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ABSTRACT

The diffusion sampling process faces a persistent challenge stemming from its
incoherence, attributable to varying noise directions across different timesteps. Our
Representative Guidance (RepG) offers a new perspective to handle this issue by
reformulating the sampling process with a coherent direction towards a represen-
tative target. In this formulation, while the classic classifier guidance improves
feature discernment by steering the model away from ambiguous features, it fails
to provide a favourable representative target since the class label is overly compact
and leads to sacrificed diversity and the adversarial generation problem. In contrast,
we leverage self-supervised representations as the coherent target and treat sam-
pling as a downstream task, which refines image details and corrects errors rather
than settling for simpler samples. Our representative guidance achieves superior
performance and illustrates the potential of pre-trained self-supervised models
in image sampling. Our findings demonstrate that RepG not only substantially
enhances vanilla diffusion sampling but also surpasses state-of-the-art benchmarks
when combined with classifier-free guidance. Our code will be released.

1 INTRODUCTION

In diffusion sampling processes Ho et al. (2020), a persistent challenge arises from the incoherence
stemming from uncontrollable noise introduced at each timestep. As illustrated in Figure1, at every
timestep, xt is used to predict the original image. During the training, the original images are picked
from the dataset, ensuring that the images’ distribution is consistent at every timestep of sampling.
However, during the inference time, the real dataset’s distribution is unavailable. Instead, at every
timestep, the diffusion model will draw different distributions with different types of information as
the below row in Figure 1. This leaves the gap between timesteps for introducing incoherent features
into the images. This paper addresses the issue of incoherence by framing it as a discrepancy between
predicted image distributions at successive timesteps. This discrepancy permits noise information to
persist, leading to undesired artefacts in the generated images. For instance, an image of a Leonberg
may exhibit bizarre or inconsistent features in immediate timesteps, complicating the transformation
into a realistic image as the sampling process progresses, as illustrated in Figure 2. Moreover, the
generated images frequently lack crucial details, such as background elements and object specifics.
While efforts such as DDIM Song et al. (2020a) have attempted to mitigate the incoherence issue
by eliminating random noise during sampling, they often do so at the expense of the quality of
generated samples. Consequently, many recent diffusion models continue to rely on the mechanisms
of conventional DDPMs Ho et al. (2020).

Under our formulation of the incoherence, we propose a solution that involves tuning image features at
each timestep to rectify incoherent features. We introduce a guidance scheme termed Representative
Guidance (RepG), which leverages information from representative vectors to steer the sampling
process towards a coherent direction. Moreover, unlike the traditional classifier guidance, where
one-hot vectors represent classes, RepG represents each class through a set of representative vectors
containing features specific to that class. To harness the optimal representative information, we
employ self-supervised models prevalent in representative learning as our guidance model. The
gradients derived using the pre-trained self-supervised model are directly integrated into the sampling
process to facilitate feature tuning in generated images. In this sense, the sampling process can be
viewed as a downstream task of the self-supervised models.
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Figure 1: The top row is the real sampling process during training, where at every timestep, real
images are picked from a coherent distribution. Nevertheless, during the inference phase, as in the
row below, the predicted images at every time step have different distributions. The images with
earlier timesteps are more blurred than the images in the later stage of the sampling. This results in
the incoherence between intermediate distributions.

In comparison to the classifier guidance, which is a popular method for enhancing the performance
of the diffusion model, RepG offers multiple advantages. Firstly, our method provides a better
representative target than the classifier guidance. The utilization of representative vectors for each
class inherently contains valuable information for generative tasks. In contrast, the classifier guidance
relies on one-hot vectors representing each class, which offer limited information. This overly
compact target leads to reliance on discriminative features within the classifier, which often proves
insufficient for generative tasks and raises concerns about potential adversarial effects that could
degrade the quality of generated images Dinh et al. (2023b).

Secondly, self-supervised models are trained to generalize well across datasets rather than being
tailored to a single task like classifiers. This characteristic helps mitigate the need for noise-aware
training of the guidance model, which can be prohibitively expensive, particularly for high-resolution
images. Additionally, unlike noise-aware classifiers, self-supervised networks do not need to memo-
rize noise patterns, contributing to the lightweight nature of the guidance model, such as our RepG
utilizing ResNet50, thereby saving computational time during sampling.

Thirdly, RepG does not compromise diversity, unlike the classifier guidance approach. While the
classifier guidance alters images at the class level to enforce diversity, RepG fine-tunes images at the
feature level. Consequently, while the former method encourages the generation of images only with
the popular features for each class, RepG preserves most of the image content while modifying faulty
features and details.

In summary, our proposed RepG operates distinctively compared to the classifier guidance. As for
the classifier-free guidance, while the classifier-free guidance offers a trade-off between quality and
diversity, our method focuses on upgrading details or fine-tuning features, as depicted in Figure
3. Consequently, our RepG can complement the classifier-free guidance to enhance the generation
quality further. Combining our method with the classifier-free guidance demonstrates superior
performance compared to several SOTA baselines. The contributions of this paper are three-fold:

• Model the incoherence of the diffusion sampling process and introduce a suitable guidance
scheme.

• Propose the representative guidance target based on self-supervised pre-trained models.

