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ABSTRACT

Face video editing (FVE) requires maintaining temporal consistency and iden-
tity preservation while manipulating specific attributes. However, existing FVE
methods often introduce unwanted artifacts and affect non-target attributes during
editing. To address these limitations, we propose GuideEdit to enhance the pre-
cision of face video editing. Given the inherent linearity of the latent variables in
the bottleneck layer of the diffusion U-Net model, there exists a linear mapping
between the input and the latent representation. This allows us to extract a latent
basis within the latent space that effectively encodes the key features related to
target facial attributes. By comparing the latent basis of the original video to that
of the manipulated video, we quantify the manipulation degree, which indicates
the extent of changes made. This manipulation degree serves as a guide for deter-
mining the specific components to be edited, then we achieve more precise control
at each denoising step. Integrating this fine-grained control into the editing pro-
cess allows GuideEdit to enhance temporal consistency and preserve identity of
FVE, while minimizing the introduction of artifacts. Extensive experiments on
diverse real-world videos demonstrate the effectiveness of GuideEdit, showcas-
ing its ability to achieve precise, high-quality edits that maintain coherence across
frames and ensure the preservation of essential visual elements.

1 INTRODUCTION

Figure 1: Given the editing direction, the proposed GuideEdit is able to edit real-world face videos
without affecting the identity and the background, while ensuring smooth transitions over time.

Face attribute editing has emerged as an essential task in computer vision, with applications ranging
from film production to virtual reality, social media content, and digital avatars (Zhan et al., 2023;
Kim et al., 2023; Yao et al., 2021; Zhang et al., 2018a; Zhu et al., 2020). While significant progress
has been made in face image editing (Shen et al., 2020; Zhu et al., 2020; Wang et al., 2022), compar-
atively fewer efforts have focused on FVE. The core challenge in FVE is to modify specific facial
attributes (i.e., expression, age or hairstyle) while maintaining the temporal consistency, identity
preservation, and background integrity of the video (Wang et al., 2024). Traditional image-based
editing methods can’t be applied to video editing directly, because they struggle to maintain consis-
tency across video frames due to the complex temporal dependencies and the intricate relationship
between facial attributes and identity (Ceylan et al., 2023).

Several GAN-based methods for FVE utilize pre-trained StyleGAN models (Tzaban et al., 2022;
Patashnik et al., 2021; Karras et al., 2019; Shen et al., 2020) to facilitate the editing process. These
approaches commonly employ GAN inversion(Karras et al., 2020; Xia et al., 2022), where the pre-
trained GAN is used to map the input video frames into a latent space, enabling the application of
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desired edits. However, the quality of the edited video is heavily reliant on the effectiveness of the
GAN inversion. These GAN-based methods often struggle to accurately reconstruct the original
input, resulting in suboptimal editing quality(Preechakul et al., 2022). More recently, diffusion
models renowned for their strong generative capabilities, have demonstrated success in FVE (Kim
et al., 2023; Preechakul et al., 2022), outperforming GAN-based approaches in editing quality. The
editing process in diffusion-based FVE methods is typically framed as a conditional generation
task (Zhang et al., 2023; Croitoru et al., 2023), where the desired target attribute is progressively
introduced into the video at various stages of the denoising process (Kim et al., 2023). However,
simply introducing the target attribute at different denoising steps without additional constraints can
inadvertently affect the other attributes of the video, such as identity, expression, or background.
This occurs because the diffusion model lacks precise control over the editing process (Zhao et al.,
2024; Yu et al., 2023), leading to undesired modifications in non-target regions or features.

To improve diffusion-based FVE and achieve precise control, we propose GuideEdit that edits real-
world face videos without affecting the identity and background features, while ensuring time con-
sistency (as presented in Figure 1). Given the local linearity of the latent variables in the bottleneck
layer of the UNet architecture (Park et al., 2023; Kwon et al., 2022), a linear mapping exists be-
tween the inputs and the latent variables. However, since the latent variables encode both the input
frame features and the assigned attributes features, directly using them to measure the impact of tar-
get attributes could result in interference from unrelated components (Park et al., 2023). Therefore,
GuideEdit leverages the local linearity property to isolate and extract only the latent basis vectors that
are most relevant to the target attributes, avoiding unintended modifications to other elements. To
ensure precise control, GuideEdit corrects the directional deviation of the estimated noise between
the input with the introduced attribute and the original input according to the similarity between the
latent basis of the newly introduced target attributes and the original video. This correction refines
the denoising process to focus exclusively on the components associated with target attributes, en-
suring that only the target attribute is modified while preserving other attributes. As a result, the
effectiveness of the manipulation process is significantly enhanced, allowing for more precise and
consistent editing without compromising the integrity of the original video.

We summary the contributions of our proposed method shortly as follows.

• We propose a new approach GuideEdit for FVE within the diffusion model framework,
where precise control is achieved by leveraging the local linearity of the latent variables in
the bottleneck layer of a UNet architecture.

