
Fast Sampling of Diffusion Models via Operator Learning

Hongkai Zheng 1 Weilie Nie 2 Arash Vahdat 2 Kamyar Azizzadenesheli 2 Anima Anandkumar 1 2

Abstract

Diffusion models have found widespread adop-
tion in various areas. However, their sampling pro-
cess is slow because it requires hundreds to thou-
sands of network evaluations to emulate a contin-
uous process defined by differential equations. In
this work, we use neural operators, an efficient
method to solve the probability flow differential
equations, to accelerate the sampling process of
diffusion models. Compared to other fast sam-
pling methods that have a sequential nature, we
are the first to propose a parallel decoding method
that generates images with only one model for-
ward pass. We propose diffusion model sampling
with neural operator (DSNO) that maps the ini-
tial condition, i.e., Gaussian distribution, to the
continuous-time solution trajectory of the reverse
diffusion process. To model the temporal corre-
lations along the trajectory, we introduce tempo-
ral convolution layers that are parameterized in
the Fourier space into the given diffusion model
backbone. We show our method achieves state-
of-the-art FID of 3.78 for CIFAR-10 and 7.83 for
ImageNet-64 in the one-model-evaluation setting.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020), also known as score-based generative models (Song
et al., 2020b), have emerged as a powerful generative model-
ing framework in various areas. They have achieved state-of-
the-art (SOTA) performance in many applications including
image generation (Dhariwal & Nichol, 2021), molecule
generation (Xu et al., 2022), audio synthesis (Kong et al.,
2021) and model robustness (Nie et al., 2022). However,
sampling from diffusion models requires hundreds of neu-
ral network evaluations, making them slower by orders of
magnitude compared to other generative models such as

1Caltech 2NVIDIA. Correspondence to: Hongkai Zheng <hz-
zheng@caltech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

generative adversarial networks (GANs) (Goodfellow et al.,
2020). Accelerating sampling in diffusion models remains
a challenging but important problem, especially when ap-
plying them to time-sensitive downstream applications such
as AI for art and design (Ramesh et al., 2022) or generative
models for decision making (Ajay et al., 2022).

Existing methods for fast sampling of diffusion models can
be summarized into two main categories: 1) training-free
sampling methods (Song et al., 2020a; Lu et al., 2022) and
2) training-based sampling methods (Luhman & Luhman,
2021; Salimans & Ho, 2021; Xiao et al., 2021). Specifically,
the training-free methods focus on reducing the number of
discretization steps from a numerical perspective while solv-
ing the stochastic differential equations (SDE) or probability
flow ordinary differential equations (ODE). However, even
the best well-designed numerical solvers (Lu et al., 2022;
Karras et al., 2022) still need 10∼30 model evaluations such
that the approximation error is small enough for an accept-
able sampling quality. On the other hand, training-based
methods train a surrogate network to replace some parts
of the numerical solver or even the whole solver. Particu-
larly, progressive distillation (Salimans & Ho, 2021) has
made a big step towards real-time sampling (e.g., decent
results with 4 steps) but it still has a sequential nature like
conventional numerical solvers.

The goal of this work is to develop a fast and parallel sam-
pling method for diffusion models with only one model
evaluation. By parallel, we mean that our method can de-
code images at different time locations in the trajectory in
parallel and hence, generate the final solution using only
one model evaluation. The major challenge here arises from
the difficulty of solving a complicated and large-scale differ-
ential equation, which typically requires many discrete time
steps to emulate accurately from a numerical approximation
perspective.

In this paper, we employ the recent advances in neural
operators for solving differential equations to overcome
this challenge. Neural operators (Li et al., 2020b; Ko-
vachki et al., 2021b), especially the Fourier neural oper-
ator (FNO) (Li et al., 2020a) have shown several orders of
magnitude speedup over conventional solvers. This class of
models enables learning maps between spaces of functions
and is shown to be discretization invariant, allowing them to

1



Fast Sampling of Diffusion Models via Operator Learning

Figure 1. Illustration of the architecture and training pipeline of DSNO. The architecture of DSNO is built on top of any existing
diffusion model architecture, where blue blocks are from the existing diffusion U-Net backbone and yellow blocks are the proposed
temporal convolution layers. Suppose the temporal domain is discretized into M points {t1, . . . , tM}, for each feature map, the temporal
convolution layers operate on the temporal and channel dimensions (M×C) and the other blocks operate on the pixel and channel
dimensions (C×H×W). The symbols F and F−1 refer to the Fourier transform and inverse Fourier transform, respectively. R is a
complex-valued parameter that represents a kernel function in Fourier space. For ease of notation, xi represents the solution at time
ti, that is x(ti). Inside each temporal convolution layer, we apply the idea of parallel decoding: Given input function u(t), the Fourier
coefficients R · Fu is the same for all ti, i = 1, . . . ,M . Therefore, the temporal convolution layer can output the representations at
different time locations in the trajectory in a single forward pass by evaluating the output function at queried points in parallel.

work with different resolutions of data without changing the
model parameters, and can approximate any given nonlinear
continuous operator (Kovachki et al., 2021a).

