
An Empirical Study of Lagrangian Methods in Safe
Reinforcement Learning

Lindsay Spoor Álvaro Serra-Gómez Aske Plaat Thomas Moerland
Leiden Institute of Advanced Computer Science

Leiden University
{l.j.spoor, a.serra-gomez, a.plaat, t.m.moerland}@liacs.leidenuniv.nl

Abstract

In safety-critical domains such as robotics and navigation, agents must bal-
ance performance with safety constraints. Safe reinforcement learning (SRL)
addresses this challenge, with Lagrangian methods being a widely used ap-
proach. Their effectiveness, however, depends strongly on the choice of the
Lagrange multiplier λ, which governs the trade-off between return and constraint
cost. We analyze (i) optimality and (ii) stability of Lagrange multipliers in
SRL across multiple benchmark tasks. By constructing λ-profiles, we visual-
ize the sensitivity of performance to λ and show that automated updates of λ
can recover or even surpass the performance of optimally tuned fixed multipli-
ers. While PID-controlled updates can reduce oscillations, this method requires
careful tuning, emphasizing the need for more robust stabilization strategies for
Lagrangian methods in SRL. Code for reproducing our results is available at
https://github.com/lindsayspoor/Lagrangian_SafeRL.

1 Introduction

Reinforcement learning (RL) addresses sequential decision-making problems by enabling agents to
learn from feedback in the form of rewards, with the goal of maximizing their long-term cumulative
reward (Sutton and Barto, 2018). Despite their success in achieving high performance on tasks
without critical safety concerns, agents deployed in safety-critical domains must often deal with
conflicting objectives. For example, a robot learning locomotion must satisfy safety constraints such
as torque limits or avoiding collisions (He et al., 2023; Huang et al., 2024) and falling when walking
in the real world (Ha et al., 2020), often requiring a detour from the unconstrained optimal policy.

Safe reinforcement learning (SRL) provides a framework in which the learning objectives are extended
to explicitly incorporate constraints imposed on the agent. In this framework, the optimization
problem has multiple conflicting objectives: the agent must learn a policy that maximizes expected
return while simultaneously keeping constraint costs below a specified limit. SRL has been extensively
studied over the last decade, leading to a variety of approaches that tackle the constrained optimization
problem, such as CPO (Achiam et al., 2017), IPO (Liu et al., 2020), PCPO (Yang et al., 2020) and a
Lyapunov-based approach (Chow et al., 2018).

Classical Lagrangian methods have emerged as a popular choice in practical applications in which
strict enforcement of constraints during training is not a hard requirement, showing performance close
to the optima while respecting constraints in safety-critical tasks (Garcıa and Fernandez, 2015; Ray
et al., 2019). They reformulate the constrained problem into an unconstrained one by augmenting
the objective with a penalty term weighted by a Lagrange multiplier λ. This transformation allows
us to apply standard RL algorithms while implicitly accounting for safety. However, the practical
performance of Lagrangian methods depends heavily on the stability and tuning of λ, which "can
be as hard as solving the RL problem itself" (Paternain et al., 2019) due to the lack of a direct

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025

https://github.com/lindsayspoor/Lagrangian_SafeRL

relation between the multiplier value and the resulting policy performance. Even though common
practical solutions, such as gradient ascent (GA) (Tessler et al., 2019) and PID-control (Stooke
et al., 2020), adaptively update λ automatically during training, these methods introduce their own
learning dynamics, which are sensitive to parameter settings and can cause practical issues such as
overshooting the constraint cost limit during updates.

There is limited empirical evidence on the effectiveness of updating the Lagrange multiplier during
training. Moreover, a systematic analysis of the robustness of the currently employed update
mechanisms is still lacking, as these methods remain fragile in their ability to ensure truly stable
learning dynamics in practice. This paper aims to fill this gap by presenting a systematic empirical
analysis focusing on the role of the Lagrange multiplier. Our contributions are the following:
(i) Optimality (Section 2.1). We analyze how the choice of the Lagrange multiplier influences
performance. We do this by visualizing the trade-off between return and cost as a function of λ.
We find that the optimal value for λ is highly task-dependent, and our results visually illustrate the
lack of general intuition on how to tune the multiplier in practice. We furthermore confirm that
automatically updated multipliers are actually able to exceed in performance compared to training
with a manually fixed optimal value for λ, and that this is due to a vast difference in learning trajectory
of the two methods. (ii) Stability (Section 2.2). We study the stability of different automated update
mechanisms, including GA- and PID-controlled updates. We find that, while GA-updated multipliers
often exhibit unstable behavior, PID-controlled updates actually shift the problem of stability rather
than solve it, as this method is highly sensitive to hyperparameter choices and does not consistently
outperform GA-based methods in terms of stability or overall performance.

For a formal description of SRL, Lagrangian methods and automated multiplier updates, we refer
to Appendix A. All details concerning our experimental setup can be found in Appendix B. Lastly,
related work can be found in Appendix E.

