
Under review as a conference paper at ICLR 2024

ROUTING WITH RICH TEXT QUERIES VIA NEXT-
VERTEX PREDICTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive modeling of text via transformers has led to recent breakthroughs
in language. In this work, we study the effectiveness of this framework for routing
problems on graphs. In particular, we aim to develop a learning based routing
system that can process rich natural language based queries indicating various
desired criteria and produce near optimal routes from the source to the destination.
Furthermore, the system should be able to generalize to new geographies not seen
during training time.
Solving the above problem via combinatorial approaches is challenging since one
has to learn specific cost functions over the edges of the graphs for each possible
type of query. We instead investigate the efficacy of autoregressive modeling for
routing. We propose a multimodal architecture that jointly encodes text and graph
data and present a simple way of training the architecture via next token prediction.
In particular, given a text query and a prefix of a ground truth path, we train the
network to predict the next vertex on the path. While a priori this approach may
seem suboptimal due to the local nature of the predictions made, we show that
when done at scale, this yields near optimal performance.
We demonstrate the effectiveness of our approach via extensive experiments on
synthetic graphs as well as graphs from the OpenStreetMap repository. We also
present recommendations for the training techniques, architecture choices and the
inference algorithms needed to get the desired performance for such problems.

1 INTRODUCTION

Scaling transformer architectures along with training data continues to demonstrate improved per-
formance and emergent abilities in domains such as text, images and video (Chowdhery et al., 2022;
Brown et al., 2020; Chen et al., 2022). A key ingredient in these breakthroughs is the paradigm of
self-supervised training via next token prediction. This leads to an elegant and highly distributed
strategy for pre-training. Another key advantage is the uniform manner in which multi-modal data
can be ingested via appropriate tokenization strategies.

In this work, we investigate the effectiveness of the above framework for a unique and challenging
multimodal setting namely, routing on graphs via natural language queries. Routing is a classical
problem with a long history of the study of combinatorial and search algorithms under various
constraints (Tarjan, 1972; Geisberger et al., 2008; Cormen et al., 2022). We study the problem of
routing in the context of road networks, where it is often the case that users need to be routed from
a source to the destination under a variety of constraints. For instance, users may want to avoid
highways, prefer a safe route over the shortest route, or run an errand on the way to the destination.

Traditionally, there are two approaches to handling such constrained routing problems. The first
is the use of cost modifiers which amounts to producing edge costs on the graph for each type
of constraint/customization, followed by running a shortest path primitive such as the Dijkstra’s
algorithm to produce the relevant route. However, such an approach requires one to design (usually
via domain knowledge) many different types of cost functions which does not scale for complex
queries, especially if they are expressed in natural language. Furthermore, not all types of constraints
can be effectively modeled as performing Dijkstra’s algorithm on an appropriate edge based cost
function. The second approach is to perform an unguided search via graph search algorithms or
spectral algorithms (Dechter & Pearl, 1985; Sinop et al., 2021) to produce a diverse set of alternates

1

Under review as a conference paper at ICLR 2024

Figure 1: Example a of natural language based routing query on the OpenStreetMap (Open-
StreetMap contributors, 2017) graph (United States). The source and destination are highlighted in
green. The various points-of-interest are highlighted in red, blue and yellow. We show examples of
routing queries expressed in natural language and the near optimal routes generated by our algorithm
via direct inference on a transformer based model. Further examples can found in Appendix A.

between the source and the destination and to separately rank them according to the desired criteria.
However, in general there is no guarantee that the optimal or a near optimal route will be part of the
initial search phase unless a very large set of alternates is explored.

The emergence of transformers and large language models (LLMs) presents an intriguing prospect
of developing a routing system that can directly process complex queries in natural language and
produce near optimal routes via implicit multi-objective routing. In this work we present a simple
framework for building such routing systems. See Figure 1 for an example use case and the output
produced by our routing model. There are two crucial aspects that need to be addressed to enable
such use cases: a) the architecture choice for jointly modeling text and geo-spatial data, and b) the
training paradigm and the choice of the loss functions.

Regarding the choice of the multimodal architecture, a naive approach would be to take inspiration
from domains such as images (Dosovitskiy et al., 2020) and, given a (text-query, graph, source,
destination) tuple, aim to tokenize the graph via appropriately defining “patches”. However, it is
not clear what the right level of granularity should be. Too coarse of a patch may not provide
any relevant information for the given (source, destination) query, and too fine-grained patches
will significantly blow up the computational burden for massive graphs as a result of very long
sequences. Similarly, regarding the design of the loss function, one could consider approaches
such as reinforcement learning where the underlying reward models would capture the goodness
of a particular route. However, this approach will blow up the data and training time requirements
significantly and sacrifice the elegance of the next token prediction framework that has proved to be
so successful in the domains of language modeling and computer vision.

We instead present a simple and scalable architecture that can easily generalize to massive graphs
and can be trained following the standard next token prediction recipe. In particular, given a text
query q, source s, destination t and a prefix of a route from s to t we train the model by the autore-
gressive loss of predicting the next vertex on the route. Furthermore, we only define “tokens” based
on local neighborhoods of any vertex. While this may seem lossy at first since the model only has
a local view of the graph, we show that when done at scale this simple framework can yield sur-
prisingly powerful results for routing queries. Furthermore, our proposed framework can be easily

2

Under review as a conference paper at ICLR 2024

scaled to train on massive graphs without the need for distributing a graph over many machines. We
demonstrate the effectiveness of our approach on both synthetic and real world data.

The rest of the paper is structured as follows. In Section 1.1 we survey related work. In Section 2
we study the simplified problem of custom routing on a fixed graph topology. We use this setting
to define our architecture and the pre-training methodology. Finally, in Section 3 we extend and
introduce the notion of road embeddings that help us generalize to unseen graph topologies.

1.1 RELATED WORK

Routing is traditionally approached via combinatorial methods. In the context of road networks these
methods fall into two broad categories. The first category concerns using classical algorithms such
as Dijkstra’s method (Dijkstra, 2022) and ways to make it more efficient via priority queue based
implementations (Goldberg, 2001; Meyer, 2001), bidirectional search (Sint & de Champeaux, 1977),
A∗ search (Hart et al., 1968) and so on. The second concerns the use of hierarchical approaches such
as contraction hierarchies (Bast et al., 2016; Delling et al., 2009; Bauer et al., 2010) that specifically
make use of the near planar structure of the road networks. Incorporating custom query constraints
into these algorithms is challenging. This requires one to either solve a new combinatorial problem
(often NP-complete) or to design cost modifiers on edges such that the original algorithms when
run using the new costs will result in near optimal solutions. For instance, one may make the cost
of highway edges to be infinite if the request is to route while avoiding highways. However, this
in turn requires one to design good cost modifiers for complex natural language based queries, a
challenging problem in itself. Furthermore, not all types of queries can be translated into edge-
based cost modifiers while maintaining optimality of the ground truth solution.

An alternate approach consists of running unguided search algorithms such as A∗ search or spectral
methods based on electrical flows (Sinop et al., 2021) to compute many candidate routes from source
to destination. However, this approach needs one to have a good way of scoring the routes and for
complex queries one may need to produce many candidate solutions in the initial set, thereby making
the overall methodology inefficient.

In recent years, deep-learning-based approaches have been explored for combinatorial problems
such as routing. The works of Xu et al. (2019; 2020) show that graph neural networks (GNNs) are
an efficient architecture for representing dynamic-programming-based algorithms and hence can, in
principle, be used for shortest path problems. The works of Veličković et al. (2019); Ibarz et al.
(2022) create GNN based neural learners to simulate various combinatorial algorithms via “hinting”
them with intermediate computations of the algorithms. There have also been works to use custom
models such as pointer networks and attention-based GNNs to address related problems such as
the travelling salesman problem (Kool et al., 2018; Vinyals et al., 2015; Khalil et al., 2017; Nowak
et al., 2017; Deudon et al., 2018). However, these approaches have been empirically tested only
at small scales (around 100 nodes). To scale them to massive graphs such as the OpenStreetMap
repository (OpenStreetMap contributors, 2017), one would at the very least need a distributed GNN
implementation which presents its own set of infrastructure difficulties. Our approach on the other
hand easily scales to millions of nodes without any need for distributed training. One exception to
the small scale studies in previous works is the result of Graves et al. (2016), who conducted routing
experiments on the London underground system. However, this required a specialized model of
differential neural computer with access to read/write memory. We instead simply rely on the elegant
framework of transformer models and next token prediction without any complex customizations.

2 CUSTOMIZED ROUTING VIA NEXT-VERTEX PREDICTION

We propose to approach route generation via autoregressive modeling. By treating vertices and
edges as “tokens” and routes as “sentences”, we unroll a proposed route by training a model to
predict the vertex that follows the current incomplete route: given a text query and a pair of source
and destination vertices, we first predict the second vertex to come in the route, and then a third
vertex to follow the source and second vertex, and so on.

Customized route tasks. Given a road network graph G = (V,E), a source vertex u ∈ V , a
destination vertex v ∈ V , and a natural language query s ∈ Σ∗ where Σ is the alphabet, the cus-

3

Under review as a conference paper at ICLR 2024

tomized routing task is to find a route from the source to destination that accommodates the requests
conveyed in s. Crucially, no assumptions are made about the syntax (i.e., phrasing) or semantics
(i.e., meaning) of the query. For example, a query may ask for a route that avoids bike lanes and
passes by a coffee shop, or a route that takes a longer to drive but passes by scenic waterfalls.