The FNO allows for parallel decoding: i.e. the outputs at all
locations of the trajectory can be simultaneously evaluated.
This is a property that none of the previous sampling meth-
ods for diffusion models enjoy. In this work, we propose a
neural operator for diffusion model sampling (DSNO) that
maps the initial conditions (i.e. Gaussian distribution) to the
solution trajectories and we show its effectiveness in both
unconditional and class-conditional image generation.

Our contributions.

• We propose a neural operator for the fast sampling of
diffusion models (DSNO) that can sample high-quality

images with one model evaluation.

• We introduce temporal convolution blocks parameterized
in Fourier space, which can be easily combined with any
existing neural architectures of diffusion models to build
a neural operator backbone for DSNO. Furthermore, our
proposed temporal convolution blocks are lightweight and
only increase the model size by 10%.

• For the first time, we propose a parallel decoding method
to generate the trajectories of images using continuous
function representation, which enables generation of the
final solution in one model evaluation.

• Our proposed DSNO achieves new state-of-the-art FID
scores of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in
the setting of single-step-generation of diffusion models.

2



Fast Sampling of Diffusion Models via Operator Learning

Finally, we note that DSNO leverages parallel decoding
temporally to generate the solution trajectory by evaluating
the output function at different time steps in parallel. This
is in contrast to the prior training-based methods that have
a sequential nature and predict the trajectory step by step.
We believe that DSNO with parallel decoding is a key step
for the real-time sampling of diffusion models, potentially
benefiting many interactive applications.

2. Background
Score-based generative models. We consider the gen-
eral class of score-based generative models in a unified
continuous-time framework proposed by Song et al. (2020b),
which includes different variants of diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020). In this paper, we
will use the word score-based models interchangeably with
diffusion models. Suppose the data distribution is pdata.
The forward pass is a diffusion process {x(t)} starting from
0 to T which can be expressed as

dx = f(x, t)dt+ g(t)dwt, (1)

where wt is the standard Wiener process, and f(·, t) : Rd →
Rd and g(·) : R → R are the drift and diffusion coefficients
respectively. Diffusion models choose f and g such that
x(0) ∼ pdata and x(T ) ∼ N (0, I). Song et al. (2020b)
show that the following probability flow ODE produces the
same marginal distributions pt(x) as that of the diffusion
process:

dx = f(x, t)dt− 1

2
g(t)2∇x log pt(x)dt. (2)

The sampling process eventually becomes solving the prob-
ability flow ODE 2 from T to 0 given the initial condi-
tion x(T ). Furthermore, f(x, t) often has the affine form
f(x, t) = h(t)x, where h : R → R. We can simplify the
equation 2 into a semi-linear ODE. Integrating both sides
over time gives the explicit form of solution for any t < s:

x(t) = ϕ(t, s)x(s)−
∫ t

s

ϕ(t, τ)
g(τ)2

2
∇x log pτ (x)dτ,

(3)
where ϕ(t, s) = exp

(∫ t

s
h(τ)dτ

)
. The ODE can be solved

using numerical solvers such as Euler’s method, multi-
step methods, and Heun’s 2nd method. The score func-
tion ∇x log pt(x) is usually parameterized by ϵ̂θ(xt) ≈
−σt∇x log pt(x), where σt is the noise schedule (Song
et al., 2020b; Ho et al., 2020).

Fourier neural operator. Fourier neural operator (Li
et al., 2020a) is one of the state-of-the-art data-driven meth-
ods for solving PDEs, which has shown great speedup over
conventional PDE solvers in many scientific problems by
learning a parametric map between two Banach spaces from

data. They are constructed as a stack of kernel integration
layers where the kernel function is parameterized by learn-
able weights. Let D be a bounded domain, e.g., [0, T ] and
a : D → Rdin denote an input function. A Fourier neural
operator Gθ, parameterized with learnable parameters θ, is
an L layered neural operator of the following form,

Gθ := Q ◦ σ(WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P, (4)

where the lifting operator P , projection operator Q, and
residual connections Wi, i ∈ {1, . . . , L} are pointwise op-
erators parameterized with neural networks, and σ is a fixed
nonlinear activation function. Ki is an integral kernel opera-
tor parameterized in Fourier space such that for a given vi,
an input function to the i’th layer, we have,

(Kvi)(t) = F−1 (Ri · (Fvi)) (t),∀t ∈ D (5)

where F and F−1 are the Fourier transform and inverse
Fourier transform on D, Ri is a trainable parameter that
parameterizes a kernel function in Fourier space. Given an
input function a, we first apply the lifting point-wise opera-
tor P that expands the co-dimension of the input function
a, followed by L layers of global integral operators accom-
panied with pointwise non-linearity operation σ. The result
of the global integration layers is passed to the local and
pointwise projection layer Q to compute the output function.
This architecture is shown to possess the crucial discretiza-
tion invariance and universal approximation properties of
universal operators (Kovachki et al., 2021a;b).

