldice + γ · Lce, (12)

where α, β, and γ denote weighting coefficients for each term. In our implementation, we set all
weights to 1. For inference, bilinear interpolation is used to resize the predicted anomaly map to the
original image resolution. The maximum value of the map is then used as the image-level anomaly
score. This formulation complements the high-resolution pixel-wise comparison performed during
evaluation.

C STAGE PROMPTS DESIGN

Table 5: Ablation results for different
stage prompt configurations, reported
by image and pixel-level AUROC.

Setting MVTecAD

Case 1 (68.2, 84.9)
Case 2 (69.2, 83.6)
Case 3 (72.8, 86.0)

To investigate the effect of stage prompt design, we con-
ducted ablation experiments on the MVTecAD dataset by
exploring different stage-wise prompt configurations. Ta-
ble 5 presents the results of three stage prompt configu-
rations. Case 1 represents a transition from low-level to
high-level semantics, Case 2 represents a transition from
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Table 6: Stage prompt details. This table shows the stage-specific prompts used in the results of
Table 5. Case 3 represents the default setting used in our model.

stage Case1 Case2 Case3

1 "very small region of" "low level feature of" "local feature of"
2 "small region of" "mid level feature of" "regional feature of"
3 "large region of" "mid level feature of" "regional feature of"
4 "very large region of" "high level feature of" "global feature of"

small to large spatial focus, Case3 represents a transition
from local to global features. The results show that Case
3 achieves the best performance, suggesting that aligning
prompt semantics to the hierarchy of visual features facili-
tates more effective representation learning.

D TEXT PROMPT SETTING

Following conventional zero-shot anomaly detection setting, we utilize the compositional prompt
ensemble to obtain initial prompts. Specifically, we consider state-level and template level. The
complete text can be composed by replacing the token [c] in a template-level text with one of state-
level text and replacing the token [o] with the object’s name.

(a) State-level (normal)
- c := ”[o]”

- c := ”flawless [o]”

- c := ”perfect [o]”

- c := ”unblemished [o]”

- c := ”[o] without flaw”

- c := ”[o] without defect”

- c := ”[o] without dam-
age”

(b) State-level (anomaly)
- c := ”damaged [o]”

- c := ”broken [o]”

- c := ”[o] with flaw”

- c := ”[o] with defect”

- c := ”[o] with damage”

(c) Template-level
• ”a photo of a [c].”

• ”a photo of the [c].”

Figure 5: Lists of state and template level prompts employed in this paper to construct text features.

E COMPARSION WITH TRAINING-FREE METHOD

To highlight the semantic grounding ability, we compared our model with training-free method
AnoVL. Training-free methods have key limitations. Manual prompt engineering rely on hundreds
of handcrafted prompts based on class names and defect types. This limits their scalability and
applicability across diverse or unseen domains. Furthermore, semantic grounding is static and based
on global features, making them less sensitive to small or localized anomalies critical in real-world
tasks. Notably, on complex datasets like MPDD and BTAD, AnoVL shows a significant performance
drop. In contrast, SIAD-LLM dynamically generates context-aware text via image-grounded QA
and integrates it into learning. This allows strong generalization without manual tuning.

F DETAILD IMAGE DESCRIPTION

To facilitate anomaly reasoning, each prompt includes a concise textual description of the image
content. This description outlines the object class and its expected properties under normal condi-
tions, serving as contextual grounding for the LLM. During training, prompts are constructed in the
following format:

Human: <Img> E img </Img> E prompt [Image Description] Is there
any anomaly in the image? Assistant:
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Table 7: Comparison of with training-free methods with pixel-level AUROC metric.

Method Industrial domain Medical domain Average
MVTecAD Visa MPDD DTD SDD BTAD BrainMRI HeadCT Br35H

AnoVL 85.7 85.8 59.9 93.2 95.2 75.2 - - - 82.5
Ours 86.0 88.1 93.2 97.2 87.5 88.2 - - - 90.0

The descriptions provided for each category in the various datasets are summarized in the table
below and are used to guide the LLM in understanding what defines a normal instance.

Table 8: Detailed image description for every category in MVTecAD dataset. The description is
used to construct prompts for anomaly detection.

Class Image Description
bottle This is a photo of a bottle for anomaly detection, which should be round,

without any damage, flaw, defect, scratch, hole or broken part.
cable This is a photo of three cables for anomaly detection, cables cannot be

missed or swapped, which should be without any damage, flaw, defect,
scratch, hole or broken part.

capsule This is a photo of a capsule for anomaly detection, which should be
black and orange, with print ’500’, without any damage, flaw, defect,
scratch, hole or broken part.

carpet This is a photo of carpet for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

grid This is a photo of grid for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

hazelnut This is a photo of a hazelnut for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

leather This is a photo of leather for anomaly detection, which should be brown
and without any damage, flaw, defect, scratch, hole or broken part.

metal nut This is a photo of a metal nut for anomaly detection, which should
be without any damage, flaw, defect, scratch, hole or broken part, and
shouldn’t be fliped.

pill This is a photo of a pill for anomaly detection, which should be white,
with print ’FF’ and red patterns, without any damage, flaw, defect,
scratch, hole or broken part.

screw This is a photo of a screw for anomaly detection, which tail should be
sharp, and without any damage, flaw, defect, scratch, hole or broken
part.

tile This is a photo of tile for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

toothbrush This is a photo of a toothbrush for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

transistor This is a photo of a transistor for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

wood This is a photo of wood for anomaly detection, which should be brown
with patterns, without any damage, flaw, defect, scratch, hole or broken
part.

zipper This is a photo of a zipper for anomaly detection, which should be with-
out any damage, flaw, defect, scratch, hole or broken part.
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Table 9: Detailed image description for every category in Visa dataset. The description is used to
construct prompts for anomaly detection.

