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Abstract

Large Language Models (LLMs) have been the subject of active research, signifi-
cantly advancing the field of Natural Language Processing (NLP). From BERT to
BLOOM, LLMs have surpassed state-of-the-art results in various natural language
tasks such as question answering, summarization, and text generation. Many ongo-
ing efforts focus on understanding LLMs’ capabilities, including their knowledge
of the world, syntax, and semantics. However, extending the textual prowess of
LLMs to symbolic reasoning has been slow and predominantly focused on tackling
problems related to the mathematical field. In this paper, we explore the use of
LLMs for automated planning - a branch of AI concerned with the realization of
action sequences (plans) to achieve a goal, typically executed by intelligent agents,
autonomous robots, and unmanned vehicles. We introduce Plansformer, an LLM
fine-tuned on planning problems and capable of generating plans with favorable
behavior in terms of correctness and length with reduced knowledge-engineering
efforts. We also demonstrate the adaptability of Plansformer in solving different
planning domains with varying complexities, owing to the transfer learning abilities
of LLMs. For one configuration of Plansformer, we achieve 97% valid plans, out
of which 95% are optimal for Towers of Hanoi - a puzzle-solving domain.

1 Introduction

Large Language Models (LLMs), based on transformer-based (neural) architecture [Vaswani et al.,
2017, Devlin et al., 2018, Brown et al., 2020, Scao et al., 2022, Chowdhery et al., 2022], have
significantly advanced the field of Natural Language Processing (NLP). Their employment has grown
dramatically in recent times [Li, 2022], as researchers develop newer and bigger LLMs. From
BERT to recent BLOOM, language models have surpassed state-of-the-art results in various natural
language tasks. For example, PaLM [Chowdhery et al., 2022], achieved breakthrough performance
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on a plethora of natural language tasks such as inference, question answering, and commonsense
reasoning, and outperformed an average human performance on the BIG-bench benchmark.

Despite the textual prowess of LLMs, their significance has been limited in the domains that involve
symbols. For example, domains such as mathematics [Hendrycks et al., 2021b, Cobbe et al., 2021],
and coding problems [Hendrycks et al., 2021a, Chen et al., 2021] deliberates the failures of LLMs
when it comes to handling symbols. In Automated Planning, Valmeekam et al. [2022] suggest that
even state-of-the-art LLMs cannot reason with symbolic data and offer a new suite of benchmarks to
test their reasoning capabilities. Recently, there has been a lot of interest in LLMs for code generation;
for example, CodeT5 [Wang et al., 2021], CodeBERT [Feng et al., 2020], and Codex [Chen et al.,
2021]. In this paper, we propose to employ LLMs that are trained to generate code and repurpose
them to generate valid plans for automated planning domains.

To advance the research in LLM-based automated planning, we create a training and test set for four
planning domains. We use CodeT5 (base), a transformer-based code generation model that achieves
state-of-the-art results in CodeXGlue Lu et al. [2021], as the pre-trained LLM. We select CodeT5
due to its ability to generate goal-directed, sequential instructions and semantically meaningful
program codes with syntactic and structural constraints [Pallagani et al., 2023]. Then, we present,
Plansformer, an LLM trained to generate symbolic plans of high quality in terms of correctness and
length. Our experimental results indicate that the syntactic/symbolic knowledge learned from different
programming languages in the CodeT5 model can be beneficial for the PDDL-based automated
planning task. For example, in the puzzle-solving domain of Towers of Hanoi, our model was able to
generate 97% valid plans, out of which 95% are shortest length plans. The results reveal a promising
direction to harness LLMs for symbolic tasks such as planning.

Plansformer is not intended to replace an existing automated planner, which is traditionally used
to solve planning problems. A traditional planner is capable of searching through an entire state
space and certainly generating a valid (or optimal) plan(s). However, a planner often consumes a
considerable time to navigate the search space for larger problems or complex domains and also
does not possess language semantics. Thus, one of the use cases for Plansformer currently is using
it in a neuro-symbolic cognitive architecture as inspired by the Fast and Slow thinking principles
as proposed by Daniel [2017]. A Plansformer can play to its benefit as a System 1 solver, which
has relaxation in terms of correctness but is supposed to be fast and the traditional planner can be
used as a System 2 solver, which is deliberative and can reason with no time constraints in order to
always generate a correct output. This work is also a promising exploration in understanding LLMs
capabilities in dealing with symbolic language. Valmeekam et al. [2022] show how a pre-trained
model, GPT-3 [Brown et al., 2020], is unable to generate valid plans for blocksworld domain using
prompt conditioning, but our experiments show that a pre-trained model on coding languages with
further fine-tuning, can produce valid plans.

In the remainder of the paper, we present preliminaries on automated planning and language models
and then propose an LLM repurposed planner called Plansformer. Next, we present the experimental
results comparing our approach with state-of-the-art planners and other large language models.
Furthermore, we demonstrate the ability of Plansformer to adapt to other domains and discuss the
relevance to instruction generation. We conclude with a discussion of the results and presentation of
ongoing work.

2 Background

2.1 Automated Planning

Given the initial and goal states, alongside a set of legal actions, the objective of a planning agent is to
devise a sequence of actions that advance the agent from the initial to the goal state. This paper adopts
the Planning Domain Description Language (PDDL) [McDermott et al., 1998, Fox and Long, 2003]
notations. In PDDL, a planning environment is described in terms of objects in the world, predicates
that describe relations between these objects, and actions that modify the world by manipulating
these relations. The output plan consists of a series of time steps, each of which can have one or more
instantiated actions with concurrency semantics [Ghallab et al., 2004]. A planner devises plans by
searching in the space of states, where a state is a configuration of physical objects or partial plans.
There is a single agent in the most basic formulation, called classical planning. The actions have
unit cost, take constant time to execute, have deterministic effects, with the fully observable world,
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domain-specific conditions/constraints, and all goals have to be achieved [Ghallab et al., 2004]. In
more sophisticated planning settings, many of these conditions are relaxed. There may be multiple
agents, and the cost and duration of actions can be non-uniform. At the same time, its effects can be
non-deterministic, the world can be partially observable, and the agent may maximize as many goals
as it can achieve in a given time and resource budget.