3. Learning the trajectory with neural
operator

Problem statement. Our goal is to learn a neural operator
that given any initial condition x(T ) ∼ N (0, I), predicts the
probability flow trajectory {x(t)}0s with time flowing from
s to 0 defined in equation 3, where the endpoint x(0) ∈ Rd

is the data. Let D = [0, s], 0 < s ≤ T be the temporal
domain. Let A be the finite-dimensional space of the initial
condition, and U = U(D;Rd) denote the space of the target
continuous time functions with output value in Rd. We build
a neural operator Gθ parameterized by θ to approximate the
solution operator G† by minimizing the error as follows

min
θ

ExT∼N (0,I)L
(
Gθ (xT )− G† (xT )

)
, (6)

where L : U → R+ is some loss functional such as Lp-
norm for some p ≥ 1. From the exact solution x(t) in
equation 3, we know the solution operator G† : A → U
exists and is a unique weighted integral operator of the score
function. In other words, the solution operator corresponds
to the underlying diffusion ODE, i.e., a mapping from a
x(T ) ∼ N (0, I) to the probability flow trajectory {x(t)}0s.
It is a regular operator, i.e., a member of operator set in the

3



Fast Sampling of Diffusion Models via Operator Learning

neural operator theory that can be approximated (Kovachki
et al., 2021b;a). More formally,

Proposition 3.1 (Kovachki et al. (2021b;a)). The class of
neural operators defined in equation 4 approximates the
solution map of the diffusion ODE, i.e., a mapping from
x(T ) ∼ N (0, I) to the probability flow trajectory {x(t)}0s,
arbitrarily well.

This implies that the proposed architecture has the required
capacity to learn to output the continuous time probability
flow trajectory {x(t)}0s in one model call.

Temporal convolution block in Fourier space. Inspired
by the weighted integral form of the exact ODE solution
in equation 3, we build our temporal convolution block
with Fourier integral operator K to efficiently model the
trajectory. Given an input function u : D → Rd, our
temporal convolution layer T is defined as

(T u)(t) = u(t) + σ ((Ku) (t)) , (7)

where σ is a point-wise nonlinear function, and K is a
Fourier convolution operator defined in equation 5 parame-
terized by R. Note that our proposed temporal convolution
layer differs slightly from the FNO layer given in equation
4. Specifically, we move the nonlinear activation function
right after the Fourier convolution operator K and replace
the linear pointwise operator W with an identity shortcut,
which preserves the high-frequency information without ex-
tra cost and also leads to a better optimization landscape (He
et al., 2016). We have not observed the advantages of using
a more general linear layer. The identity map is shown to
be sufficient and more attractive because it is computation-
ally efficient. Furthermore, we note that, by convolution
theorem, we have

(Ku)(t) =

∫
D

(F−1R)(τ)u(t− τ)dτ,∀t ∈ D. (8)

Notably, the integral form in equation 8 inherently pos-
sesses a structural similarity to the core diffusion process
in equation 3, meaning that the temporal convolution layer
implicitly parameterize the ODE solution trajectory.

In practice, we use the discrete Fourier transforms for com-
putational efficiency. Suppose the temporal domain D is
discretized into M points. For ease of understanding, we
also assume the codomains of the input and output functions
of the temporal convolution block are both in Rd. The input
function u(t) is represented as a tensor in RM×d. R is a
complex-valued parameter in CJ×d×d, where J is the maxi-
mal number of modes that we can choose. For all u, we trun-
cate the modes higher than J and then have F(u) ∈ CJ×d.
The pointwise product of Fourier transforms of input and

kernel functions is given by

R · (Fu)j,k =

d∑
l=1

Rj,k,l(Fu)j,l, (9)

for all j ∈ {1, . . . , J}, k ∈ {1, . . . , d}. Accordingly, F and
F−1 are realized by the fast Fourier transform algorithm.
Figure 1 demonstrates the implementation details of the
temporal convolution layers. Note that the temporal convo-
lution layer only operates over the temporal dimension and
hidden feature channel dimension and thus treats the pixel
dimension as the same as the batch dimension. In other
words, d in the above example corresponds to the number
of channel dimensions in practice.

Architecture of DSNO. As demonstrated in Figure 1, the
architecture of DSNO is built on top of any existing architec-
ture of diffusion models, by adding our proposed temporal
convolution layers to each level of the U-Net structure. The
dark blue blocks are the modules in the existing diffusion
model backbone, which treat the temporal dimension the
same as the batch dimension and only work on the pixel and
channel dimension. The yellow blocks are the Fourier tem-
poral convolution blocks, which only perform on the tempo-
ral and channel dimension. Therefore, our model is highly
parallelizable and adds minimal computation complexity to
the original backbone. Again, suppose the temporal domain
is discretized into {t1, . . . , tM}. The DSNO takes as input
the time embeddings at these times and the initial condition.
The feature map of the first convolution layer is repeated
M times over the temporal dimension as the initial feature
at different times. Each feature representation is combined
with the corresponding time embedding in the following
ResNet blocks.

Training of DSNO Training DSNO is a standard operator
learning setting. The training objective is a weighted integral
of the error:

min
θ

ExT∼N (0,I)

∫
D

λ(t)∥Gθ(xT )(t)− G†(xT )(t)∥dt,
(10)

where θ is the parameter of DSNO, λ(t) is the weighting
function, xT is the initial condition, and ∥ · ∥ is a norm. In
practice, we optimize over θ to minimize the empirical-risk
similar to Kovachki et al. (2021b):

min
θ

1

N

N∑
j=1

1

M

M∑
i=1

λ(ti)∥Gθ(x
(j)
T )(ti)− G†(x

(j)
T )(ti)∥,

(11)
where {t1, . . . , tM} are discrete points in the temporal do-
main, and G†(x

(j)
T )(ti) can be generated from any existing

solver or sampling method.