• Validate the results against a number of state-of-the-art baselines.
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250 200 185 160 130 100 50 1
timesteps

w/o RepG

RepG

Figure 2: condition:Leonberg. The top row is the vanilla diffusion sampling process, and the bottom
row is the sampling process with our Representative Guidance. From timestep 250 to timestep 185,
both of the processes are similar. However, inconsistent features appeared in the vanilla sampling
process as the black bubble exists at the head and the tail of the Leonberg at timestep 160. Without
RepG, the process struggles to fix inconsistent features for the rest of the process. In contrast, RepG
handles the case by removing the inconsistent features and making the image very clear from the
time step 130. The RepG sampling process later focuses on improving other details such as hair,
background, and surrounding objects. (Dataset: ImageNet256x256/ Diffusion Model: ADM)
2 RELATED WORKS

Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) and their score-based counter-
parts Song & Ermon (2019); Song et al. (2020b) have become one of the most popular generative
models recently and replacing Generative Adversarial Networks (GANs) Odena et al. (2017); Kang
et al. (2021); Sauer et al. (2022). The following works Song et al. (2020a); Nichol & Dhariwal
(2021); Dhariwal & Nichol (2021); Bao et al. (2022); Lam et al. (2022) improve the models in
different perspectives such as time reduction or sampling quality improvement. Recent trends in
developing the Diffusion model leveraging the latent space for diffusion and denoising processes
such as DiT Peebles & Xie (2023), and Stable Diffusion Rombach et al. (2022) also offer diffusion
models with less sampling time with good quality images.

Exposure bias Ning et al. (2023); Yu et al. (2023); Li et al. (2023) is when the noise is accumulated
through timesteps due to the lack of ground truth. However, the incoherence problem in this paper has
different meanings. Incoherence means a mismatch between two distributions of predicted images
at two timesteps that should share the same information. This mismatch results in a gap, allowing
incoherent features to be added to the images.

Guidance methods also emerge as essential techniques to boost the performance of generated samples
Dhariwal & Nichol (2021); Nichol et al. (2021); Zheng et al. (2022); Dinh et al. (2023a;b); Liu et al.
(2023); Bansal et al. (2023). In general, the noise-aware or off-the-shelf classifier/CLIP gradient is
utilized to guide the diffusion sampling process to improve its performance in terms of FID. Classifier-
free guidance Ho & Salimans (2022) offers a different way to trade off quality with diversity by
combining conditional and unconditional diffusion models in the same framework. In Dinh et al.
(2023b), the author points out that classifier guidance utilizes the most discriminative features only to
do sampling, reducing the generated images’ robustness and diversity. However, to achieve superior
performance, these methods all give up diversity by significantly modifying details of the image
to be close the the most common features of the conditional class. In this manuscript, we propose
a guidance method that fixes the details of the image instead of generating another one based on
feature-level guidance.

Although ProG Dinh et al. (2023b) solves the problem of diversity suppression by including other
classes’ features, it still cannot avoid the fact that ProG is still based on discriminative features from
a classifier that are not diverse enough for a generative task. Thus, our work utilizes self-supervised
models that contain more general information. Self-supervised models Chen et al. (2020b); He et al.
(2020); Chen & He (2021); Grill et al. (2020); Chen et al. (2020a) aim to learn representative vectors
that contain helpful information about data. While the applications of these models on generative
tasks are still limited, this work shows that the pre-trained backbone from a self-supervised model is
helpful without any training or fine-tuning. Other self-supervised learning in diffusion models works
all aim to fine-tune the diffusion model in a self-supervised manner or utilize the diffusion model as a
self-supervised model Hu et al. (2023); Zhang et al. (2024).
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3 BACKGROUND

DDPM: pθ(x0) :=
∫
pθ(x0:T )dx1:T with x1,x2, ...,xT are latent variables sharing the same dimen-

sionality with the data x0 ∼ q(x0) as the main formulation of DDPMs with p(xT ) = N (xT ;0, I).
The main aim of DDPMs training is to obtain the pθ(x0:T ) is the reverse process following the Marko-
vian property pθ := p(xT )

∏T
t=1 pθ(xt−1|xt), where pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)).

The reverse process moves from a total noise image to a clear image. Hence, it is used as a generator
in the inference process.

The forward process corrupts the original data x0 to xT with Gaussian noise to train the θ for serving
the reverse purpose. This process is a fixed Markov chain q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1)j, where

q(xt|xt−1) := N (xt;
√
1− βxt−1, βtI). βt is the fixed variance scheduled from the start of the

process.

From the given schedule, distribution of xt given x0 can be derived as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

Denote αt = 1− βt and ᾱ =
∏t

s=1 αs. Reverse from xt given x0, xt−1 distribution is derived as:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (2)

Where mean value µ̃t(xt,x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and variance B̃t :=

1−ᾱt−1

1−ᾱt
βt. with

reparameterization trick, we can sample the xt−1 as:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (3)

Similar to a Variational AutoEncoder Kingma & Welling (2013), the optimization of θ will be
conducted via negative log-likelihood variational bound:

E[− log pθ(x0)] ≤ E
q
[− log p(xT )− Σt≥1 log

pθ(xt−1|xt)

q(xt|xt−1)
] (4)

We re-write the Eq. 4 as:

E[− log pθ(x0)] ≤ E
q
[DKL(q(xT |x0)||p(xT ))+

∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))−log pθ(x0|x1)]

In detail implementation, the θ is chosen to be parameters of the noise predictor ϵθ(xt, t). The
well-trained θ using Eq. 4 can be used for sampling equation:

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz (5)

4 METHODOLOGY

In this section, we first reformulate the sampling process to analyze the coherence issue. From Eq. 5,
we first re-write the formulation of the sampling process as:

xt−1 =
(αt − 1)

√
ᾱt−1

1− ᾱt
(
−xt√
ᾱt

+

√
1− ᾱtϵθ(xt, t)√

ᾱt
) +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (6)

The complete derivation of Eq.6 can be found in Eq.24 in Appendix. Denote x̃t
0 as the prediction

of x0 at time step t. From Eq.1, we have x̃t
0 = ( xt√

ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt
) as the prediction of x̃0 at the

sampling step t. This results in a new form of sampling equation:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x̃t
0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (7)
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The Eq.7 is the sampling from the distribution of q(xt−1|xt, x̃0) with µ̃t(xt, x̃0) =
(1−αt)

√
ᾱt−1

1−ᾱt
x̃t
0+

(1−ᾱt−1)
√
αt

1−ᾱt
xt and σt = β̃ which is matched with Eq.2 and Eq.3 in the training of the DDPMs.

