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ABSTRACT

To date, 2:4 sparsity has stood as the only sparse pattern that can be accelerated
using sparse tensor cores on GPUs. In practice, 2:4 sparsity often possesses low
actual speedups (≤ 1.3) and requires fixed sparse ratios, meaning that other ratios,
such as 4:8, 8:16, or those exceeding 50% sparsity, do not incur any speedups on
GPUs. Recent studies suggest that V:N:M sparsity is promising in addressing
these limitations of 2:4 sparsity. This sparsity divides a weight matrix into mul-
tiple V×M blocks, pruning (M-4) columns within each block and applying 2:4
sparsity to the remaining columns. V:N:M sparsity inherently encompasses 2:4
sparsity but allows for higher and more flexible pruning ratios, typically resulting
in greater practical speedups. However, regarding accuracy, the effects of V:N:M
sparsity on broader Transformer models, such as vision Transformers and large
language models (LLMs), are largely unexamined. Moreover, Some specific is-
sues related to V:N:M sparsity, such as how to select appropriate V and M values,
remain unresolved. In this study, we thoroughly investigate the application of
V:N:M sparsity in vision models and LLMs across multiple tasks, from pretaining
to downstream tasks. We propose three key approaches to enhance the applica-
bility and accuracy of V:N:M-sparse Transformers, including heuristic V and M
selection, V:N:M-specific channel permutation and three-staged LoRA training
techniques. Experimental results show that, with our methods, the DeiT-small
achieves lossless accuracy at 64:2:5 sparsity, while the DeiT-base maintains ac-
curacy even at 64:2:8 sparsity. In addition, the fine-tuned LLama2-7B at 64:2:5
sparsity performs comparably or better than training-free 2:4 sparse alternatives on
downstream tasks. More importantly, V:N:M-sparse Transformers offer a wider
range of speedup-accuracy trade-offs compared to 2:4 sparsity. Overall, our explo-
ration largely facilitates the V:N:M sparsity to act as a truly effective acceleration
solution for Transformers in cost-sensitive inference scenarios.

1 INTRODUCTION

Transformer has gained significant popularity as backbones across various domains due to its re-
markable performance in data modeling and scalability. However, Transformers are often charac-
terized by a large number of parameters and high computational demands, resulting in prolonged
inference latency. It is essential to compress Transformer models for efficient inference, especially
in resource-constrained or latency-sensitive applications.

One possible way to accelerate Transformers is 2:4 sparsity, where only two out of every consecutive
four parameters are retained in weight tensors. 2:4 sparsity is widely supported by Nvidia Ampere
or newer GPUs. However, the current ecosystem for 2:4 sparsity exhibits three weaknesses that are
rarely addressed. 1) Low practical speedups. Unlike the theoretical claims of a twofold speedup,
in most cases, neural networks with 2:4 sparsity achieve only a speedup in the range of 1.1 to 1.3x
(Cai, 2023; Pool et al., 2021). 2) Only one sparsity pattern, i.e., 2:4, can be accelerated. Other
patterns at 50% sparsity, like 4:8 and 8:16, cannot yield any speedups on existing GPUs. 3) Failure
to exploit higher sparsity ratio. For some Transformer models with high weight redundancy, or
in scenarios where inference overheads are more sensitive while model accuracy can be relatively
relaxed, the optimal sparsity ratio can be larger than 50%, and 2:4 sparsity cannot fully leverage the
potential performance gains from higher sparsity levels.
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To address the weaknesses, Castro et al. (2023) proposes V:N:M sparsity. As shown in Figure
1, V:N:M sparsity divides the weight matrices of linear layers in Transformers into multiple blocks,
each sized V × M. Within each block, (M - 4) columns are pruned, leaving 4 columns that implement
2:4 sparsity. V:N:M sparsity enables practical speedups for sparsity above 50% on GPUs. Notably,
any GPU that supports 2:4 sparsity can also accelerate V:N:M sparsity. Due to higher compression
ratios, V:N:M sparse Transformers deliver greater speedups compared to those using 2:4 sparsity.

The initial work on V:N:M sparsity primarily focuses on designing its acceleration kernel. Impor-
tantly, the impact of V:N:M sparsity on broader Transformer models, such as vision Transformers
and large language models (LLMs) like the Llama series, remains under-explored. Additionally,
fundamental issues regarding V:N:M sparsity, such as how to select appropriate values for V and
M in a Transformer architecture, have never been resolved. Without addressing these issues, V:N:M
sparsity can not comprehensively outperform 2:4 sparsity in compressing Transformers with high re-
dundancy. In this work, we aim to bridge these gaps by systematically investigating the application
of V:N:M sparsity across multiple Transformer models, with a particular emphasis on enhancing
their accuracy. Specifically, our contributions are as follows:

• We propose a framework to enable the generation of highly accurate V:N:M-sparse Trans-
formers under different constraints, which broadens the applicability of V:N:M sparsity.

• We propose three techniques to address challenges specific to V:N:M sparsity. First, we
present a heuristic method for selecting V and M values that yield optimal accuracy-
speedup trade-offs for V:N:M sparse Transformers. Second, we introduce V:N:M-specific
channel permutation, which improves the accuracy of V:N:M-sparse Transformers within
limited training budgets. Finally, we propose a three-stage LoRA training technique that
adapts V:N:M sparsity for LLMs.

• Extensive experiments demonstrate the efficacy of our proposed scheme and techniques.
Impressively, DeiT-base with 64:2:8 sparsity (75% sparse) achieves nearly lossless accu-
racy, with a minimal difference of less than 0.3% compared to the dense counterpart. As
for speedups, the 64:2:8-sparse DeiT-base achieves a 1.7x speedup, while the 2:4 sparsity
only provides a 1.15x speedup compared to the dense counterpart.

Our methods and results demonstrate that in scenarios with high inference costs or stringent latency
requirements, V:N:M sparsity is a superior alternative to 2:4 sparsity for Transformers exhibiting
significant redundancy. We advocate for the inclusion of V:N:M sparsity as a key consideration in
deploying Transformers on GPUs that support 2:4 sparsity.

Figure 1: An example on N:M sparsity and V:N:M sparsity

2 RELATED WORK

Sparsity in Transformers Weight sparsity in Transformers can be categorized into three types: un-
structured sparsity, like S2ViTE (Chen et al., 2021b), SparseGPT (Frantar & Alistarh, 2023), and
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Wanda (Sun et al., 2023); structured sparsity, represented by ViT-Slim (Chavan et al., 2022), VTP
(Zhu et al., 2021), UVC (Yu et al., 2022), and SAViT (Zheng et al., 2022); and semi-structured
sparsity. In particular, semi-structured sparsity generally offers a preferable trade-off between ac-
curacy and speed. Yu et al. (2023) introduce 2:4 sparsity to vision Transformers, demonstrating
that the DeiT series with 2:4 sparsity can maintain a nearly lossless performance. Xu et al. (2024)
implement block-wise sparsity in Transformers, achieving notable speed improvements on neural
processing units. Nevertheless, this approach results in unavoidable accuracy declines. In contrast,
our V:N:M sparse DeiT-base can preserve nearly lossless accuracy even at 75% sparsity. Beyond
weight sparsity, other components, such as tokens and attention heads, can also be pruned in Trans-
formers. Some works in this aspect include T2T-ViT-24 (Yuan et al., 2021), PVT (Wang et al.,
2021), Evo-ViT (Xu et al., 2022), EViT (Liang et al., 2022), DynamicViT (Rao et al., 2021), PS-ViT
(Tang et al., 2022), and AdaViT (Yin et al., 2021). However, in this study, we primarily focus on the
effects of V:N:M sparsity on Transformers, rather than extreme compressing a Transformer.