Parallel decoding As shown in the top two yellow blocks
in Figure 1, the proposed Fourier temporal convolution

4



Fast Sampling of Diffusion Models via Operator Learning

block can predict images at different times in parallel. Given
any input function u(t), we can compute the Fourier coef-
ficient R · Fu and then call the inverse Fourier transform
at all ti in parallel to generate output for different times
at once. Plus, the other modules of DSNO treat temporal
dimension like batch dimension and can perform in parallel
for different tis. Therefore, DSNO is capable of efficient
parallel decoding. Note that the effectiveness of our parallel
decoding is based on the fact that the solutions of the diffu-
sion ODE at different times are conditionally independent
given the initial condition. Parallel decoding has shown
its efficiency in transformers-based models (Chang et al.,
2023) and language models (Ghazvininejad et al., 2019) for
discrete tokens generation in the spatial domain. DSNO is
the first parallel decoding method for continuous diffusion
ODE trajectory, which is in temporal domain.

Compact power spectrum. We examine the spectrum of
the probability flow ODE trajectories generated from sev-
eral publicly available pre-trained diffusion models in the
literature, and observe that the ODE trajectories always have
a compact energy spectrum over the temporal dimension.
See more details in Appendix A.1. The smoothness of the
diffusion ODE trajectory means the high-frequency modes
do not contribute much to the learning objective. Therefore,
DSNO built upon the stacks of Fourier temporal convolution
layers can model the underlying solution operator of diffu-
sion ODEs more efficiently with a relatively small number
of discretization steps M .

4. Experiments
In our experiments, we examine the proposed method
on both unconditional and conditional image generation
tasks. We show that our method dramatically accelerates
the sampling process of diffusion models, compared to ex-
isting fast sampling methods including both training-free
and training-based approaches. Our code is available at
https://github.com/devzhk/DSNO-pytorch.

4.1. Experimental setup

We first randomly sample a training set of ODE trajecto-
ries using the pre-trained diffusion model to be distilled.
We then build the network backbone for DSNO by sim-
ply adding the proposed temporal convolution layers to the
above diffusion model. We initialize the modules from the
existing architecture with the pre-trained weights. As for
the activation function in the temporal convolution layer,
we use the leaky rectified linear unit (LeakyReLU) for σ.
We mainly use ℓ1 loss for the experiments on CIFAR10 and
ImageNet-64. We also experiment with LPIPS (Zhang et al.,
2018) loss on CIFAR10 like one concurrent work (Song
et al., 2023) does. Regarding the choice of the loss weight-
ing function, we set λ(t) = αt

σt
, which is the square root

Table 1. Comparison of fast sampling methods on CIFAR-10 for
diffusion models in the literature. The FID score is computed
with the original FID implementation to compare with the other
methods. NFE: number of function evaluations.

Method NFE FID Model size

Ours 1 3.78 65.8M

Knowledge distillation
(Luhman & Luhman, 2021) 1 9.36 35.7M

Progressive distillation
(Salimans & Ho, 2021) 1 9.12 60.0M

2 4.51
4 3.00

LSGM (Vahdat et al., 2021) 147 2.10 475.0M

GGDM + PRED + TIME
(Watson et al., 2021) 5 13.77 35.7M

10 8.23

DDIM (Song et al., 2020a) 10 13.36 35.7M
20 6.84
50 4.67

SN-DDIM (Bao et al., 2022) 10 12.19 52.6M

FastDPM (Kong & Ping, 2021) 10 9.90 35.7M

DPM-solver (Lu et al., 2022) 10 4.70 35.7M

DEIS (Zhang & Chen, 2022) 10 4.17 -

Diffusion + GAN

TDPM (Zheng et al., 2022) 5 3.34 35.7M
DDGAN (Xiao et al., 2021) 4 3.75 -

of the SNR loss weighting used in the original diffusion
model (Salimans & Ho, 2021). We take the square root be-
cause our loss function is not squared. We use a batch size
of 256 for CIFAR-10 experiments, a batch size of 2048 for
ImageNet experiments, and a batch size of 128 by default
in our ablation study. We use the same base learning rate
of 0.0002, learning rate warmup schedule, and β1, β2 of
Adam (Kingma & Ba, 2014) as used in the diffusion model
training without tuning these hyperparameters.

Evaluation metric We use the Frechet inception dis-
tance (FID) (Heusel et al., 2017) to evaluate the quality
of generated images. FID score is computed by compar-
ing 50,000 generated images against the corresponding ref-
erence statistics of the dataset. We use the ADM’s Ten-
sorFlow evaluation suite (Dhariwal & Nichol, 2021) and
EDM’s evaluation code (Karras et al., 2022) to compute
FID-50K with the same reference statistics. We also report
Recall (Kynkäänniemi et al., 2019) as the secondary metric
of mode coverage for the experiments on ImageNet-64.