2 Results

2.1 Optimality

We analyze the optimality of Lagrangian methods through a visualization of the trade-off between
the return and cost under different values of the multiplier λ. For the creation of these profiles we
train PPO-Lag agents for 107 timesteps with manually fixed values of λ across a wide range (Ji et al.,
2024b). Note that an agent trained for λ = 0 is a standard PPO-agent (Schulman et al., 2017). For
each value of λ, we plot the return and cost during the last 5% of training iterations. The results
are presented in Fig. 1, and clearly show that performance is highly sensitive to the choice of λ.
The optimal trade-off location is found at the evaluated cost limit of 25. As shown in the figure, the
optimal multiplier value λ∗, indicated by the ✩, varies across tasks. This highlights an important
insight: the optimal value is inherently task-dependent and visualizing the λ-profiles does not provide
a general intuition for selecting λ in practice. Looking at values of λ on the right side of λ∗ (λ > λ∗),
the curves for the return drop further down, which indicates that only values close to the optimal
trade-off location yield high-return solutions. For comparison, we also train the GA-update of λ
under the same cost limit. In Fig. 1, the dashed horizontal lines indicate the return and cost values at
the end of training for the GA-updated multiplier, averaged over the last 5% of the training. These
dashed horizontal lines match the ✩ for the Circle1 and Goal1 tasks, indicating that the GA-update
successfully recovers the same optimum as the manually fixed λ in these tasks. This demonstrates
that automatic updates are able to match the performance of carefully tuned fixed multipliers. For the
Button1 and Push1 tasks, the GA-updates surprisingly even exceed the fixed-optimum solutions: the
dashed lines for the return in these tasks lie above the ✩.

We refer to Appendix C.1 for the learning trajectories of GA-updated multipliers. The learning
trajectories seem to converge to a stable solution in roughly the same amount of timesteps. In
contrast, models trained with a fixed optimal multiplier show a more gradual increase in return,
exhibiting more conservative behavior with respect to safety during training. This finding indicates
that when replacing a fixed multiplier with an automated update mechanism, the learning trajectory
fundamentally changes: it initially prioritizes reward maximization before subsequently correcting
back into the constraint region, which could explain the increase in performance for the Button1 and
Push1 tasks.

2

0.0 0.5 1.0 1.5 2.0
0

20

40

R
et

ur
n

0

50

100

150

200

C
os

t

Circle1

Cost limit = 25.00

(a)

0 2 4 6
0

10

20

R
et

ur
n

0

20

40

C
os

t

Goal1

Cost limit = 25.00

(b)

0 2 4 6 8
0

10

20

30

R
et

ur
n

0

50

100

150

C
os

t

Button1

Cost limit = 25.00

(c)

0 1 2 3
0

1

2

3

R
et

ur
n

0

20

40

60

C
os

t

Push1

Cost limit = 25.00

(d)

Figure 1: Smoothed profiles of λ, averaged over 10 seeds. The ✩ indicate the return and cost for
a manually fixed value of λ at the intersection of the cost curve with the cost limit of 25, which is
λ∗. Across all tasks, λ∗ varies and the return decreases for λ > λ∗, showing that only values close
to ✩ yield high-return solutions. The dashed horizontal lines indicate the return and cost values
at the end of training for the GA-updated multiplier, averaged over the last 5% of training (for the
training curves, see Appendix C.1). For the Circle1 and Goal1 tasks, the GA-update recovers the
same optimum as the manually fixed λ (matching the ✩), while for the Button1 and Push1 tasks, it
even exceeds the performance achieved with the fixed multiplier.

2.2 Stability

We analyze the stability of automated update rules by comparing GA-updates with PID-controlled
updates of the Lagrange multiplier, training models for sufficiently long horizons to capture their
oscillatory behavior. We use PI-control (KP = 10−4,KI = 10−4,KD = 0.0), which reduces
complexity in analyzing the update behavior. As shown in the top plots of Fig. 2, GA-updates exhibit
notable oscillations in λ during training. In contrast, PI-controlled updates result in more stable
update trajectories. However, this stability does not always translate into fewer constraint violations
during training compared to GA-updates based solely on integral control as shown in Table C.1 in
Appendix C.4. For the Goal1 and Button1 task, GA-updates result in less constraint violations after
the first time reaching the cost limit. Moreover, the best returns reported in this table do not differ
substantially between GA and PID. The table reveals that PID-control is not always objectively the
better choice for updating the Lagrange multiplier and can thus not be used as a plug-and-play method
in practice. PID-control exceeds performance for the Circle1 and Push1 task, but performs worse
than the GA-update for the other tasks, where for the Goal1 task the agent does not even manage to
reach the cost limit. For a visualization focused on the training curves close to the cost limit, we refer
to the Appendix C.4 with zoomed-in plots of the training curves in Fig. 2.

3 Discussion and conclusion

In this section, we discuss our main findings, outline the primary limitations of our study, and provide
recommendations for future research. Additional limitations are detailed in Appendix D. Finally, we
conclude with a summary of our key contributions.

Across the four benchmark tasks, we observe that performance is highly dependent on the value
of the multiplier λ. The λ-profiles introduced in Fig. 1 offer a complete visualization of the
trade-off between the return and cost, and further demonstrate that the optimal multiplier value
is task-dependent. This non-transferability of the optimal trade-off location of λ across different
environments is additionally illustrated in the Appendix C.2. Although most work in SRL is still not
entirely scale-invariant, Stooke et al. (2020) addressed the issue of varying reward magnitudes across
environments by introducing a reward-scale invariant policy gradient. This also highlights one of
the primary limitations of our study: all experiments were conducted without applying reward-scale
invariance. Consequently, this emphasizes that the sensitivity of Lagrangian methods to the absolute
magnitudes of rewards and costs must be carefully considered when tuning λ in practice. Future
work should investigate whether λ-profiles across different tasks become more consistent when
reward-scale invariance is applied.