Formally, the goal of customized routing is to output a route (v1, . . . , vn), where vi ∈ V , v1 = u and
vn = v, such that some objective f(s, u, v, (v1, . . . , vn)) is maximized, where f : Σ∗×V 2×V ∗ →
R returns a real valued score given a customized routing task and a candidate route. Importantly,
this objective f can be an arbitrary function of the entire route and need not decompose additively
into components on the route’s edges, i.e., there may not be a function f ′ : Σ∗ × V 2 × V ∗ → R
such that f(s, u, v, (v1, . . . , vn)) =

∑n−1
i=1 f

′(s, u, v, (vi, vi+1)). For example, the query “pass by
a coffee shop on route” cannot be expressed in such a form. This problem therefore cannot be
reduced to that of finding shortest-paths on an appropriately edge-weighted graph, thus motivating
our next-vertex prediction framework.

Next-vertex prediction models. We decompose a customized routing task with respect to a tuple
(s, u, v) into a series of next-vertex prediction problems, each defined by (s, u, v) and an incomplete
route (v1, . . . , vi), which is the prefix of some ground-truth route (v1, . . . , vn), and whose goal is to
predict the next vertex vi+1 on the route. Given a next-vertex prediction model M , we can “unroll”
a candidate route (v1, . . . , vn) for a customized routing task problem (s, u, v) by defining v1 = u
and vi+1 = M((s, u, v), (v1, . . . , vi)), ending when M returns a termination signal.

In this work, we learn such models M by training decoder only transformer models on datasets
consisting of examples of customized routing tasks and their ground-truth routes, decomposing
each such ground-truth route (v1, . . . , vn) into n − 1 next-vertex prediction problems (v1) → v2,
(v1, v2)→ v3, etc. This approach is analogous to the training of autoregressive language models on
text corpora (Brown et al., 2020; Chowdhery et al., 2022).

2.1 EXPERIMENTS ON A SIMULATED GRID ROAD NETWORK

We first apply our next-vertex prediction approach to a dataset of customized routing tasks on a sim-
ulated grid road network consisting of 625 vertices and 2462 edges. The routing tasks represented
in these datasets concern user queries that specify “points-of-interest” (POI), such as users asking
to stop by a coffee shop and bakery on route, or users asking to take a detour to either a dog park
or lake. In particular, throughout this section, the graph will remain fixed an we only consider gen-
eralizing to unseen queries at test time. This simplified setting will help us describe the key aspects
of our architecture and training details. In the next section we then handle the more realistic and
challenging setting of generalizing to unseen graphs as well.

Model architecture. We identify each vertex and edge in the road network with a unique token
ID and learn an embedding table to map these IDs to embedding vectors. Although this approach is
not scalable, as it requires the training dataset to contain enough information about every vertex and
edge to populate an embedding table, we maintain this naive approach for illustrative purposes and
present an efficient solution in Section 3.

Our proposed model architecture is illustrated in Figure 2 and consists of four components. The
first component tokenizes the queries and passes the token IDs through a learned embedding table.
The second component assigns token IDs to the source vertex, destination vertex, and the vertices in
the incomplete route (prefix), and passes the token IDs through a second learned embedding table.
The sequences of embedding vectors output by these two components are concatenated into a long
sequence of vectors and passed into a causal decoder only transformer, which we will refer to as
the base network and which consists of stacked Transformer blocks that each contain a multi-layer
perceptron (MLP), multi-head attention layer, and residual connection (Brown et al., 2020).

The output of the base network is also a sequence of vectors: we refer to the vector at the first
position of the sequence as the problem embedding, interpreting the vector as encoding all necessary
information about the customized routing task and the incomplete route so far. To make a next-
vertex prediction, a fourth component takes the token IDs of candidate vertices and passes the token
IDs into an embedding table. The candidate vertices are simply the vertices in the graph that are
connected to the last vertex in the prefix so far. The model’s prediction distribution over these

4

Under review as a conference paper at ICLR 2024

Figure 2: Architecture of the overall model for next vertex prediction.

candidates is then obtained by defining the logit for each candidate as the dot product between
the candidate’s embedding vector and the problem embedding vector. We then train the model’s
parameters, including all of the embedding tables and base network parameters, by minimizing a
cross-entropy loss.

Inference algorithms. Given a next-vertex prediction model and a customized routing problem,
there are several approaches to obtaining a candidate route. The first approach is greedy decoding,
which is a popular baseline approach in language modeling as well (Chowdhery et al., 2022). This
is computationally quite efficient for the routing setting. To observe this note that an important
advantage of our next-vertex prediction framework is that run time complexity is independent of
the size of the road network. Rather, a single next-vertex inference step requires only running time
that is quadratic in the length of the route so far, implying a run time complexity that is cubic in
route-length O(|Route|3) for greedy decoding, with improved complexity possible through more
efficient attention mechanisms (Wang et al., 2020; Zaheer et al., 2020; Dao et al., 2022).

We also take inspiration from natural language generation and apply beam search (Cohen & Beck,
2019) to our next-vertex prediction model. Indeed, beam search appears to be empirically the most
effective inference algorithm and, by tuning the beam width, allows for one to cleanly trade-off
accuracy for inference complexity, with a run time of O(BeamWidth2 · |Route|3). We can also
define analogues of classical graph algorithms that treat the logits of a next-vertex prediction model
as pseudo-edge-weights. For example, in Appendix B.10, we study a next-vertex analogue of Dijk-
stra’s algorithm, finding that it can offer certain performance gains when the underlying next-vertex
prediction model is of poor quality.

Experiment setup. In our experiments, depicted in Table 1, we train next-vertex prediction models
on 20 million next-vertex prediction data points, reflecting approximately 1 million examples of
customized routing tasks and their ground-truth routes. These customized routing tasks feature
queries that contain 3-4 logical clauses; an example of a query with 3 logical clauses is asking for a
route that passes by a coffee shop (clause 1) and either a lake (clause 2) or a dog park (clause 3).

We study two different datasets of customized routing tasks. In the first dataset, which is indicated
by the “Template-Generated Queries” column, we use a simple sentence-template to programatically
generate a corpus of 79,927 different query texts, which we use in conjunction with a simulated road
network to construct examples of customized routing tasks. In the second dataset, which is indicated
by the “LLM-Generated Queries” column, we instead construct a diverse corpus of 913,453,361
natural language queries using the commercial large-language-model GPT-4 (OpenAI, 2023). We
defer the details to Appendix C.

Methods and baselines. The first three rows of Table 1 depict the routing performance when
using beam-search (width 10) to unroll next-vertex prediction models. These performance metrics

5

Under review as a conference paper at ICLR 2024

Template-Generated Queries LLM-Generated Queries

Fulfills Query (Model) 91.8% ± 0.7% 88.8% ± 0.7%
Excess Travel Time (Model) 3.5% ± 0.3% 3.2% ± 0.1%
GT Route Recovery (Model) 64.7% ± 0.9% 63.8% ± 0.6%
Fulfills Query (EF Baseline) 95.1% 95.0%
Excess Travel Time (EF Baseline) 39.9% 39.7%
GT Route Recovery (EF Baseline) 7.0% 6.1%

Table 1: Performance of next-vertex prediction models on a dataset of previously unseen customized
routing tasks on a 625-vertex grid network. The left column reports metrics on customized routing
tasks constructed from a corpus of queries generated by a simple sentence template. The right
column reports metrics on tasks constructed from large-language-model (LLM) generated queries.
(Model) denotes the performance of width-10 beam search on a next-vertex prediction model. (EF
Baseline) denotes the performance of sampling 512 candidate routes using electrical flows and om-
nipotently chose the best one. Results are aggregated across 5 random seeds, with standard error
denoted by ±. GT Route Recovery is the probability of exactly recovering the ground-truth route.

are measured on customized routing tasks that are excluded from the training data; in particular, for
every customized routing task (s, u, v) in the test set, the train set is guaranteed to neither have any
tasks that share the same source-destination pair u, v, e.g. (s′, u, v), nor any tasks that share the
same (or even semantically similar) query s.

For comparison, the bottom three rows in Table 1 depict the performance of a baseline algorithm that
uses unguided search via electrical flows (EF) as described in (Sinop et al., 2021) to generate 512
unique candidate routes and an omnipotent referee to pick the best route out of the 512 candidates.

As existing routing algorithms in literature are inapplicable to the very general customized routing
tasks explored in this paper, combining electrical flows with an omnipotent referee provides a strong
baseline that underscores how non-trivial these routing tasks are. We emphasize that a practical
implementation of the EF baseline will perform significantly worse than the performance reported
in Table 1, as generating and evaluating 500+ candidate routes on massive graphs is impractical and
expensive —more importantly—the baseline assumes access to an omnipotent referee.