5

https://github.com/devzhk/DSNO-pytorch


Fast Sampling of Diffusion Models via Operator Learning

Table 2. Comparison of fast sampling methods on class-conditional ImageNet-64 for diffusion models in the literature. The results of
DDIM and EDM are reported by Karras et al. (2022) using the pre-trained model (Dhariwal & Nichol, 2021).

Method Model evaluations FID score Recall Model size

Ours 1 7.83 0.61 329.2M

Progressive distillation (Salimans & Ho, 2021) 1 15.99 0.60 295.9M
2 7.11 0.63
4 3.84 0.63

EDM (Karras et al., 2022) 79 2.44 0.67 295.9M

DDIM (Song et al., 2020a) 32 5.00 - 295.9M

BigGAN-deep (Brock et al., 2018) 1 4.06 0.48
ADM (Dhariwal & Nichol, 2021) 250 2.07 0.63 295.9M

Table 3. One model evaluation cost tested on V100. We compare
the time cost of a single forward pass of DSNO and the correspond-
ing original backbone. The reported results are averaged over 20
runs. The baseline models are from Salimans & Ho (2021).

Backbone Runtime Model size

CIFAR-10 0.033s 60.00M
DSNO-CIFAR-10 (ours) 0.050s 65.77M

ImageNet64 0.066s 295.90M
DSNO-ImageNet-64 (ours) 0.080s 329.23M

4.2. Unconditional generation: CIFAR-10

Trajectory data collection. We first generate 1 million
trajectories with 512-step DDIM (Song et al., 2020a) using
the pre-trained diffusion model proposed by Salimans &
Ho (2021), and use it to train DSNO. The FID score of the
training set is 2.51, computed over the first 50k data points
in the training set.

Sampling quality and speed. Table 1 compares the pro-
posed DSNO trained with a temporal resolution of 4 against
both training-based and training-free sampling methods in
terms of FID and the corresponding number of model evalua-
tions. DSNO clearly outperforms all the baselines with only
one model evaluation and even achieves a better FID score
than 2-step progressive distillation models. Furthermore, we
compare the cost of one single forward pass of both DSNO
and the original backbone1 on a V100 in a standard AWS
p3.2xlarge instance. For the speed test, we do 20 warm-up
runs to avoid the potential inconsistency arising from the
built-in cudnn autotuner. Since the time cost of progres-
sive distillation grows linearly with the number of sampling
steps, we can easily calculate the speedup of DSNO over
the progressive distillation from Table 3. DSNO is 2.6 times

1The progressive distillation only has JAX implementation. We
implement its backbone in Pytorch and port the pre-trained weights
from the official JAX checkpoint so that we can make a fair speed
comparison within the same framework.

faster than the 4-step progressive distillation model and 1.3
times faster than 2-step progressive distillation model. Com-
pared to hybrid models that combine GAN and diffusion
models, DSNO achieves comparable performance with at
most one-fourth number of model evaluations.

4.3. Conditional generation: ImageNet-64

Trajectory data collection. We generate 2.3 million tra-
jectories with 16-step progressive distillation (Salimans &
Ho, 2021) using the pre-trained diffusion model from its
official code base. The FID score of the generated training
set is 2.70, computed over the first 50k training data points.

Sampling quality and speed. Table 2 compares DSNO
trained with a temporal resolution of 4 against the recent ad-
vanced fast sampling methods for diffusion models. DSNO
clearly outperforms 1-step progressive distillation model
and archives comparable FID 2-step models of progressive
distillation with only one model evaluation. From Table 3,
DSNO has 1.7 times speedup over progressive distillation.
The recall of DSNO is comparable to ADM’s, showing that
DSNO inherits the original diffusion model’s diversity/mode
coverage as it learns to solve the probability flow ODE.

Trajectory prediction and reconstruction. Figure 2 com-
pares the trajectories predicted by DSNO and the original
ODE solver, respectively, for the fixed random seed with
a temporal resolution 4. We see that the DSNO predicted
trajectory highly matches the groundth-truth ODE trajectory,
which demonstrates the effectiveness of DSNO with parallel
decoding. Besides, Figure 3 shows the random samples
from DSNO and the original pre-trained diffusion model
with the same random seed. It is clear that the mapping
from Gaussian noise to the output image is well-preserved.

4.4. Ablation study

In this section, we study the effect of different model
choices, including the temporal convolution blocks, loss
weighting function, temporal resolution, time discretization

6



Fast Sampling of Diffusion Models via Operator Learning

Figure 2. Comparison between the trajectory predicted by DSNO
and that from the original solver on ImageNet-64, for the fixed ran-
dom seed with a temporal resolution 4. Upper row: the prediction
by DSNO. Lower row: the trajectory generated by solver.

scheme, and loss function, by performing ablation studies
on CIFAR-10. Without stated explicitly, we use batch size
128 and ℓ1 norm for the loss function.