2.2 Large Language Models and Symbolic Tasks

LLMs such as BERT [Wolf et al., 2020], RoBERTa [Liu et al., 2019], and GPT3 [Brown et al., 2020]
are pre-trained on extensive unstructured knowledge from public data such as Wikipedia, Bookcorpus,
and Commoncrawl. They have shown impressive results in several NLP tasks. It demonstrated
the ability to generalize to multiple tasks from question answering and machine translation to story
generation and instruction following [Wang et al., 2018, 2019]. LLMs have shown the ability to
generate output in natural language [Wolf et al., 2020, Raffel et al., 2020], adapt to novel tasks in a
zero or few-shot approach [Brown et al., 2020, Radford et al., 2019] and decode with constraints on
output space [Hokamp and Liu, 2017, Welleck et al., 2019, Kumar et al., 2021]. Recent progress in
LLMs has demonstrated the generation of structured output that requires precise syntactic/symbolic
knowledge with structural constraints such as knowledge graphs [Petroni et al., 2019], protein
structure [Unsal et al., 2022, Ferruz and Höcker, 2022], and programming languages [Ahmad et al.,
2021]. As the LLMs collect the related knowledge necessary to solve an NLP task, Petroni et al.
[2019] have shown that the LLMs are potential representations of the significant knowledge bases. In
protein data [Unsal et al., 2022, Ferruz and Höcker, 2022], LLMs generate the functional properties
of the proteins by enforcing the structural constraints specific to protein science and determining the
complex functional relationships in the protein binding. Code generation has recently become very
popular in the LLM research community. Several models such as CodeBERT [Feng et al., 2020],
Codex [Chen et al., 2021], and CodeT5 [Wang et al., 2021] have shown significant improvement in
transfer from pre-trained models for natural language to structured codes. One of the key contributors
to the success of these LLMs in code generation is fine-tuning the models on task-specific data. For
instance, CodeXGlue, a benchmark dataset for code understanding and generation with sample codes
from several programming languages, is used to fine-tune CodeBERT, CodeT5, and others. In this
paper, we harness CodeT5 for further fine-tuning to the classical automated planning domain due to
its ability to generate goal-directed, sequential instructions and semantically meaningful program
codes with syntactic and structural constraints.

The closest prior art addressing the ability of LLMs to generate symbolic plans are the studies of
Hernandez et al. [2021], Valmeekam et al. [2022], Liu et al. [2023], Silver et al. [2023] and Huang
et al. [2022]. Hernandez et al. [2021] looks at different ways to generate plans using GPT-3 versions,
a prominent generative LLM. Valmeekam et al. [2022] discusses different scenarios for generating
plans, like finding a satisficing plan or adapting a previous one, and discusses encodings to generate
plans and verify using a plan validator. Huang et al. [2022] generates step-by-step instructions for a
user-defined task using LLM prompting. All these studies require the (human-guided) mapping of a
natural language-based sequence of instructions generated by the LLM to the admissible action in the
planning domain as an additional step.

3 Plansformer for Symbolic Plans

Figure 1 provides an illustrative overview of how we generate and test our planner, called Plansformer.
The first phase, modeling, shows how we fine-tune the CodeT5 to address planning syntax and
semantics. The second phase, evaluation, deals with assessing the competency of Plansformer as
a model and as a planner. The key idea here is to utilize an LLM (CodeT5) pretrained on code
generation and further train it on planning problem instances with corresponding valid plans. We
evaluate its competence in generating valid plans (or almost valid plans for unseen planning problem
instances) using two types of testing: 1) Model testing measures if Plansformer could generate
meaningful responses (as in the test dataset), 2) Planner testing measures if the generated plans are
valid/optimal (independently of whether they were the same plans as in the test dataset).
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Figure 1: Plansformer Model Architecture showing modeling and evaluation phases. Modeling
phase involves finetuning CodeT5 with data from planning domain. Evaluation phase shows both the
planner and model testing.

3.1 Modeling Phase

In the modeling phase, we first create a planning-based dataset for finetuning the CodeT5 to generate
plans. The modeling phase of Figure 1 depicts the different modules employed.

3.1.1 Planning dataset

We generate a PDDL-based dataset as a benchmark to finetune pretrained CodeT5 and facilitate
further research at the intersection of LLMs and automated planning. We use the domain model (in
PDDL) to generate corresponding valid problem files with varying complexities automatically. In
this paper, we focus on four different classical planning domains, i.e., Blocksworld, Towers of Hanoi,
Grippers, Driverlog.

Blocksworld, or bw, is a well-studied domain [Gupta and Nau, 1991] with blocks placed on a table
or arranged in vertical stacks. Here, one can alter the arrangement of the blocks with the available
actions such as pick-up, put-down, stack, and unstack. We generate the problems with 2 to 5 block
configurations.

Towers of Hanoi, or hn, consists of 3 pegs and multiple disks of varying diameters. Initially, all disks
are placed in the first peg, and the end goal is to move the disks to the last peg. The only limitation
to consider when moving the disks is that only a smaller disk can be placed on top of a bigger disk.
Although the domain has only one action, the problem-solving is recursive [Gerety and Cull, 1986].
Here, we generate the problems with configurations of 2 to 5 disks.

Grippers, or gr domain involves moving balls across rooms using robotic grippers. It has problems
generated with configurations of 2 to 5 balls, 3 to 5 robots, and 2 to 4 rooms.

Driverlog or dl domain involves moving packages on trucks between locations driven by drivers. It
has problems generated with configurations of 1 to 3 drivers, 1 to 3 trucks, 2 to 4 packages, and 3 to
6 locations.