We found that both a manually fixed λ and a GA–updated λ lead to convergence toward the same
performance in the less complex tasks we evaluated. This empirical observation supports the
theoretical convergence result by Borkar (2005), who proved that gradient ascent on the multiplier
converges to the optimal value λ∗. While Borkar’s analysis was derived under certain assumptions on

3

0

5

20

40
R

et
ur

n GA
PID

0 20
Timesteps ×10

6

100

200

C
os

t

Circle1

(a)

0

5

10

20

R
et

ur
n GA

PID

0 20
Timesteps ×10

6

25

50

75

C
os

t

Goal1

(b)

0

5

5
10
15

R
et

ur
n GA

PID

0 20
Timesteps ×10

6

50

100

C
os

t

Button1

(c)

0.0

2.5

0

2

R
et

ur
n

GA
PID

0 20
Timesteps ×10

6

20

40

C
os

t

Push1

(d)
Figure 2: Smoothed training curves of λ (top), return (middle) and cost (bottom) for a GA-updated λ
and for PID-updated λ across training, averaged across 6 seeds. KP = 10−4,KI = 10−4,KD = 0.0.
The ✩ indicate the point of best return after the cost constraint of 25.0 is first satisfied, considering
only those time steps where the cumulative cost remains below the specified cost limit. The GA-
update method exhibits more oscillations in the updates in λ, whereas PID shows more stability
throughout the training process.

the stochastic approximation conditions, our experiments confirm similar convergence behavior in
practice. Surprisingly, automated update methods appear to perform favorably in these more complex
tasks, as was shown for the Button1 and Push1 environments in Appendix C.1. Future work should
investigate whether this advantage is a fundamental property of automated multiplier updates.

We further emphasize that the original motivation behind PID-controlled updates was to reduce
constraint violations during training. However, one might question whether this should indeed
be the primary point of improvement for Lagrangian methods, as these algorithms are inherently
designed to enforce constraints only asymptotically. The observation that automated update methods
exhibit distinctly different and less conservative learning trajectories compared to those with a fixed
optimal multiplier can, in fact, be advantageous: such behavior may lead to higher peak performance
during training, which can then be leveraged by selecting the best-performing model for deployment.
Lagrangian methods should be regarded as approaches that asymptotically converge toward an
optimal trade-off between return and cost, rather than as inherently safe methods.

This work provided a systematic empirical analysis of the Lagrange multiplier’s role in SRL, focusing
on optimality and stability. We introduced λ-profiles that visualize the trade-off between return
and cost, showing how the penalty parameter influences performance. These profiles confirm that
Lagrangian methods are highly sensitive to λ and that the optimal value λ∗ is highly dependent on
a given task. We furthermore confirmed the usefulness of automated multiplier updates practice.
In particular beyond self-tuning benefits, we showed that the solution they arrive to is on-par
or even exceeds the performance of manually fixed value λ∗. We showed that this increase in
performance can be attributed to the fact that automatically updating λ during training leads to a
less conservative learning trajectory compared to keeping the multiplier at the fixed optimal value
during training. Lastly, we analyzed the stability of multiplier updates under GA and PI-control
strategies. We observed that GA-based updates are less stable than PI–controlled updates. Although
PI-control provides smoother adjustments to the multiplier, it did not consistently perform better
than GA-updates across all tasks. Moreover, PID-controlled updates introduce three additional
hyperparameters, KP ,KI and KD, that still require careful tuning to guarantee the method’s stability.
In future work we plan to systematically analyze the hyperparameter sensitivity of Lagrangian
methods. The pursuit of stable multiplier updates remains an open challenge, and attempts in
addressing this instability must be approached with care to avoid merely shifting the problem to new
forms of instability, rather than solving the problem.

4

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained Policy Optimization.

doi:10.48550/arXiv.1705.10528 arXiv:1705.10528.

Eitan Altman. 1999. Constrained Markov Decision Processes. Routledge, New York. doi:10.1201/
9781315140223

Richard Bellman. 1957. A Markovian Decision Process. Journal of Mathematics and Mechanics 6, 5
(1957), 679–684. https://www.jstor.org/stable/24900506 Publisher: Indiana University
Mathematics Department.

D. P. Bertsekas. 1997. Nonlinear Programming. Journal of the Operational Research Society 48, 3
(March 1997), 334–334. doi:10.1057/palgrave.jors.2600425 Publisher: Taylor & Francis.

V.S. Borkar. 2005. An actor-critic algorithm for constrained Markov decision processes. Systems &
Control Letters 54, 3 (March 2005), 207–213. doi:10.1016/j.sysconle.2004.08.007

Stephen P. Boyd and Lieven Vandenberghe. 2023. Convex optimization (version 29 ed.). Cambridge
University Press, Cambridge New York Melbourne New Delhi Singapore.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. 2018. A
Lyapunov-based Approach to Safe Reinforcement Learning. In Advances in Neural Information
Processing Systems, Vol. 31. Curran Associates, Inc. https://proceedings.neurips.
cc/paper_files/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.
html

Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Alejandro Ribeiro. 2024. Last-Iterate Conver-
gent Policy Gradient Primal-Dual Methods for Constrained MDPs. doi:10.48550/arXiv.2306.
11700 arXiv:2306.11700.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. 2023. Prov-
ably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement
Learning. In Proceedings of The 5th Annual Learning for Dynamics and Control Conference.
PMLR, 315–332. https://proceedings.mlr.press/v211/ding23a.html ISSN: 2640-
3498.

Javier Garcıa and Fernando Fernandez. 2015. A Comprehensive Survey on Safe Reinforcement
Learning. (2015).

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. 2020. Learning to Walk in the Real
World with Minimal Human Effort. arXiv:2002.08550 [cs.RO] https://arxiv.org/abs/2002.
08550

Tairan He, Weiye Zhao, and Changliu Liu. 2023. AutoCost: Evolving Intrinsic Cost for Zero-
Violation Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence
37, 12 (June 2023), 14847–14855. doi:10.1609/aaai.v37i12.26734 Number: 12.