• We introduce a latent basis extraction mechanism that identifies the most influential features
of the input video’s conditions. By calculating the similarity between the latent basis of
the original and edited video, we quantify the degree of modification, providing a precise
control signal for the editing process.

• We present a proximal guidance mechanism that uses the latent basis similarity to guide
the denoising process in the diffusion model. This ensures that changes are confined to the
specified target attribute, reducing unintended alterations and enhancing the quality of the
edited video.

• Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed
method, showing improvements in identity preservation, target attribute modification, and
temporal consistency.

2 RELATED WORK

2.1 FACE VIDEO EDITING

Existing methods for FVE can be broadly categorized into two types: GAN-based and diffusion-
based methods. GAN-based methods typically leverage pre-trained GAN models like Style-
GAN (Tzaban et al., 2022; Karras et al., 2019) for face video manipulation. A common technique in
these methods involves GAN inversion, where the input video frames are mapped to the latent space
of a pre-trained GAN (Karras et al., 2020; Xia et al., 2022), and the desired edits are applied by
manipulating the latent codes (Patashnik et al., 2021; Shen et al., 2020). While GAN-based methods
have achieved high-quality image synthesis, they suffer from several drawbacks in the context of
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video editing. The effectiveness of GAN-based video editing is heavily dependent on the quality of
the GAN inversion, which often struggles to perfectly reconstruct the input video, leading to loss of
detail or failure to preserve identity features (Preechakul et al., 2022).

In diffusion-based methods, the editing process is typically formulated as a conditional generation
task, where the target attribute is introduced into the video during the denoising process (Kim et al.,
2023). These models gradually modify the video by reversing a noising process, progressively
refining the video’s attributes over several steps. Diffusion-based methods offer several advantages
over GAN-based approaches. Due to their iterative nature, diffusion models can more effectively
preserve temporal consistency, as the modifications are made gradually, and the generative process
considers the entire video context. However, these methods typically involve a trade-off in terms of
computational cost, as the iterative denoising steps are time-consuming, leading to slower inference
times compared to GAN-based methods.

2.2 LATENT SPACE ANALYSIS

The study of latent spaces has gained significant attention in recent years. In the field of Generative
Adversarial Networks (GANs), researchers have proposed various methods to manipulate the latent
space to achieve the desired effect in the generated images (Ramesh et al., 2018; Patashnik et al.,
2021; Abdal et al., 2021; Shen & Zhou, 2021; Härkönen et al., 2020). More recently, several studies
have examined the geometrical properties of latent space in GANs and utilized these findings for
image manipulations (Choi et al., 2021; Zhu et al., 2021). Some studies have applied Riemannian
geometry to analyze the latent spaces of deep generative models (Arvanitidis et al., 2017; 2020;
Chen et al., 2018; Lee & Park, 2023; Lee et al., 2022; Shao et al., 2018). (Shao et al., 2018)
proposed a pullback metric on the latent space from image space Euclidean metric to analyze the
latent space’s geometry. This method has been widely used in VAEs and GANs because it only
requires a differentiable map from latent space to image space. And (Park et al., 2023) extend it into
diffuison models (DMs) to investigate the geometry of latent space of DMs to facilitate the image
editing. However, it is challenging for the pullback metric to accurately capture the geometry of
the latent space from the image space, as the image space contains excessive information, making it
difficult to identify the correct directions for editing.

2.3 INVERSION-BASED GUIDANCE

DDIM inversion (Song et al., 2020) exhibits great potential in editing tasks by deterministically cal-
culating and encoding the context information in a latent and reconstructing the original image with
it. Applying editing prompt upon the inverted latent code to guide the denoising process greatly
improved the test-time efficiency. Leveraging optimization on null-text embedding, Null-text Inver-
sion (Mokady et al., 2023) further improved the identity preservation of the edit. However, all these
methods rely on optimization at test-time for accurate reconstruction, which typically requires sev-
eral minutes. Negative-prompt inversion (NPI) (Miyake et al., 2023) further reduces the computation
cost for the inversion step while generates similarly competitive reconstruction results as Null-text
inversion. However, NPI may occasionally introduce artifacts due to its underlying assumptions.
And ProxEdit (Han et al., 2024) introduces an inversion guidance technique that applies a one-step
gradient descent on the current latent representation, aligning it with the inversion latent to correct
errors introduced during the reconstruction process. However, this ProxEdit method requires manu-
ally setting correction thresholds for different editing tasks, which can introduce additional bias.

3 DIFFUSION-BASED FACE VIDEO EDITING

Let X = {x1, ..., xn} represent a video consisting of n frames, where each xi is a single frame
from the original video. The goal of diffusion-based human video editing is to manipulate specific
attributes of the human subjects in the video (i.e., facial expressions, hairstyles) while preserving
other attributes such as identity, background, and temporal consistency. The editing process in
diffusion-based methods can be formulated as a conditional generation task, where target attributes
are encoded as conditioning inputs and introduced during the video reconstruction process.