Optimization for sparse Transformers The sparse Transformers can be retrained to restore accu-
racy. The retraining process can be combined with techniques such as neural architecture search
(Chen et al., 2021a; Chavan et al., 2022). During retraining, sparse masks can be updated period-
ically (Zhang et al., 2023; Lu et al., 2023). To address training instability, SR-STE (Zhou et al.,
2021) proposes suppressing the weights that are masked out, allowing the updated masks to become
progressively consistent as training advances. For large-scale Transformers, such as large language
models (LLMs), post-training pruning (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.,
2024) is effective when sparsity levels are low or moderate (less than 50%). Additionally, some
studies (Kuznedelev et al., 2023; Kale-ab Tessera & Rosman, 2021) indicate that sparse networks
are often under-trained provided with the same number of training epochs as their dense counter-
parts. Our study also finds that as training duration increases, the accuracy of sparse Transformers
improves significantly, while dense Transformers exhibit minimal accuracy gains.

Channel permutation Channel permutation (CP) is extensively utilized in model quantization
(Yuan et al., 2023) and sparsification (Ji et al., 2018; Tan et al., 2022; Lin et al., 2022; Pool &
Yu, 2021). In particular for model sparsity, rearranging the order of weight or activation tensors
prior to pruning can significantly reduce the subsequent one-shot pruning loss. Furthermore, as a
specialized form of teleportation (Zhao et al., 2023; Mishkin et al., 2024), CP enhances the gradient
flow of sparse models during training. However, other methods, such as extended training dura-
tions (Kuznedelev et al., 2023) and gradual pruning strategies (Bambhaniya et al., 2024; Jaiswal
et al., 2022), can also improve gradient flow in sparse models, CP is particularly advantageous in
low-training-budget scenarios, where CP can promote model convergence.

3 PRELIMINARY

Pruning of V:N:M sparsity Pruning a weight matrix W to achieve the V:N:M-sparse pattern in-
volves three steps: 1) Calculate importance scores. First, compute the importance score for each
weight in W. 2) Column Pruning. Next, prune the columns within each V×M block. Within each
block, the L1 norms of the importance scores for each column are compared, and the weights cor-
responding to minimal M−4 columns are pruned. 3) Conduct 2:4 Sparsity. After the column-wise
pruning, each block retains exactly four columns. Subsequently, for each row, the weights corre-
sponding to the last two importance scores are further pruned to establish the final V:N:M-sparse
pattern. For descriptive convenience, we signify this V:N:N-sparse pruning process as SV :N :M .

In this work, there are two commonly used criteria to form the importance score of a weight: the
naive absolute values (ABS) and relative importance and activation (RIA) (Zhang et al., 2024).
Specifically, RIA defines the importance score of a weight Wij as:

RIAij = (
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

)× (∥Xi∥2)a , (1)

where
∑
|W∗j | and

∑
|Wi∗| denote the summation of the absolute values of the input channel j

and output channel i, respectively. ∥Xi∥2 is L2 norms of activations and a is a factor to control
the impact of activations on importance scores. Notably, both ABS and RIA are computationally
efficient pruning criteria.
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Fixed and dynamic mask training for V:N:M sparsity To restore the accuracy of V:N:M-sparse
Transformers, sparse training is essential as V:N:M sparsity lies in high sparsity levels f at least 60%
(V:2:5). At these high levels, merely applying post-training pruning is insufficient to reduce the
significant accuracy loss. Specifically, after pruning a weight matrix, its 0-1 mask M that follows
the V:N:M-sparse pattern can be easily derived. Denote the sparse weight matrix W′ = W ⊙M,
where ⊙ is the element-wise multiplication operator. The weight update mechanism for fixed mask
training is represented as:

W′
t = W′

t−1 − γ∇W′Lt(W
′
t−1) (2)

Meanwhile, the weight update using dynamic mask training in the SR-STE framework is expressed
as:

Wt ←Wt−1 − γ
(
∇WLt(W

′
t−1) + λMt−1 ⊙Wt−1

)
(3)

In Eq. 2 and 3, ∇L denotes the gradient, while γ and λ are the learning rate and regularization
coefficient, respectively. Mt−1 represents the logical not operation of Mt−1 at t− 1, which enables
regularization to only target the pruned weights and gradually decrease their norms. Eq. 2 indicates
that only the retained weights are updated, with the V:N:M-sparse mask M remaining unchanged
after one-shot pruning. In contrast, Eq. 3 gradient-updates the dense W and M is time-variant.

Acceleration of V:N:M sparsity As illustrated in Figure 2(b), the acceleration of V:N:M-sparse
Transformers involves three steps: weight padding, conversion to compressed formats, and the ap-
plication of V:N:M accelerated kernels. First, the weights of all linear layers are zero-padded to
ensure that the input and output channels of weight matrices in linear layers are divisible by M and
V, respectively. Next, the padded weights are converted into sparse storage formats that include
only the compact non-zero values and their indices. The inference kernels then directly take these
sparsely stored weights as input and leverage sparse tensor cores to accelerate V:N:M-sparse matrix
multiplications (MMs) (Castro et al., 2023), as detailed in Appendix A. Due to the effective uti-
lization of higher sparsity greater than 50%, V:N:M-sparse MMs possess fewer computations than
2:4-sparse MMs. Thus, for a dense Transformer, the V:N:M-sparse version typically achieves higher
speedups than its 2:4 counterpart, with maximal end-to-end speedups reaching over 2x.

4 METHODS

Scheme overview We show the process of generating a V:N:M-sparse Transformer with high ac-
curacy in Figure 2(a). Given a pretrained dense Transformer and a specified speedup threshold, a
heuristic approach is employed to select appropriate V and M values for pruning the dense Trans-
former. After that, we consider two distinct scenarios. In the first scenario, where a limited training
budget is available, V:N:M-specific CP, RIA-based pruning, and fixed mask training are sequen-
tially employed. CP and RIA can significantly improve the accuracy of V:N:M-sparse Transformers
upon pruning, while for low training budget constraints, fixed mask training, no matter with full-
parameters or LoRA, incurs significantly lower overhead compared to dynamic mask training as the
mask update costs are canceled.

Table 1: 64:2:5-sparse DeiT-small accu-
racy with update frequencies

Update frequency Top-1 Accu.(%)

Fixed 78.72
1 72.96
5 79.65

10 79.48

In the second scenario, when the training budget is not
constrained, ABS-based pruning and dynamic mask train-
ing are conducted in order. In particular, we use ABS-
based pruning for dynamic mask training as the criterion
performs well provided long training duration (Huang
et al., 2024). As for dynamic mask training, two spe-
cific cases involving full-parameter and LoRA training
are considered. For full-parameter training, the SR-STE
framework formulated using Eq. 3 is employed with one
modification. That is, the sparse masks are updated less frequently, specifically every five epochs in-
stead of the one iteration per update reported in the original approach. As suggested in Table 1, this
reduced update frequency enhances training stability, resulting in improved final accuracy for V:N:M
sparse Transformers. Besides, we propose a three-staged LoRA training technique to train V:N:M-
sparse Transformers under memory constraints, such as during the fine-tuning of LLMs. Overall,
our scheme encompasses three training settings, each corresponding to one branch shown in Figure
2(a). For clarity, these three training settings are designated as TS1, TS2, and TS3, respectively. By
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addressing all the possible conditions, our scheme significantly expands the applicability of V:N:M-
sparse Transformers. Afterward, three key techniques marked with the blue color in Figure 2 in the
scheme are detailed.