Each planning domain explained above includes multiple problem instances. We generate the
corresponding plans for each problem instance using FastDownward planner [Helmert, 2006]. Fast-
Downward is a classical planning system based on a heuristic search and offers different search
algorithms such as causal graph heuristics and A* search. FastDownward can generate optimal
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plans with A* LM-Cut heuristic [Helmert and Domshlak, 2011]. Hence, FastDownward can be
regarded as a potent planner for generating a dataset of optimal plans. We show the snapshot of the

Figure 2: Snapshot of one instance of the plan dataset for blocksworld domain.

generated dataset in Figure 2, with more examples in Section 1 of supplementary material. Unlike
the traditional planner which requires two different files - domain and problem (as pddl files, See
Figure 2 in supplementary material), Plansformer reduces the knowledge-engineering efforts with a
simplified input format that includes the problem instance coupled with a corresponding valid plan.
The problem instance captures all the essential information in the domain and problem instance, such
as the goal, the initial state, and the possible actions that can be taken in that domain. The generated
dataset for each domain consists of 18,000 plans with different problem configurations. For training,
we use 5-fold cross-validation with an 80%-20% split of the generated dataset for each domain. The
average plan length (number of actions in the generated plan) for blocksworld is 9, gripper is 9,
driverlog is 10, and hanoi is 12.

3.1.2 Tokenizer

We use a Byte-level BPE tokenizer, following the standard practice in LLMs, with a vocabulary size
of 32,005. We add PDDL-specific tokens, namely, [GOAL], [INIT], [ACTION], [PRE],
[EFFECT] to represent the goal state, initial state, possible actions with their associated precondi-
tions and effects these actions cause in the environment respectively. We do not re-train a specific
tokenizer for this task from scratch following the previous work [Chen et al., 2021], where GPT-3’s
tokenizer was reused to generate code.

3.1.3 Fine-tuning CodeT5

While there are many LLMs to select as a candidate for this work, we shortlist the models pre-trained
on code generation to exploit the syntactic information in the programming languages implicitly
captured in their weights. Although Codex [Chen et al., 2021], built using GPT-3, has reported the
best performance in solving code-related tasks, its lack of public access led us to choose an equally
competitive LLM: CodeT5 [Wang et al., 2021]. CodeT5 is a masked language model consisting of an
encoder-decoder stack inspired by the transformer architecture [Vaswani et al., 2017]. It is capable of
performing a wide range of tasks including code generation and understanding tasks. The generation
tasks include code summarization, code generation, translation, and refinement. The understanding
tasks include code defect detection and clone detection. CodeT5 is pretrained with example codes
from eight programming languages - Python, Java, JavaScript, PHP, Ruby, Go, C, and C#. Its
pre-training tasks include identifier awareness and bimodal generation, which optimizes code-to-code
understanding. The CodeT5 model possesses several properties amenable to the planning domain,
such as its ability to generate goal-directed, sequential instruction and semantically meaningful
program codes with syntactic and structural constraints. With this pre-trained knowledge already
encoded within CodeT5, we finetune it with 14400 samples (80% of the generated dataset) for each
independent domain from the planning dataset. As a result of this finetuning, the weights of CodeT5
are updated to account for the task of plan generation. We give the planning problem instance as input
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to CodeT5’s encoder and generate the intermediate features for the decoder of CodeT5 to output a
plan.

3.2 Evaluation Phase

Plansformer is an LLM that ingests a new problem instance as input and outputs a plan for that
problem instance. Therefore, to evaluate its competency, we must test its quality as a model and
planner. The evaluation phase is described in the lower part of Figure 1, showing both testing phases.

3.2.1 Planner Testing

Unlike in natural language, symbolic plans have richer information content, inherently captured in
their structure. Thus, we have an additional evaluation phase for plan validation to check how well
Plansformer can mimic an automated planner. The sequence of actions generated by Plansformer
must help an agent to navigate from the initial state to the goal state for a given problem instance.
We call a generated plan cost-optimal 1 if it is the shortest possible among all other plans. Several
metrics exist in the automated planning literature to evaluate a plan generated by Plansformer. In this
paper, we consider validity and optimality. We evaluate the plan generated by Plansformer using a
plan validation tool, called VAL [Howey et al., 2004], to check for its optimality and validity. VAL is
an automatic validation tool for PDDL. VAL takes as input the task posed to Plansformer and the
corresponding generated plan. It applies PDDL-based relaxation conditions to check for validity and
optimality.

3.2.2 Model Testing

It is typical to evaluate natural language tasks such as summarization or generation using metrics such
as BLEU and ROUGE. Both BLEU and ROUGE are widely used metrics in NLP. In general, BLEU
measures precision and helps understand how closely a machine translation (here, plan generated
by Plansformer) is compared to a human translation (here, plan generated by an automated planner).
On the other hand, ROUGE measures recall, i.e., how many of the words referenced in human
summaries appeared in the summaries generated by the machine. In particular, we adopt ROUGE-L,
which considers sentence-level structure similarity by identifying the longest co-occurring sequence
n-grams. Although ROUGE and BLEU have no direct intuition in automated planning, we use these
metrics to look at the task of plan generation from the perspective of LLMs. The evaluation based on
these metrics provides us with an insight into the performance of Plansformer as a language model.
In the next section, we evaluate Plansformer as a planner to give conclusive evidence on how well
Plansformer generates the plans.

4 Experimental Results

In this section, we present the quantitative and qualitative results obtained using Plansformer to
generate symbolic plans for multiple domains of varying complexities. We select a test-bed of 3, 600
unique and unseen problem instances (20% of the dataset) for each domain for evaluating Plansformer.
All the results reported in this paper are averaged over 5 randomly selected (80%− 20%) train-test
splits. We report the results for the Plansformer variants by evaluating the corresponding test-bed.
For example, Plansformer-bw’s results are reported based on the performance results obtained
on bw test-bed. We evaluate Plansformer using both model and planner testing to find its efficiency
as a language model and a planner.