The video frames are firstly reversed into noisy representations by forward diffusion process. Then
the forward diffusion process progressively applies noise to the input frames, resulting in noisy rep-
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resentations Xt = {xt,1, ..., xt,n} for each time step t ∈ T , where T is the total number of diffusion
steps. The reverse diffusion process reconstructs the video by gradually removing the noise, and dur-
ing this process, the target attribute encoded as a condition ∆c is introduced at denoising steps. The
reverse process is typically parameterized by a neural network Fθ with parameters θ that predicts
the noise in each frame, guiding the denoising process:

pθ(Xt−1|Xt,∆c) = N (Xt−1;µθ(Xt, t,∆c),Σθ(Xt, t,∆c)) (1)

Thus, the final output video X̂ = X0 = {x̂1, ..., x̂n} retains the introduced attribute, while preserv-
ing identity and background details.

However, while diffusion-based FVE introduces target attributes effectively, it struggles to preserve
identity and background details due to the lack of precise control in the editing process. To address
this limitation, we introduce GuideEdit in Section 4, which enhances the accuracy and quality of
diffusion-based FVE.

4 METHOD: GUIDEEDIT

We propose an effective diffusion-based human video editing method, GuideEdit, with its frame-
work illustrated in Figure 2. The key components of GuideEdit are outlined in the following sec-
tions: the forward diffusion process is detailed in Section 4.1, the latent basis extraction is described
in Section 4.2, and the proximal guidance mechanism is introduced in Section 4.3.

Figure 2: The framework of proposed GuideEdit. (a). The proposed GuideEdit utilizes a forward
diffusion process (FDP) module (refer to Section 4.1) to reverse the encodings of both the original
video and the manipulated video with the specified attribute. (b). The reversed encodings are then
fed into a UNet-based noise estimator. The latent basis is subsequently extracted using the latent
basis extraction (LBE) module (refer to Section 4.2). (c). The similarity between the latent basis is
computed, and the proximal guidance (PG) module (refer to Section 4.3) leverages this similarity to
guide the editing direction, ensuring high-quality manipulation of the video.

4.1 FORWARD DIFFUSION PROCESS

Figure 3: The architec-
ture of encoder E , con-
sists of Ec, Ee and Ei.

We present the process of encoding the input X into Xc
0 in Figure 3.

To encode the conditions related to the target attribute into the video,
we first obtain the embedding for the original frames using a pre-trained
condition generator, denoted as Ec: cr = Ec(X). Next, we utilize a
pre-trained encoder Ee to jointly encode the video frames and the associ-
ated embedding into conditions (the process of obtaining ∆c can refer to
Appendix C.2), which are then used as conditions during the denoising
process:

Cr = Ee(X, cr), Cc = Ee(X, cr +∆c) (2)
where Cr and Cc are utilized as conditions for the denoising of the orig-
inal and manipulated frames, respectively. And the input representa-
tions at time step t = 0 are derived using a frozen input encoder Ei:
Xr

0 = Ei(X, Cr) and Xc
0 = Ei(X, Cc), Xr

0 represents the original input representation and Xc
0

serves as the conditional input representation for manipulation.

After obtaining the encoded input representations Xr
0 , X

c
0 , the forward diffusion can be applied:

q(Xr
t |Xr

0 ) = N (Xr
t ;
√
αtX

r
0 , (1− αt)ϵ

r
t ), ϵ

r
t = Fθ(X

r
0 , t, Cr) (3)
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where Fθ denotes a pre-trained noise estimator, and Xr
t represents the noisy representation at dif-

fusion step t. The parameter αt controls the noise scale at step t. Through this process, Xr
T is

generated by the forward diffusion process. Similarly, the forward diffusion process is applied to
Xc

0 to obtain Xc
T .

4.2 LATENT BASIS EXTRACTION

The noisy representations Xr
T and Xc

T obtained in Section 4.1 are put into a pre-trained UNet F to
predict the noise of each frame, we use Fe and Fd to denote the encoder and decoder of the UNet
respectively. Since the extraction of the latent basis is identical for both Xr

T and Xc
T , we use Xc

T
as an example for simplicity. To streamline the presentation, we let X represent Xc

t , H denote the
latent variable, and C represent Cc at time step t.

The latent variable H in the bottleneck layer of the U-Net has been shown to exhibit a locally linear
structure (Kwon et al., 2022), which makes it suitable for using the Euclidean metric to measure
changes in H (Kim et al., 2023). In the denoising process, the transformation from the input repre-
sentations to the latent space can be expressed as Fe : X , C → H, where Fe maps the input X and
the editing conditions C to the latent variable H.

However, since X contains a lot of information unrelated to the specific editing direction, the vari-
ability it introduces into H might not align with the desired editing directions. To overcome this
issue, we focus primarily on how C (the editing condition) influences H, effectively isolating the
impact of the target attribute from other unrelated aspects of X . This approach enables us to better
control the editing process by only adjusting the components of H that are relevant to the intended
changes, ensuring more precise and consistent video edits.

Figure 4: The illustration of extracting
the latent basis.