Weidong Huang, Jiaming Ji, Chunhe Xia, Borong Zhang, and Yaodong Yang. 2024. SafeDreamer:
Safe Reinforcement Learning with World Models. In The Twelfth International Conference on
Learning Representations. https://openreview.net/forum?id=tsE5HLYtYg

Ashish Kumar Jayant and Shalabh Bhatnagar. 2022. Model-based Safe Deep Reinforcement Learning
via a Constrained Proximal Policy Optimization Algorithm. doi:10.48550/arXiv.2210.07573
arXiv:2210.07573.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan
Zhong, Juntao Dai, and Yaodong Yang. 2024a. Safety-Gymnasium: A Unified Safe Reinforcement
Learning Benchmark. doi:10.48550/arXiv.2310.12567 arXiv:2310.12567.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang, Yiran
Geng, Mickel Liu, and Yaodong Yang. 2024b. OmniSafe: An Infrastructure for Accelerating Safe
Reinforcement Learning Research. (2024).

5

https://doi.org/10.48550/arXiv.1705.10528
https://doi.org/10.1201/9781315140223
https://doi.org/10.1201/9781315140223
https://www.jstor.org/stable/24900506
https://doi.org/10.1057/palgrave.jors.2600425
https://doi.org/10.1016/j.sysconle.2004.08.007
https://proceedings.neurips.cc/paper_files/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/4fe5149039b52765bde64beb9f674940-Abstract.html
https://doi.org/10.48550/arXiv.2306.11700
https://doi.org/10.48550/arXiv.2306.11700
https://proceedings.mlr.press/v211/ding23a.html
https://arxiv.org/abs/2002.08550
https://arxiv.org/abs/2002.08550
https://doi.org/10.1609/aaai.v37i12.26734
https://openreview.net/forum?id=tsE5HLYtYg
https://doi.org/10.48550/arXiv.2210.07573
https://doi.org/10.48550/arXiv.2310.12567

Yongshuai Liu, Jiaxin Ding, and Xin Liu. 2020. IPO: Interior-Point Policy Optimization under
Constraints. Proceedings of the AAAI Conference on Artificial Intelligence 34, 04 (April 2020),
4940–4947. doi:10.1609/aaai.v34i04.5932

Santiago Paternain, Miguel Calvo-Fullana, Luiz F. O. Chamon, and Alejandro Ribeiro. 2022. Safe
Policies for Reinforcement Learning via Primal-Dual Methods. doi:10.48550/arXiv.1911.
09101 arXiv:1911.09101.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. 2019. Constrained
Reinforcement Learning Has Zero Duality Gap. In Advances in Neural Information Processing
Systems, Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/
hash/c1aeb6517a1c7f33514f7ff69047e74e-Abstract.html

John Platt and Alan Barr. 1988. Constrained Differential Optimization for Neural Networks. (Jan.
1988).

Asha Ramanujam, Adam Elyoumi, Hao Chen, Sai Madhukiran Kompalli, Akshdeep Singh Ahluwalia,
Shraman Pal, Dimitri J. Papageorgiou, and Can Li. 2025. SafeOR-Gym: A Benchmark Suite for
Safe Reinforcement Learning Algorithms on Practical Operations Research Problems. doi:10.
48550/arXiv.2506.02255 arXiv:2506.02255.

Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Exploration in Deep
Reinforcement Learning. (2019).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG] https://arxiv.org/abs/1707.
06347

Adam Stooke, Joshua Achiam, and Pieter Abbeel. 2020. Responsive Safety in Reinforcement Learn-
ing by PID Lagrangian Methods. In Proceedings of the 37th International Conference on Machine
Learning. PMLR, 9133–9143. https://proceedings.mlr.press/v119/stooke20a.html
ISSN: 2640-3498.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Introduction. (2018).

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. 2019. Reward Constrained Policy Optimization.
In International Conference on Learning Representations. https://openreview.net/forum?
id=SkfrvsA9FX

Tristan Tomilin, Meng Fang, and Mykola Pechenizkiy. 2025. HASARD: A Benchmark for Vision-
Based Safe Reinforcement Learning in Embodied Agents. arXiv:2503.08241 [cs.AI] https:
//arxiv.org/abs/2503.08241

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. 2020. Projection-
Based Constrained Policy Optimization. doi:10.48550/arXiv.2010.03152 arXiv:2010.03152.

Acknowledgments and Disclosure of Funding

This work was supported by Shell Information Technology International Limited and the Netherlands
Enterprise Agency under the grant PPS23-3-03529461.

6

https://doi.org/10.1609/aaai.v34i04.5932
https://doi.org/10.48550/arXiv.1911.09101
https://doi.org/10.48550/arXiv.1911.09101
https://proceedings.neurips.cc/paper/2019/hash/c1aeb6517a1c7f33514f7ff69047e74e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c1aeb6517a1c7f33514f7ff69047e74e-Abstract.html
https://doi.org/10.48550/arXiv.2506.02255
https://doi.org/10.48550/arXiv.2506.02255
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v119/stooke20a.html
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX
https://arxiv.org/abs/2503.08241
https://arxiv.org/abs/2503.08241
https://doi.org/10.48550/arXiv.2010.03152