Temporal convolution block. We first investigate the im-
pact of temporal convolution by comparing the performance
of architectures with and without temporal convolution
blocks. All the other settings are kept the same such as
temporal resolution 4, quadratic time discretization scheme,
the square root of the SNR weighting function, and batch
size 256. As reported in Table 4, the temporal convolution
design is crucial to DSNO’s performance as its kernel inte-
gration operator nature is a better model inductive bias to
model the trajectory in time.

Loss weighting. The loss weighting function used in the
training objective of Diffusion models(Ho et al., 2020; Song
et al., 2020b) typically distributes more weights to the small
times, which is important to training diffusion models. We
also adopt such a weighting function since it is generally
harder to control the error at small times. We observe that
such loss weighting function benefits the training of DSNO.
As reported in Table 5, using the square root of the SNR
weighting function slightly improves the FID by 0.35.

Figure 3. Upper panel: random samples generated by DSNO. Bot-
tom panel: generated by the solver.

Time discretization scheme. How to discretize the tem-
poral domain is important to the performance of the numeri-
cal solvers. Some small changes to the time discretization
scheme could lead to very different sample qualities as
shown in (Karras et al., 2022; Zhang & Chen, 2022). DSNO
also needs to choose a way to discretize the temporal do-
main. Here we consider the two most common choices
of time discretization schemes in the literature: uniform
time step and quadratic time step. As shown in Table 5,
the quadratic time step is slightly better than the uniform
time step by 0.12, showing that DSNO is not sensitive to the
different time discretization schemes used in the existing
solvers and can work nicely with different solvers.

Temporal resolution. We study the effect of temporal
resolution (i.e., the discretization steps M ), given the square
root of SNR weighting function and the quadratic time dis-
cretization scheme. As reported in Table 6, the FID im-
proves as we increase the temporal resolution. Since the
higher temporal resolution introduces more supervision into
the training, it is reasonable to expect better FID scores.
However, higher resolution also results in higher compu-
tation costs. Since increasing the resolution from 4 to 8

7



Fast Sampling of Diffusion Models via Operator Learning

Table 4. Impact of temporal convolution. We compare the per-
formance of architectures with and without temporal convolution
blocks while keeping all other settings the same.

Training steps U-Net U-Net + Temporal Conv

300k 8.09 4.23
400k 7.85 4.12

Table 5. Ablation study on the choice of training loss weighting
and time discretization scheme. The temporal resolution is fixed
to 4 in this group of experiments.

Loss weighting Uniform SNR0.5

FID 4.56 4.21

time discretization scheme Uniform Quadratic
FID 4.33 4.21

only provides a marginal benefit (due to the compact spec-
trum we observed in Appendix A.1), one may use temporal
resolution 4 for better efficiency.

Loss function. We only vary the loss function but keep
the other settings the same, including a batch size of 256,
a temporal resolution of 4, and a quadratic discretization
scheme. As shown in Table 7, using the original VGG-based
LPIPS loss (Zhang et al., 2018) instead of the standard ℓ1

loss leads to a further improvement in the FID score.

5. Related work
ODE-based sampling. ODE-based samplers are much
more widely used in practice (Rombach et al., 2022) than
SDE-based methods because they can take large time steps
by leveraging some useful structures of the underlying ODE
such as semi-linear structure and the form of exponentially
weighted integral (Lu et al., 2022; Zhang & Chen, 2022).
Existing works (Song et al., 2021; Bao et al., 2021; Zhang &
Chen, 2022; Dockhorn et al., 2022) have greatly reduced the
number of discretization steps to 10-50 in time while keep-
ing the approximation error small to generate high-quality
samples. The exponentially weighted integral structure of
the solution trajectory revealed by prior works also inspired
our design of the temporal convolution block.

Operator learning for solving PDEs. Neural operators
are deep learning models that are designed for mappings
between function spaces, i.e., continuous functions (Li et al.,
2020b; Kovachki et al., 2021a). They are widely deployed
as the de facto deep learning models in scientific comput-
ing when dealing with partial differential equations (PDE).
Among these methods, Fourier neural operator stands out
and is one of the most efficient machine learning methods
for scientific computing problems involving PDE (Yang
et al., 2021; Wen et al., 2022). It is shown to possess the cru-

Table 6. Ablation study on the choice of the temporal resolution.

Temporal resolution 2 4 8

FID 5.01 4.21 3.98

Table 7. Ablation study on the choice of the loss function. For
LPIPS, we use the original VGG-based version without any cali-
bration (Zhang et al., 2018).

Loss function ℓ1 LPIPS

FID 4.12 3.78

cial discretization invariance and universal approximation
properties of universal operators (Kovachki et al., 2021a;b),
which motivates our design of the temporal convolution
block in our method.

Training-based sampling. Training-based methods typi-
cally train a neural network surrogate to replace some parts
of the numerical solver or even the whole solver. This
category includes various methods from diverse perspec-
tives such as knowledge distillation (Luhman & Luhman,
2021; Salimans & Ho, 2021), learning the noise schedule
(Lam et al., 2021; Watson et al., 2021), learning the reverse
covariance (Bao et al., 2022), which require extra training.
Training-based methods usually work in the few-step regime
with less than 10 steps. Direct Luhman & Luhman (2021)
is the first work to get descent sample quality on CIFAR10
with one model evaluation but it suffers from overfitting
and its sampling quality drops dramatically compared to the
original sampling methods of diffusion models. The current
SOTA progressive distillation (Salimans & Ho, 2021) re-
duces the number of steps down to 4-8 without losing much
sample quality. However, it has the same issue as knowledge
distillation in the limit of one function evaluation. Some
other methods (Xiao et al., 2021; Vahdat et al., 2021; Zheng
et al., 2022) combine diffusion models with other generative
models such as GAN and VAE to enable fast sampling.