In the training reverse phase in Eq.3, there is a small assumption that x0 ∼ q(x0). This results
in information being passed from timestep t into timestep t − 1, or the data distribution q(x0) is
consistent throughout all timesteps. However, this assumption is no longer valid during the sampling
step. By assuming ϵθ(xt, t) ∼ ϵ, we have:

x̃t
0 ∼ q(x̃t

0|xt) = N (x̃t
0;
−xt√
ᾱ
,

√
1− ᾱt√
ᾱt

) (8)

However, the q(x̃t
0|xt) at two different timesteps t are not the same, although they are both used

for sampling x̃t
0 which is later used for sampling in Eq.7. The illustration of the difference between

these distributions can be found in Figure 6 in the Appendix. The assumption that x0 ∼ q(x0) at all
timestep is not correct anymore and sample xt−1 from Eq. 7 can not hold. We define the incoherence
problem as below:
Definition 4.1. Incoherence is the mismatch between predicted x̃t

0 distributions at different timestep
t and mismatch between predicted x̃0 distributions with real data distribution q(x0).

q(x̃t1
0 |xt1) ̸= q(x̃t2

0 |xt2) ̸= q(x0)∀t1, t2 > 1, t1 ̸= t2 (9)

The incoherence in the sampling process leaves the gap for the inconsistent features resulting from
random noise appearing inside the image at some stage of the process. For example, in the top
row of Figure 2, we observe the black bubbles at the head and tail of the dog at the 160th timestep.
The consequence is that the generated samples contain many blur details, inconsistent features, or
unnecessary features.

4.1 REPRESENTATIVE GUIDANCE

From definition 4.1, gaps of inconsistent features result in poor-quality images. Thus, to solve the
incoherence, we need to make the distribution of intermediate samples q(x̃t

0|xt) as close as possible
to q(x0). However, the q(x0) is intractable during the sampling process. The intractability would
make calculating any distance between these two distributions impossible.

Instead of calculating the direct distance between q(x̃t
0|xt) and q(x0), we inject features information

of x0 during the sampling process in Eq.7 to force the sampling of x̃t
0 to mimic the features of x0 at

every timestep. First, we denote the fϕ(x0) as features extractor, parameterized by ϕ, for x0. Our
design aims to force x̃t

0 to have similar features fϕ(x̃t
0) as x0. We denote d(fϕ(x0), fϕ(x̃

t
0)) as the

distance between two features.

Once again, since q(x0) is intractable, fϕ(x0) is also intractable. To address this, instead of repre-
senting fϕ(x0) at an instance-wise level, we encode the features of the entire dataset at a class-wise
level using g(x0|c). Here, g(x0|c) is defined as an operation on the set of fϕ(x∗

0) | x∗
0 ∼ q(x0|c),

where c ∈ C denotes the class. The feature distance is then transformed into d(g(x0|c), fϕ(x̃t
0)).

Given class c and data x0, we define g(x0|c) as the set of vectors representing the features of class c.
Specifically, g(x0|c) = {rc1, rc2, . . . , rcn}, where n denotes the number of vectors required to represent
class c. With C classes, the entire dataset is encoded as V = {g(x0|1), g(x0|2), . . . , g(x0|C)}. This
representation encoding enables the model to store a compact set of representation vectors g(x0|c) for
each class c, rather than storing the representative vectors fϕ(x0) for the entire dataset. The selection
of g and f will be discussed in Section 4.2.

As a result, at each time step, given class c, we refine the predicted x̃0 through the equation below:

x̃t
0 := x̃t

0 − γ∇x̃t
0
d(g(x0|c), fϕ(x̃t

0)), (10)

where γ is the guidance scale.

From Eq.10 and 7, given class c, we have our new sampling process with coherence:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x̃t
0+

(1− ᾱt−1)
√
αt

1− ᾱt
xt+σtz−

(1− αt)
√
ᾱt−1

1− ᾱt
γ∇x̃t

0
d(g(x0|c), fϕ(x̃t

0))

(11)
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with x̃t
0 = ( xt√

ᾱt
−

√
1−ᾱtϵθ(xt,c,t)√

ᾱt
). The guidance features from x0 provide a consistent and reliable

target for x̃0 to avoid the incoherence problem. We will discuss the similarity between Eq.11 and a
Stochastic Gradient Descent process in Appendix D.

The choice of distance d can be varied. The rest of this section 4.1 mainly discusses the options of d.

Negative Cosine similarity: At each timestep, we sample a vector rct ∼ g(x0|c). The two vectors
fϕ(x̃

t
0) and rct can be matched via a negative cosine similarity loss as below:

Lcs(fϕ(x̃
t
0), r

c
t ) = −

fϕ(x̃
t
0)× rct

∥fϕ(x̃t
0)∥∥rct∥

(12)

Contrastive loss: Apart from negative cosine similarity, the contrastive loss has also been used in
many works on representative learning have presented He et al. (2020); Chen et al. (2020b;a). The
contrastive loss in our work is more toward the supervised contrastive rather than instance contrastive.
We can define a positive pair as two vectors with the same classes and a negative pair as two vectors
with different classes. When sampling the image in class c, the loss for contrastive matching is:

Lct(fϕ(x̃
t
0), V ) =

exp
fϕ(x̃

t
0)×rct
H∑C

i=1,i̸=c exp
fϕ(x̃t

0)×rit
H

(13)

where H is the softmax temperature.