A Theoretical background

A.1 Constrained markov decision process

Reinforcement learning is a machine learning approach for sequential decision-making, where
an agent learns by interacting with an environment: it takes actions based on the current state,
receives feedback in the form of rewards, and iteratively improves its strategy, described by a policy,
to achieve optimal performance (Sutton and Barto, 2018). When the set of feasible policies is
restricted by a set of constraints, we speak of constrained reinforcement learning, for which we
use the formal framework of a Constrained Markov Decision Process (CMDP) (Altman, 1999).
A CMDP is described by the tuple M = (S,A, p, r, p0, γ, C), where S and A are the set of all
possible states and actions, respectively, p is the transition dynamics distribution p : S ×A → ∆(S),
r is the reward function r : S ×A× S → R, p0 ∈ ∆(S) is the initial state distribution and
γ ∈ [0, 1) is the discount factor that governs the importance of future rewards. A set of cost functions
C : C1, ..., Cm with cost limits d1, ..., dm maps transition tuples to costs, C : S ×A× S → Rm.
Actions are selected from a policy πθ, where π defines a mapping π : S → ∆(A), s 7→ π(·|s),
and θ is the set of parameters, for a stationary parametrized policy π in the set of all policies Π.
We denote R(τ) =

∑∞
t=0 γ

tr(st, at, st+1) as the return of a trajectory τ = (s0, a0, s1, ...) ∼ πθ.
The state value function for the return is defined as V R

πθ
(s)

·
= Eτ∼πθ

[
R(τ)|s0 = s

]
and yields the

return objective of the CMDP, which is to maximize the cumulative discounted reward JR(πθ),
which is equivalent to V R

πθ
(s). The expected discounted cost of the policy πθ is defined as JCi(πθ),

which is equivalent to the state value function for the cost, V Ci
πθ

(s)
·
= Eτ∼πθ

[
Ci(τ)|s0 = s

]
,

with Ci(τ) =
∑∞

t=0 γ
tCi(st, at, st+1). The feasible set of stationary parametrized policies is

ΠC
·
= {πθ ∈ Π : ∀i, JCi(πθ) ≤ di}. The optimization problem of a CMDP can be expressed as:

max
πθ∈Πθ

JR(πθ)

s.t. JCi(πθ) ≤ di, i = 1, ...,m,
(1)

where Πθ ⊆ Π denotes the set of parametrized policies with parameters θ. Compared to traditional
MDPs (Bellman, 1957), local policy search for CMDPs involves the additional requirement that
each policy iteration remains feasible with respect to the CMDP constraints. Therefore, instead of
optimizing over Πθ, the optimization algorithm should optimize over Πθ ∩ΠC . The optimal policy
π∗ of a CMDP is then found by π∗ = argmaxπθ∈ΠC J

R(πθ).

A.2 Lagrangian methods

The optimization problem in Eq. 1 is in a primal form, implying that the constraints must be strictly
satisfied at every step and thus each policy update has to remain feasible. If strict enforcement
of constraints during training is not required, we can move to the dual problem following the
Lagrangian method. This method converts a CMDP into an unconstrained one with Lagrange
relaxation (Bertsekas, 1997; Boyd and Vandenberghe, 2023):

min
λ≥0

max
θ

L(λ, θ) = min
λ≥0

max
θ

[
JR(πθ)−

(m∑
i=1

λi(J
Ci(πθ)− di)

)]
, (2)

where L is the Lagrangian and λi is the Lagrange multiplier for the i-th constraint. For convenience in
notation we drop the index i and use λ, JC and d to encompass the entire set of constraints collectively
in the rest of this paper 1. The inequality constraints of the optimization problem are now relaxed to a
penalty loss term ξ = JC(πθ)− d. This allows us to find the optimal solution of a CMDP using any
standard RL algorithm with a modified optimization objective. Intuitively, λ is a penalty parameter in
the optimization objective, which can be viewed as a parameter that defines the trade-off between the
return and cost.

1Dropping index i is done only to avoid clutter in notation. We still implicitly refer to the entire set of
constraints, in which each individual constraint corresponds with its own cost limit. For clarification: this means
that it is still possible to assume multiple constraints in the CMDP.

7

Fixed Lagrange multiplier

The Lagrange multiplier λ can be manually set to a constant value and kept fixed throughout training.
The resulting unconstrained problem in Eq. 2 can then be solved by maximizing over the policy
parameters θ. When λ is chosen to be the optimal value λ∗, this formulation is equivalent to solving
the original constrained problem from Eq. 1 and one would be able to find the optimal solution at the
saddle point

(
θ(λ∗), λ∗) (Borkar, 2005).

Automated multiplier updates

Finding the optimal value λ∗ is often computationally- and time-intensive in practice, which motivates
the search for automated alternatives. Eq. 2 is in dual form and convex, which allows us to efficiently
solve it using gradient descent. Then, the dual gradient descent algorithm alternates between the
optimization of the policy parameters θ and the Lagrange multiplier λ (Boyd and Vandenberghe,
2023). On a fast time-scale the unconstrained problem in Eq. 2 is solved to update θ. Then, on a
slower time-scale, λ is updated by minimizing the penalty loss following a preferred update rule.
If the agent violates fewer constraints, λ will gradually be decreased, and vice versa, until all cost
functions satisfy their respective cost limits.

Gradient ascent update

Performing gradient descent by taking ∇λL = −ξ and substituting this in λk+1 = λk − η · ∇λL,
with η a step-size parameter, yields a gradient ascent (GA)-update on the Lagrange multiplier as in
Eq. 3.

λk+1 =
(
λk + η · ξ

)
+
, (3)

where (·)+ denotes the projection onto R+ and comes from the KKT conditions for inequality-
constrained optimization (Boyd and Vandenberghe, 2023; Borkar, 2005; Tessler et al., 2019).