Figure 2: The workflow of utilizing V:N:M sparsity for Transformer inference acceleration. a)
The generation process of a V:N:M sparse Transformer, which is our major contribution. b) The
deployment process of the generated V:N:M-sparse Transformer.

4.1 V AND M SELECTION

For a dense Transformer, different V and M value combinations result in different final accuracy and
speedups for its V:N:M-sparse counterparts. Among these combinations, we aim to select the proper
V and M combinations with which a V:N:M-sparse Transformer consistently lies in the Pareto front
in terms of both accuracy and speedups. However, it is often time-consuming to generate a V:N:M-
sparse Transformer via sparse training, before its accuracy can be evaluated. To address this issue,
we propose a heuristic V and M selection strategy including two key factors:

1) Definition. We define the process of solving for optimal combinations of V and M on the
Pareto front as Eq. 4:

argmax
V,M

Accu.{f(w(V,N,M)),dv},

subject to Speedup{f(w), f(w(V,N,M)} ≥ s
(4)

That is, given a specified speedup threshold s, training data dt, and a dense Transformer f(w),
our goal is to identify a proper V and M to maximize the accuracy of the Transformer’s sparse
version f(w(V,N,M)), on validation data dv . This optimization is subject to the constraint that
the speedup of f(w(V,N,M)) relative to f(w) is at least s. In practice, considering the GPU
acceleration affinity, {V∈ 2k|k ∈ N+, k ≥ 4} and {M∈ N+,M≥ 5}. Besides, N≡2 in V:N:M
sparsity if practical speedup is required.

Notably, the Pareto front is defined in our work as the optimization of accuracy subject to speedup
constraints, rather than maximizing speedup under accuracy constraints. This distinction arises from
our observation that the speedups of a V:N:M-sparse Transformer can be measured more rapidly than
its accuracy. Thus, given a specified speedup threshold, it is feasible to quickly obtain all (V, M)
combinations that lead to greater speedups.

2) Sifting. A two-phase sifting is conducted to select the optimal (V, M) combination from all the
(V, M) combinations that meet the given speedup constraints. First, for a group of (V, M) combina-
tions with the same V, it is evident the smallest M results in the highest accuracy of V:N:M-sparse
Transformers, as a smaller M implies lower sparsity in the resulting sparse Transformers. This rule
can be utilized to exclude most (V, M) combinations. Secondly, mask diversity (MD) (Hubara et al.,
2021) is utilized to distinguish the rest of the (V, M) combinations. MD of V:N:M sparsity quantifies
the number of unique masks permissible under the V:N:M sparse pattern constraint. Generally, a
higher MD indicates greater sparse weight configuration flexibility, leading to better Transformer
accuracy. Specifically, the MD of a V:N:M-sparse Transformer is:

MDf =
∏
l

MDl
V :N :M , MDl

V :N :M = [C4
M (CN

4 )V ]
m
V

n
M = K(V,M)mn (5)
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It is straightforward to prove that for the same Transformer, the relative order of different MDf is
entirely determined by the values of V and M, i.e., K in Eq. 5, and is irrespective of the weight
shapes of the linear layers (See Appendix B for the proof). Thus, only calculating K suffices for
comparison and choosing the best (V, M) combination.

4.2 V:N:M-SPECIFIC CHANNEL PERMUTATION FOR LOW TRAINING BUDGET

Table 2: 64:2:5-sparse DeiT-base
accuracy on downstream tasks
with different iterations

Iterations AVG Accu. (%)
1 94.56
2 94.71
3 94.53
4 94.44

To enhance the accuracy of V:N:M-sparse Transformer in sce-
narios with limited training budgets, i.e., only a small number
of training epochs, a V:N:M-specific channel permutation (CP)
approach is proposed and should be conducted before RIA-
based pruning, i.e., as shown in Figure 2(a). Notably, CP for
2:4 and V:N:M sparsity is different. In 2:4 sparsity, only the
input CP of a weight matrix influences the norm of importance
scores of retained weights after pruning. In contrast, V:N:M
sparsity allows both input and output CP to affect the retained
norm. Specifically, both input and output CP for a weight matrix W are:

Y = WX = PT
o PoWPiP

T
i X = PT

o WpP
T
i X, (6)

where Po and Pi are output CP and input CP matrices, respectively. Wp is the weight matrix
after CP. After conducting V:N:M-sparse pruning to the permuted Wp, we aim for the norm of the
importance scores of the retained weights to be maximized, thus the optimization objective is:

arg max
Po,Pi

∑
i,j

RIAij(SV :N :M (Wp)) (7)

We employ alternative optimization to iteratively solve for Po and Pi. Specifically, both Po and Pi

are initialized as identity matrices. In the kth iteration,

Pk+1
i = argmax

Pi

∑
i,j

RIAij(SV :N :M (Pk
oWPi)) (8)

Pk+1
o = argmax

Po

∑
i,j

RIAij(SV :N :M (PoWPk
i )) (9)

Like (Zhang et al., 2024), Eq. 8 or 9 can be approximately modeled as the traditional linear sum
assignment problem, efficiently solvable using Hungarian algorithm(Kuhn, 1955). The total number
of iterations is 2, based on the ablation study presented in Table 2. Note that during inference,
PT

o and PT
i can be fused with post-Layernorm or preceding linear layers in standard Transformers,

generally resulting in negligible time overheads (Zhang et al., 2024).

4.3 THREE-STAGED LORA TRAINING

Figure 3: Gradient norm of Llama2-7B dur-
ing sparse LoRA fine-tuning with dynamic
masks and fixed masks, respectively.

For LoRA training (Hu et al., 2021), the V:N:M
sparse version W′ of a dense weight matrix W is
derived by:

W′ = (W +BA)⊙M, (10)

where B and A are two low rank matrices. Nor-
mally, M is a function of W, B, and A. During
training, W remains fixed while B and A are up-
dated. We propose a three-stage LoRA training tech-
nique to enable dynamic mask training with LoRA
and enhance the accuracy of V:N:M-sparse Trans-
formers. 1) Dense LoRA. At the beginning of train-
ing, standard LoRA fine-tuning is applied to the
Transformer, where the masks M are consistently
all-one matrices. 2) Sparse LoRA with the dynamic
masks. After the dense LoRA, the masks M are up-
dated at regular intervals according to the V:N:M sparse patterns as training progresses, which means
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each update occurs after a fixed number of iterations. During the mask update, the low-rank matrices
B and A are merged with the original dense weight matrix W before calculating the importance
scores and conducting V:N:M-sparse pruning. 3) Sparse LoRA with the fixed masks. While dynamic
mask updates facilitate the exploration of appropriate V:N:M-sparse masks, they can also introduce
instability in the training process. Furthermore, directly applying regularization such as SR-STE, as
illustrated in Eq. 3, is challenging because the LoRA term BA is complex to regularize. Therefore,
in the third stage, we advocate for fine-tuning with fixed masks to balance the exploration and ex-
ploitation of masks. At this stage, the masks M are inherited from the last update in the previous
stage and remain unchanged until the training is completed.