Results. In Table 1, we observe that the trained next-vertex prediction model fulfills ∼ 90% of
previously unencountered queries with only a marginal 3% increase in travel time. Furthermore,
somewhat surprisingly, the model exactly recovers the ground-truth route over 60% of the time.
We also note that—across the board—the next-vertex prediction model’s performance metrics are
better by a statistically significant margin on the dataset with less challenging queries (“Template-
Generated Queries”). This underscores how natural language processing contributes to the difficulty
of customized routing, which involves both NLP and routing.

In comparison, the EF Baseline performs significantly worse, recovering the ground-truth route 6%
of the time. In other words, on 94% of routing tasks, among the 512 unique routes obtained by the
EF algorithm from the source to the destination, none were the ground-truth. In contrast, 63% of the
time, the single route outputted by the next-vertex prediction model is the ground-truth.

We note that, because we required the EF baseline’s omnipotent referee to prioritize fulfilling queries
over minimizing travel time, the baseline achieves a higher rate of query fulfillment than the next-
vertex prediction model, but at the cost of increasing travel times by 40%. When we similarly
require our next-vertex prediction model to prioritize fulfilling queries, the model can achieve a
similar fulfillment rate of 95% (Figure 22).

3 SCALING TO BIG ROAD NETWORKS

In this section, we scale our proposed next-vertex prediction framework to large road networks,
including the road network of the United States (OpenStreetMap contributors, 2017).

6

Under review as a conference paper at ICLR 2024

3.1 FROM EMBEDDING TABLES TO ROAD EMBEDDING NETWORKS

One shortcoming of the model architecture described in Section 2 is that learning embeddings for
every vertex and edge in the road network is impractical at real-world scale. To address this, we move
away from identifying vertices and edges with unique token IDs. Instead, we will identify vertices
and edges with features that encode information about the topology of their local neighborhood of
the road network—which we will refer to as their receptive field—and the points-of-interest that
they are co-located with. These features are not necessarily vectors; in our proposed featurization
scheme, depicted in Figure 3, vertex and edge features are sequences of vectors, where each entry
in the sequence corresponds to a vertex in the receptive field.

Figure 3: Features for vertices and edges, which are given as input to road embedding networks.

Road embedding networks. Having replaced vertex and edge token IDs for vertex/edge features,
we now replace the vertex and edge embedding tables described in the previous section with em-
bedding networks. Because we produce vector sequences as the features for a vertex/edge, we
introduce a second smaller BERT-style model (Devlin et al., 2018) as our road-embedding network.
This network first applies several blocks of MLPs, independently to each vector in the feature vector
sequences, then applies transformer blocks to the resulting sequence of vectors, and finally collapses
the vector sequence into a single embedding vector at the output of the road embedding network.

3.2 SECONDARY SCORING MODEL.

We next introduce another important piece, the scoring module, that improves the performance of
our models during inference. As we discussed in Section 2, many inference algorithms for “un-
rolling” next-token prediction models can produce a set of candidate sequences. For example, one
can produce m candidate sequences by running beam search with width m and returning all se-
quences within the output beam instead of choosing the best sequence. The typical practice in
domains such as language modeling is to then output the sequence in the beam to which the next
token prediction model assigns the highest probability (Brown et al., 2020; Chowdhery et al., 2022).

We instead find that for routing problems, especially at large scales, having beam search return a
set of candidate routes and training a secondary model to choose the best route among them can
significantly increase performance. Hence, for the experiments in this section, we implement a
secondary scoring model that, given a customized routing task and a candidate route, uses a fully-
trained next-vertex prediction model to obtain a “problem embedding”, and passes the problem
embedding through a one-hidden-layer neural network to obtain a scalar score.

In order to train the scoring model, we use a fraction of our training set to create pairs of positive
and negative routes. For a (source, destination) pair, the ground truth route serves as the positive
example and a random path from the source to the destination (sampled from the distribution of the
next-vertex prediction model) serves as the negative pair. We embed these routes via the trained
next-vertex prediction model and train an MLP applied to the embeddings to assign higher scores
to the positive example via a simple logistic loss function. After training the scoring model, at
inference time, we select from candidate routes by choosing the route with the highest such score.

7

Under review as a conference paper at ICLR 2024

Prev. Unseen Roads Prev. Unseen Queries & Unseen Roads

Fulfills Query (Model) 94.7% ± 0.5% 90.2% ± 0.7%
Excess Travel Time (Model) 2.8% ± 0.2% 3.5% ± 0.2%
GT Route Recovery (Model) 68.4% ± 0.8% 54.9% ± 1.2%
Fulfills Query (EF Baseline) 77.5% 61.3%
Excess Travel Time (EF Baseline) 10.9% 8.4%
GT Route Recovery (EF Baseline) 23.0% 7.3%

Table 2: Performance on the road networks of New Hampshire, Rhode Island, and Mississippi (all
excluded from training data). The tasks feature either previously seen (left) or previously unseen
queries (right). (Model) denotes the performance with width-10 beam search and a secondary scor-
ing model. (EF Baseline) denotes the performance of the best of 512 candidate routes sampled with
electrical flows. Results are aggregated across 5 random seeds, with standard error denoted by ±.
GT Route Recovery is the probability of exactly recovering the ground-truth route.

3.3 EXPERIMENTS

We now consider customized routing tasks on the, very large, United States road network (Table 2)
and a simulation of an infinitely large grid road network (Table 3).

Experimental setup. We train next-vertex prediction models on 100 million datapoints, reflecting
approximately 5-10 million examples of customized routing tasks and their ground-truth routes.
These routing tasks build on the same corpus of 913,453,361 large-language-model-generated
queries described in Section 2.1. We sample the source-destination pairs for these tasks by randomly
choosing 256-vertex subgraphs of each road network, choosing a source and destination from this
subgraph, and finding a ground-truth route that routes exclusively through this subgraph. In Tables 2
and 3, (Model) rows report the performance of applying beam-search of width 10 to fully trained
next-vertex prediction models and choosing a final route using the secondary scoring model. The
(EF Baseline) rows report the performance of a baseline algorithm that uses unguided search via
electrical flows to generate 512 unique candidate routes and an omnipotent referee to pick the best.

Our experiments (Table 2) on the United States road network build on map data from the Open-
StreetMap repository (OpenStreetMap contributors, 2017), with light pre-processing so that routing
tasks are non-trivial, e.g., contracting vertices of degree two since one can only go straight on such
roads. The reported metrics are evaluated on customized routing tasks on road networks in Rhode
Island, New Hampshire, and Mississippi, whose road networks are wholly omitted from the training
data. Our experiments (Table 3) on the infinite grid road network build on the same construction as
the experiments in Section 2.1. The reported metrics are evaluated on subgraphs of the grid road
network that are wholly omitted from training data.

In both Tables 2 and 3, the left column reports metrics for tasks involving queries which have been
previously observed (albeit on different roads) and the right column reports metrics for tasks involv-
ing queries that have never been previously observed (even including semantically similar queries).
We note that the query train set and query test set are not identically distributed, as we constructed
the query test set to be more difficult. For example, every customized routing task in the right
column features at least two logical clauses in each query.

Results. In Tables 2 and 3, we observe that next-vertex prediction models achieve over 95% ful-
fillment rate on previously unseen queries on large grid road networks and over 90% fulfillment on
the United States road network. Excess travel time is marginal, at less than 2% and 4% respectively.
Interestingly, these models still exactly recover the ground-truth routes over 50% of the time on
the US road network. In contrast, the electrical flows baseline significantly underperforms in all
dimensions. In other words, even the best of the 512 routes sampled by electrical flows leads to an
explosion in travel time and a significant query non-fulfillment rate: 24% vs next-vertex prediction’s
5% on grid road networks, and 45% vs next-vertex prediction’s 10% on US road networks.

Varying beam width, varying electrical flows. We can examine the trade-off between the perfor-
mance and efficiency of our next-vertex prediction model by varying the width of the beam-search.

8

Under review as a conference paper at ICLR 2024

Prev. Unseen Roads Prev. Unseen Queries & Unseen Roads

Fulfills Query (Model) 98.3% ± 0.1% 95.1% ± 0.2%
Excess Travel Time (Model) 1.3% ± 0.1% 1.7% ± 0.0%
GT Route Recovery (Model) 86.3% ± 0.3% 76.4% ± 0.5%
Fulfills Query (EF Baseline) 87.0% 84.2%
Excess Travel Time (EF Baseline) 26.3% 28.9%
GT Route Recovery (EF Baseline) 18.8% 8.7%

Table 3: Performance on 256-vertex subgraphs of a simulated grid road network (wholly excluded
from training data). The tasks feature either previously seen (left) or previously unseen queries
(right). (Model) denotes the performance of width-10 beam search and the secondary scoring model.
(EF Baseline) denotes the performance of the best of 512 candidate routes sampled with electrical
flows. Results are aggregated across 5 random seeds, with standard error denoted by ±. GT Route
Recovery is the probability of exactly recovering the ground-truth route.

Figure 4: Performance on 256-vertex subgraphs of a simulated grid road network on previously un-
seen roads and queries. The left plot shows the performance of applying beam search with various
widths. The right plot shows the performance of the best of k candidate routes sampled with elec-
trical flows for various choices of k. Results are averaged over 5 seeds, with standard error denoted
by lighter colors.