6. Conclusion and discussion
In this paper, we propose diffusion model sampling with
neural operator (DSNO) that maps the initial condition,
i.e., Gaussian distribution, to the continuous-time solution
trajectory of the reverse diffusion process. To better model
the temporal correlations along the trajectory, we introduce
temporal convolution layers into the given diffusion model
backbone. Experiments show that our method achieves
the SOTA FID score of 3.78 for CIFAR-10 and 7.83 for
ImageNet-64 with only one model evaluation. Our method
is a big step toward real-time sampling of diffusion models,
which can potentially benefit many time-sensitive applica-
tions of diffusion models.

8



Fast Sampling of Diffusion Models via Operator Learning

Acknowledgements
We would like to thank the reviewers and the area chair
for their constructive comments. Anima Anandkumar is
supported in part by Bren professorship. This work was
done partly during Hongkai Zheng’s internship at NVIDIA.

References
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola,

T., and Agrawal, P. Is conditional generative model-
ing all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-dpm: an
analytic estimate of the optimal reverse variance in diffu-
sion probabilistic models. In International Conference
on Learning Representations, 2021.

Bao, F., Li, C., Sun, J., Zhu, J., and Zhang, B. Estimating
the optimal covariance with imperfect mean in diffusion
probabilistic models. arXiv preprint arXiv:2206.07309,
2022.

Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu,
J. All are worth words: A vit backbone for diffusion
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 22669–
22679, 2023.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama, J.,
Jiang, L., Yang, M.-H., Murphy, K., Freeman, W. T.,
Rubinstein, M., et al. Muse: Text-to-image genera-
tion via masked generative transformers. arXiv preprint
arXiv:2301.00704, 2023.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Dockhorn, T., Vahdat, A., and Kreis, K. GENIE: Higher-
Order Denoising Diffusion Solvers. In Advances in Neu-
ral Information Processing Systems, 2022.

Ghazvininejad, M., Levy, O., Liu, Y., and Zettlemoyer, L.
Mask-predict: Parallel decoding of conditional masked
language models. arXiv preprint arXiv:1904.09324,
2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
arXiv preprint arXiv:2206.00364, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kong, Z. and Ping, W. On fast sampling of diffusion proba-
bilistic models. arXiv preprint arXiv:2106.00132, 2021.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
In ICLR, 2021.

Kovachki, N., Lanthaler, S., and Mishra, S. On universal
approximation and error bounds for fourier neural opera-
tors. Journal of Machine Learning Research, 22:Art–No,
2021a.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021b.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and
Aila, T. Improved precision and recall metric for assess-
ing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Lam, M. W., Wang, J., Huang, R., Su, D., and Yu, D.
Bilateral denoising diffusion models. arXiv preprint
arXiv:2108.11514, 2021.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

9



Fast Sampling of Diffusion Models via Operator Learning

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilis-
tic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Luhman, E. and Luhman, T. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021.

Meng, C., Gao, R., Kingma, D. P., Ermon, S., Ho, J., and
Salimans, T. On distillation of guided diffusion models.
arXiv preprint arXiv:2210.03142, 2022.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and
Anandkumar, A. Diffusion models for adversarial purifi-
cation. In International Conference on Machine Learning
(ICML), 2022.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. arXiv preprint arXiv:2212.09748, 2022.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P.,
and Ommer, B. High-resolution image synthesis
with latent diffusion models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. URL https://github.
com/CompVis/latent-diffusionhttps:
//arxiv.org/abs/2112.10752.

Salimans, T. and Ho, J. Progressive distillation for fast sam-
pling of diffusion models. In International Conference
on Learning Representations, 2021.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICLR, 2021.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. arXiv preprint arXiv:2303.01469, 2023.

Vahdat, A., Kreis, K., and Kautz, J. Score-based generative
modeling in latent space. Advances in Neural Information
Processing Systems, 34:11287–11302, 2021.

Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning fast
samplers for diffusion models by differentiating through
sample quality. In International Conference on Learning
Representations, 2021.

Wen, G., Li, Z., Long, Q., Azizzadenesheli, K., Anandku-
mar, A., and Benson, S. M. Accelerating carbon cap-
ture and storage modeling using fourier neural operators.
arXiv preprint arXiv:2210.17051, 2022.

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the genera-
tive learning trilemma with denoising diffusion gans. In
International Conference on Learning Representations,
2021.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J.
Geodiff: A geometric diffusion model for molecular con-
formation generation. arXiv preprint arXiv:2203.02923,
2022.

Yang, Y., Gao, A. F., Castellanos, J. C., Ross, Z. E., Az-
izzadenesheli, K., and Clayton, R. W. Seismic wave
propagation and inversion with neural operators. The
Seismic Record, 1(3):126–134, 2021.