Replacing the matching equation in Eq.12 and Eq.13 into Eq.11 as L , we have the final sampling
guidance equation:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x̃t
0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz −

(1− αt)
√
ᾱt−1

1− ᾱt
γ∇x̃t

0
L(fϕ(x̃t

0), V )

(14)

4.2 REPRESENTATIVE TARGETS

In section 4.1, we have discussed a coherent guidance method given representative information from
a class c. This section will discuss the choice of the mapping function fθ and the representative
information for each class.

The most straightforward way is to use naive classification for the guidance, where a network
such as ResNet He et al. (2016) or a noise-aware classifier Dhariwal & Nichol (2021) is selected
to be a classifier. This is the case of the classic classifier guidance. The representative vector
g(x0|c) ∈ {0, 1}C reduces to a one-hot vector, with C as the number of classes. However, the use of
classification as representative information has many shortages. Firstly, the guidance reveals very
little detail about the generated images. Since the classifier only processes the discriminative features,
many details that are less discriminative for a class are missed when using the classifier gradient to
construct the image Dinh et al. (2023b). Secondly, the motivation for using a classifier to construct
images in diffusion models is becoming weaker than the use of the classifier-free guidance. Since a
conditional diffusion model already had class-conditioned information, the reason for using additional
classification information to improve the performance of a conditioned diffusion model seems to be
not strong enough to convince the community. As a result, the research community often opts for
classifier-free guidance Rombach et al. (2022); Peebles & Xie (2023). Thirdly, the use of classifier
guidance is often associated with the very expensive training cost of noisy classifiers.

Self-supervised models are known to be very good at generalizing data agnostic to augmentation/noise
and separating image samples on representative spaces according to features He et al. (2020); Chen
& He (2021); Jing et al. (2021). Thus, we choose the self-supervised model to be our guidance model.
The self-supervised models are pre-trained and we consider the sampling process as a downstream
task of the model. Given a real dataset x0 and a pre-trained self-supervised model fϕ, an instance
xc
i ∈ x0 is the ith instance in class c of the dataset. We have rci = fθ(x

c
i ). The centre of each class

on the representative space has the form r̄c = E rci . We assume that the representative instances that
are closer to the mean values represent the most important features of the classes. We represent the

6
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whole class c via the representative information g(x0|c) as below:

g(x0|c) = {rck}×K , k ∈ Sc|
∑
k∈Sc

rckr̄
c

∥rck∥∥r̄c∥
→ min (15)

Where Sc is the list of indexes of K representative vectors that are selected to be the closest to the
class mean representative vector r̄c. We will discuss in section 5 the value of K and different schemes
to select representative vectors g(x0|c) in addition to the ”closest” scheme.

Given Eq.15, we have V = {g(x0|1), g(x0|c), ..., g(x0|c)} as a set of representative class vectors
representing the whole dataset to enable diffusion sampling with coherence using Eq.14. Before the
sampling process starts, V will be calculated in advance and stored as the network parameters for
sampling.

5 EXPERIMENTAL RESULTS

Table 1: Comparison with state-of-the-art
generative baselines on ImageNet64x64
and ImageNet256x26. † denotes the ob-
tained score evaluated from generated im-
ages from the published repo. ‡ represents
the number taken directly from the paper
due to the lack of the source code or gen-
erated samples. Other values are repro-
duced from the published source code. The
proposed RepG is shown to achieve better
results than other state-of-the-art.

Model FID sFID Prec Rec

ImageNet 64x64

BigGAN† 4.06 3.96 0.79 0.48
IDDPM 2.90 3.78 0.73 0.62
IDDPM + RepG 2.53 3.44 0.75 0.60
ADM 2.07 4.29 0.73 0.63
ADM + RepG 1.69 3.42 0.75 0.62

ADM-G 2.47 4.88 0.80 0.57
ADM-G + PxP 1.84 3.97 0.76 0.60
ADM-G + ProG 1.87 4.33 0.77 0.60
ADM-G + EDS + ProG 1.77 4.25 0.77 0.61
ADM-CLSFree 1.89 4.45 0.77 0.60
ADM-CLSFree + ProG 1.91 4.51 0.76 0.60
ADM-CLSFree + RepG 1.67 3.44 0.78 0.61

ImageNet 256x256

BigGAN† 7.03 7.29 0.87 0.27
DCTrans‡ 36.51 8.24 0.36 0.67
VQ-VAE-2‡ 31.11 17.38 0.36 0.57
IDDPM‡ 12.26 5.42 0.70 0.62
ADM 10.94 6.02 0.69 0.63
ADM + RepG 7.83 5.79 0.72 0.61

ADM-G 4.58 5.23 0.81 0.52
ADM-G + EDS 3.96 5.00 0.82 0.52
ADM-G + PxP 4.00 5.19 0.81 0.53
ADM-G + ProG 4.53 5.08 0.85 0.49
ADM-G + ProG + EDS 3.84 5.00 0.83 0.51
ADM-CLSFree 3.76 4.45 0.77 0.53
ADM-CLSFree-G + ProG 3.81 4.46 0.77 0.53
ADM-CLSFree + RepG 3.34 4.60 0.85 0.52
DiT-CLSFree 2.27 4.80 0.82 0.58
DiT-CLSFree-G + ProG 2.25 4.56 0.82 0.58
DiT-CLSFree + RepG 2.17 4.59 0.80 0.60

Table 2: We compare the use of different self-supervised
models for our representative guidance.

Self-sup Model FID sFID Prec Rec

ImageNet 64x64

W/o Guidance 2.07 4.29 0.73 0.63
MoCo-v2 1.69 3.42 0.75 0.62
SimSiam 1.88 3.80 0.74 0.62
Moco-v3 1.81 3.93 0.76 0.62

Table 3: Different K values for our representative guidance
with several possible values K = {1, 5, 10, 15}.