In Figure 4, we evaluate the same next-vertex prediction models from Table 3, again on previously
unencountered queries and roads from an infinite grid road network, but with varying beam widths.
We observe monotonic improvements in all metrics with increasing beam-width, including improv-
ing upon the metrics reported in Table 3 by increasing beam width to 20. As a comparison, we plot
on the left the performance of the best of the k routes sampled by the electrical flow algorithm, ob-
serving significantly poorer scaling behavior when varying k from 1 to 512 than compared to scaling
beam search width. We depict an analogous experiment in Figure 21 on the next-vertex prediction
models trained on the US road network.

Additional results. We include in the Appendix additional experiments that study the relationship
between model performance and (1) how much of the road network the models observe (Figure 11),
(2) the scale of the models’ network architectures (Figure 12, 13), (3) the difficulty of a dataset’s
route customization queries (Figure 14), and (4) one’s choice of inference algorithm (Figure 23).
We also perform ablation studies of the road embedding network (Figure 17) and secondary scoring
model (Figure 22). We also visualize and analyze the attention matrices of our networks (Figures 15,
16) and the road embeddings that our networks learn (Figure 18).

REFERENCES

Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation networks.
Algorithm engineering: Selected results and surveys, pp. 19–80, 2016.

9

Under review as a conference paper at ICLR 2024

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and
Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for dijkstra’s
algorithm. Journal of Experimental Algorithmics (JEA), 15:2–1, 2010.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Eldan Cohen and Christopher Beck. Empirical analysis of beam search performance degradation
in neural sequence models. In International Conference on Machine Learning, pp. 1290–1299.
PMLR, 2019.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of a. Jour-
nal of the ACM (JACM), 32(3):505–536, 1985.

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route planning
algorithms. In Algorithmics of large and complex networks: design, analysis, and simulation, pp.
117–139. Springer, 2009.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pp. 170–181. Springer,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra:
His Life, Work, and Legacy, pp. 287–290. 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In Experimental Algorithms: 7th Inter-
national Workshop, WEA 2008 Provincetown, MA, USA, May 30-June 1, 2008 Proceedings 7, pp.
319–333. Springer, 2008.

Andrew V Goldberg. A simple shortest path algorithm with linear average time. In European
Symposium on Algorithms, pp. 230–241. Springer, 2001.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

10

Under review as a conference paper at ICLR 2024

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on Graphs Conference, pp. 2–1. PMLR, 2022.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Ulrich Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-case time.
In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 797–806,
2001.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms for
quadratic assignment with graph neural networks. stat, 1050:22, 2017.

OpenAI. Gpt-4 technical report, 2023.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.
openstreetmap.org, 2017.

Ali Kemal Sinop, Lisa Fawcett, Sreenivas Gollapudi, and Kostas Kollias. Robust routing using
electrical flows. In Proceedings of the 29th International Conference on Advances in Geographic
Information Systems, pp. 282–292, 2021.

Lenie Sint and Dennis de Champeaux. An improved bidirectional heuristic search algorithm. Jour-
nal of the ACM (JACM), 24(2):177–191, 1977.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):
146–160, 1972.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execu-
tion of graph algorithms. arXiv preprint arXiv:1910.10593, 2019.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

11

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Under review as a conference paper at ICLR 2024

A EXAMPLE OF PREDICTED ROUTES

This section provides examples of customized routing tasks on previously unseen subgraphs of the
United States road network (OpenStreetMap contributors, 2017) and simulated grid road networks.
These examples are sampled randomly, without cherry-picking, and depict a customized routing
task, the ground-truth route, and our model’s predicted route. The models used to generate the route
predictions are the same models from the experiments depicted in Tables 2 and 3. We emphasize that,
during training, these models have never encountered the subgraphs of the road networks that are
represented in these tasks, nor have the models encountered queries with these syntax or semantics
before.

Figure 5: Examples of customized routing tasks on road networks from New Hampshire, Missis-
sippi and Rhode Island. Grey elements denote the road network and green dots denote source and
destination. Black elements denote the ground-truth route on the left and our model’s predicted
route on the right. Colored circles indicate points-of-interest along the road network.

12

Under review as a conference paper at ICLR 2024

Figure 6: Further examples of customized routing tasks on road networks from New Hampshire,
Mississippi and Rhode Island. See Figure 5.

Figures 5, 6 and 7 depict customized routing tasks on real-world road networks within the United
States, taken from OpenStreetMap data (OpenStreetMap contributors, 2017). These road networks
belong to the states of New Hampshire, Missisipi, and Rhode Island—states that the models are not
trained on.

Figures 8, 9 and 10 depict customized routing tasks on previously unseen subgraphs of a large grid
road network.

13

Under review as a conference paper at ICLR 2024

Figure 7: Further examples of customized routing tasks on road networks from New Hampshire,
Mississippi and Rhode Island. See Figure 5.

14

Under review as a conference paper at ICLR 2024

Figure 8: Examples of customized routing tasks on previously unseen subgraphs of a large grid road
network. Grey elements denote the road network, with number annotations indicating travel times
along each road. Green dots denote source and destination. Black elements denote the ground-truth
route on the left and our model’s predicted route on the right. Colored circles indicate points-of-
interest along the road network.

15

Under review as a conference paper at ICLR 2024

Figure 9: Further examples of customized routing tasks on previously unencountered subgraphs of
a large grid road network. See Figure 8.

16

Under review as a conference paper at ICLR 2024

Figure 10: Further examples of customized routing tasks on previously unencountered subgraphs of
a large grid road network. See Figure 8.

17

Under review as a conference paper at ICLR 2024

Figure 11: Plot of next-vertex prediction accuracy versus k, where k ∈ Z+ determines the k-hop
neighborhood that constitutes the receptive field of road features. Smaller values of k mean that the
model can only observe a smaller subgraph of the road network during inference-time.

B ADDITIONAL EXPERIMENTS

In this section, we detail additional experiments to better understand the challenges of customized
routing and the behaviors of our next-vertex prediction models. We note that the experiments in
this section are conducted on a smaller scale than the experiments depicted in Tables 2 and 3, as the
goals of the experiments in this section are deeper insights rather than state-of-art performances. In
particular, these experiments are conducted with smaller network architectures, smaller datasets con-
sisting of 20,000,000 examples, and fewer training iterations. As a result, the performance metrics
reported in this section are not directly comparable to those of Tables 2 and 3.

B.1 RECEPTIVE FIELD OF ROAD FEATURES

In this experiment, plotted in Figure 11, we revisit how much of the road network we allow our next-
vertex prediction models to observe during inference-time and the relationship between this choice
and the performance of our models. Recall that, during inference time, our next-vertex prediction
models can only observe the road network through the input sequence we provide it with (e.g., the
destination, source, and roads taken so far). In addition, the road features we provide for each vertex
and edge in our input sequence also includes information about their k-hop neighborhood, which
we refer to as their receptive field. Whereas we usually fix k = 3 in the rest of our experiments, in
this experiment we vary k from a value of 1 to a value of 4.

Experiment details. This experiment is conducted on large grid road networks and our dataset of
LLM-generated points-of-interest queries. While these experiments vary the value of k—that is, the
k-hop neighborhood constituting the receptive field of our road features—all other parameters are
kept constant and stated in full in Table 6. We note that the value of k that we fix also sets a hard
cutoff on the size of each receptive field: when the k-hop neighborhood of a vertex exceeds 4 · k2
vertices, we only allow the vertex’s features to encode the 4 ·k2 closest vertices in the neighborhood.

Observations. Limiting our next-vertex prediction models to k = 1—that is, observing only a
very local subgraph—significantly degrades their performances. There is also a statistically sig-
nificant improvement yielded by increasing k = 2 to k = 3. However, increasing the size of the
receptive fields from k = 3 to k = 4 no longer improves training error convergence by a statistically
significant amount—rather it negatively impacts test accuracy. The latter observation is likely be-
cause setting k = 4 involves training a model on significantly more complicated inputs, contributing

18

Under review as a conference paper at ICLR 2024

Figure 12: Plot of next-vertex prediction accuracy for networks of varying embedding dimensions.
A larger embedding dimension means that a network has more free parameters and representation
power.

to training instability. These observations highlight the role of k as an important hyperparameter
that allows one to reliably trade-off inference efficiency with accuracy.

B.2 SCALING STUDIES

In this experiment, we implement next-vertex prediction models for network architectures of varying
sizes, following conventional rules-of-thumb for scaling large language models. In particular, we
study the performance of our next-vertex prediction models as we scale our network architectures in
two directions: the embedding dimensions of the transformer blocks (Figure 12), and the size and
depth of the road embedding networks (Figure 13).

Experiment details. This experiment is conducted on large grid road networks and our dataset of
LLM-generated points-of-interest queries. The experiment consists of two parts.

In the first part, we vary the width of the transformer blocks in our network architecture, increasing
the embedding dimension of the base network from 64 → 256 → 512 → 1024. We follow the
canonical scaling strategy for large language models and correspondingly increase the depth of the
base network from 4 → 6 → 8 → 8 transformer blocks. Similarly, we scale the intermediate
dimension of the base network from 256 → 512 → 1024 → 2048 and the number of attention
heads in the base network from 4 → 4 → 8 → 8. We also scale the embedding and intermediate
dimensions of the transformer blocks in the road embedding network from 64→ 64→ 128→ 128
and from 128 → 256 → 256 → 512 correspondingly. These parameter values, and others, are
specified in detail in Table 9. The results of these networks are depicted in Figure 12.