PID-controlled update

The gradient ascent update from Eq. 3 integrates the constraint, but its inherent learning dynamics
can lead to oscillations when modeled with second-order dynamics (Platt and Barr, 1988). This is
because the outputs are adjusted proportional to the accumulated constraint violations over time. This
results in frequent constraint violations during intermediate iterates. Stooke et al. (2020) proposed an
update method that utilizes the derivatives of the penalty term, introducing an additional proportional
and derivative control term to the Lagrange multiplier update as shown in Eq. 4.

λk+1 =
(
KP ξk +KIIk +KD∂k

)
+
, (4)

where ξk = JC(πθk)− dk is the penalty loss as a function of update iteration k, Ik = (Ik−1 + ξk)+
is the integral of the penalty loss, ∂k =

(
JC(πθk)− JC(πθk−1

)
)
+

is the derivative of the constraint,
and KP ,KI and KD are tunable step-size parameters corresponding to the proportional, integral and
derivative coefficients, respectively.

An important consideration when motivating the use of Lagrangian methods in practical safe RL is
whether minimizing constraint violations during training should be the primary objective. While
the pursuit of greater stability and robustness is valuable, it is worth recalling that Lagrangian
methods are not strict constraint enforcers by design. Rather, they aim to approach the cost limit
asymptotically. This raises the question of whether emphasis should be placed on minimizing
constraint violations during training, or instead on selecting the best model parameters that yielded
the highest performance during training, and use these for deployment after training. Therefore,
for the purpose of this study, the PID-controlled update method is evaluated on stability throughout
training, and the peak performance it managed to achieve during training is compared with that of the
GA-update method.

8

B Experimental setup

We aim to investigate the relationship between the Lagrange multiplier and the resulting model
performance in terms of return and cost. Therefore, we train models with a fixed multiplier value
across a wide range of λ settings. For each fixed value, we record the corresponding performance
and visualize all results together as a λ-profile for each task. These profiles reveal how sensitively
both return and cost depend on the choice of λ. We further compare these results with those obtained
from models using automatically updated multipliers, allowing us to assess which approach yields
better performance for each task. To provide additional insight into the learning dynamics, we also
plot the training curves for all evaluated methods.

All experiments are conducted with the Omnisafe benchmark suite (Ji et al., 2024b), in which we
evaluate Lagrangian methods across four benchmark tasks from the Safety Gymnasium task suite
(Ji et al., 2024a), each involving safe navigation. We train the Lagrangian version of PPO (Ray
et al., 2019; Schulman et al., 2017): PPO-Lag is employed for the GA-update of the Lagrange
multiplier, and CPPO-PID for the PID-controlled update (Stooke et al., 2020). As mentioned before,
Lagrangian methods generalize to any standard RL algorithm, including both on-policy and off-
policy settings. However, results could potentially empirically differ per applied RL algorithm. We
evaluate on the level-1 Circle, Goal, Button, and Push tasks, denoted throughout the paper as Circle1,
Goal1, Button1 and Push1, referred in order of increasing task- and constraint-complexity, with
Circle1 being the least complex and Push1 being the most complex. The environments use the Point
agent, a robot constrained to a 2D plane with two actuators: a rotational action that controls the
angular velocity of the agent around the z-axis, and an action that applies force to the agent for
forward/backward movement along the agent’s facing direction. Code: https://github.com/
lindsayspoor/Lagrangian_SafeRL.

B.1 Hyperparameters

The hyperparameters used for all of the experiments in the paper are shown in Table B.1. The
manually fixed values for the Lagrange multiplier λ used to create the λ-profiles visualized in Fig. 1
in the paper are shown in Table B.2 for all benchmark tasks.

9

https://github.com/lindsayspoor/Lagrangian_SafeRL
https://github.com/lindsayspoor/Lagrangian_SafeRL

Table B.1: Hyperparameter settings for GA (PPO-Lag) and PID (CPPO-PID).

Parameter Value
General PPO Settings

Steps / epoch 20,000
Update iterations / epoch 40
Batch size 64
Clip ratio 0.2
Target KL 0.02
Entropy coefficient 0.0
Advantage estimation GAE
γr, γc 0.99
GAE λr, λc 0.95
Actor network [64, 64], tanh
Critic network [64, 64], tanh
Actor & Critic LR 3× 10−4

Lagrangian Update
λ init 0.001

GA Update (PPO-Lag)
η 0.035

PID Update (CPPO-PID)
PID d-delay 10
PID ∆p,∆d EMA α 0.95
Penalty max 100
KP 10−4

KI 10−4

KD 0.0

Table B.2: Values of λ evaluated across all 4 different tasks for constructing the λ-profile plots (Fig.
1 in the paper).

Task Values
Circle1 0.0, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 1, 1.15,
1.3, 1.4, 1.5, 1.6, 1.7, 1.9, 2

Goal1 0.0, 0.03, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.3,
4.5, 4.7, 5, 5.3, 5.5, 5.7, 6, 6.3, 6.5, 6.7, 7,
7.3, 7.5

Button1 0.0, 0.03, 0.1, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 2,
2.5, 2.7, 3, 3.3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7,
7.5, 8

Push1 0.0, 0.01, 0.05, 0.1, 0.15, 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, 0.7, 0.8, 0.9, 1, 1.15, 1.3, 1.4, 1.5,
1.7, 1.9, 2, 2.3, 2.5, 3

10

0

20

40

R
et

ur
n

0 5
Timesteps ×10

6

0
25
50

100
C

os
t

GA-updated
Fixed

Circle1

(a)

0

10

R
et

ur
n

0 5
Timesteps ×10

6

0
25
50

100

C
os

t

GA-updated
Fixed

Goal1

(b)

0

5

R
et

ur
n

0 5
Timesteps ×10

6

0
25
50

100

C
os

t

GA-updated
Fixed

Button1

(c)

0.0

0.5

1.0

R
et

ur
n

0 5
Timesteps ×10

6

0
25
50

100

C
os

t

GA-updated
Fixed

Push1

(d)

Figure C.1: Smoothed training curves of the return (top) and cost (bottom) for a GA-updated λ and
for a manually fixed λ∗ across training, averaged across 10 seeds. The training curves for the fixed
value of λ correspond to the model trained at the optimal λ∗, indicated by the ✩ in Fig. 1. The
learning trajectory for the manually fixed λ evolves more gradually and conservatively compared to
the GA-updated λ. Note that the training curves for the Push1 task do not show full convergence at
the end of the depicted training iterations.