4.1 Is Plansformer a Good Model?

Plansformer has an encoder-decoder pair, where the encoder attends to tokens on either side of
the masked word, whereas the decoder auto-regressively generates plans. Table 1 compares all the
Plansformer models with other LLMs using the model evaluation metrics (ROUGE and BLEU).
In this experiment, we consider the best-performing models from (bidirectional) masked language
models (e.g., T5 [Raffel et al., 2020]) and (unidirectional) causal language models (e.g., GPT-2

1We also refer to it as optimality interchangeably
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Models ROUGE-Lrecall ROUGE-Lprecision ROUGE-Lfmeasure BLEU
GPT-2 0.04 0.14 0.06 0.07
T5-base 0.16 0.70 0.26 0.02
Codex 0.72 0.52 0.60 0.36
CodeT5-base 0.41 0.28 0.33 0.02
Plansformer 0.93 0.93 0.93 0.89
Plansformer-bw 0.97 0.99 0.98 0.90
Plansformer-hn 0.99 0.96 0.97 0.95
Plansformer-gr 0.94 0.94 0.94 0.92
Plansformer-dl 0.82 0.83 0.82 0.79

Table 1: Results of model testing (best performance in bold).

Models Valid Plans (%) Invalid Plans Optimal Plans (%) Avg. Time (sec)
Failed (%) Incomplete/Wrong (%)

FastDownward (Ground
Truth)

100% - - 100% 10.28s

GPT-2 0% 0% 100% 0% 0.05s
T5-base 0.25% 17.3% 82.7% 0.25% 0.47s
Codex 0.15% 99.85% 0% 0.15% 1s
CodeT5-base 0.6% 0% 99.4% 0.6% 0.68s
Plansformer 83.64% 16.18% 0.19% 73.27% 0.06s
Plansformer-bw 90.04% 9.94% 0.02% 88.44% 0.05s
Plansformer-hn 84.97% 14.72% 0.31% 82.58% 0.05s
Plansformer-gr 82.97% 16.61% 0.42% 69.47% 0.06s
Plansformer-dl 76.56% 23.44% 0% 52.61% 0.09s

Table 2: Results of plan validation.

[Radford et al., 2019]). We present the actual plan generations from a few of these models in Figure
5 of supplementary material.

We report the performance of the baseline models averaged over the four planning domains. We
also show the performance of Plansformer on individual domains (Plansformer-bw, Plansformer-hn,
Plansformer-gr and Plansformer-dl). We observe that Plansformer performs best on all metrics,
followed by Codex, with a significant ROUGE-Lrecall score. We believe that the performance gain
from Codex compared to other baseline models is due to it’s ability to relate the natural language
understanding (a skill inherited from GPT-3) with code generation. It is interesting to see that CodeT5
performs poorly compared to Codex and Plansformer, demonstrating the advantages of the natural
language understanding with code generation task on this evalutation metrics. We conclude that the
models pre-trained with code-related tasks have an advantage over other models in plan generation
task due to the similarities of PDDL with other programming languages. Despite with the best model
testing metrics, We need to test Plansformer for plan validation to see its effectiveness as a planner.

4.2 Is Plansformer a Good Planner?

In this section, we report the results from the planner testing. We evaluate the generated plans for
validity and optimality. We also report the average time taken to solve the problem instances. Table 2
shows the plan validation scores obtained by different models. We consider FastDownward [Helmert,
2006] to generate the ground truth plans. FastDownward planner generates a 100% valid and optimal
plan for a given input (i.e., a combination of domain description and problem instance) when the
landmark-cut heuristic is used within a standard A* search framework [Helmert and Domshlak,
2011].

We can see that Blockworld bw domain achieved the highest performance gain via Plansformer-
bw - generated 90.04%, out of which 88.44% are optimal. This better performance is analogous to
the fact that bw is the easiest domain among the four domains. Although it is hard to find optimal
plans, we can find a valid plan linear in the number of blocks to any problem instances by putting
them down and picking from the table [Gupta and Nau, 1991].

On a relatively more complex domain, i.e., dl, Plansformer-dl achieves 76.56% valid plans, out
of which 52.61% are optimal. We notice a ∼20% difference between valid and optimal plans for dl,
with an observation that the model can come up with completely new and valid action sequences,
although may not be optimal. We can see that the number of optimal plans generated reduces with
the increasing complexity of the domains. We include both incomplete/wrong generations from the
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models and failed plans when reporting invalid plans. An incomplete/wrong generation is a partially
correct ordering of action sequences but with some truncated tokens, whereas a failed plan consists of
an incorrect ordering of actions, not leading to a goal state. Figure 3 shows an example of incomplete
generation and failed plans. All Plansformer models generate close to 0% incomplete/wrong plans
for respective domains. Failed plans can be repaired [Van Der Krogt and De Weerdt, 2005] as they
have a complete sequence of actions, some of which are correctly ordered.

Figure 3: Different types of invalid plans generated by Plansformer on Blocksworld domain
(Plansformer-bw).

Codex, the second best performing model according to ROUGE and BLEU scores, only generates
0.15% valid plans, emphasizing the need for a two-stage evaluation phase - where both model and
generated plans are tested. We notice that the average time taken by Plansformer to completely solve
the test-bed of problems is ∼200x faster than the FastDownward, an automated planner that generated
ground truth plans. Plansformer may offer an immense advantage in generating approximately correct
plans in real-time applications. Interestingly, CodeT5, used to build Plansformer, takes considerable
time to solve the same problem instances from the test bed. We believe that the Plansformer is
faster since it generates valid and likely optimal plans shorter in length than usually long incoherent
sequences generated by CodeT5, which tend to be time-consuming.

There have been very few relevant works that can be compared with Plansformer. Although some
recent works such as [Huang et al., 2022] use LLMs to generate “plans", it is different from automated
planning and is not symbolic in nature. These “plans" are step-by-step actions to perform a trivial
everyday task such as “Brush teeth". These methods use a user-constructed prompt to enable an LLM
to generate appropriate steps from its prior knowledge. We believe the work by [Valmeekam et al.,
2022] is similar in spirit to ours, using a PDDL-based natural language prompt to obtain symbolic
plans using GPT-3. The significant difference between their dataset and ours is the difference in the
object names, for example, a block is named as b1 in our dataset as opposed to a in [Valmeekam
et al., 2022]. This difference lets us evaluate Plansformer2 on the dataset from [Valmeekam et al.,
2022] with different object names as opposed to our dataset introduced in Section 3.1.1. On this
dataset, Plansformer generated 66% valid plans, whereas, GPT3 with PDDL-based natural language
prompting generated only 0.6% valid plans. The significant difference in performance enables us to
validate the advantage of our approach in generating valid plans despite different object names.