Since the video editing process incorporates the addi-
tional condition C into the denoising steps, C directly in-
fluences key features in the latent space TH, where T(.)
denotes the vector space. Therefore, our goal is to iden-
tify the local latent vectors V = {v1, . . . , vn} ∈ TC that
exhibit significant variability within the tangent space of
the latent variable H, denoted as TH. By focusing on
these local latent vectors, we can effectively capture the
key aspects of the editing direction that drive changes in
the latent space, ensuring that the manipulation of the

video aligns with the intended attribute modifications while preserving other important details such
as identity and background.

The linear relationship between C and H can be expressed as a linear map: TC → TH. This linear
transformation is described by the Jacobian matrix JC , which captures how a vector v ∈ TC is
mapped to a vector u ∈ TH through the relation u = JCv. Given the local linearity of H in the latent
space, the pullback of H allows us to assign a meaningful geometric structure to C, enabling more
precise control over the editing process by understanding how changes in C affect the latent space
H, the norm of v can be measured:

||v||2pb =< u, u >H= v⊤J⊤
C JCv (4)

where < u, u >H= u⊤u is the dot product of u defined in the Euclidean space with the local
linearity of H.

The vectors V = {v1, . . . , vn} ∈ TC that maximize ||v||2pb can be derived through the singular value
decomposition (SVD) of the Jacobian matrix JC = UΛV ⊤, as illustrated in Figure 4. Here, V =
{v1, . . . , vn} represents the right singular vectors of JC , U = {u1, . . . , un} ∈ TH represents the left
singular vectors, and Λ is a diagonal matrix of singular values, it has JCvi = Λiui. The extracted
latent basis vectors V = {v1, . . . , vn} correspond to directions in the latent space that are highly
responsive to the conditions encoded in C, offering key insights into how the video editing process
responds to specific attributes. Henceforth, we obtain the latent basis responses corresponding to
the conditions Cr and Cc, denoted as V r = {vr1, ..., vrn} and V c = {vc1, ..., vcn}, respectively. The
similarity between these latent basis vectors V r and V c can be measured through using a cosine
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similarity metric, defined as:

SC(V
r, V c) = cos−1(ϕ)/π, cos(ϕ) =

1

n

n∑
i=1

vri v
c
i

||vri ||||vci ||
(5)

This similarity quantifies the degree of alignment between the original and manipulated conditions,
providing a means to assess the extent of changes introduced during the editing process.

4.3 PROXIMAL GUIDANCE

The latent basis associated with different conditions is extracted as described in Section 4.2, and the
similarity between V r and V c can be utilized to provide more precise guidance for video manipula-
tion. We denote the computed similarity as a = SC(V

r, V c), refer to Equation 5. This similarity a
serves as a key factor in adjusting the manipulation process, ensuring that only the target attributes
are modified while preserving other important characteristics like identity and background.

Figure 5: The illustration of proximal
guidance.

FVE is achieved by introducing conditions into the de-
noising process, but these introduced conditions can lead
to inaccurate reconstructions. As shown in Figure 5,
due to the absence of precise guidance, the direction of
ϵc deviates significantly from the original direction ϵr,
which results in errors during the editing process, such
as an inability to preserve the identity and background
information of the video. Given that the similarity a =
SC(V

r, V c) measures the impact of the conditions on the
model, we propose using this similarity as guidance to
regulate the denoising process.

To ensure that the directions of ϵc and ϵr remain consistent with the similarity a, it is crucial that
only the target attribute is manipulated during the editing process. To achieve this, we employ a
dynamic threshold rather than a fixed one. Specifically, we select the 1−a quantiles from the matrix
|ϵc − ϵr| and denote the cutoff value as λ. This allows us to obtain the following matrix:

M = |ϵc − ϵr| < λ, ϵ̂ = ϵc +M ⊙ (ϵr − ϵc) (6)

This method enables us to focus on the most significant deviations between the estimated noise
vectors, effectively filtering out less relevant information and ensuring that the editing process targets
only the desired attributes while maintaining the integrity of the original video features.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Dataset. We evaluate the performance of our proposed GuideEdit on real-world videos sampled
from the HDTF dataset (Zhang et al., 2021) and the VoxCeleb dataset (Nagrani et al., 2017). Specif-
ically, we randomly select 20 videos from each dataset, ensuring diversity across gender, age, and
skin tones. Each video consists of hundreds of frames, from which we randomly sample 32 consecu-
tive frames for each evaluation. The selected frames are aligned and cropped following the approach
in (Tzaban et al., 2022; Kim et al., 2023), and subsequently resized to a resolution of 256 × 256.

Baseline. We compare our method extensively with several previous state-of-the-art baselines.
We choose diffusion-based editing method DVA (Kim et al., 2023) and transformer-based method
Latent-trans (Yao et al., 2021). For GAN-based methods, we choose STIT (Tzaban et al., 2022),
PTI (Roich et al., 2022) and StyleCLIP (Patashnik et al., 2021). Some of the baseline methods are
designed for image editing, we adapt them into the video editing paradigm (the details can refer to
Appendix C.1). It is important to note that, for a fair comparison of the reconstruction abilities of
different editing methods, the original videos are used solely as input. None of the editing methods
have access to the original videos during the output stage, ensuring that the reconstruction quality is
evaluated independently of the input data.