FID sFID Prec Rec

ImageNet64x64

ADM 2.07 4.29 0.73 0.63
ADM + RepG (K=1) 1.77 3.44 0.75 0.60
ADM + RepG (K=5) 1.69 3.42 0.75 0.62
ADM + RepG (K=10) 1.73 3.43 0.75 0.62
ADM + RepG (K=15) 1.82 3.45 0.75 0.62

Table 4: We compare the use of two different representative
vector selection schemes.

FID sFID Prec Rec

ImageNet64x64

ADM 2.07 4.29 0.73 0.63
ADM + RepG 1.69 3.42 0.75 0.62
ADM + RepG Rand 2.04 4.17 0.74 0.62

Table 5: The use of two matching losses used in sampling as
mentioned in section 4 affects the performance of the diffusion
sampling process. The result indicates the superiority of both
of the losses’ performances compared to without guidance.
The contrastive achieves slightly better than negative cosine
similarity loss.

Loss FID sFID Prec Rec

ImageNet 64x64

W/o Guidance 2.07 4.29 0.73 0.63
Contrastive 1.69 3.42 0.75 0.62
Cosine Similarity 1.75 3.57 0.75 0.60

Experiments are conducted to evaluate on ImageNet Deng et al. (2009) dataset with two resolutions
64x64 and 256x256 with 50000 generated samples. We first verify our claims that our proposed
RepG helped to improve the details and fix the faulty information in the images qualitatively in
section5.1 and quantitatively in section5.2. After that, we will compare quantitatively with other
state-of-the-art methods such as BigGAN Brock et al. (2018), ADM Dhariwal & Nichol (2021),
PxP Dinh et al. (2023a), ProG Dinh et al. (2023b), EDS Zheng et al. (2022), IDDPM Nichol &

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Upgrading 

details

Correct wrong 

features

Remove 

unnecessary 
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W/o RepG RepG W/o RepG RepG

Figure 3: Qualitative improvement by using Representative Guidance (RepG). There are three main
scenarios in which RepG can help to improve the performance of a diffusion sampling process. The
first row is the appearance of wrong or faulty features inside the images. The guidance helps to
correct the image’s features to make the image look more realistic. The second is the case in which
RepG helps to improve the details of the objects and the backgrounds. In the left image of the second
row, the dog has blurred hair which has been corrected by the RepG where we can see the hair. In the
right case, the RepG helps to enhance the details of the background such as grass, trees, and fence
information. The hair of the dog is also detailed. In the last row, the RepG helps to remove some
unnecessary features such as a human standing behind the dog in the left image or the erroneous
body of the dog in the right sample. ImageNet256x256

Dhariwal (2021), VAQ-VAE-2 Razavi et al. (2019) and Classifier-free guidance (CLSFree) Ho &
Salimans (2022). Three baseline diffusion models are leveraged to evaluate the improvement of the
proposed Representative Guidance method are ADM Dhariwal & Nichol (2021), IDDPM Nichol &
Dhariwal (2021) and DiT Peebles & Xie (2023).

We denote that ADM or IDDPM as the ADM or IDDPM diffusion model without guidance. ADM-
G is denoted for ADM with classifier guidance. PxP, ProG, EDS are advanced techniques to
improve classifier guidance going after “+” sign. ADM-CLSFree and DiT-CLSFree are denoted
for the application of classifier-free guidance on ADM and DiT respectively. ADM-CLSFree-G or
DiT-CLSFree-G are denoted for applying the combination of classifier-free guidance and classifier
guidance on ADM and DiT correspondingly.

5.1 INCOHERENT FEATURES ALLEVIATION

As discussed in section 4, we observe incoherent features during the sampling process due to
the incoherence of x̃t

0 at each timestep. This section shows that RepG successfully alleviates the
inconsistent features in the generated images following three categories as in Figure 3. In detail, RepG
helps to improve the diffusion sampling process by fixing faulty features, removing unnecessary
features, and upgrading details.

5.2 QUANTITATIVE IMPROVEMENT

This section compares the performance of our proposed RepG guidance with other state-of-the-art
baselines as in Table 1.

Firstly, the use of RepG helps to improve the performance of vanilla baselines such as ADM or
IDDPM. Apart from the observation in section 5.1 with qualitative improvement, we see a significant
improvement in FID/sFID and precision when applying RepG on ADM or IDDPM. Secondly, given
the same ADM diffusion model, ADM + RepG has a significantly better Recall value than other
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guidance methods such as ADM-G, ADM-CLSFree, ADM-G (+PxP, +ProG, +EDS+ProG) which
indicates that RepG helps to keep the diversity better than other guidance methods (As highlight in
pink column) Finally, The combination of RepG and CLSFree guidance outperforms other state-of-
the-art guidance methods such as PxP Dinh et al. (2023a), ProG Dinh et al. (2023b), EDS Zheng
et al. (2022) or CLSFree Ho & Salimans (2022).

Note: On ImageNet256x256, the RepG improves baseline ADM significantly but lags behind other
guidance methods. This is expected as RepG only improves details and keeps diversity while other
methods sacrifice diversity to achieve better quality. On ImageNet64x64, RepG outperforms all other
guidance methods due to the information in ImageNet64x64 is less than its 256 counterpart and
focuses on foreground objects. Improving objects’ features is enough to beat other methods.

Classifier guidance failed to improve the performance of classifier-free guidance significantly (ADM-
CLSFree-G+ProG and DiT-CLSFree-G+ProG in Table 1). This is due to the overlapping trade-off
essence of the two methods. These two methods do the same thing: trade-off quality with diversity,
which offers less improvement when combined. However, RepG successfully improves classifier-free
guidance since RepG does a different task: tune the details of the images.