It is important to note that the number of iterations in the first two stages should constitute a smaller
proportion of the total iterations, with the majority allocated to the third stage, i.e., Sparse LoRA
with fixed masks. This is because, in the absence of regularization, frequent updates to the masks
can negatively impact the gradient flow of V:N:M sparse Transformers during fine-tuning. As ex-
emplified in Figure 3, the gradient norms of LoRA with dynmaic masks are consistently lower than
those with fixed masks. In practice, the iterations for the first two stages should not exceed 10% of
the total iterations. More details about our technique are shown in Appendix C .

5 EXPERIMENTS

Models, datasets and tasks To evaluate the proposed V:N:M-sparse Transformer generation
method—which incorporates V and M selection, V:N:M-specific channel permutations, and three
staged LoRA training techniques, three benchmarks have been established: 1) DeiT (Touvron et al.,
2021) for image classification. This benchmark is widely recognized for assessing the efficacy
of model compression techniques in vision Transformers. Given that V:N:M sparsity operates at
high sparsity levels (greater than 50%), the DeiT-tiny is excluded due to insufficient redundancy.
The datasets used for the tasks include ImageNet-1K (Deng et al., 2009), Cifar-10 and Cifar-100
Krizhevsky et al. (2009), Bird and Vehicle from the subset of ImageNet-1K. Note that the latter
four datasets are used to form downstream tasks. 2) Swin Transformers. This category of vision
Transformers, known for its hierarchical architecture and shifted window mechanisms, demonstrates
increased sensitivity to model compression (Liu et al., 2021). In this work, the V:N:M-sparse Swin
Transformers are assessed across two tasks: image classification on the ImageNet-1K dataset and
object detection on the COCO 2017 dataset (Lin et al., 2014). 3) Llama2-7B on downstream tasks in-
cluding predicting the next token on wikitext2 (Merity et al., 2016) and eight well-established 5-shot
tasks (Gao et al., 2021). In addition, the speedups of these V:N:M-sparse Transformers compared
to their dense counterparts are measured on RTX 3090 GPUs, which were also the speed-testing
platform in the initial study.

5.1 RESULTS FOR V AND M SELECTION

Figure 4 compares the accuracy and speedup for V:N:M-sparse Transformers, both with and without
the proposed V and M selection technique. In this experiment, for practical speedups, V is confined
to [16, 32, 64, 128]. Sparse Transformers with varying M values and unified V=64 are selected to
establish the speedup threshold s, as specified in Eq. 4, with 64 representing a central value in
the V distribution. Using the thresholds, the V and M selection technique is applied to derive new
(V, M) and further generate the V:N:M-sparse Transformers accordingly, as indicated by the yellow
lines in Figure 4. Specifically, in Figure 4(a), the V:N:M-sparse DeiT-base models located on the
Pareto front exhibit higher Top-1 accuracy compared to the baseline, achieving a maximum accuracy
improvement of 2.6% under similar speedup conditions. For the Llama2-7B, shown in Figure 4(b),
the maximal average score difference is 3.41. Besides, when appropriate values of V and M are
utilized, the sparse DeiT-base maintains a nearly lossless accuracy of 81.59% while achieving a
speedup of 2.02 relative to its dense counterpart. Similarly, the sparse Llama2-7B achieves a speedup
of 1.65, with a score of 50.85 on 5-shot tasks. Furthermore, it is essential to emphasize that V:N:M-
sparse vision Transformers exhibit substantially greater speedups compared to 2:4 counterparts.
As depicted in Figure 4(a), the 128:2:6-sparse DeiT-base matches the accuracy of the 2:4-sparse
DeiT-base while achieving a 1.71x speedup over its dense counterpart, in contrast to the 2:4-sparse
version, which achieves only a 1.15x speedup. More speedup results of V:N:M-sparse Transformers
are shown in Appendix D and E.
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Figure 4: The speedup-accuracy curves of V:N:M-sparse Transformer. a) Top-1 accuracy of DeiT-
base using TS2 with different V and M values. Accuracy of dense DeiT-base: 81.84%. b) Average
scores of Llama2-7B using TS3 on 5-shot tasks with different V and M values. Average score of
dense Llama2-7B: 61.99. Average score of 2:4-sparse Llama2-7B: 50.76. The speedup-accuracy
curves using TS1 are shown in Figure 10 in Appendix F. More results for larger Transformers are
shown in Figure 11, 12 and 13 in Appendix G, respectively.

5.2 RESULTS FOR V:N:M-SPECIFIC CHANNEL PERMUTATION AND TS1

Table 3: 64:2:5-Sparse Llama2-7B
results under 1500 training iterations.

Pruning
method

Wikitext2
PPL

5-shot
AVG scores

No 11.19 48.44
Ours 11.09 49.69

Since the proposed V:N:M-specific CP is effective for
low-budget training scenarios, we assess this technique on
downstream tasks that allow for a limited number of train-
ing epochs to attain acceptable accuracy. The results, pre-
sented in Tables 3 and 4, were all obtained using TS1. For
vision downstream tasks with a maximum of 30 training
epochs, our technique enhances final accuracy by 0.71%
for full-parameter training and 1.43% for LoRA training.
Notably, when V:N:M-sparse pruning is only applied without any training, the accuracy gap can
increase to 5.87% with or without our technique. For Llama2-7B, which underwent only 1500 train-
ing iterations—a relatively short duration compared to the 50,000 iterations shown in the subsequent
Table 8, our technique improves the 5-shot scores by 1.25. More results are shown in Appendix I.

Table 4: Results of 64:2:5 DeiT-base on downstream tasks with 30 training epochs

Downstream tasks BIRD VEHICLE CIFAR-10 CIFAR-100 Average
∆Dense model (%) 97.8 97.3 98.1 87.54

Permutation Method No Ours ∆ No Ours ∆ No Ours ∆ No Ours ∆

Upon Pruning (%) 81.6 87.6 6 78.6 85.7 7.1 84.42 89.85 5.43 57.65 63.07 5.42 5.87
30 epochs-all params. (%) 96.5 96.9 0.4 95.7 96.4 0.7 97.51 97.73 0.22 85.54 86.65 1.11 0.71

30 epochs-LoRA (%) 96.3 96.9 0.6 94.7 96.4 1.7 97.26 97.73 0.47 83.96 86.65 2.69 1.63

5.3 RESULTS FOR TS2

DeiT on image classification As the training budget is not limited in terms of TS2, the experiments
are to investigate the extent to which the DeiT can be compressed while still achieving nearly lossless
performance, i.e., gap< 0.3%. As shown in Table 5, our TS2 allows DeiT-base to achieve lossless
accuracy at a sparsity level of 75%, represented as 64:2:8. This level of sparsity results in a 73.8%
reduction in parameters and a 71.6% reduction in FLOPs. Similarly, DeiT-small maintains lossless
accuracy at 64:2:5, achieving a 57.9% reduction in parameters and a 54.3% reduction in FLOPs.
Due to computational power limitations, larger Transformers, such as ViT-huge and ViT-giant, were
not included in this investigation. However, it is generally acknowledged that larger models tend to
exhibit greater redundancy. For the ImageNet-1K classification task, larger vision Transformers than
DeiT-base are anticipated to achieve higher sparsity than 64:2:8 while maintaining lossless accuracy.
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Table 5: Results comparison of sparse DeiTs on ImageNet-1K. See Appendix J for detailed descrip-
tion of (↓%), ∆, *, and related works.