Metric. For comprehensive evaluation of our proposed GuideEdit and the baseline methods, we
utilize a range of evaluation metrics. For the evaluation of reconstruction performance, we use
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SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018b), MSE and FID. For time consistency evalua-
tion of manipulated videos, we apply TL-ID and TG-ID (Tzaban et al., 2022). For evaluating video
editing performance, we use the Identity Preservation Rate (IPR), Target Attribute Change Rate
(TACR) (Yao et al., 2021), and CLIP score. The attribute preservation rate measures the proportion
of samples where non-target attributes remain unchanged during editing. The identity preservation
score represents the average cosine similarity between the embeddings of the original frames and
the manipulated results, reflecting how well the subject’s identity is maintained. The CLIP score is
computed based on the alignment between the target attribute and the edited frames.

Implementation. We implement the proposed GuideEdit using a diffusion autoencoder with a UNet
architecture as the noise estimator. To enhance the model’s ability to reconstruct the background in
face videos, we fine-tune the pre-trained diffusion autoencoder from (Kim et al., 2023) on the HDTF
dataset (the details of finetuning the diffusion autoencoder can refer to Appendix C.3). Note that
during the editing process, the pre-trained diffusion autoencoder model remains frozen. We use the
DDIM sampler, setting the inference time steps to 1000. The batch size for inference is set to 4, and
all inference is performed on 4 RTX4090 GPUs.

5.2 RECONSTRUCTION EVALUATION

For video editing tasks, it is essential that the model can accurately reconstruct the original video
from its encoded representation. To achieve this, we fine-tune the pre-trained diffusion autoencoder
to enhance its ability to accurately reconstruct both the background and human face. We evaluate the
reconstruction performance of GuideEdit against all baseline methods on the HDTF and VoxCeleb
datasets, with the results reported in Table 1.

Table 1: The reconstruction performance of our GuideEdit and baselines on HDTF and Voxceleb
datasets. The reported values are the mean of the averaged per-frame measurements for each video.

Method HDTF VoxCeleb
SSIM (↑) LPIPS (↓) MSE (↓) FID (↓) SSIM (↑) LPIPS (↓) MSE (↓) FID (↓)

StyleCLIP 0.6653 0.1984 0.0125 136.52 0.4830 0.3028 0.0183 233.60
STIT 0.5202 0.3978 0.0617 244.60 0.6669 0.2769 0.0513 179.27
PTI 0.6347 0.2476 0.0256 168.12 0.4737 0.3434 0.0337 227.43

Latent-trans 0.7035 0.1571 0.0068 137.70 0.6017 0.2208 0.0076 217.96
DVA 0.9448 0.0584 0.0003 33.531 0.9696 0.0130 0.0006 44.458

GuideEdit 0.9715 0.0108 0.0001 23.432 0.9779 0.0095 0.0004 24.840

Table 1 clearly demonstrates that our method achieves significantly better reconstruction perfor-
mance compared to baseline methods on both the HDTF and VoxCeleb datasets. This highlights the
superior ability of our model to faithfully reconstruct fine details in both the background and human
face, underscoring its robustness and generalizability. We further provide a visual comparison of the
reconstruction performance across different methods in Figure 6.

(a) Origin. (b) GuideEdit. (c) DVA. (d) Latent. (e) PTI. (f) STIT. (g) StyleCLIP.

Figure 6: The comparison of the images reconstructed by our GuideEdit and five baseline methods
with the original input image.

It can be seen from Figure 6 that baseline methods struggle to either preserve the identity of the
characters or retain the background features. In contrast, our GuideEdit shows clear superiority
in reconstructing the face videos, delivering more accurate restoration of both facial identity and
background details. This enhanced reconstruction ability makes GuideEdit particularly effective for
tasks where maintaining consistency between the original content and the edited results is crucial,
highlighting its robustness in video manipulation.
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5.3 EDITABILITY EVALUATION

5.3.1 QUANTITATIVE RESULTS

To thoroughly evaluate the editing capabilities of our proposed GuideEdit compared to baseline
methods, we choose two general editing directions (“smile”, “Mustache”). We compute and report
the average values of key evaluation metrics, such as Identity Preservation Rate (IPR), Target At-
tribute Change Rate (TACR), and CLIP score, for both our method and the baseline approaches. The
results, summarized in Table 2, illustrate how effectively each method handles these editing tasks,
offering insights into their relative performance across different editing scenarios.

Table 2: The editing ability of our GuideEdit and baselines on HDTF and VoxCeleb datasets. The
reported values are the mean of two editing directions (“Smile”, “Mustache”).