5.3 ABLATION STUDY

Section 5.1 and 5.2 have shown qualitative and quantitative improvement compared to previous
state-of-the-art baselines. In the Ablation study, we discuss different choices for our models, such
as the choice of self-supervised models, the performance of the proposed methods on different
guidance scales, the number of representative targets utilized, and the performance comparison
between contrastive matching loss (Eq.13) and cosine similarity matching loss (Eq.12).

5.3.1 DIFFERENT SELF-SUPERVISED MODELS

In all of the RepG results in Table 1, we use MoCo-v2 Chen et al. (2020b) as the backbone for
guidance. This section compares different choices of pretrained self-supervised models in Table 2.
In detail, three popular pre-trained self-supervised models are utilized, which are MoCo-v2 Chen
et al. (2020b), SimSiam Chen & He (2021), and Moco-v3 Chen et al.. The performance shows that
MoCo-v2 achieves the best among the three models. The outperformance of Moco-v2 could be due
to the representative information obtained by MoCo-v2 having contrastive information compared
to SimSiam, hence obtaining more information about data than just clustering it. Moco-v3 delivers
better FID than SimSiam but is still not as good as Moco-v2, yet Moco-v3 offers better Precision.

5.3.2 GUIDANCE SCALES EFFECTS

Similar to the classifier guidance Dhariwal & Nichol (2021); Zheng et al. (2022); Dinh et al.
(2023a;b), our RepG can also be controlled by the guidance scale γ as in Eq.10. We compare the
effect of the guidance scale in the range of [0, 10] with γ = 0.0 in the diffusion sampling process
without any guidance. Figure 4 shows the trend of FID and Recall when increasing the guidance
scale. The generation quality of RepG is improved steadily without trading off diversity compared to
the classifier guidance. Improvement without trading off with diversity is expected since our method
mostly keeps the content of the generated images while upgrading the details or fixing faulty features.
The effects of increasing the guidance scale can be observed in Figure 5.

5.3.3 REPRESENTATIVE TARGETS

This section shows the effect of selecting representative targets for each class.

The K values: The different choices of K value in Eq.15 affects the performance. The experiment
is conducted on ImageNet64x64 as shown in Table 3. As we can see, given K=1, there is only one
representative vector for one class, reducing the generated samples’ quality and diversity. However,
more than five representative vectors per class will confuse the sampling process and downgrade
the performance. Understandably, including more representative vectors brings more features to be
excluded due to the contrastive loss. The excluded features might include the shared features between
classes, which have become common due to the inclusion of more information.
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Figure 4: We compare the Recall trend between the classifier and representative guidance (RepG).
RepG shows a much more stable trend in diversity than classifier guidance.

Guidance scale

0 50 80

Figure 5: Ablation study on a RepG guidance scale. Unlike classifier guidance, the increase in the
classifier guidance scale shifts the image toward an easy area, as in Figure 7, and the increase in the
RepG guidance scale helps detail the image.

Selection strategy: In the previous experiments, representative vectors are selected closest to the
mean vector of all vectors belonging to a class. We compare our selection scheme with the random
selection scheme in Table 4. RepG Rand denotes the random selection scheme. From the results, we
show that our proposed selection of representative vectors is essential and verify our hypothesis that
the vector is close to the mean values of one class bearing crucial features of that class.

5.3.4 CONTRASTIVE MATCHING VS COSINE SIMILARITY MATCHING

In section 4.2, we discussed the two losses: the contrastive loss and the cosine similarity loss. Table 5
shows the comparison between the two losses, which show that both of them improve the performance
significantly compared to the baseline ADM in Dhariwal & Nichol (2021).

6 CONCLUSION

In this work, we formulate the problem of incoherence in the diffusion sampling process, defined
as the mismatch between predicted image distribution at two different timesteps. After that, we
propose a guidance method named Representative Guidance (RegG). RepG is based on representative
information of a class and pre-trained self-supervised models to guide the sampling process. The
representative information offers a number of advantages compared to one-hot representation as in
classifier guidance, such as rich information and information to avoid incoherence problems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 843–852, 2023.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020a.

X Chen, S Xie, and K He. An empirical study of training self-supervised vision transformers. in 2021
ieee. In CVF International Conference on Computer Vision (ICCV), pp. 9620–9629.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Anh-Dung Dinh, Daochang Liu, and Chang Xu. Pixelasparam: a gradient view on diffusion sampling
with guidance. In International Conference on Machine Learning, pp. 8120–8137. PMLR, 2023a.

Anh-Dung Dinh, Daochang Liu, and Chang Xu. Rethinking conditional diffusion sampling with
progressive guidance. In Thirty-seventh Conference on Neural Information Processing Systems,
2023b.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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Algorithm 1 DDPM denoising process with representative guidance
Input: class labels y, classification scale s, V = {g(x0|1), g(x0|2), ..., g(x0|c)} according to
Eq.15
xT ∼ N (0, I)
pick class c and g(x0|c) ∈ V
for t = T, ..., 1 do
z ∼ N (0, I)

x̃0 ← ( xt√
ᾱt
−

√
1−ᾱtϵθ(xt,t,c)√

ᾱt
)

g ← (1−αt)
√
ᾱt−1

1−ᾱt
γ∇x̃t

0
L(fϕ(x̃t

0), V ) according to Eq.14
xt−1 ← 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t, c)) + σ2

t g + σtz − g

end for

A SAMPLING ALGORITHMS

Like DDPMs, our sampling only updates x̃t
0 at every time step t. We have the set of representative

vectors V obtained in advance and stored as the model parameters used for sampling.

The mechanism is the same for latent diffusion, but we will decode the latent vector to x̃t
0 first. After

that, the process is similar to Algorithm 1.