Model Param. (M) (↓%) FLOPs (G) (↓%) Top-1 Acc. (%) ∆

DeiT-B 86.6 - 17.6 - 81.84 -
DeiT-B-600e 86.6 - 17.6 - 82.01 +0.17
T2T-ViT-24 64.1 26.0 13.8 21.6 82.30 +0.46
PVT-L 61.4 29.1 9.8 44.3 81.70 -0.14
AutoFormer-B 54.0 37.6 11.0 37.5 82.40 +0.56
SSP-B 56.8 34.4 11.8 33.1 80.80 -1.04
S2ViTE-B 56.8 34.4 11.8 33.1 82.22 +0.38
Evo-ViT 56.3 - 11.7 33.3 80.30 -0.54
EViT-DeiT-B 86.6 - 11.5 34.7 81.50 -0.34
DynamicViT 61.0 - 11.5 34.7 81.30 -0.54
ViT-Slim 52.6 39.3 10.6 39.6 82.40 +0.56
VTP-B 47.3 45.4 10.0 43.2 80.70 -1.14
PS-ViT-B 86.6 - 9.8 44.3 81.50 -0.34
UVC - - 8.0 54.5 80.57 -1.27
SAViT 25.4 70.7 5.3 69.9 81.66 -0.18
NViT-B (ASP) 17 80.4 6.8 61.4 83.29 -0.07*
Ours (64:2:8) 22.7 73.8 5.0 71.6 81.08 -0.76
Ours-600e (64:2:8) 22.7 73.8 5.0 71.6 81.76 -0.08
DeiT-S 22.1 - 4.6 - 79.85 -
DeiT-S-600e 22.1 - 4.6 - 80.02 +0.17
AdaViT-S 22.1 0.0 3.6 21.7 78.60 -1.25
DynamicViT 22.1 - 3.4 26.1 79.60 -0.25
EViT-DeiT-S 22.1 - 3.4 34.8 79.50 -0.35
SSP-S 14.6 33.3 3.1 31.6 77.74 -2.11
S2ViTE-S 14.6 33.3 3.1 31.6 79.22 -0.63
SAViT 14.7 33.5 3.1 31.7 80.11 +0.26
NViT-S (ASP) 10.5 52.5 4.2 8.7 82.19 +0.99*
Ours (64:2:5) 9.3 57.9 2.1 54.3 78.97 -0.68
Ours-600e (64:2:5) 9.3 57.9 2.1 54.3 79.65 -0.2

Swin Transformers The Swin Transformer is generally considered challenging to compress. How-
ever, the V:N:M-sparse Swin Transformer, utilizing our TS2, achieves results comparable to the
state of the art. As shown in Table 6, under identical training epochs, the Swin Transformer at a
sparsity of 32:2:5 achieves the same Top-1 accuracy as LPViT (Xu et al., 2024). Notably, it achieves
a 59.1% reduction in parameters and a 60.4% reduction in FLOPs, which is significantly greater than
LPViT’s 27% reduction in FLOPs relative to its dense counterpart. For object detection, the dense
H-DETR, using Swin-Tiny as the backbone and trained for 24 epochs, is employed to generate the
V:N:M-sparse H-DETR. With TS2 and 12 training epochs, the H-DETR at 32:2:5 achieves a mean
Average Precision (mAP) of 47.8%, outperforming the dense equivalent trained for 12 epochs, by
2.5%. Furthermore, at a sparsity of 32:2:6, the sparse H-DETR with TS2 retains an mAP of 45.3%,
surpassing that with the fixed mask training (FMT) setting by 1.2%. These results demonstrate that
our TS2 is more favorable to the accuracy restoration of V:N:M-sparse Transformers.

Table 6: V:N:M-sparse Swin Transformers on image classification and object detection. See Ap-
pendix J for detailed description of (↓%), ∆ and related works.

Model Method Param.(M) (↓%) FLOPs (G) (↓%) Top-1 Acuu. (%)

Swin-base
Dense 87.8 - 15.4 - 83.51
LPViT 64.1* 27.0 11.24 27.0 81.7

Ours(32:2:5) 35.9 59.1 6.1 60.4 81.7

H-DETR
(Swin-Tiny)

Dense 40.2 - 212.0 - 45.3
Dense-24e 40.2 - 212.0 - 49.2

FMT(32:2:5) 18.1 55.0 93.7 55.8 47.5
Ours(32:2:5) 18.1 55.0 93.7 55.8 47.8
FMT(32:2:6) 15.5 61.4 78.0 63.2 44.1
Ours(32:2:6) 15.5 61.4 78.0 63.2 45.3
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5.4 RESULTS FOR THREE-STAGED LORA TRAINING AND TS3

Table 7: 64:2:5-Sparse Llama2-7B results on
Wikitext2. Training iteration: 50000

PPL Speedup

Dense 5.12 1

SparseGPT (2:4) 10.17 1.26
Wanda (2:4) 11.27 1.26
RIA (2:4) 10.52 1.26
Ours (64:2:5) 9.97 1.49

The experiments aim to demonstrate that the V:N:M-
sparse Llama2, with our TS3 involving three-staged
LoRA training, can achieve performance levels com-
parable to its 2:4-sparse version formed by post-
pruning approaches, e.g., RIA (Zhang et al., 2024).
The LoRA training was conducted over 50,000 sam-
ples, each consisting of 1,024 tokens. Each training
iteration utilizes one sample as input, resulting in a
total of 50,000 iterations. The results show that uti-
lizing our approach, Llama2-7B achieved a perplex-
ity (PPL) of 9.97 on the Wikitext2 dataset, as shown
in Table 7. Additionally, in the 5-shot tasks, the 64:2:5-sparse Llama2-7B scored 53.04, outper-
forming the state-of-the-art RIA-based post-pruning 2:4-sparse counterpart, which yielded a score
of 50.64, as shown in Table 8. Furthermore, the 64:2:5-sparse Llama2-7B delivers a higher speedup
compared to the 2:4 sparsity, achieving a speedup of 1.49 versus 1.26.