Method HDTF VoxCeleb
IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑) IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑)

StyleCLIP 0.8013 0.0329 0.7676 0.9997 0.9995 0.7051 0.0337 0.7670 0.9998 0.9993
STIT 0.8214 0.0341 0.7501 0.9866 0.9490 0.8131 0.0339 0.7383 0.9997 0.9994
PTI 0.7540 0.0327 0.7646 0.8238 0.8122 0.7140 0.0336 0.7627 0.7986 0.8047

Latent-trans 0.7515 0.0348 0.7450 0.9978 1.0000 0.7070 0.0335 0.7393 0.9999 1.0000
DVA 0.9244 0.0318 0.7685 1.0000 0.9977 0.8910 0.0341 0.7661 0.9999 0.9969

GuideEdit 0.9667 0.0338 0.7777 1.0001 1.0000 0.9033 0.0335 0.7607 1.0000 0.9999

As shown in Table 2, our proposed GuideEdit achieves the highest Identity Preservation Rate (IPR),
highlighting its effectiveness in maintaining identity information during editing process. Addition-
ally, our method demonstrates comparable temporal consistency to the baseline methods, further
validating its robustness in preserving video quality over time.

5.3.2 QUALITATIVE RESULTS

We further provide the visualization of the manipulation videos of different editing methods in Fig-
ure 7. Due to the limit of space, only our method and three baseline methods are presented (the full
comparison can refer to Appendix C.4).

As demonstrated in Figure 7, our method effectively edits the target attribute without impacting other
facial attributes, ensuring that the character’s identity remains intact throughout the editing process.
Additionally, the background remains unaffected, showcasing the model’s ability to localize changes
specifically to the desired areas. This level of precision allows for high-quality edits while preserving
both the identity of the subject and the original context of the scene, which is a significant challenge
in FVE tasks.
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Figure 8: Manipulation results of our GuideEdit on a sin-
gle video with two different editing directions: ”Beard” and
”Big Lip”.

To highlight the generalizability of
our proposed method, we present
the manipulation results of a single
video across multiple editing direc-
tions in Figure 8. Our approach ex-
cels at handling highly intricate back-
ground details and dynamic scenes
that include substantial head move-
ments and speech—scenarios that
typically challenge existing state-of-
the-art methods. Furthermore, our
method adeptly retains the stylistic
elements of the original video, en-
suring that the edited output blends
seamlessly with the untouched por-
tions. This results in an exceptionally
natural appearance, with virtually no
visible traces of editing. The abil-
ity to maintain such coherence across
different editing tasks underscores the robustness and adaptability of our approach.
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Figure 7: Comparison of editing performance of our GuideEdit to the previous video editing meth-
ods for editing direction ‘Libstick’.

5.4 LATENT BASIS ANALYSIS

Figure 9: The similarity between the la-
tent basis of the original video and the
manipulated video evolves as the de-
noising process progresses.

We extract the latent basis within the latent space as key
indicators of the attributes. By calculating the similar-
ity between the latent basis of the original video and the
manipulated video under a specific editing direction, we
can quantify the degree of change introduced during edit-
ing. This similarity metric serves as a guide for the edit-
ing process, enabling more precise adjustments and ulti-
mately improving the overall quality of the edits.

In Figure 9, we present the change in similarity values at
different denoising time steps for two editing directions:
”Beard” and ”Big Lip.” The denoising time step ranges
from 0 to T. As observed, the similarity is higher at larger
time steps and lower at smaller time steps. This can be
explained by the fact that at larger time steps, the latent
space contains more noise, making the extracted latent
basis of both the original and edited videos more similar.
In contrast, at smaller time steps, as less noise is present, the latent basis more accurately reflects the
encoding features, leading to a greater distinction between the original and edited videos.

Furthermore, this observation aligns with the understanding that the model initially focuses on low-
frequency signals during the early stages of the generative process, where the similarities between
the original and edited videos are more pronounced. Over time, the model progressively shifts its at-
tention to high-frequency signals, which highlight the introduced target attribute and the differences
between the two videos. This result reinforces the common view of the coarse-to-fine behavior
exhibited by diffusion models throughout the generative process (Kim et al., 2023).
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5.5 ABLATION STUDY

We demonstrate the effectiveness of our proposed GuideEdit, and to gain deeper insights into the
contribution of each component, we conduct an ablation study on different parts of GuideEdit. To
assess the role of the latent basis, we remove its extraction and instead use the direct similarity of
the latent space as a replacement. To evaluate the importance of proximal guidance, we perform
experiments without applying it, isolating its impact on the overall performance.

Table 3: The editing ability of our GuideEdit and baselines
on HDTF and Voxceleb datasets. The reported values are
the mean of two editing directions (“Smile”, “Mustache”).

Method IPR (↑) TACR (↓) CLIP-Score (↑) TL-ID (↑) TG-ID (↑)

GuideEditw/o LBE 0.9831 0.0331 0.7437 0.9925 0.9775
GuideEditw/o PG 0.8790 0.0337 0.7773 0.9770 0.8854

GuideEdit 0.9510 0.0329 0.7563 0.9986 0.9929

The results of the ablation study for
each component of GuideEdit are
presented in Table3 and Figure 10.
When the latent basis extraction is re-
moved and the similarity of the latent
variables is used as a replacement,
the differences between the original
and manipulated videos are not effec-
tively highlighted. As a result, the video cannot be edited accurately, leading to a high Identity
Preservation Rate (IPR) but a low Target Attribute Change Rate (TACR).
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Figure 10: The ablation results of GuideEdit when
apply editing direction:“smile”.