In the second part of this experiment, we scale up the depth of the road embedding network, increas-
ing the number of transformer blocks in the road embedding network from 1→ 2→ 4→ 4 and the
number of additional MLP blocks from 1→ 2→ 2→ 4. We correspondingly increase the number
of attention heads in the road embedding network from 1 → 2 → 4 → 4. All other parameters,
including embedding dimension, are kept constant; they are specified in full in Table 8. The results
of these networks are depicted in Figure 13.

Observations. Along both of the axes in which we attempt to scale up our models, we observe
that scaling up leads to both improved train error and test error convergence until hitting a satura-
tion point. Past the saturation point, train error and test error convergence no longer increase with
scale. However, we also do not observe a statistically significant decrease in test performance due

19

Under review as a conference paper at ICLR 2024

Figure 13: Plot of next-vertex prediction accuracy for networks with road embedding subnetworks
of varying depth. “X MLP + Y Transformers” indicates the road embedding subnetwork consists of
X multi-layer perceptron blocks followed by Y transformer blocks.

to generalization error, even past the saturation point. This is in line with previous observations of
overparameterization in language models.

B.3 POINTS-OF-INTEREST DENSITY

In this experiment, plotted in Figure 14, we attempt to understand how the difficulty of fulfilling a
query affects the difficulty of next-vertex prediction. In particular, consider the difficulty of fulfilling
the queries in our dataset, which asks for routes with short travel time but that stop by certain points-
of-interest along the way. One should expect that, when points-of-interest are extremely plentiful,
customized routing reduces to finding the shortest path since the shortest path likely encounters the
desired points-of-interest by chance. That is, asking for the shortest route that stops by a coffee
shop is practically the same as asking for the shortest route. In this experiment, we train next-
vertex prediction models on multiple variants of our customized routing tasks, where we vary the
probability that a vertex in the road network contains a point-of-interest thus varying the density of
points-of-interest on our road networks.

Experiment details. This experiment is conducted on large grid road networks and our dataset of
LLM-generated points-of-interest queries. In this experiment, we increase the default probability
of a vertex being a point-of-interest from 0.05% to either 0.5% or 5%. This probability is usually
set to 0.05% in our grid road networks and 0.005% on the United States road network. All other
parameters are kept constant and stated in full in Table 7.

Observations. A high point-of-interest density of 5% indeed corresponds to a significantly easier
learning task, as indicated by the significantly improved error curves. Interestingly, decreasing the
density of points-of-interest from 0.5% to 0.05% does not significantly affect the difficulty of the
next-vertex prediction problem. We attribute this to the fact that, once points-of-interest density is
low enough that one needs to go out of their way to find points-of-interest, any further decrease
in density only affects the difficulty of routing to the extent that one needs to travel further to find
desired points-of-interest. Moreover, decreasing density also makes the routing problem easier in
the sense that, given a point-of-interest category (e.g., coffee shop), there are fewer points-of-interest
in the category to choose from (fewer coffee shops in the area to choose between).

20

Under review as a conference paper at ICLR 2024

Figure 14: Plot of next-vertex prediction accuracy versus the density of points-of-interest on the road
network. Greater density indicates more plentiful points-of-interest on the road network, affecting
the difficulty of routing tasks where queries impose constraints on visitation to points-of-interest.

B.4 VISUALIZING ATTENTION MATRICES

In this section, we visualize the attention weights of the transformer blocks in fully trained next-
vertex prediction models. These visualizations, depicted in Figures 15 and 16, show the attention
weights of transformers in the base network and the road embedding network, respectively, on a
randomly sampled datapoint.

Attention weights in the base network. Figure 15 depicts the attention weights of the third trans-
former block in the base network of a fully trained next-vertex prediction model that is given a
randomly sampled next-vertex prediction problem. Here, we have averaged the attention weights
across every attention head. The axes in Figure 15 are annotated with the semantic values of each
position in the input sequence. The “Destination” position contains the embedding for the desti-
nation vertex. The positions annotated with “want”, “to”, “need”, “some”, “med”, “# #s”, “and”,
“go”, “to”, “confession” contain the embeddings for the tokens in the query ”Want to need some
meds and go to confession”. The “[SEP]” positions contain a placeholder separation token. The
“Candidate” positions contain embeddings for the vertices that are candidates to be chosen as the
next vertex in the route. The “Source” position contains the embedding of the source vertex, while
the subsequent positions contain the embeddings of the edges and vertices that have already been
taken in the route. Two of the positions are annotated with “[Pharmacy]” and “[Church]”, indicating
those vertices already contained the points-of-interest “pharmacy” and “church”.

We can visually confirm several interesting behaviors in the attention matrix. First, we can see the
network places the most weights on the query tokens “med”, “and”, and “confession”. These tokens
contain the query’s two point-of-interest constraints and their logical conjunction, confirming the
network is able to extract key information from text queries. On a similar note, we can see an
abnormally strong weight with the “confession” token as the query and the vertex that contains a
church point-of-interest as the key. This indicates the network both recognizes that “confession” is
indicating a church point-of-interest and recognizes that the route has already visited a church. The
checkerboard pattern in the bottom right corner can be attributed to the network attending vertex
positions to vertex positions, and edge positions to edge positions.

Attention weights in the road embedding network. Figure 16 depicts the attention weights of
the first transformer block in the road embedding network of a fully trained next-vertex prediction
model that is given a randomly sampled vertex from a grid road network. Here, we have averaged the
attention weights across every attention head. The axes in Figure 16 are annotated with the semantic

21

Under review as a conference paper at ICLR 2024

Figure 15: The attention weight matrix of the third transformer block in base embedding network
of a fully trained next-vertex prediction model. The model was given a randomly sampled next-
vertex prediction problem as input. “Destination”, “Source”, and “Candidate x” positions contain
embeddings for the destination, source, and candidate vertices respectively. The positions “want”,
“to”, “need”, “some”, “med”, “# #s”, “and”, “go”, “to”, “confession” contain embeddings for the
query. The remaining positions represent embeddings of vertices and edges already visited in the
route, with the annotations “[Church]” and “[Pharmacy]” indicating vertices that contain the points-
of-interest church and pharmacy respectively. Warmer colors indicate greater weight.

value of each position in the sequence. “Ego” denotes that a position in the feature sequence that
encodes information about the vertex that the road embedding network was given as input. “Neigh-
bor” denotes a position in the sequence that encodes information about an immediate neighbor to
the ego vertex, while k-hop denotes a position encoding information about a k-hop neighbor to the
ego vertex.

We can observe that, although the transformer treats each position in the sequence symmetrically,
the transformer places the most weight on the ego vertex as a key than as a query and significantly
more weight on immediate neighbors than 2-hop or 3-hop neighbors.

22

Under review as a conference paper at ICLR 2024

Figure 16: The attention weight matrix of the first transformer block in the road embedding sub-
network of a fully trained next-vertex prediction model. The model was given a node from a grid
road network as input. Warmer colors indicate greater weight. “Ego” indicates the position en-
codes information about the input node, “neighbor” indicates encoded information about immediate
neighbors of the input node, and “k-hop” indicates encoded information about k-hop neighbors of
the input node.

B.5 ABLATING THE ROAD EMBEDDING NETWORK

In this ablation experiment, plotted in Figure 17, we ablate the transformers from the road embedding
network architecture. Recall that, to generalize our next-vertex prediction framework to routing
on previously unseen subgraphs of large road networks, we began identifying road segments with
features that consist of sequences of vectors. For every vertex in the road network, each vector in
the vertex’s feature sequence contains information about a particular k-hop neighbor of the vertex.
Whereas our usual road embedding network architecture passes these sequences into transformers
to obtain a flat embedding of each vertex/edge, here we remove the transformers and instead obtain
embeddings by passing flattened feature sequences into multi-layer perceptron blocks.

Experiment details This experiment is conducted on large grid road networks and our dataset of
LLM-generated points-of-interest queries. We implement two networks in this experiment: one that
implements a road embedding network consisting of a flattening operation and four MLP blocks,
and another that implements a road embedding network consisting of four MLP blocks followed by
four transformer blocks. All other parameters are kept constant and stated in full in Table 10.

23

Under review as a conference paper at ICLR 2024

Figure 17: Plot of next-vertex prediction accuracy for next-vertex prediction models with either a
transformer-based road embedding network (Transformer) or a road embedding network that di-
rectly passes flattened inputs into multi-layer perceptrons (MLP).

Observations. The transformer blocks significantly improve train error and test error convergence
compared to MLP. We attribute this to the fact that the transformer’s inductive bias provides in-
variance about the ordering of the neighbors of a vertex. We note that the total numbers of free
parameters with and without the transformer blocks are similar: while removing the transformer
block removes free parameters, but removing invariance by flattening features into a vector also
significantly increases the number of free parameters.