Table 8: 5-shot results of 64:2:5-sparse Llama2-7B

OpenBookQA ARC-C ARE-E WinoGrande Hellaswag RTE PIQA BoolQ AVG

Dense 31.40 43.43 76.26 69.06 57.23 62.82 78.08 77.74 61.99

Wanda (2:4) 20.00 30.97 65.24 59.75 39.88 54.51 69.53 66.21 50.76
RIA (2:4) 20.20 30.80 64.77 59.59 40.63 55.23 69.70 64.19 50.64
Ours (64:2:5) 25.80 34.30 64.27 61.80 42.88 56.68 72.03 66.54 53.04

Figure 5: Average scores of V:N:M-sparse
Llama2-7B on 5-shot tasks under different
LoRA finetuning schemes. Dense: 61.99. 2:4-
sparse: 50.76

Ablation study For TS3, five different LoRA
training strategies are explored: A) Sparse LoRA
with fixed masks; B) Dense LoRA combined
with sparse LoRA, using fixed masks; C) Sparse
LoRA with dynamic masks, updated at equal in-
tervals; D) Sparse LoRA with dynamic masks,
utilizing early updates only; E) Our proposed
three-stage training technique. Figure 5 illus-
trates that the proposed technique consistently
achieves the highest scores across various spar-
sity levels, thanks to its optimal balance between
enhanced gradient flow and moderate mask ex-
ploration. In contrast, Scheme C, which employs
dynamic mask updates at equal intervals through-
out the training, produces the lowest scores due
to impaired gradient flow and increased training
instability. Additionally, only using one or two
stages within our technique for LoRA training re-
sults in suboptimal performance. It is evident that the three-staged LoRA training is the most effec-
tive technique for V:N:M-sparse Transformers.

6 CONCLUSION

This study focuses on enhancing the accuracy and accuracy-speedup trade-offs of V:N:M-sparse
Transformers in multiple scenarios. We address the crucial yet unexplored questions specific to
V:N:M sparsity, including selecting appropriate values for V and M, and CP tailored for V:N:M
sparsity. Additionally, we propose a three-staged LoRA training technique, which for the first ex-
tends V:N:M sparsity to LLMs. Extensive experiments demonstrate that, with our methodology,
V:N:M-sparse Transformers can attain nearly lossless accuracy or perform comparably to those with
post-pruning 2:4 sparsity. Given its superior speed performance, we conclude that V:N:M sparsity is
more effective than 2:4 for compressing highly redundant Transformers in inference-cost-sensitive
scenarios. We hope our work to promote the widespread use of V:N:M sparsity as a truly effective
solution for compressing Transformers.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement We are committed to ensuring the reproducibility of our work. The the-
oretical foundations and assumptions underlying our framework are thoroughly discussed in Section
4, and some proofs of our claims are provided in the appendix. Detailed descriptions of our exper-
iments, including the architecture configurations and hyperparameters used for training the V:N:M-
sparse Transformers, can be found in Section 5 of the main text. In addition, We will publicly release
our source code anonymously at the appropriate time. We believe these resources collectively facil-
itate the reproducibility of our findings and ensure that our methodologies can be adopted in future
research without difficulty.
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APPENDIX

A V:N:M SPARSITY DETAILS

As illustrated in Figure 6(a), the sparse weight matrix A is transformed into three smaller, more
compact matrices: An, Ai1, and Ai2. The matrix An contains the non-zero values from the sparse
matrix A, preserving their relative positions; that is, non-zero values in the same rows or columns of
A remain in the same rows or columns in An. The matrix Ai1 lists the indices of the four columns
within each block of An that are designated for 2:4 sparsity. Meanwhile, Ai2 mirrors the shape of
An, with each non-zero value in An having a corresponding index in Ai2 that indicates its position
among four consecutive elements. Figure 6(b) further illustrates the process of V:N:M-sparse matrix
multiplication (MM) using sparse tensor cores. The primary function of the V:N:M-sparse MM
kernel is to retrieve the retained weights and the corresponding tiles of the input matrix B. This is
done to align the data layout with that of a 2:4-sparse MM. By doing so, the sparse tensor core can
efficiently compute the output C in chunks.

Figure 6: Details of V:N:M sparsity. a) An example of converting a V:N:M-sparse matrix to a
compressed format. b) A schematic illustrating the hardware operations for V:N:M-sparse matrix
multiplications.

B PROOF OF THE RELATIVE ORDER FOR MASK DIVERSITY

Suppose we have two different V:N:M sparsity patterns for the same Transformer, adopting different
values of V1, M1 and V2, M2, while N remains constant at N ≡ 2. In this case, for a linear layer,
where the shape of the linear weight is [m,n],

14
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Thus, for a complete network, suppose the linear layer l has a linear weight shape of [ml, nl]. We
calculate the ratio of the MD under two different selections of the V and M parameters for the same
model. The ratio MD1

MD2
can be expressed as follows:
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This indicates that for the same Transformer, as long as K1 > K2, it implies that the overall net-
work’s masking diversity satisfies MD1 > MD2, regardless of the specific shapes of the linear
weights.

Besides, here we would like to further clarify that MD, rather than model parameter counts, serves as
a better indicator for V:N:M-sparse Transformers. We present a specific example in Table 9. Among
three (V, M) configurations including (16, 16), (32, 16) and (128, 15), the 128:2:15-sparse DeiT-
base has the highest parameter count, yet the 16:2:16-sparse DeiT-base, which exhibits the highest
MD, achieves the best accuracy, significantly surpassing the other two configurations. This principle
highlights that **both the sparse granularity determined by V and the retained parameter counts
dictated by M influence the accuracy of V:N:M-sparse Transformers**. Compared to relying solely
on parameter counts, MD accounts for both factors, thereby providing a more accurate measure of
performance.

Table 9: V:N:M-sparse DeiT-Base’s accuracy of 30-epochs LoRA training on downstream tasks.

(V,M) (16,16) (32,16) (128,15)

Params.(M) 10.8 10.8 11.5
Simplified MD 20837 18674 18168

Bird Accuracy (%) 84.1 82.1 79.5
Vehicle Accuracy (%) 77.4 75.2 72.6
CIFAR10 Accuracy (%) 86.5 85.4 84.0
CIFAR100 Accuracy (%) 55.9 53.3 50.5
Average Accuracy (%) 76.0 74 71.7

C DETAILS OF OUR THREE STAGED LORA TRAINING

We would like to detail the configurations used in our three-stage LoRA training as outlined in Table
10. 1) To obtain the initial dynamic sparse masks M for the weight matrix W in the second stage of
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Figure 7: Loss of Llama2-7B during sparse LoRA fine-tuning with dynamic masks and fixed masks,
respectively.

LoRA training, we first merge the LoRA matrices BA with W . RIA-based pruning is then applied
to the merged matrix, where the retained weights are accordingly assigned a value of 1 in M , while
the pruned weights are assigned a value of 0 in M . 2) We set the interval for updating sparse masks
to 20 iterations. A smaller interval can destabilize LoRA training, a phenomenon also noted in DeiT-
base in our paper (Please refer to Table 1 in our paper). 3) We adjust hyperparameters, including the
mask update intervals and update counts, to ensure that the first, second, and third stages account
for approximately 2.5%, 2.5%, and 95% of the total training, respectively. 4) Following standard
practice, we use 1,024 tokens for each training iteration, resulting in a total of 12 million tokens for
our LoRA training. 5) The ranks of the LoRA matrices, specifically A and B, are set to 16, with
LoRA α configured to 32 to maintain the regular setting of α/rank = 2. 6) All the linear layers in
Llama2 are equipped with LoRA training.

Besides, to further intuitively illustrate the necessity for infrequent mask updates, we present the
loss change curves for sparse LoRA fine-tuning with both fixed and dynamic masks. As depicted
in Figure 7, constant mask updates result in a progressively higher training loss compared to the
fixed-mask training as the training progresses.