Similarly, when the proximal guidance is re-
moved, the model lacks direction for where the
edits should occur, making it unable to identify
the correct areas to manipulate. This results in
the manipulated videos failing to preserve iden-
tity information, which is reflected in a low IPR
and high TACR. The findings in Table 3 un-
derscore the necessity of both the latent basis
extraction and proximal guidance in improving
the overall quality of video editing in our pro-
posed GuideEdit.

We further present the visualization of the ab-
lation study for GuideEdit in Figure10, where
similar conclusions to those in Table 3 can be
drawn. When the latent basis extraction (LBE)
is removed, the video cannot be edited accord-
ing to the specified attribute. This is because the
key features associated with the encoded input
are not properly highlighted, causing the edit-

ing degree to approach zero and resulting in a failure to apply the desired edits. On the other
hand, when the proximal guidance (PG) is removed, the manipulated video fails to preserve identity
features due to the absence of editing direction. These results emphasize the importance of each
component of our proposed method in achieving successful and precise video editing.

6 CONCLUSION

In conclusion, we present GuideEdit, a novel diffusion-based method for FVE that effectively ad-
dresses the critical challenges of maintaining temporal consistency and preserving identity while
manipulating specific attributes. Our approach leverages the inherent linearity of latent variables in
the bottleneck layer of the diffusion U-Net model, enabling us to extract a latent basis that encodes
key features related to target facial attributes. By comparing the latent basis of the original video
with that of the manipulated video, we quantify the manipulation degree, which indicates the ex-
tent of changes made. This manipulation degree serves as a guidance for determining the specific
components to be edited, allowing for fine-grained control at each denoising step. Integrating this
precise control into the editing process enhances temporal consistency and ensures the preserva-
tion of identity, all while minimizing the introduction of artifacts. Extensive experiments conducted
on diverse real-world videos demonstrate the effectiveness of GuideEdit, showcasing its ability to
achieve precise, high-quality edits that maintain coherence across frames and preserve essential vi-
sual elements. This work not only advances the state of the art in FVE but also highlights the
potential of diffusion-based methods for future generative modeling applications.
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A ANALYSIS

A.1 FORWARD DIFFUSION PROCESS

To help understand how the forward diffusion process changes the distribution of the video frames,
We provide the changes of the frames when apply the forward diffusion process in Figure 11, the
diffusion step ranges from 0 to 1000.

t=0 t=100 t=300 t=500 t=700 t=900

Figure 11: The illustration of the forward diffusion process, the diffusion step ranges from 0 to
T = 1000.

A.2 BACKWARD DENOISING PROCESS

To help understand the editing process of the diffusion-based model, we illustrate the editing process
in Figure 12, the denoising time step ranges from 1000 to 0. It can be seen that the editing direction
is integrated into the frames with the denoising process proceeds.

t=900 t=600 t=300 t=100 t=0 Original

Figure 12: The editing process that integrates the condition into the images during the denoising
process, the denoising step ranges from T = 1000 to 0 and the editing direction is “smiling”.
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B VISUALIZATION

We demonstrate the editing performance of our proposed GuideEdit across multiple editing direc-
tions. Figure 13 presents the results for the editing direction ”Beard,” while Figure 14 highlights the
performance for the editing direction ”Smile.” In Figure 15, we showcase the results for the editing
direction ”Eyeglasses,” and Figure 16 illustrates the performance with the editing direction ”Big
Lip.” These examples highlight the versatility and precision of GuideEdit in manipulating various
facial attributes while maintaining the integrity of the original video.
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Figure 13: The editing of GuideEdit with editing direction “Beard”.
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Figure 14: The editing of GuideEdit with editing direction “Smile”.
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Figure 15: The editing of GuideEdit with editing direction “Eyeglasses”

C EXPERIMENT

C.1 IMPLEMENTATION

We select several state-of-the-art methods for comparison: the diffusion-based editing method
DVA Kim et al. (2023) and the transformer-based method Latent-trans Yao et al. (2021). For
GAN-based methods, we include STIT Tzaban et al. (2022), PTI Roich et al. (2022), and Style-
CLIP Patashnik et al. (2021).

It is important to emphasize that, for a fair evaluation of reconstruction capabilities, all methods
only use the original videos as input. None of the methods have access to the original videos during
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Figure 16: The editing of GuideEdit with editing direction “Big Lip”

the output generation phase, ensuring that the reconstruction quality reflects the true performance of
each editing approach without reliance on the input data.

• DVA Kim et al. (2023): For the implementation of DVA, we use their CLIP-based editing
method, and the editing scale α is set to 0.25 as recommended in their paper, and the input
texts of the CLIP-based editing method are “Face” and “Face with *” for original video and
the target manipulated video, other experiment settings are used the default settings.