Class Image Description
candle This is a photo of 4 candles for anomaly detection, every candle should

be round, without any damage, flaw, defect, scratch, hole or broken part.
capsules This is a photo of many small capsules for anomaly detection, every

capsule is green, should be without any damage, flaw, defect, scratch,
hole or broken part.

cashew This is a photo of a cashew for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

chewinggum This is a photo of a chewinggom for anomaly detection, which should
be white, without any damage, flaw, defect, scratch, hole or broken part.

fryum This is a photo of a fryum for anomaly detection on green background,
which should be without any damage, flaw, defect, scratch, hole or bro-
ken part.

macaroni1 This is a photo of 4 macaronis for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

macaroni2 This is a photo of 4 macaronis for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

pcb1 This is a photo of pcb for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

pcb2 This is a photo of pcb for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

pcb3 This is a photo of pcb for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

pcb4 This is a photo of pcb for anomaly detection, which should be without
any damage, flaw, defect, scratch, hole or broken part.

pipe fryum This is a photo of a pipe fryum for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

Table 10: Detailed image description for every category in MPDD dataset. The description is used
to construct prompts for anomaly detection.

Class Image Description
bracket black This is a photo of a bracket black for anomaly detection, which should

be black and without any damage, flaw, defect, scratch, hole or broken
part.

bracket brown This is a photo of a bracket brown for anomaly detection, which should
be brown and without any damage, flaw, defect, scratch, hole or broken
part.

bracket white This is a photo of a bracket white for anomaly detection, which should
be white and without any damage, flaw, defect, scratch, hole or broken
part.

connector This is a photo of a connector for anomaly detection, which should be
without any damage, flaw, defect, scratch, hole or broken part.

metal plate This is a photo of a metal plate for anomaly detection, which should be
without any damage, rust, flaw, defect, scratch, hole or broken part.

tubes This is a photo of a tubes for anomaly detection, which should be with-
out any damage, flaw, defect, scratch, hole or broken part.
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Table 11: Detailed image description for every category in DTD dataset. The description is used to
construct prompts for anomaly detection.

Class Image Description
Woven 001 This is a photo of a Woven 001 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Woven 127 This is a photo of a Woven 127 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Stratified 154 This is a photo of a Stratified 154 for anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
Blotchy 099 This is a photo of a Blotchy 099 for anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
Woven 068 This is a photo of a Woven 068 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Woven 125 This is a photo of a Woven 125 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Marbled 078 This is a photo of a Marbled 078 for anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
Perforated 037 This is a photo of a Perforated 037 for anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
Mesh 114 This is a photo of a Mesh 114 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Fibrous 183 This is a photo of a Fibrous 183 for anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
Matted 069 This is a photo of a Matted 069 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.
Woven 104 This is a photo of a Woven 104 for anomaly detection, which should be

without any damage, flaw, defect, scratch, hole or broken part.

Table 12: Detailed image description for every category in BTAD dataset. The description is used
to construct prompts for anomaly detection.

Class Image Description
01 This is a photo of a 01 for anomaly detection, which should be round,

without any damage, flaw, defect, scratch, hole or broken part.
02 This is a photo of a 02 for anomaly detection, which should be round,

without any damage, flaw, defect, scratch, hole or broken part.
03 This is a photo of a 03 for anomaly detection, which should be round,

without any damage, flaw, defect, scratch, hole or broken part.

Table 13: Detailed image description for every category in SDD dataset. The description is used to
construct prompts for anomaly detection.

Class Image Description
SDD This is a photo of a electrical commutators for anomaly detection,

which should be without any damage, flaw, defect, scratch, hole or bro-
ken part.

Table 14: Detailed image description for every category in Br35H dataset. The description is used
to construct prompts for anomaly detection.

Class Image Description
brain This is a photo of a brain for medical anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
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Table 15: Detailed image description for every category in BrainMRI dataset. The description is
used to construct prompts for anomaly detection.

Class Image Description
brain This is a photo of a brain for medical anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.

Table 16: Detailed image description for every category in HeadCT dataset. The description is used
to construct prompts for anomaly detection.

Class Image Description
brain This is a photo of a brain for medical anomaly detection, which should

be without any damage, flaw, defect, scratch, hole or broken part.
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Figure 6: Qualitative results for anomaly localization on MVTecAD dataset. From top to bottom:
anomalous sample, our predicted anomaly map.

Figure 7: Qualitative results for anomaly localization on VisA dataset. From top to bottom: anoma-
lous sample, our predicted anomaly map.

Figure 8: Qualitative results for anomaly localization on MPDD dataset. From top to bottom:
anomalous sample, our predicted anomaly map.
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Figure 9: Qualitative results for anomaly localization on SDD dataset. From top to bottom: anoma-
lous sample, our predicted anomaly map.

Figure 10: Qualitative results for anomaly localization on DTD dataset. From top to bottom: anoma-
lous sample, our predicted anomaly map.
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Figure 11: Qualitative results for anomaly localization on BrainMRI dataset. From top to bottom:
anomalous sample, our predicted anomaly map. Note that BrainMRI does not provide ground-truth
localization annotations.

Figure 12: Qualitative results for anomaly localization on Br35H dataset. From top to bottom:
anomalous sample, our predicted anomaly map. Note that Br35H does not provide ground-truth
localization annotations.

Figure 13: Qualitative results for anomaly localization on HeadCT dataset. From top to bottom:
anomalous sample, our predicted anomaly map. Note that HeadCT does not provide ground-truth
localization annotations.
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