B EXPERIMENTAL DETAILS

All the experiments in this paper are conducted on A100 GPUs 40GB.

We have three hyperparameters in the paper, which are the number of representative vectors K in
Eq.15, temperature H in Eq.13 and scale guidance γ in Eq.14.

Table 6: All hyperparameters for producing the results are shown in this table.

Model Datasets K H γ

Table 1

IDDPM + RepG ImageNet64x64 5 1 10.0
ADM + RepG ImageNet64x64 5 1 10.0
ADM-CLSFree + RepG ImageNet64x64 5 1 8.0
ADM + RepG ImageNet256x256 10 2 20.0
ADM-CLSFree + RepG ImageNet256x256 10 2 20.0
DiT-CLSFree + RepG ImageNet256x256 10 2 15.0

Table 2
W/o Guidance ImageNet64x64 - - 0.0
Moco-v2/SimSiam/Moco-v3 ImageNet64x64 5 1 10.0

Table 3
ADM + RepG ImageNet64x64 1,5,10,15 1 10.0

Table 4
ADM + RepG /ADM+RepG RAND ImageNet64x64 5 1 10.0

Figure 1,2,3,5,6,7
ADM + RepG ImageNet256x256 10 2 0.0,20.0, 50.0,80.0

Figure 4
ADM + RepG ImageNet64x64 5 1 2.0,4.0, 6.0, 8.0, 10.0
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Table 7: GPU hours on 1 GPU are needed to generate 50,000 images with 256x256 resolutions.
Diffusion Model: ADM/ Datasets: ImageNet256x256

Model Computational Cost (GPU hours)
No guidance 171.22
Representative Guidance 182.36
Classifier Guidance 247.84
Classifier-free Guidance 352.89

Table 8: GPU hours on 1 GPU are needed to generate 50,000 images with 64x64 resolutions.
Diffusion Model: ADM/ Datasets: ImageNet64x64

Model Computational Cost (GPU hours)
No guidance 16.71
Representative Guidance 17.55
Classifier Guidance 31.52
Classifier-free Guidance 32.64

C RUNNING TIME OF REPG COMPARED TO CLASSIFIER GUIDANCE

RepG utilizes a much lighter model compared to noise-aware used in classifier guidance Dhariwal &
Nichol (2021). As a result, the calculation of gradients using this model is much lighter compared to
the noise-ware classifiers. We have the running time comparison as in Table 7 and 8.

D FULL DERIVATION OF EQUATIONS

Similarity between Eq. 11 and Stochastic Gradient Descent: We start from Eq.11 as below:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x̃t
0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz

− (1− αt)
√
ᾱt−1

1− ᾱt
γ∇x̃t

0
d(g(x0|c), fϕ(x̃t

0)) (16)

with x̃t
0 = ( xt√

ᾱt
−

√
1−ᾱtϵθ(xt,c,t)√

ᾱt
). Similarly we have xt−1 =

√
ᾱt−1x̃

t−1
0 +

√
1− ᾱt−1ϵθ(xt−1, c, t− 1). Thus, we have Eq.16 is equivalent to Eq.17:

x̃t−1
0 =

(1− αt)

(1− ᾱt)
x̃t
0 −
√
1− ᾱt−1√
ᾱt−1

ϵθ(xt−1, c, t− 1) +
(1− ᾱt−1)

√
αt

(1− ᾱt)
√
ᾱt−1

xt + σtz

− (1− αt)

1− ᾱt
γ∇x̃t

0
d(g(x0|c), fϕ(x̃t

0))

=x̃t
0 − (

αt − ᾱt

1− ᾱt
x̃t
0 +

√
1− ᾱt−1√
ᾱt−1

ϵθ(xt−1, c, t− 1)−
(1− ᾱt−1)

√
αt

(1− ᾱt)
√
ᾱt−1

xt − σtz)

− (1− αt)

1− ᾱt
γ∇x̃t

0
d(g(x0|c), fϕ(x̃t

0)) (17)

with xt−1 is obtained from Eq.16.

The Eq.17 has a very close form with a Stochastic Gradient Descent optimization with x̃t
0 as

parameters and two gradients∇1 = αt−ᾱt

1−ᾱt
x̃t
0 +

√
1−ᾱt−1√
ᾱt−1

ϵθ(xt−1, c, t− 1)− (1−ᾱt−1)
√
αt

(1−ᾱt)
√
ᾱt−1

xt − σtz

and∇2 = (1−αt)
1−ᾱt

γ∇x̃t
0
d(g(x0|c), fϕ(x̃t

0)). We will show that this Eq.17 has a consistent objective
function. From Eq.1 and two timesteps t1 < t2, we have:

xt1 =
√

ᾱt1x0 +
√
1− ᾱt1ϵ1 (18)

xt2 =
√

ᾱt2x0 +
√
1− ᾱt2ϵ2 (19)
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From xt1 and xt2 , we have the prediction of x0 at t1 is x(t1)
0 and t2 is x(t2)

0 . We have:

x̃
(t1)
0 =

xt1 −
√
1− ᾱt1ϵθ(xt1 , t1)√

ᾱt1

(20)

x̃
(t2)
0 =

xt2 −
√
1− ᾱt2ϵθ(xt2 , t2)√

ᾱt2

(21)

Replace Eq.18 and 19 into Eq.20 and 21, we have:

x̃
(t1)
0 = x0 +

√
1− ᾱt1(ϵ1 − ϵθ(xt1 , t1))√

ᾱt1

(22)

x̃
(t2)
0 = x0 +

√
1− ᾱt2(ϵ2 − ϵθ(xt2 , t2))√

ᾱt2

(23)