C Additional results

C.1 Learning trajectories

The learning trajectories for all four tasks are shown in Fig. C.1. The learning trajectory for the
manually fixed λ updates more gradually and conservatively as compared to the GA-updated λ. Note
that the training curves for the Push1 task do not show full convergence at the end of the depicted
training iterates.

C.2 Task dependencies

Fig. C.2 shows the optimal multiplier value λ∗ for all 4 benchmark tasks and demonstrates that the
optimal multiplier value is not task-agnostic across our evaluated tasks. Note that the multiplier
increases with task complexity, however, for the Push1 task (most complex), the value of λ∗ drops
again.

11

Circle1
Goal1

Button1
Push1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

*
Figure C.2: Optimal multiplier value λ∗ for all 4 evaluated benchmark tasks. The optimal value
gradually increases with task complexity, except for the Push1 task, which is considered to be the
most complex task out of the four. This shows that there is no general intuition on the underlying
relation between the optimal multiplier λ∗ and the task complexity, and that there is no such thing as
a task-agnostic value for λ∗.

Table C.1: Best return and and percentage of timesteps having cost violations after the first time
hitting the cost limit of 25.0 for GA- and PID-controlled updates. PID has no results for the Goal1
task since the cost limit remains unreached for this task. The GA- and PID-controlled updates achieve
similar returns, but the PID-controlled method shows greater variation in cost violations and does not
outperform the GA-updated approach for the Goal1 and Button1 tasks.

GA PID
Task Best Return Cost Violations Best Return Cost Violations
Circle1 46.99 44.7% 47.82 17.3%
Goal1 18.76 47.3% – –
Button1 5.23 24.4% 4.17 26.6%
Push1 3.04 20.8% 3.63 2.2%

C.3 Return-cost dependencies

The GA-updated multiplier was evaluated for various cost limits ∈ [10, 25, 50, 100, 150, 200]. Fig.
C.3 shows the return-cost curves for all 4 benchmark tasks. Where the line for the GA-updated λ lies
above the line for the manually fixed multiplier, the best performance in terms of return is higher than
for a manually fixed multiplier. The training curves for the different cost limits that the models are
trained on are shown in Fig. C.4.

C.4 Stability near the cost limit

Fig. C.5 shows the training curves for GA-updates and PID-controlled updates with KP =
10−4,KI = 10−4,KD = 0.0 (PI-control specifically) for the region of training timesteps in which
the cost curves are close to the cost limit of 25.

12

100 200
Cost

45

50

55

R
et

ur
n

Circle1

Fixed
GA-updated

(a)

20 40
Cost

0

10

20

R
et

ur
n

Goal1

Fixed
GA-updated

(b)

50 100
Cost

0

10

20

30

R
et

ur
n

Button1

Fixed
GA-updated

(c)

20 30 40 50
Cost

1

2

3

R
et

ur
n

Push1

Fixed
GA-updated

(d)

Figure C.3: Return-cost curves for all 4 benchmark tasks with a GA-updated multiplier, averaged
over 10 seeds. The return and cost values for the fixed multiplier λ correspond with the last 5% of
training iterates, and each data point on the fixed λ line corresponds with one of the values λ was
manually kept fixed at. Each data point on the line for the GA-updated multiplier corresponds with
a different cost limit set as a target for the penalty loss term during training, which corresponds to
the averaged last 5% of the training curves shown in Fig. C.4. Even though these plots illustrate the
relationship between two conflicting objectives, none of them exhibit a clear Pareto frontier, which is
typically characteristic of multi-objective optimization problems.

13

0

50

R
et

ur
n

0 2 4 6 8
Timesteps ×10

6

0
25

100

200

C
os

t

Circle1

(a)

10

20

R
et

ur
n

0 2 4 6 8
Timesteps ×10

6

0
25
50

100

C
os

t

Goal1

(b)

0

20

R
et

ur
n

0 2 4 6 8
Timesteps ×10

6

0
25

100

200

C
os

t

Button1

(c)

0

1

R
et

ur
n

0 2 4 6 8
Timesteps ×10

6

0
25
50

100

C
os

t

Push1

(d)

Figure C.4: Smoothed training curves for the return and cost of all four benchmark tasks, averaged
across 10 seeds, for different cost limits. The darker the plotted lines, the lower the cost limit. All
cost curves approach their respective cost limits, which generally leads the corresponding return
curves to converge toward lower overall returns. Note that the return curve corresponding with the
cost limit of 50 for the Push1 task does not seem to have converged at the end of training.