• Latent-trans Yao et al. (2021): For the implementation of Latent-trans, we set the scaling
factor α as 1.5 and the other settings are kept as recommended. And we use the output
frames directly, the output frames are not blended with the original input frames.

• STIT Tzaban et al. (2022): We run edits with stitching tuning, and the edit ranges is set to
10101, the parameter β is set to 0.2 and the outer mask dilation is set to 50. Other settings
are kept as recommended. The output frames are used directly as well.

• PTI Roich et al. (2022): We use the default settings as recommended, and the frames of the
videos are resized to 1024. We also use the output frames directly, without blending them
into the original video frames.

• StyleCLIP Patashnik et al. (2021): We train the mappers of input videos with the default
settinfs and use the attributes as the descriptions. Then we use the default settings to edit
the videos and the output frames are used directly.

C.2 OBTAIN CONDITION

To edit videos using diffusion-based models, the editing directions must first be mapped into con-
ditions. We achieve this by leveraging the pre-trained CLIP model Radford et al. (2021) to encode
the editing directions. In Section 4.1, we generate the original condition, denoted as Cr (see Equa-
tion 2), and represent the input with this original condition as Xr

0 . The forward diffusion process is
then applied to Xr

0 over the diffusion steps T̂ .

Next, the target conditions are initialized as Ĉc = Cr. These target conditions are iteratively updated
until the final conditions are obtained. At each diffusion step t ∈ T̂ , we compute the input X̂c

t using
the equation X̂c

t = Ei(X0
t , Ĉc), ensuring that the editing directions are accurately incorporated into

the denoising process.

The source text for Xr
0 is ”face,” and the target text is ”face with δ,” where δ represents the target

attribute. We use I to denote the source text and Iδ to denote the target text. To quantify the differ-
ence between the source and target conditions, we utilize the CLIP loss function Lclip from Radford
et al. (2021) to compute the loss. The loss function is formulated as:

L1 =

T̂∑
t=0

Lclip(I,X
r
t , Iδ, X̂

c
t ) (7)

This loss helps guide the model toward generating video frames that align with the target attributes
defined by δ.
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Then to keep the consistency of the background information of the reconstructed frames under the
target conditions with the original video frames, another loss function is used:

L2 =
1

T̂

T̂∑
t=0

(Xr
t , X̂

c
t ) (8)

and to control the updated conditions don’t vary too much:

L3 = 1− CrĈc

||Cr||||Ĉc||
(9)

then the optimization object can be obtained as:

L = w1L1 + w2L2 + w3L3 (10)

where w1, w2, w3 are constants. And through minimizing L until convergence, we could get the
trained conditions ∆c = Cr − Ĉc.

Settings for Obtaining Conditions

In this paper, we use the pre-trained CLIP model, specifically the ViT-B/32 version. The weights
w1, w2, w3 are set to 5, 1, and 3, respectively, and the forward time step T̂ is set to 5. The learning
rate is set to 0.002, with a batch size of 1 during training. The number of updating steps is fixed at
1000.

C.3 FINETUNE DIFFUSION AUTOENCODER

We finetune the pre-trained diffusion autoencoder from Kim et al. (2023) on the HDTF dataset. The
loss function used for finetuning consists of two components. The first component is the standard
DDIM (Denoising Diffusion Implicit Models) loss function, represented as:

Lddim = Eϵt∼N (0,I)||ϵrt − ϵt||1 (11)

where ϵrt can refer to Equation 3 and ϵt is the true noise, t ∈ T . This loss is minimized to ensure
accurate denoising and reconstruction during the finetuning process.

To enhance the robustness of the model to noise, we sample images given the time step with two
different noise realizations, denoted as ϵ1 and ϵ2, where ϵ1, ϵ2 ∼ N (0, 1). The sampled images are
represented as X̂1

t and X̂2
t .

The loss function for this sampling process can be formulated as follows:

Lreg = Eϵ1,ϵ2∼N (0,1)||X̂1
t − X̂2

t ||1 (12)

This loss encourages the model to accurately predict the noise for both sampled images, thereby
improving its robustness against variations in noise during the denoising process.

The final optimization objective for finetuning the diffusion autoencoder is L = Lddim − Lddim

Settings for Finetuning the Diffusion Autoencoder

We finetune the diffusion model on HDTF dataset. The learning rate is set to 1e-4 and the dropout is
set to 0.1, and we sample from each videos 16 frames during each training step. The batchsize is set
to 16, the total training steps is set to 120000. And we set the seed to 0, the diffusion step T = 1000.
The experiment is performed on 4 RTX4090 GPUs.

C.4 ADDITIONAL RESULTS

The full comparison of our proposed GuideEdit and the baseline methods is presented in Figure 7
with editing direction “Lipstick”, and Figure 18 with editing direction “Smile”.
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Figure 17: Comparison of editing performance of our GuideEdit to the previous video editing
methods for editing direction ‘Libstick’.
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Figure 18: Comparison of editing performance of our GuideEdit to the previous video editing
methods for editing direction ‘Smile’.
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