Table 10: Details of our three-staged LoRA training

Items Settings

Initial of dynamic sparse masks RIA-based pruning
Interval of updating sparse masks 20 iterations per update
Actual training iteration assignment (A total of 12000) First stage: 320; Second stage:

320; Third stage: 11360
Overall LoRA training tokens 1024 tokens $ imes$ 12000 iterations = 12 million

tokens
LoRA rank 16
LoRA α 32
LoRA modules in Llama2 q porj, k proj, v proj, o proj, up proj, gate proj,

down proj
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D DETAILED SPEEDUP RESULTS OF V:N:M-SPARSE TRANSFORMERS

We present additional end-to-end speedup results for V:N:M-sparse Transformers, as illustrated in
Figures 8 and 9. It is noteworthy that permutation overheads are excluded from these measurements,
as the permutation operator can theoretically be fused with matrix multiplication or LayerNorm
operations, as already demonstrated by (Zhang et al., 2024). For the Llama2 model, we find the
speedup increases monotonically as the values of V and M grow larger. In contrast, the speedup for
the DeiT series shows some fluctuations, primarily due to the additional inference time overheads
caused by weight padding, which slightly reduces the overall speedup for smaller Transformers.
However, as the depth and width of the Transformer increase, these fluctuations diminish rapidly.

Figure 8: The Speedup of different model sizes (deit-large, huge, giant) under different sparsity.
Here the speedup of dense models: 1.

Figure 9: The Speedup of Llama2 models under different sparsity. Here the speedup of dense mod-
els: 1.
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E V AND M SELECTION UNDER DIFFERENT BATCH SIZES

When varying the batch size, the selected values for V and M differ accordingly. For example,
the results for Llama2-7B at various batch sizes are shown in Table 11. The speedup thresholds are
randomly generated from the range [1, 2.5]. Since the speedup of a V:N:M-sparse Transformer com-
pared to its dense counterpart varies with different batch sizes, the selection results will also differ.
We consider this phenomenon to be normal and it does not impact our technical contributions. In
practical LLM inference systems, especially in cloud environments, multiple queries are often con-
catenated into a fixed batch before inference, which scenario is still suitable for the application of
our techniques.

Table 11: Selected V and M values of Llama2-7B under different batch sizes (BS). (X,4) means 2:4
sparsity.

Speedup threshold 1.14 1.26 1.34 1.52 1.65 1.88 2.12

BS=1 Selected (V,M) (X, 4) (X, 4) (64, 5) (128, 5) (128, 5) (128, 7) (128, 8)
Speedup 1.26 1.26 1.49 1.65 1.65 1.99 2.16

BS=2 Selected (V,M) (X, 4) (64, 5) (64, 5) (128, 5) (128, 6) (128, 8) (128, 10)
Speedup 1.19 1.36 1.36 1.54 1.7 2.01 2.17

BS=4 Selected (V,M) (64, 5) (64, 5) (128, 5) (128, 6) (128, 7) (128, 8) (128, 11)
Speedup 1.26 1.26 1.45 1.6 1.74 1.88 2.12

BS=8 Selected (V,M) (64, 5) (128, 5) (128, 5) (128, 6) (128, 7) (128, 9) (128, 13)
Speedup 1.14 1.34 1.34 1.55 1.68 1.88 2.14

BS=16 Selected (V,M) (64, 5) (128, 5) (128, 6) (128, 7) (128, 8) (128, 11) (128, 13)
Speedup 1.14 1.29 1.41 1.55 1.72 1.91 2.12

F SPEEDUP-ACCURACY CURVES OF DEIT-BASE ON DOWNSTREAM TASKS

Our V and M selection technique is applicable across all three training settings: TS1, TS2, and TS3.
Therefore, it is essential to also evaluate our method using TS1, as shown in Figure 10. We present
the average Top-1 accuracy of the DeiT-base model on the Bird, Vehicle, Cifar-10, and Cifar-100
datasets for different V and M values. The results clearly demonstrate that our V and M selection
enhances the speedup-accuracy trade-off for the DeiT-base on downstream tasks. Notably, to achieve
acceptable accuracy in these tasks, it is recommended that the V:N:M sparsity not be set too high.

Figure 10: Average Top-1 accuracy of DeiT-base on downstream tasks with different V and M
vlaues. Average Top-1 accuracy of dense DeiT-base: 95%.
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G SPEEDUP-ACCURACY CURVES OF LARGER V:N:M-TRANSFORMERS

To further validate our method on larger-scale Transformers, we have extended our proposed V and
M selection method to three additional representative models: ViT-large, ViT-huge, and Llama2-
13B. Notably, Llama2-13B undergoes LoRA training on the same datasets as Llama2-7B, specifi-
cally Wikitext2 and Alpaca (Taori et al., 2023), which aligns with standard practices in the fine-tun-
ing of LLMs. The experimental results, presented in Figures 11, 12, and 13, respectively, demon-
strate that V:N:M-sparse Transformers employing our selection method consistently achieve supe-
rior accuracy-speedup trade-offs compared to those that do not. It is clear that our V and M selection
method significantly enhances these trade-offs, even for large-scale V:N:M-sparse Transformers.
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Figure 11: Average Top-1 accuracy of ViT-large on downstream tasks with different V and M vlaues.
Average Top-1 accuracy of dense ViT-large: 94.5%.
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Figure 12: Average Top-1 accuracy of ViT-huge on downstream tasks with different V and M vlaues.
Average Top-1 accuracy of dense ViT-huge: 93%.

H THE ROLE OF RIA-BASED PRUNING IN OUR FRAMEWORK

Table 12 demonstrates that, under limited training budget constraints, RIA-based pruning is more
effective than ABS-based pruning for improving the accuracy of V:N:M-sparse Transformers on
downstream tasks. This advantage holds true regardless of whether the V:N:M-sparse Transformers
are obtained through LoRA or full-parameter training. Specifically, RIA-based pruning combined
with our CP technique can enhance the accuracy of a 64:2:5 DeiT-base Transformer by up to 1.63%
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Figure 13: Average scores of Llama2-13B using TS3 on 5-shot tasks with different V and M values.
Average score of dense Llama2-13B: 68.23. Average score of 2:4-sparse Llama2-7B: 56.78.

after 30 epochs of LoRA training. In contrast, ABS-based pruning only achieves a 0.52% accuracy
improvement for the same model and training duration.

Table 12: Performance of 64:2:5-sparse DeiT-base on downstream tasks with RIA and ABS -based
pruning, respectively.

Downstream tasks BIRD VEHICLE CIFAR-10 CIFAR-100
AverageDense model(%) 97.8 97.3 98.1 87.54

Permutation Method Importance Score No Ours ∆ No Ours ∆ No Ours ∆ No Ours ∆

Upon Pruning (%)
RIA

81.6 87.6 6.0 78.6 85.7 7.1 84.42 89.85 5.43 57.65 63.07 5.42 5.87
30 epochs-all params (%) 96.5 96.9 0.4 95.7 96.4 0.7 97.51 97.73 0.22 85.54 86.65 1.11 0.71
30 epochs-LoRA (%) 96.3 96.9 0.6 94.7 96.4 1.7 97.26 97.73 0.47 83.96 86.65 2.69 1.63

Upon Pruning (%)
ABS

41.2 43.1 1.9 29.4 43.4 14.0 37.09 35.40 -1.69 10.70 15.01 4.31 4.63
30 epochs-all params (%) 96.0 95.9 -0.1 95.4 95.3 -0.1 97.39 97.50 0.11 84.83 85.63 0.80 0.18
30 epochs-LoRA (%) 95.9 95.8 -0.1 94.1 95.4 1.3 96.68 97.03 0.35 82.80 83.35 0.55 0.52

I EFFECTIVENESS OF V:N:M-SPECIFIC CP UNDER DIFFERENT SPARSITY

To further illustrate the effectiveness of our V:N:M-specific CP, we present additional results regard-
ing CP performance under various V:N:M ratios in the limited-training-budget scenario, as shown
in Tables 13, 14, and 15. The results clearly indicate that our CP method significantly enhances the
accuracy of these V:N:M-sparse Transformers. Besides, our CP typically brings more accuracy gains
for higher sparsity, e.g., achieving an improvement of 4.18% at 64:2:16 compared to an increase of
1.63% at 64:2:5 after 30 epochs of LoRA training.