Plansformer, trained and tested on the same domain, displays superior performance both as a model
and a planner. However, LLMs are also well known for transfer learning, i.e., a model trained for
solving one domain can be re-purposed to solve other related domains. In the next section, we explore
how Plansformer trained on one domain can be adapted to another.

4.3 Can Plansformer adapt to another domain?

The base models, i.e., Plansformer-x, where x can bw, hn, gr, and dl, cannot generate valid plans
for other domains (i.e., Plansformer-bw on hn, gr, and dl) since each domain differs from the

2We would like to note that Plansformer is trained only on the dataset introduced in Section 3.1.1 and is not
trained/finetuned on the dataset in [Valmeekam et al., 2022] for this experiment
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Figure 4: Plansformer-bw as the base model fine-tuned with and tested on (a) hanoi (b) grippers
(c) driverlog, and (d) shows the comparison of valid plans generated by Plansformer-bw-hn derived
models with Plansformer-hn trained using similar data points.

others in terms of action space, complexity, and solving. However, LLMs allow us to utilize the
model trained in one domain to adapt to another using either making use of prompt conditioning or
transfer learning with further fine-tuning on the problem instances from the new domain. We have
seen from the previous work on prompt conditioning [Valmeekam et al., 2022] that the performance
of the model on an unseen domain is very sensitive to the manually-identified prompt. A small
perturbation to the prompt can significantly affect the model’s performance, and creating a perfect
prompt requires understanding the inner workings of LLM on hand and trial and error. In recent
years, researchers have started looking at automatic prompt generation [Shin et al., 2020], which we
would like to explore in the future.

Instead of the prompt conditioning, we follow the transfer learning approach by finetuning Plans-
former base models with problem instances from other domains to check the ability of Plansformer
to adapt to new domains. For brevity, we demonstrate variants of Plansformer-bw models on
three other domains. Figure 4 shows different Plansformer-bw models and their plan validation
scores on respective test-bed from target domains. We report that the results for transfer learning
setup of Plansformer base models convey the same insights as Plansformer-bw shown here and
are presented in Section 4.2 of supplementary material .

We consider different numbers of problem instances for finetuning Plansformer-bw on a given
domain to see how the performance of the model varies across the sample size. We use the model
naming format to convey the details on the amount of problem instances used for finetuning the
Plansformer base model, i.e., bw-hn[500] implies that we further finetune Plansformer-bw
using 500 problem instances from hn and report the results. In Figure 4, we can see an overall
increase in the number of valid plans for every testing domain as we increase the problem instances
available for finetuning. We observe that the models fine-tuned with 2000, which is 14% of the
training size of base models, achieves ∼ 50% of the valid plans recorded by Plansformer-hn,
Plansformer-gr, and Plansformer-dl. Despite the complexity of these planning domains,
we obtain > 90% valid plans for all testing domains by increasing the finetuning samples to that of
the training size of base models. Plansformer-bw-hn[14400] obtains the best performance
among all models, by achieving 97.05% valid plans, out of which 95.22% are optimal. In Figure
4(d), we compare Plansformer-hn trained with different number of data points from hn domain
against the Plansformer-bw (base model) finetuned on the same data points. We can see a clear
advantage of the transfer learning capability in LLMs, as both the bw and hn domains have similar
plan semantics. Similar trends can be seen for the other domains and the results are reported in
Section 4.2 of supplementary material.
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We notice that the failed plans decrease with additional problem instances used for finetuning. Using
the same amount of problem instances as training (14, 400), we observe that the number of failed
plans is less than that of the base models built for the respective domains. The number of optimal
plans consistently increases with the number of problem instances in hn domain for finetuning. It is
13% more than Plansformer-hn, whereas we can see some variations for the other two domains.
We also report the fine-tuning results of all possible Plansformer models and their performance
in Figure 6 of the supplementary material. We have also trained a single Plansformer model on
all the domains (multi-task setting) and found that the individual model has relatively comparable
performance to that of the base models as shown in Table 2 (See supplementary material Section
4.2 for more details). It is to be noted that Plansfomer’s performance is affected by randomizing
object names present in the prompt. We see a decrease in the performance with addition of more
alphabets in the object names and has an equivalent performance as reported in Table 2 when the
input prompt has object names belonging to the same vocabulary as that of the training set. However,
we found that remapping object names in the input prompt to that of the training set lead to a better
performance. Finding the right nomenclature for objects is beyond the scope of this paper. Section
4.2.4 in the supplementary section discusses object name randomization in detail.

5 Conclusions and Ongoing Work

In this paper, we have explored using LLMs to generate symbolic plans for multiple domains. We
have taken an LLM tailored to code and trained it further over a set of planning problem instances
and corresponding valid plans. We then tested the model’s capability to generate plans for unseen
planning problem instances, evaluating the correctness and length of such plans. Our approach
is compared to an existing state-of-the-art planner, showing that our LLM-based planner, called
Plansformer, can solve most instances with high quality both in terms of correctness and length while
needing much less time to generate such plans. Beyond serving as a plan generator, Plansformer
can also be used as a building block for general and adaptive planners. We are using Plansformer
in combination with an existing symbolic planner in the context of a cognitive architecture inspired
by the thinking fast and slow theory [Kahneman, 2011]. In this environment, Plansformer provides
complementary capabilities to the classical planner and will be used when resources (time, space, and
knowledge) are limited and a minor degradation in plan validity can be acceptable. A meta-cognition
module decides when to use the Plansformer or the classical planner, and the system stores its output
as experiences that build over time.
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A Frequently Asked Questions

A.1 What are the main contributions of this paper?