Zhang, Q. and Chen, Y. Fast sampling of diffusion
models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 586–595,
2018.

Zheng, H., He, P., Chen, W., and Zhou, M. Truncated diffu-
sion probabilistic models and diffusion-based adversarial
auto-encoders. arXiv preprint arXiv:2202.09671, 2022.

10

https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752


Fast Sampling of Diffusion Models via Operator Learning

A. Appendix
A.1. Energy spectrum

The discrete-time Fourier transform of the signal x(t) with period T is given by

Xj =

N∑
i=1

x(ti) exp

(
−2π

T
jiti

)
, (12)

where ti = iT
N . j

T is the frequency. j is called the frequency mode. Let ∆ = 1
N be the time step. The spectrum is defined as

the product of the Fourier transform of x with its conjugate:

Sj =
2∆2

T
XjX

∗
j , (13)

where X∗
j is the complex conjugate. In practice, the statistics are computed over all pixel locations and channels of randomly

generated trajectories. T = 1 and the sampling frequency is 1000 Hz to avoid aliasing. Figure 4 visualizes the energy
spectrum of ODE trajectories sampled from the diffusion model ”DDPM++ cont. (VP)” trained by (Song et al., 2020b) on
CIFAR10. We observe that most power concentrates in the regime where the frequency mode is less than 5.

Figure 4. Power spectrum of the ODE trajectories sampled from ”DDPM++ cont. (VP)” model trained by (Song et al., 2020b) on
CIFAR10. The mean is computed over all pixel locations and channels of randomly generated trajectories. Most power concentrates in the
≤ 5 Hz regime. The shaded region represents the maximum and minimum power.

A.2. Background: neural operators

Let A and U be two Banach spaces and G : A → U be a non-linear map. Suppose we have a finite collection of data
{ai, ui}Ni=1 where ai ∼ µ are i.i.d. samples from the distribution µ supported on A and ui = G(ai). Neural operators aim
to learn Gϕ parameterized by ϕ to approximate G from the observed data by minimizing the empirical risk given by

min
ϕ

Ea∼µ∥G(a)−Gϕ(a)∥U ≈ min
ϕ

1

N

N∑
i=1

∥ui −Gϕ(ai)∥U . (14)

The architecture of neural operators is constructed as a stack of kernel integration layers where the kernel function is
parameterized by learnable weights. This architecture utilizes the convolution theorem on abelian groups. Among different
neural operator architectures, Fourier neural operator (Li et al., 2020a) stands out and is one of the most efficient machine
learning methods for scientific computing problems involving PDE (Yang et al., 2021; Wen et al., 2022). It is shown to
possess the crucial discretization invariance and universal approximation properties of universal operators (Kovachki et al.,
2021a;b).

11



Fast Sampling of Diffusion Models via Operator Learning

A.3. Extended set of generated samples

We provide an extended set of randomly generated samples from our ImageNet-64 model in Figure 5.

Figure 5. Random samples generated from DSNO on ImageNet-64.

A.4. Generalization to different resolution

Figure 6 visualizes the predicted trajectory of DSNO in temporal resolution 8 on ImageNet-64 while it is trained on temporal
resolution 4. Although the resulting trajectories do not look perfectly smooth, it still demonstrates the generalization ability
of DSNO to unseen time resolutions.

A.5. Further discussion

Future work There are several directions we leave as future work. First, guided sampling of diffusion models is widely
used in various applications but accelerating guided sampling is also more challenging (Meng et al., 2022). How to adapt
DSNO for sampling Guided diffusion model will be an interesting next step. Second, the temporally continuous output of
DSNO provides another level of flexibility compared to distillation-based methods and is readily available for applications
such as DiffPure (Nie et al., 2022) that require fast forward/backward sampling from diffusion models at various temporal
locations. DSNO could potentially reduce the inference time in those applications. We leave the exploration of those
applications to future work. Last but not least, transformer-based architectures have shown their promising capacity for
diffusion models (Peebles & Xie, 2022; Bao et al., 2023) in high-resolution image generation. It is natural to integrate
our temporal convolution layers into these diffusion transformers as the temporal blocks operate solely on the temporal
dimension regardless of how the pixel space is modeled. The resulting new architecture could also potentially serve as a new
architecture design for other problems where the dynamics are continuous in time.

Reducing data collection cost with advanced solvers. While we primarily use DDIM solver to collect data for fair
comparison in this paper, it is worth noting that advanced numerical solvers like DPM solver(Lu et al., 2022) can approximate
the solution operator with less computation cost, which will greatly speed up our training data generation process. Our final
implementation includes examples of using DPM solvers in our GitHub repository https://github.com/devzhk/DSNO-pytorch.

12

https://github.com/devzhk/DSNO-pytorch


Fast Sampling of Diffusion Models via Operator Learning

Figure 6. The predicted trajectory of DSNO with a temporal resolution of 8 on ImageNet-64. We train the DSNO with a temporal
resolution of 4 and then use it to predict the trajectory with a temporal resolution of 8. Time locations marked green are the points that
DSNO is trained with. Black time locations are the points that DSNO never saw in the training set.

13