14

0

5

2

4

R
et

ur
n

20 25 30 35
Timesteps ×10

6

20

30

C
os

t GA
PID

Circle1

(a)

0

5

2

4

R
et

ur
n

20 25 30 35
Timesteps ×10

6

20

30

C
os

t GA
PID

Goal1

(b)

0

5

2

4

R
et

ur
n

20 25 30
Timesteps ×10

6

20

30

C
os

t GA
PID

Button1

(c)

0.0

2.5

2

4

R
et

ur
n

20 25 30 35
Timesteps ×10

6

20

30

C
os

t GA
PID

Push1

(d)

Figure C.5: Smoothed training curves of the Lagrange multiplier (top), return (middle) and cost
(bottom) for a GA-updated λ and for PID-updated λ across training, for all 4 tasks, averaged
across 6 seeds. These plots show the training curves from timestep 20 · 106 onward. Note that, as
KP = 10−4,KI = 10−4,KD = 0.0, the PID-curve in these plots actually only exhibit PI-control.
Compared to the GA-update method, the PID-controlled updates exhibit much steadier λ trajectories
across all tasks; however, both methods display instability in the cost curves near the cost limit.

15

D Additional limitations

First, we note that our experiments were limited to four level-1 navigation tasks from the Safety
Gymnasium suite, all featuring similar collision-avoidance mechanisms. While future work should
extend this analysis to other domains such as locomotion tasks (Ji et al., 2024a), visual safety tasks
(Tomilin et al., 2025), or operational control benchmarks (Ramanujam et al., 2025), the selected tasks
already capture a meaningful range of complexity. Moreover, Safety Gymnasium remains one of the
most widely used and standardized benchmarks for evaluating SRL algorithms.

An additional limitation is highlighted by examining how variations in the cost limit influence the
relationship between return and cost. As shown in Appendix C.3, the evaluated tasks exhibit an
almost linear return–cost relationship, lacking a clear Pareto frontier that would typically be expected
in a multi-objective trade-off. It remains unclear whether this behavior arises from the specific design
of the reward and cost functions in the selected tasks.

We also note that our experiments on PID-controlled updates were conducted using only a single
configuration of KP , KI , and KD, where the derivative component was set to zero. While Stooke
et al. (2020) provided a more systematic investigation into the individual influence of each of these
hyperparameters, interactions among all three parameters when configured jointly remain unexplored.
As a result, there remain open questions regarding how these parameters should be selected in practice
to ensure both stability and strong performance, and whether there exists a general relationship or
invariant configuration that holds across tasks.

16

E Related work

Lagrangian methods in safe RL

The underlying idea of Lagrangian methods is to transform the primal constrained optimization
problem into its dual form using a Lagrangian relaxation. In 2005, Borkar (2005) formalized this
perspective by introducing the dual gradient descent framework for actor–critic methods and showing
that updating the Lagrange multiplier via gradient ascent guarantees convergence to the optimal value
λ∗. In this framework, they provided that the policy and value function updates must occur on faster,
converged timescales, compared to a slower timescale on which the Lagrange multiplier is updated.
Subsequent theoretical work by Paternain et al. (2019) showed that constrained RL problems exhibit
zero duality gap, providing the theoretical guarantee that the constrained MDP can, in principle, be
solved exactly in the dual domain. They further introduced primal–dual approaches for probabilistic
constraints (Paternain et al., 2022), demonstrating that safe policies can be obtained under realistic
uncertainty models.

In 2018, Tessler et al. introduced RCPO, a Lagrangian-based algorithm that updates the multiplier
through gradient ascent (Tessler et al., 2019). Several works have since explored extensions of
Lagrangian methods. Ding et al. extended the Lagrangian framework to multi-agent RL (Ding et al.,
2023), and they furthermore proposed a regularized Lagrangian framework to guarantee safety beyond
the asymptotic convergence (Ding et al., 2024). Jayant and Bhatnagar (2022) introduced a model-
based Lagrangian method and showed that integrating model dynamics can accelerate convergence
while maintaining safety guarantees. Stooke et al. (2020) revisited the Lagrange multiplier update
mechanism and introduced an automated update method that relies on proportional-integral-derivative
control, and show that this method stabilizes training compared to pure gradient ascent.

Empirical studies of safe RL

From an empirical standpoint, Ray et al. (2019) introduced the Safety Gym benchmark suite, pro-
viding standardized environments to assess safe RL algorithms. Their study highlighted that simple
Lagrangian-based methods perform competitively among safe RL algorithms, but did not explicitly
analyze the role of the Lagrange multiplier itself. Focusing on the update of the Lagrange multiplier,
Stooke et al. (2020) provided the first systematic empirical insights into PID-controlled multiplier
updates, examining the individual influence of its three tunable hyperparameters.

While prior research has advanced both the theoretical and algorithmic foundations of Lagrangian
methods, empirical investigations into the behavior and sensitivity of the Lagrange multiplier remain
limited. To our knowledge, no prior work has systematically characterized the empirical behavior of
λ in Lagrangian methods. This work addresses this gap by providing a detailed empirical analysis
of λ in Lagrangian methods, comparing fixed values of λ with gradient ascent and PID-controlled
updates.

Multi-objective RL

Constrained RL is closely related to multi-objective RL, as both involve balancing multiple objectives.
However, as noted by Ray et al. (2019), safety requirements typically exhibit a saturation effect: once
the safety threshold is satisfied, further improvements no longer make the system any safer. This
property corresponds to the constraint threshold in the constrained formulation, which has no direct
equivalent in multi-objective optimization.

17

	Introduction
	Results
	Optimality
	Stability

	Discussion and conclusion
	Theoretical background
	Constrained markov decision process
	Lagrangian methods

	Experimental setup
	Hyperparameters

	Additional results
	Learning trajectories
	Task dependencies
	Return-cost dependencies
	Stability near the cost limit

	Additional limitations
	Related work