Our main contributions in this paper are as follows:

• We introduce Plansformer; an LLM pre-trained on code and fine-tuned on planning problems
is capable of generating plans with favorable behavior in terms of correctness and length
with minimal knowledge-engineering efforts for four different planning domains (Hanoi,
Gripper, Driverlog, Blocksworld). For one configuration of Plansformer - Towers of Hanoi -
a puzzle-solving domain, we achieved 97% valid plans, out of which 95% are optimal. This
is in contrast to negative results with GPT-3 reported in literature where they found 0.6%
valid plans in blocksworld; we were able to generate 66% valid plans in the best case.

• We also demonstrate the generalization ability of Plansformer in solving different planning
domains (Hanoi, Gripper, Driverlog, Blocksworld) with varying complexities, owing to the
transfer learning abilities of LLMs.

Additionally, we also show that Plansformer’s performance is affected by randomizing the object
names. Although, we suggest a way to overcome this in Section 4.2.4 of the supplementary material,
our main focus in this paper is to show the empirical demonstration of how transformers can be
repurposed to plan, and the methods that work better.

A.2 Have you compared Plansformer with ChatGPT’s capability in generating plans?

Figure 6 shows ChatGPT’s response to a simple problem from blocksworld as input. In Figure 5, we
can see the initial state and required goal state as mentioned in the input. Plansformer for the same
input gives an optimal plan. It is worthwhile to mention that our claim here is not to test any specific
LLM in its ability to generate plans, but rather, with proper adaptation an LLM can be repurposed to
effectively solve planning problems. We are not specifically tied to any specific LLM, and that is one
major advantage of the framework (though code-based LLMs may be more appropriate than others).

Figure 5: Visualization of blocksworld problem instance posed to ChatGPT
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Figure 6: Incorrect plan generated by ChatGPT for a blocksworld problem instance shown in Figure
5. We also later tested natural language description of the PDDL problem as input, the entire PDDL
structure as input, and few-shot prompting approaches [Pallagani et al., 2023] but found dismal
planning performance from ChatGPT.

A.3 Are transformers memorizing the input (planning problem) and output (plan)?

Our datasets are built to have a wide coverage of combination of problems for each domain. The
diversity and complexity of the considered domains can be seen in Section 4.2.1 of the supplementary
material. We have created an extensive set of problem instances for each domain (∼200,000 problem
instances per domain) that cover a diverse possibility of object configurations. For example, in
blocksworld, we consider 2 to 5 block configurations and generate all possible problem instances and
corresponding plans (plans are generated using FastDownward). Once the plans are obtained, we
use the set function to remove any duplicate plans and then select 18,000 (14,400 for train and 3600
for test sets) problem instances of varying plan lengths with different initial goal conditions and the
number of objects to obtain the dataset for Plansformer. We have performed experiments by varying
the plan lengths in the train and test sets as reported in Section 4.2 of the supplementary material. We
think there is enough evidence to comment that Plansformer is not latching on to correlations present
in the dataset and the obtained performance is not due to memorization.

A.4 Are the domains complex enough?

Yes, the considered domains are complex and we support our statements by reporting the results
obtained by performing blind search on the considered domain. These results are reported in Section
4.2.1 of the supplementary material.

A.5 What is/are the consequences of this work?

Plansformer is a promising approach to efficiently generate plans without extensive knowledge
engineering to represent planning problems and yet getting competent results. Although it is not
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as reliable as traditional planners yet and has only been shown in this paper for classical planning,
we believe that this is just the start. Specifically, the approach can be extended to other types of
planning like temporal, metric and epistemic 3, and also made to work for the small cases where it
fails currently. Ongoing research is being done on creating a single general model that can scale up
to accommodate different planning kinds. General and adaptable planners can be constructed using
our model, Plansformer. We are now working on utilizing Plansformer with an existing automated
planner (like FastDownward) in the context of a cognitive architecture motivated by the thinking fast
and slow theory. In addition, Plansformer may also be used as an instruction-following framework in
robot navigation, unmanned vehicles, and embodied artificial intelligence [Huang et al., 2022]. It
can also be potentially used as an automated planner in storytelling/dialogue generation [Yao et al.,
2019, Pallagani and Srivastava, 2021]. The ability to solve difficult problems in constant time is a key
benefit of utilizing Plansformer in these domains (perhaps in conjunction with an automated planner),
while current automated planners (like FastDownward) are unable to do so without running out of
time or memory.

A.6 What is the significance of using FastDownward planner to generate the dataset?

FastDownward is a traditional planning system that searches the space of world states associated
with a planning task in the forward direction using heuristics. In the 4th International Planning
Competition at ICAPS 2004, FastDownward secured first place in the "traditional (i.e. propositional,
non-optimizing) track". FastDownward comes equipped with a variety of search algorithms by default.
We utilize the A* LM-Cut heuristic since it can produce the best plans [Helmert and Domshlak,
2011]. Thus, we use FastDownward to generate a planning dataset consisting of optimal plans.

B Dataset

In this section, we provide examples from the Planning dataset for each of the considered domain -
bw, hn, gr, and dl. Figure 11 captures the different problem instances.

C Planning vs Plansformer Input

We have talked about how a Plansformer brings about reduced knowledge engineering effort. In
Figure 12 and Figure 13, we show the input requirement for an Automated Planner for a driverlog
problem configuration and Figure 15 shows corresponding input required by Plansformer for the
same problem. An automated planner requires two files - (a) domain.pddl, and (b) problem.pddl.
We reduce the knowledge engineering efforts in Plansformer by not requiring:

• explicit mention of predicates which are present in domain.pddl file.

• explicit mention of objects which are present in problem.pddl file.

We also have a conversion mechanism for Plansformer and Planning inputs, i.e., given a domain.pddl
and problem.pddl files, we can convert them automatically to input required by Plansformer and
vice versa.

D Training Phase

In this section, we describe the hardware used for computation, training parameters and time taken by
different models for training.