Table 13: Results of 64:2:16 DeiT-base on downstream tasks with 30 training epochs.

Downstream tasks BIRD VEHICLE CIFAR-10 CIFAR-100
AverageDense model (%) 97.7 97.3 98.1 87.54

Permutation Method No Ours ∆ No Ours ∆ No Ours ∆ No Ours ∆

Upon Pruning (%) 7.40 8.10 0.6 5.00 7.00 2.0 10.8 12.4 1.6 1.00 1.35 0.35 1.14
30 epochs-all params. (%) 84.9 89.9 5.0 77.8 83.5 5.7 89.9 92.7 2.8 64.4 70.7 6.3 4.95
30 epochs-LoRA (%) 79.7 84.1 4.3 74.3 77.4 3.1 82.9 86.5 3.6 50.2 55.9 5.7 4.18

J DETAILS OF SIGNS AND RELATED WORKS IN TABLE 5 AND 6

Table 5 and 6 have the similar headers. In the headers, the first ↓ % always indicates the proportion
of parameter reduction relative to the parameters of the dense model, while the second ↓ % signifies
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Table 14: Results of 32:2:16 DeiT-base on downstream tasks with 30 training epochs.

Downstream tasks BIRD VEHICLE CIFAR-10 CIFAR-100
AverageDense model (%) 97.7 97.3 98.1 87.54

Permutation Method No Ours ∆ No Ours ∆ No Ours ∆ No Ours ∆

Upon Pruning (%) 8.10 6.10 -2.0 6.60 6.20 -0.4 9.98 13.6 3.6 1.24 1.21 -0.03 0.29
30 epochs-all params. (%) 83.1 87.8 4.7 75.0 81.2 6.2 88.1 91.6 3.5 61.2 67.4 6.2 5.15
30 epochs-LoRA (%) 78.8 82.1 3.3 72.9 75.2 2.3 81.2 85.4 4.2 48.2 53.3 5.1 3.73

Table 15: Results of 128:2:15 DeiT-base on downstream tasks with 30 training epochs.

Downstream tasks BIRD VEHICLE CIFAR-10 CIFAR-100
AverageDense model (%) 97.7 97.3 98.1 87.54

Permutation Method No Ours ∆ No Ours ∆ No Ours ∆ No Ours ∆

Upon Pruning (%) 5.00 4.50 -0.5 6.60 7.10 0.5 10.2 12.4 2.2 0.97 1.32 0.35 0.64
30 epochs-all params. (%) 83.2 86.0 2.8 74.0 78.8 4.8 88.1 91.0 2.9 60.8 65.6 4.8 3.83
30 epochs-LoRA (%) 77.2 79.5 2.3 70.4 72.6 2.2 79.7 84.0 4.3 47.0 50.5 3.5 3.08

the proportion of FLOP reduction compared to the FLOPs of the dense model. ∆ means the differ-
ence in accuracy between the related works and dense model. In particular, the symbol * represents
that ∆ is calculated by comparing the performance with the dense counterpart using knowledge
distillation (KD). With KD, the Top-1 accuracy for dense DeiT-base and DeiT-small is 83.36% and
81.2%, respectively.

Besides, the details of related works of both tables are outlined in Table 16 for readers’ convenience.
Among the related works, we would like to provide a detailed comparison of our method with NViT
(Yang et al., 2023), which represents the state-of-the-art in DeiT compression. 1) In terms of ac-
curacy, both our method and NViT achieve nearly lossless Top-1 accuracy for sparse DeiT-base
and DeiT-small. 2) Regarding FLOPs reduction, our method achieves the highest reduction for both
DeiT-base (71.6% ↓) and DeiT-small (54.3% ↓) when compared with NViT and other related works.
3) For parameter reduction, our method achieves the highest reduction for DeiT-small (57.9% ↓)
among related works, while NViT achieves the highest reduction for DeiT-base (80.4% ↓), compared
to our 73.8% ↓. It is noteworthy that NViT combines multiple strategies for compressing DeiTs, in-
cluding global structural pruning, 2:4 pruning, and parameter redistribution. In contrast, our work
focuses solely on V:N:M sparsity and has the potential to further enhance parameter reduction ratios
when combined with other compression strategies. 4) For speedups, both NViT and our method yield
significant practical speedups for sparse DeiTs. Specifically, NViT-B with ASP achieves speedups
of 1.86x and 1.85x on V100 and RTX 3080 GPUs, respectively, while our 64:2:8-sparse DeiT-base
achieves a 2.08x speedup on RTX 3090 GPUs.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 16: Details of related works used in Table 5 and 6

Abbr. Reference Conference

T2T-ViT-24 (Yuan
et al., 2021)

Tokens-to-token vit: Training vision Transformers from
scratch on imagenet

CVPR2021

PVT (Wang et al.,
2021)

Pyramid vision Transformer: A versatile backbone for
dense prediction without convolutions

ICCV2021

AutoFormer (Chen
et al., 2021a)

Autoformer: Searching Transformers for visual recogni-
tion

ICCV2021

S2ViTE (Chen et al.,
2021b)

Chasing sparsity in vision Transformers: An end-to-end
exploration

NeurIPS2021

Evo-ViT (Xu et al.,
2022)

Evo-vit: Slow-fast token evolution for dynamic vision
Transformer

AAAI2022

EViT(-DeiT-B)
(Liang et al., 2022)

Not all patches are what you need: Expediting vision
Transformers via token reorganization

ICLR2022

DynamicViT (Rao
et al., 2021)

Dynamicvit: Efficient vision Transformers with dynamic
token sparsification

NeurIPS2021

ViT-Slim (Chavan
et al., 2022)

Vision Transformer slimming: Multi-dimension search-
ing in continuous optimization space

CVPR2022

VTP (Zhu et al.,
2021)

Vision Transformer Pruning ARXIV2021

PS-ViT (Tang et al.,
2022)

Patch slimming for efficient vision Transformers CVPR2022

UVC (Yu et al.,
2022)

Unified visual transformer compression ICLR2022

AdaViT (Yin et al.,
2021)

Adavit: Adaptive tokens for efficient vision Transformer ARXIV2022

SAViT (Zheng et al.,
2022)

SAVIT: Structure aware vision Transformer pruning via
collaborative optimization

NeurIPS2022

NViT (Yang et al.,
2023)

Global vision Transformer pruning with hessian-aware
saliency

ICCV2023

LPViT (Xu et al.) LSP: Low-Power Semi-structured Pruning for Vision
Transformers

ARXIV2024
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