From Eq.22 and 23, we have at any timestep t, the distance between x̃t
0 − x0 =

√
1−ᾱt1

(ϵ−ϵθ(xt,t))√
ᾱt

which means ||x̃t
0 − x0|| =

√
1−ᾱt1 ||ϵ−ϵθ(xt,t))||√

ᾱt
. Assuming that ϵθ is trained to converge, we

assume ||ϵθ(xt1 , t1)− ϵ1|| ≤ ||ϵθ(xt2 , t2)− ϵ2||, because when image is clearer, we also expect the
error should be smaller. The extreme case is ||ϵ1 − ϵθ(xt1 , t1)|| ≈ ||ϵ2 − ϵθ(xt2 , t2)|| ≈ ∆. As a

result ||x̃t1
0 − x0|| =

√
1−ᾱt1∆√

ᾱt1

and ||x̃t2
0 − x0|| =

√
1−ᾱt2∆√

ᾱt2

. Since t1 < t2,
√

1−ᾱt1√
ᾱt1

<

√
1−ᾱt2√
ᾱt2

which means ||x̃(t1)
0 − x0|| < ||x̃(t2)

0 − x0||∀t1 < t2. Which means that from T to 0, the sampling
process will update x̃t

0 so that ||x̃t
0 − x0|| → min. We have the first gradient of the Eq.17 is

∇1 = αt−ᾱt

1−ᾱt
x̃t
0 +

√
1−ᾱt−1√
ᾱt−1

ϵθ(xt−1, c, t− 1)− (1−ᾱt−1)
√
αt

(1−ᾱt)
√
ᾱt−1

xt − σtz.

We can easily see the second gradient is the∇2 = (1−αt)
1−ᾱt

γ∇x̃t
0
d(g(x0|c), fϕ(x̃t

0)) to minimize the
distance d(g(x0|c), fϕ(x̃t

0)).

Thus, we can conclude that the sampling process as Eq.11 is a process of Stochastic Gradient Descent
to optimize two objectives. The first objective is minx̃t

0
||x̃t

0 − x0|| and the second objective is
minx̃t

0
d(g(x0|c), fϕ(x̃t

0)).

Full derivation of Eq.6: Eq.6 can be fully derived as below:

xt−1 =
1
√
αt

xt −
1− αt√
1− ᾱt

ϵθ(xt, t) + σtz

= (
1− αt

(1− ᾱ)
√
αt

xt +
(1− ᾱt−1)

√
αt

1− ᾱt
xt)−

1− αt√
1− ᾱt

ϵθ(xt, t) + σtz

=
1− αt

1− ᾱt
(
xt√
αt
−
√
1− ᾱt√
αt

ϵθ(xt, t)) +
(1− ᾱt−1)

√
αt

1− ᾱt
xt + σtz

=
(1− αt)

√
ᾱt−1

1− ᾱt
(
xt√
ᾱt
−
√
1− ᾱtϵθ(xt, t)√

ᾱt
) +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (24)

E x̃0 DISTRIBUTION

Figure 6 shows the difference in the distributions of x̃t
0 at different timesteps.

F CLASSIFER GUIDANCE DIVERSITY SUPPRESSION

Similar to Dinh et al. (2023b), we reproduce the diversity suppression of classifier guidance as in
Figure 8, 9 and 10.

G MORE QUALITATIVE RESULTS COMPARISON FOR REPG

Figure 11, 12, 13 and 14 shows more examples of how RepG can help to fix details in the generated
images
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250 200 150 50

timesteps

Figure 6: Visualization of x̃t
0 at different timesteps. x̃t

0 has different distributions when t varies. The
earlier timesteps have less information, while the later stage has clearer views of the images.

Guidance scale

RepG

CLSG

RepG

CLSG

Guidance scale

Figure 7: RepG edit details in the image while Classifier Guidance (CLSG) generates another image
with a good discriminative feature. However, sometimes, the over-exploiting of discriminative features
results in the lack of robustness features in the output.

H MORE SAMPLES WITH REPG

Figure 15 shows several samples by DiT combined with RepG.
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Brittany spaniel

Figure 8: Classifier guidance utilizes the same style to repeat features to all generated images. This
is due to the overexploitation of discriminative features (front-face features) reducing the diversity of
the diffusion model

Clumber Spaniel

Figure 9: Classifier guidance utilizes the same style to repeat features to all generated images. This
is due to the overexploitation of discriminative features (front-face features) reducing the diversity of
the diffusion model
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English springer

Figure 10: Classifier guidance utilizes the same style to repeat features to all generated images. This
is due to the overexploitation of discriminative features (lie-in-bed features) reducing the diversity of
the diffusion model

Figure 11: ImageNet256x256/class: tiger shark. The images on the left, shown before the arrow, are
the erroneous outputs generated by ADM, while the images on the right, after the arrow, depict the
corrections made using RepG. The examples show that RepG can improve the details and fix the
erroneous features.
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Figure 12: ImageNet256x256/class: green lizard. The images on the left, shown before the arrow,
are the erroneous outputs generated by ADM, while the images on the right, after the arrow, depict
the corrections made using RepG. The examples show that RepG can improve details/background,
remove unnecessary features and fix erroneous features.

Figure 13: ImageNet256x256/class: crane. The images on the left, shown before the arrow, are
the erroneous outputs generated by ADM, while the images on the right, after the arrow, depict
the corrections made using RepG.The examples show that RepG can upgrade details, modify faulty
features.
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Figure 14: ImageNet256x256/class: English springer. The images on the left, shown before the arrow,
are the erroneous outputs generated by ADM, while the images on the right, after the arrow, depict
the corrections made using RepG. The examples show that RepG can improve details/background,
remove unnecessary features and fix erroneous features.
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Goldfish

Crampfish

Jellyfish

Snail

Red fox

Polar
bear

Figure 15: Sampling by DiT with RepG for several classes.
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