D.1 Hardware

We have used 9 (Dual P-100) 44 (Dual V100) GPU nodes for running our experiments. For training
all models, we have made use of 24 cores of CPU run on 1 GPU node. Compute and GPU nodes
have 128 GB of RAM and Big Data nodes have 1.5 TB RAM. All nodes have EDR infiniband (100
Gb/s) interconnects, and access to 1.4 PB of GPFS storage. The processor speed is 2.8 GHz.

3https://en.wikipedia.org/wiki/Automated_planning_and_scheduling
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Figure 7: Example from blocksworld dataset

Figure 8: Example from hanoi dataset

Figure 9: Example from grippers dataset

Figure 10: Example from driverlog dataset

Figure 11: Problem instances from four different planning domains
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Figure 12: Capturing driverlog’s envi-
ronment in domain.pddl

Figure 13: Capturing the current state
and desired goal of an object in driver-
log’s environment in problem.pddl

Figure 14: Files required to model a problem from driverlog in PDDL for execution by an Automated
Planner
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Figure 15: Plansformer’s input for the same problem defined in Figure 12

Hyperparameter Value
Train Batch Size 8
Validation Batch Size 8
Train Epochs 3
Validation Epochs 1
Learning Rate 1e-4
Max Source Text Length 512
Max Target Text Length 150

Table 3: Hyperparameters used for Training

D.2 Training Hyperparameters

Table 3 captures the hyperparameters set for training our models. For plan generation by all models
apart from Codex, we have used beam search with number of beams set to 2, repetition penalty of 2.5,
and length penalty set to 1.0. Codex doesn’t have the functionality to change the parameters, thus, we
have used it in the default setting. On the parameters constituting the considered models, Codex has
12 billion parameters, GPT-2 has 1.2 billion parameters, T5-base has 220 million parameters, and
CodeT5-base has 8.35 million parameters.

D.3 Training Time

Figure 16 presents the training time taken by different Plansformer variations. Base models are
Plansformer variants directly trained on each of the planning domains with CodeT5 as base. Derived
models use a Plansformer base model as a starting point, and further pretrain on other domains. We
can see a considerable drop in training time taken by derived models. It is also to be noted that these
derived models outperform the base models when entire training data points are used.

E Extended Results

This section adds additional qualitative and quantitative results that cover all the domains and
model configurations tried and tested during our experimentation with Plansformer. In our initial
testing phase, we have fine-tuned both T5 and CodeT5 with the same blocksworld dataset and
hyperparameters and found that fine-tuned T5 gave 32% valid plans, whereas fine-tuned CodeT5
generated 90% valid plans. This is because CodeT5 has syntactically meaningful sequences for code-
like structured inputs well defined as opposed to T5, which only deals with natural language. With
this intuition that models pre-trained on code have an advantage for plan generation, we proceeded
with the choice of using CodeT5 for all our experiments.
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Models Training Time

Base Models

plansformer-bw 1hr 1min
plansformer-hn 1hr 10mins
plansformer-gr 1hr 12mins
plansformer-dl 1hr 15mins

Derived Models

plansformer-bw-dl[500] 3 mins
plansformer-bw-dl[1000] 5 mins
plansformer-bw-dl[1500] 7 mins
plansformer-bw-dl[2000] 13 mins
plansformer-bw-dl[5000] 21 mins
plansformer-bw-dl[10000] 38 mins
plansformer-bw-dl[14400] 46 mins
plansformer-bw-gr[500] 3 mins
plansformer-bw-gr[1000] 5 mins
plansformer-bw-gr[1500] 7 mins
plansformer-bw-gr[2000] 13 mins
plansformer-bw-gr[5000] 19 mins
plansformer-bw-gr[10000] 37 mins
plansformer-bw-gr[14400] 44 mins
plansformer-bw-hn[500] 2 mins
plansformer-bw-hn[1000] 3 mins
plansformer-bw-hn[1500] 5 mins
plansformer-bw-hn[2000] 9 mins
plansformer-bw-hn[5000] 18 mins
plansformer-bw-hn[10000] 23 mins
plansformer-bw-hn[14400] 32 mins
plansformer-hn-bw[500] 2 mins
plansformer-hn-bw[1000] 2 mins
plansformer-hn-bw[1500] 3 mins
plansformer-hn-bw[2000] 5 mins
plansformer-hn-bw[5000] 8 mins
plansformer-hn-bw[10000] 12 mins
plansformer-hn-bw[14400] 17 mins
plansformer-hn-gr[500] 2 mins
plansformer-hn-gr[1000] 3 mins
plansformer-hn-gr[1500] 5 mins
plansformer-hn-gr[2000] 9 mins
plansformer-hn-gr[5000] 18 mins
plansformer-hn-gr[10000] 23 mins
plansformer-hn-gr[14400] 29 mins
plansformer-hn-dl[500] 1 min
plansformer-hn-dl[1000] 5 mins
plansformer-hn-dl[1500] 5 mins
plansformer-hn-dl[2000] 12 mins
plansformer-hn-dl[5000] 19 mins
plansformer-hn-dl[10000] 33 mins
plansformer-hn-dl[14400] 39 mins
plansformer-gr-bw[500] 2 mins
plansformer-gr-bw[1000] 2 mins
plansformer-gr-bw[1500] 3 mins
plansformer-gr-bw[2000] 5 mins
plansformer-gr-bw[5000] 8 mins
plansformer-gr-bw[10000] 14 mins
plansformer-gr-bw[14400] 18 mins
plansformer-gr-hn[500] 1 min
plansformer-gr-hn[1000] 2 mins
plansformer-gr-hn[1500] 2 mins
plansformer-gr-hn[2000] 5 mins
plansformer-gr-hn[5000] 10 mins
plansformer-gr-hn[10000] 13 mins
plansformer-gr-hn[14400] 16 mins
plansformer-gr-dl[500] 3 mins
plansformer-gr-dl[1000] 5 mins
plansformer-gr-dl[1500] 7 mins
plansformer-gr-dl[2000] 13 mins
plansformer-gr-dl[5000] 21 mins
plansformer-gr-dl[10000] 38 mins
plansformer-gr-dl[14400] 46 mins
plansformer-dl-bw[500] 1 min
plansformer-dl-bw[1000] 1 min
plansformer-dl-bw[1500] 2 mins
plansformer-dl-bw[2000] 2 mins
plansformer-dl-bw[5000] 4 mins
plansformer-dl-bw[10000] 7 mins
plansformer-dl-bw[14400] 13 mins
plansformer-dl-hn[500] 1 min
plansformer-dl-hn[1000] 2 mins
plansformer-dl-hn[1500] 2 mins
plansformer-dl-hn[2000] 5 mins
plansformer-dl-hn[5000] 8 mins
plansformer-dl-hn[10000] 12 mins
plansformer-dl-hn[14400] 16 mins
plansformer-dl-gr[500] 2 mins
plansformer-dl-gr[1000] 5 mins
plansformer-dl-gr[1500] 7 mins
plansformer-dl-gr[2000] 12 mins
plansformer-dl-gr[5000] 21 mins
plansformer-dl-gr[10000] 29 mins
plansformer-dl-gr[14400] 37 mins