B.6 ANALYZING END-TO-END LEARNED ROAD EMBEDDINGS

In Figure 18, we visualize the road embeddings learned by a fully trained next-vertex prediction
model. In this figure, we compute the road embeddings for the vertices of 10 random small grid road
networks and project them to a two-dimensional space by taking their t-distributed stochastic neigh-
bor embeddings (TSNE) (Van der Maaten & Hinton, 2008). We then color the embedding points
according to various semantic properties of their corresponding vertices. In particular, we color ver-
tices by their latitude, or their longitude, or by their degree (number of immediate neighbors). We
can visually confirm that vertices of a similar color indeed cluster together, rather than being scat-
tered like random noise. This indicates that the road embedding network correctly learns to encode
important geographic information—including a vertice’s location within a grid road network—and
important topological information—namely, a vertex’s degree.

B.7 HYPERPARAMETER TUNING

In this experiment, depicted in Figures 19 and 20, we perform hyperparameter tuning over the learn-
ing rate, weight decay, and learning rate schedules. We find learning rates between 0.0002 and
0.00005 to be most effective, and weight decay to be ineffective at any value. We similarly find
negligible difference between implementing a cosine one-cycle learning rate and a linear one-cycle
learning rate, at least for the short training timespan of these hyperparameter tuning runs. This
experiment is conducted on large grid road networks and our dataset of simple template-generated
points-of-interest queries. A single random seed is used for weight decay and learning rate tuning.

B.8 VARYING BEAM WIDTH EXPERIMENT ON US ROAD NETWORKS

Figure 21 is an analogue of Figure 4 but on the US road network. In this experiment, we evaluate
the same next-vertex prediction models from Table 2, again on previously unencountered queries

24

Under review as a conference paper at ICLR 2024

Figure 18: The t-distributed stochastic neighbor embeddings (TSNE) of the outputs of a fully-trained
road embedding network given as input the vertices of 10 random small grid road networks. The
embeddings are colored according to the degree of their corresponding vertices (top), the longitude
of the vertices (middle), and the latitude of the vertices (bottom).

25

Under review as a conference paper at ICLR 2024

Figure 19: Plot of next-vertex prediction accuracy versus various choices of learning rates and
L2 weight decay parameters. “OSM” indicates the experiment is conducted on real-world road
networks in the United States. “Grid” indicates the experiment is conducted on simulated grid road
networks.

26

Under review as a conference paper at ICLR 2024

Figure 20: Plot of next-vertex prediction accuracy versus various choices of L2 weight decay pa-
rameters and learning rate schedules. “OSM” indicates the experiment is conducted on real-world
road networks in the United States. “Grid” indicates the experiment is conducted on simulated grid
road networks. Continues Figure 19.

27

Under review as a conference paper at ICLR 2024

Figure 21: Performance on 256-vertex subgraphs on road networks from previously unseen US
states and previously unseen roads queries. The left plot shows the performance of applying beam
search with various widths. The right plot shows the performance of the best of k candidate routes
sampled with electrical flows for various choices of k.

and states in the US road network, but with varying beam widths. As with Figure 21, we observe
monotonic improvements in all metrics with increasing beam-width, including improving upon the
metrics reported in Table 2 by increasing beam width to 20. We note that the excess travel time
metrics for the electrical flows baseline is sometimes negative; this is because the EF baseline often
completely ignores user queries and instead takes the shortest route, allowing it to improve its travel
times beyond what is achievable by a route that fulfills the user query.

B.9 ABLATING THE SECONDARY SCORING MODEL

In this ablation experiment, plotted in Figure 22, we ablate the secondary scoring model from the
customized routing experiments depicted in Tables 2 and 3. Recall that beam search with width k
ultimately produces up to k candidate routes. In the experiments depicted in Tables 2 and 3, we
trained a second network to predict the best route. In this experiment, we empirically compare
against two alternatives. The first alternative follows the canonical beam search implementation and
chooses a candidate based off the next-vertex prediction model’s logits. The second alternative uses
a ground-truth “omnipotent” scorer to choose the best route among the candidates, which prioritizes
fulfilling the user query over minimizing travel time. We observe that using the secondary scoring
model significantly improves routing performance, increasing most metrics to around that of the
ground-truth scorer (the gold standard).

B.10 INFERENCE ALGORITHMS

In this experiment, we study choices of inference algorithm for generating routes using next-vertex
prediction models. We explore two alternates to the naive strategy of greedy decoding. The first
is Beam Search, which is a standard algorithm in natural language generation and the primary in-
ference algorithm in our experiments. The second is Dijkstra’s algorithm—or more correctly, a
generalization of Dijkstra’s algorithm compatible with route objective functions that do not decom-
pose additively into edge costs—which is a classical shortest-paths algorithm.

Beam search. Beam search with width k maintains a set of k partial routes
(v11 , v

1
2 , . . . , v

1
i), . . . , (vk1 , v

k
2 , . . . , v

k
i) that it rolls out simultaneously. At each time step, beam

search explores all partial routes that can be formed by appending a node to one of its current k
routes, selecting its partial route set for the next time step by choosing the k assigned the highest
joint probability by the next-vertex prediction model.

Dijkstra’s algorithm. We define a generalized form of Dijkstra’s algorithm that accommodates
a notion of “width” as follows. Given a width parameter of k, this algorithm maintains counters
for each vertex in the graph and also a set of partial routes. The algorithm’s partial route set is

28

Under review as a conference paper at ICLR 2024

Figure 22: Bar plot of the performance metrics of using beam search on a next-vertex prediction
model on previously unseen queries and roads from either the United States road network (top) or
a large grid road network (bottom). “Learned scorer” refers to choosing from a route from the final
beam using a secondary scoring model, while “Ground-Truth Scorer” refers to using an omnipotent
scorer and “Cum. Prob Scorer” refers to scoring using the next-vertex prediction model’s logits.

Figure 23: Point plot of the routing performance metrics of various next-vertex prediction models
using either greedy decoding, beam search, or Dijkstra’s algorithm as an inference method. These
prediction models are all trained on some variant of a grid road network routing dataset and are
evaluated on previously unseen customized routing tasks.

29

Under review as a conference paper at ICLR 2024

of unrestricted size and may consist of partial routes of different lengths. At each time step, the
algorithm explores all partial routes that can be formed by appending a node to one of its current
partial routes. The algorithm then adds the route (v1, . . . , vi, vi+1) that is assigned the highest joint
probability to its partial route set and increments the counter for the vertex vi. If the counter for a
vertex reaches k, the algorithm can no longer consider expanding partial routes that end in vi. Note
that setting k = 1 would correspond to running the standard Dijkstra’s algorithm where each vertex
is expanded at most once.

Observations. We generally find that beam-search to be the most effective inference algorithm
given a powerful next-vertex prediction model. However, we also find that Dijkstra’s algorithm
can be a more effective inference method than beam search when one’s underlying next-vertex
prediction model is inaccurate. We highlight this in Figure 23, where we evaluate a diverse set of
next-vertex prediction models representing both successful and failed training runs. These models
and their evaluation metrics are aggregated from many different experiment settings, but all defined
on some grid road network navigation task. We can observe that, indeed, beam search significantly
outperforms Dijkstra’s algorithm as an inference method for highly accurate next-vertex prediction
models. However, with models of lower accuracy, Dijkstra’s algorithm serves as a robust alternative,
providing significantly better rates for excess travel time and destination reaching than beam search
on less performant next-vertex prediction models.

30

Under review as a conference paper at ICLR 2024

Road Network Type Vertices n Edges POI λ Highways m Avg. Travel Time µ

Small Grid 625 2462 0.5% n // 20 5

Large Grid ∞ ∞ 0.5% ∞ 5

Subgraph of Large Grid 256 984 0.5% n // 20 5

Road Network Type Vertices n Edges POI λ Pruned Leaf Vertices

United States (OSM) 70M+ 100M+ 0.05% 80%

Subgraph of United States (OSM) 256 984 0.05% 80%

Table 4: The size and parameters for our experiments’ road networks. POI λ describes the probabil-
ity that a given vertex is a point-of-interest of a given category. Avg. Travel Time describes the mean
of the Poisson distribution from which road travel times are sampled. Pruned Leaf Vertices describes
the percentage of leaf vertices pruned from the road networks provided by OpenStreetMaps.

C EXPERIMENT DETAILS

C.1 ROAD NETWORKS

We experiments on two categories of road networks: simulated grid road networks and real-world
road networks from the OpenStreetMap repository (OpenStreetMap contributors, 2017).

1. Grid road networks from simulation. The grid road networks are randomly generated
and designed to approximate the topology of real-world road networks. We construct these
networks by initializing a regular grid of n vertices with

√
n rows and

√
n columns and

bidirectional edges drawn between every vertex and its cardinal neighbors. The travel
times for each road segment—i.e., the amount of time it takes to transit across an edge in
the road network—are assigned randomly by sampling from a Poisson distribution with
a parameter µ. Additional “highway” roads are then added between m randomly chosen
pairs of vertices in the grid that are at least 3 hops apart; all such highway roads are assigned
a travel time of 1, regardless of length. We then randomly designate vertices points-of-
interest (POI) for various categories of POIs, such as coffee shops, with probability λ.

2. Real-world road networks of the United States. We also study the real-world road net-
works of various states and territories in the United States, which we obtain through the
open-source map data provided by the OpenStreetMap project (OpenStreetMap contribu-
tors, 2017). We lightly preprocess these road networks to ensure that routing tasks on these
networks are non-trivial. First, we contract vertices of degree two from the road networks
as navigating on these vertices is trivial (its a straight road). Second, we remove four out
of every five leaf vertices from the road network—these vertices also contribute nothing to
the difficulty of the routing tasks. To generate routing tasks from these road networks, we
randomly select subgraphs by choosing a random point in the road network of a random
state/territory, and take its n closest neighbors. We assign a travel time to each road propor-
tional to its real-world length, and randomly designate vertices to have points-of-interest
with probability λ.

Table 4 specifies the parameter values used to preprocess these road networks.

Points-of-interest. Our experiments consider 42 categories of points-of-interest: coffee shops,
gas stations, grocery stores, work offices, cat shelters, dinner restaurants, pharmacies, parks, mu-
seums, beaches, libraries, malls, fast food restaurants, post offices, car washes, bakeries, gyms,
hardware stores, zoos, campgrounds, theaters, flower shops, bars, thrift stores, lakes, bridges, hospi-
tals, churches, airports, banks, stadiums, police stations, spas, hotels, casinos, train stations, clubs,
planetariums, tattoo parlors, internet cafes, bowling alleys, and ice cream shops.

31

Under review as a conference paper at ICLR 2024

Dataset User Query Ground-Truth Interpreta-
tion

LLM-Generated Dataset

Go by pub. “bar”

Route through bank and feline
center, and jog a lap.

“bank”, “cat shelter”, “park”

Looking to grab a bite, enjoy a
picnic, and relax.

“dinner”, “lake”, “spa”

Gotta buy toiletries and either
route through arena or home
repair.

“pharmacy”, either(“stadium”,
“hardware store”)

Swing by postal service and
airport, and either stop by ve-
hicle wash or home improve-
ment store.

“post office”, “airport”, ei-
ther(“car wash”, “hardware
store”)

Make a stop at fitness center
and either route through parcel
office or cultural visit.

“gym”, either(“post office”,
“museum”)

Template-Generated Dataset

bar “bar”

[No Request]

dinner and flower shop “dinner”, “flower shop”

internet cafe and bakery “internet cafe”, “bakery”

work office and tattoo parlor “work office”, “tattoo parlor”

bank and cat shelter and park “bank”, “cat shelter”, “park”

Figure 24: Randomly selected point-of-interest queries and their ground-truth interpretations from
the LLM-generated dataset of≈900M queries and the sentence-template-generated dataset of≈80k
queries.

Train-test splits. To measure generalization, we define a notion of a train-test split on each road
network.

1. Small grid road network. We divide the set of all source-destination pairs on the small
grid road network into training (95%) and testing (5%) splits. This means that our test
set figures are reported for customized routing tasks that involve previously unencountered
pairs of sources and destinations. This does not mean that, for every source-destination pair
u, v in the test split, the source vertex u does not appear in the train split, as the train split
may include routing tasks that involve routing from u to a different destination w 6= v.

2. Large grid road network. We sample a set of square subgraphs of the large grid road net-
work, and divide the set into training and testing splits. This means that our test set figures
are reported for customized routing tasks that involve entirely unencountered subgraphs.
This means that there is no notion of encountering the same vertex or edge in both the train
set and the test set.

3. United States road network. We divide the states and territories of the United States
into a test set containing Rhode Island, New Hampshire, and Mississippi and a train set
containing the remaining 48 of 52 states and territories. The test set is chosen arbitrarily
for their names (road island, new hamster, etc.). This means, as with the large grid road
network, one will not encounter the same vertex and edge in both the train set and the test
set.

32

Under review as a conference paper at ICLR 2024

C.2 NATURAL LANGUAGE QUERY DATASETS

This paper performs experiments on two datasets of natural language queries. Semantically, the
queries in these two datasets are similar. The queries in both of these datasets concern points-of-
interest. That is, these queries request to navigate to a destination with the shortest travel time
possible but subject to the constraint of needing to stop by certain (and often multiple) points of
interest—such as a coffee shop and grocery store—along the way. These queries are often complex,
and involve both AND conjunctions (stop by a coffee shop AND a grocery store on the way) and
OR conjunctions (stop by a coffee shop OR a grocery store on the way home). Table 24 lists
randomly sampled (not cherry-picked) examples of queries from each dataset and their ground-truth
interpretation.

Template-generated versus LLM-generated queries. Our two datasets of example user queries
differ in their syntax. The text queries in the first dataset are constructed according to a simple
sentence template, such as ”POI 1 and POI 2 and either POI 3 and POI 4”. This yields a total of
79,927 unique queries in the first dataset. The text queries in the second dataset are constructed with
the aide of the commercial large-language-model (LLM) GPT-4 (OpenAI, 2023). Specifically, we
asked the GPT-4 LLM to generate a corpus of phrases and synonyms associated with each point-of-
interest, such as associating “grabbing an espresso” with “coffee shops”. We further asked the LLM
to produce a corpus of sentence structures that a user query may follow, such as “Route through {}
and {}”, substituting in the LLM’s recommendations for POI-associated phrases accordingly. This
yields a total of 913,453,361 unique queries in the second dataset.

Train-test splits. We divide the queries in each query dataset into a train split and test split. We
also note that we want to validate the generalization of our models to queries of not only previously
unencountered syntax but also of previously unencountered semantics. To this end, we perform a
train-test split of each query dataset by splitting the queries according to their semantic meaning
(that is, their ground-truth interpretation). This means that if a customized routing task from the test
set asks to “stop by a coffee shop or grocery store”, the train set will neither contain this same query
nor any rephrasing of the query, e.g. “either grab an espresso or grab groceries”.

Semantic complexity. Figure 25 plots a histogram of the number of logical clauses in each of the
queries in the natural language datasets. For example, the query “visit the library and either grab an
espresso or go to the grocery store” consists of 3 clauses. Note that the queries in the test split of the
datasets are significantly more complex and challenging than the queries in the train split.

C.3 PUTTING ROAD NETWORKS AND QUERY DATASETS TOGETHER

Recall that every datapoint in our training sets of customized routing tasks consists of three parts: a
natural language query, a source and destination pair, and a ground-truth route. Figure 26 plots two
examples, one from a grid road network and another from the United States road network.

Train split. We construct a training dataset of N customized routing tasks by sampling N source-
destination pairs from the train split of the road network and sampling N queries from the train
split of the query dataset. Recall that our query dataset also provides labels for these N queries in
the form of structured ground-truth interpretations. We therefore obtain the ground-truth routes for
our N datapoints by applying brute-force traveling salesman problem (TSP) algorithms to the POI
routing problems specified by the ground-truth interpretations of the N queries on their respective
source-destination pairs.

Test split. Similarly, we construct the testing dataset of M customized routing tasks by sampling
M datapoints from the test split of the road network and M queries from the test split of the query
dataset. In Tables 2 and 3 we also evaluate on a secondary testing dataset consisting ofM datapoints
from the test split of the road network and M queries from train split of the query dataset.

Statistics. Table 5 lists important statistics for the customized routing tasks datasets that we gen-
erate with this approach.

33

Under review as a conference paper at ICLR 2024

Figure 25: Histogram of the number of clauses in natural language queries for each dataset.

34

Under review as a conference paper at ICLR 2024

Figure 26: Examples of customized routing tasks from a 256 vertex subgraph of a simulated grid
road network and a 256 vertex subgraph of the United States road network. For ease of visualization,
the road networks are simplified to only include three (rather than the usual 42) point-of-interest
categories. The ground-truth route is depicted as a black line, with the source and destination vertices
colored green. Points-of-interest are indicated with colored circles, with concentric circles indicating
a location has multiple points-of-interest.

35

Under review as a conference paper at ICLR 2024

Metric Train Set Test Set

U
ni

te
d

St
at

es
R

oa
d

N
et

w
or

k # Segments in Ground-Truth Route 19.1 21.3

Diameter of Ground-Truth Route 14.6 14.8

of Clauses in Query 1.9 2.9

Segments in Shortest Route 13.8 13.5
L

ar
ge

G
ri

d
R

oa
d

N
et

w
or

k # Segments in Ground-Truth Route 10.0 10.9

Diameter of Ground-Truth Route 8.8 9.0

of Clauses in Query 1.9 3.0

Segments in Shortest Route 8.4 8.4

Sm
al

lG
ri

d
R

oa
d

N
et

w
or

k # Segments in Ground-Truth Route 11.1 11.7

Diameter of Ground-Truth Route 10.2 10.2

of Clauses in Query 1.8 3.0

Segments in Shortest Route 9.9 9.8

Table 5: Customized routing task dataset statistics estimated with 1,000 samples from each split.

C.4 HYPERPARAMETERS

In this section, we detail the hyperparameters for each experiment in this paper. We first clarify
terminology for the below tables.

Network architecture. We use “Embedding Dim. (Base)”, “Intermediate Dim. (Base)”, and
“Attention Heads (Base)” to denote the embedding dimension, intermediate dimension, and attention
head count of the transformer blocks in the base network. Similarly, we use “Embedding Dim.
(Road)” and “Intermediate Dim. (Road)” denote the embedding and intermediate dimensions of the
transformer blocks and MLP blocks in the road embedding network. “Attention Heads (Road Emb)”
denotes the attention head count of the transformer blocks in the road embedding network, while
“Addtl. MLP Blocks (Road Emb)” denotes the number of MLP blocks placed before the transformer
blocks in the road embedding network.

Road features. The “Road Feature Type” key refers to what type of features we associate to
each vertex/edge when producing an embedding for each vertex/edge. That is, it refers to the input
format of the road embedding network. A “Flat Vector” road feature type denotes when each vertex’s
features are flattened into a 1d vector so it can be projected into a 1d embedding. A “Seq. Vectors”
road feature type denotes when a vertex’s features are passed as a 2d matrix, corresponding to a
sequence of feature vectors, which must then be collapsed into a 1d embedding. The “Road Feat.
Receptive Field” key refers to the receptive field encoded in the features we associate to each vertex.
When the value is “1-hop”, this means that the road embedding network can only take into account
the properties of a node v and its immediate neighbors when producing an embedding of v. A
value of “3-hop” means that the road embedding network can instead take into account the 3-hop
neighbors of v when producing an embedding for v.

Miscellaneous. In the “Learning Rate Schedule” key, “Linear OC” denotes that a linear one-cycle
learning rate schedule is used with default shape parameters while “Cosine OC” denotes that a cosine

36

Under review as a conference paper at ICLR 2024

Road Feat. Receptive Field 1-hop 2-hop 3-hop 4-hop

Datapoints 20000000 20000000 20000000 20000000
Learning Rate 0.0001 0.0001 0.0001 0.0001
L2 Weight Decay 0 0 0 0
Dropout 0 0 0 0
Batch Size 1024 1024 1024 1024
Training Iterations 200000 200000 200000 200000
Seeds 3 3 3 3
Learning Rate Schedule Linear OC Linear OC Linear OC Linear OC
Attention Heads (Base) 8 8 8 8
Embedding Dim. (Base) 512 512 512 512
Intermediate Dim. (Base) 1024 1024 1024 1024
Transformer Blocks (Base) 8 8 8 8
Road Feature Type Seq. Vectors Seq. Vectors Seq. Vectors Seq. Vectors
Attention Heads (Road) 4 4 4 4
Embedding Dim. (Road) 128 128 128 128
Intermediate Dim. (Road) 256 256 256 256
Transformer Blocks (Road) 4 4 4 4
Addtl. MLP Blocks (Road) 4 4 4 4

Table 6: Hyperparameters for the road features receptive field experiment (Appendix B.1).

POI Density 0.005 0.0005 0.05

Datapoints 20,000,000 20,000,000 20,000,000
Learning Rate 0.0001 0.0001 0.0001
L2 Weight Decay 0 0 0
Dropout 0 0 0
Batch Size 1024 1024 1024
Training Iterations 200,000 200,000 200,000
Seeds 3 3 3
Learning Rate Schedule Linear OC Linear OC Linear OC
Road Feat. Receptive Field 3-hop 3-hop 3-hop
Attention Heads (Base) 8 8 8
Embedding Dim. (Base) 512 512 512
Intermediate Dim. (Base) 1024 1024 1024
Transformer Blocks (Base) 8 8 8
Road Feature Type Seq. Vectors Seq. Vectors Seq. Vectors
Attention Heads (Road) 4 4 4
Embedding Dim. (Road) 128 128 128
Intermediate Dim. (Road) 256 256 256
Transformer Blocks (Road) 4 4 4
Addtl. MLP Blocks (Road) 4 4 4

Table 7: Hyperparameters for the point-of-interest density experiment (Appendix B.3), which is the
only experiment for which the POI Density parameter deviates from the default values specified in
Table 4.

one-cycle learning rate schedule is used instead. The “Seeds” key refers to the number of random
seeds the experiment is performed on.

37

Under review as a conference paper at ICLR 2024

Attention Heads (Road) 1 2 4 4
Addtl. MLP Blocks (Road) 1 2 2 4
Transformer Blocks (Road) 1 2 4 4

Datapoints 20,000,000 20,000,000 20,000,000 20,000,000
Learning Rate 0.0001 0.0001 0.0001 0.0001
L2 Weight Decay 0 0 0 0
Dropout 0 0 0 0
Batch Size 1024 1024 1024 1024
Training Iterations 200,000 200,000 200,000 200,000
Seeds 3 3 3 3
Learning Rate Schedule Linear OC Linear OC Linear OC Linear OC
Road Feat. Receptive Field 3-hop 3-hop 3-hop 3-hop
Attention Heads (Base) 8 8 8 8
Embedding Dim. (Base) 512 512 512 512
Intermediate Dim. (Base) 1024 1024 1024 1024
Transformer Blocks (Base) 8 8 8 8
Road Feature Type Seq. Vectors Seq. Vectors Seq. Vectors Seq. Vectors
Embedding Dim. (Road) 128 128 128 128
Intermediate Dim. (Road) 256 256 256 256

Table 8: Hyperparameters for the road embedding network scaling experiment (Appendix B.2).

Attention Heads (Base) 8 4 4 8
Embedding Dim. (Base) 512 64 256 1024
Intermediate Dim. (Base) 1024 256 512 2048
Transformer Blocks (Base) 8 4 6 8
Embedding Dim. (Road) 128 64 64 128
Intermediate Dim. (Road) 256 128 256 512

Datapoints 20,000,000 20,000,000 20,000,000 20,000,000
Learning Rate 0.0001 0.0001 0.0001 0.0001
L2 Weight Decay 0 0 0 0
Dropout 0 0 0 0
Batch Size 1024 1024 1024 1024
Training Iterations 200,000 200,000 200,000 200,000
Seeds 3 3 3 3
Learning Rate Schedule Linear OC Linear OC Linear OC Linear OC
Road Feat. Receptive Field 3-hop 3-hop 3-hop 3-hop
Road Feature Type Seq. Vectors Seq. Vectors Seq. Vectors Seq. Vectors
Attention Heads (Road) 4 4 4 4
Addtl. MLP Blocks (Road) 4 4 4 4
Transformer Blocks (Road) 4 4 4 4

Table 9: Hyperparameters for the embedding dimension scaling experiment (Appendix B.2).

38

Under review as a conference paper at ICLR 2024

Road Feature Type Flat Vector Seq. Vectors

Datapoints 20,000,000 20,000,000
Learning Rate 0.0001 0.0001
L2 Weight Decay 0 0
Dropout 0 0
Batch Size 1024 1024
Training Iterations 200,000 200,000
Seeds 3 3
Learning Rate Schedule Linear OC Linear OC
Road Feat. Receptive Field 3-hop 3-hop
Attention Heads (Base) 8 8
Embedding Dim. (Base) 512 512
Intermediate Dim. (Base) 1024 1024
Transformer Blocks (Base) 8 8
Attention Heads (Road) N/A 4
Embedding Dim. (Road) 128 128
Intermediate Dim. (Road) 256 256
Addtl. MLP Blocks (Road) 4 4
Transformer Blocks (Road) N/A 4

Table 10: Hyperparameters for the road embedding architecture experiment (Appendix B.5).

Road Network United States Large Grid Small Grid

Datapoints 100,000,000 100,000,000 20,000,000
Learning Rate 0.0001 0.0001 0.0001
L2 Weight Decay 0 0 0
Dropout - - -
Batch Size 1024 1024 1024
Training Iterations 1,000,000 1,000,000 200,000
Seeds 5 5 5
Learning Rate Schedule Cosine OC Cosine OC Cosine OC
Road Feat. Receptive Field 3-hop 3-hop N/A
Attention Heads (Base) 8 8 8
Embedding Dim. (Base) 1024 1024 512
Intermediate Dim. (Base) 2048 2048 1024
Transformer Blocks (Base) 8 8 8
Road Feature Type Seq. Vectors Seq. Vectors IDs
Attention Heads (Road) 2 2 N/A
Embedding Dim. (Road) 128 256 N/A
Intermediate Dim. (Road) 512 512 N/A
Addtl. MLP Blocks (Road) 2 2 N/A
Transformer Blocks (Road) 2 2 N/A

Table 11: Hyperparameters for the primary experiments of the paper (Tables 1, 2, 3).

Datapoints 125,000
Learning Rate 0.0005
L2 Weight Decay 0.01
Batch Size 128
Training Iterations 20,000
Intermediate Dim. 64
Hidden Layers 1
Activation GELU

Table 12: Hyperparameters for the secondary scoring model in all experiments (Tables 3, 2).

39

	Introduction
	Related Work

	Customized Routing via Next-Vertex Prediction
	Experiments on a Simulated Grid Road Network

	Scaling to Big Road Networks
	From Embedding Tables to Road Embedding Networks
	Secondary scoring model.
	Experiments

	Example of Predicted Routes
	Additional Experiments
	Receptive Field of Road Features
	Scaling Studies
	Points-of-Interest Density
	Visualizing Attention Matrices
	Ablating the Road Embedding Network
	Analyzing End-to-End Learned Road Embeddings
	Hyperparameter Tuning
	Varying Beam Width Experiment on US Road Networks
	Ablating the Secondary Scoring Model
	Inference Algorithms

	Experiment Details
	Road Networks
	Natural Language Query Datasets
	Putting Road Networks and Query Datasets Together
	Hyperparameters