Figure 16: Training time of different Plansformer variants

E.1 Qualitative Analysis

Figure 17 shows the output generations obtained by different models under study for a problem
instance from each of the planning domains. When reporting Plansformer results, we take the base
models corresponding to the domain being tested.

E.2 Quantitative Analysis

Figure 19 captures the performance of all models in their ability to generate plans for multiple
domains.

Figures 20 to 28 represent the performance of different base models fine-tuned and tested on other
domains in graphical manner. Additionally, we also wanted to check Plansformer’s capability in plan
generation when the plan length of test set is considerably larger than that of the train set. For this
purpose, we have created a train set for blocksworld consisting of 2,3 block configurations and a
test set with 4,5 block configurations. The test set consists of 100 total instances, 50 from 4 block
configuration and 50 from 5 block configuration. The average plan length for the train set and test set
is 4 and 10 respectively. Plansformer trained on 2,3 block configurations was able to generate 64%
valid plans on problem instances from the test set, showing that our approach can generate valid plans
even if the plan length for test set >>> train set. We were able to achieve 64% valid plans in this
experimentation as the train set consists of only 162 data points (all possible 2,3 block configurations)
as compared to 87% obtained by Plansformer-bw (trained on 14,400 data points) on the same test set.
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Domains A* + LM-Cut (Generated States & Evaluated States) Blind Search (Generated States & Evaluated States)
bw 51 & 35 707 & 334
hn 141 & 55 201 & 76
gr 33520 & 1347 3795846 & 381627
dl 188 & 131 568337 & 110498

Table 4: An analysis of the complexity of the planning domains

E.2.1 Complexity and Diversity of Planning Domains

We report the complexity of the considered planning domains by implementing a blind search on the
non-randomized test sets for each domain (3600 problem instances per domain). As blind search
works with no information about the search space, it gives us an idea about the difficulty of navigating
a domain. Table 4 captures the results obtained by A* + LM-Cut (informed search) and Breadth-
First Search (uninformed/blind search). Here, generated states refer to the total number of states
obtained for the given problem instance, whereas, the evaluated states refer to the number of traversed
generated states to arrive at the goal state. The results obtained by blind search provide an insight
about the complexity of the domains (with hn and bw on the easier side vs dl and gr on the harder
side). Both the search strategies solved 3600 problems, but blind search took an average of 214
seconds to solve the test bed, whereas A* + LM-Cut took 14.72 seconds.

All the considered planning domains have a diverse set of state-action space. Because of the diversity
of these domains, we observed that in “multi-domain plan generation using a single model” setup
from Section 4.2.2 in supplementary material, single model trained on problem instances from all
four domains has an unfair advantage for easier domains such as bw (5.79% increase in terms of valid
plans on Plansformer-bw vs 90.04% in Table 2) compared to performance drop for harder domains
such as gr and dl (around a 4.5% to 13.5% decrease in valid plans).

E.2.2 Transfer Learning

We have reported the advantages of transfer learning when using Plansformer-bw as the base model
and further fine-tuning it on hn for all the varying data points in the main paper. Similarly, Figures
29 and 30 show a homogeneous trend for the domains dl and gr on further fine-tuning of the
Plansformer-bw base model.

E.2.3 Multi-domain Plan Generation using a Single Model

We have additionally trained a single Plansformer model on all the training data points belonging
to all the four domains - bw, hn, dl, and gr. Each domain consists of 14,400 training data points,
thus, the single Plansformer model is trained on a total of 57,600 data points. The obtained single
Plansformer model is tested on the validation datasets corresponding to all the four domains. Each
dataset consists of 3000 problem instances. Table 8 reports the performance obtained by the single
Plansformer model on all four domains in terms of plan validation. We observe that the single model
is able to perform relatively comparable to the base models. The single Plansformer trained on all
models outperforms Plansformer-bw by 5.79% (in terms of valid plans) and has around a 4.5% to
13.5% decrease in valid plans for the other three domains.

E.2.4 Object Name Randomization

We wanted to measure the role of object name randomization in Plansformer’s performance. For the
experimental setup, we have randomized the object names for every instance present in each of the
four datasets (bw, hn,gr, and dl). We have considered two different types of prompts, varying the
object names:

• Prompt 1: The datasets generated using Prompt 1 consist of only single-digit numbers as
the object names.

• Prompt 2: The objects names in the datasets generated using Prompt 2 consist of an
alphanumeric string of length 2.

Figure 18 shows examples of two prompts generated for the same problem instance from bw taken
from the original dataset.
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Figure 18: Examples for Prompt 1 and Prompt 2 for a single instance in blocksworld

Model Valid Plans (out of 500)
GPT-3 + Prompt Conditioning [Valmeekam et al., 2022] 0.60%
Plansformer-bw 66.00%
Plansformer-bw(random)-Prompt1 67.40%
Plansformer-bw(random)-Prompt2 27.52%

Table 5: Comparison of different Plansformer models built on blocksworld and tested on the dataset
released in Valmeekam et al. [2022]

We trained Plansformer models for every domain using the randomized train sets. As the randomized
train and test sets are built by mapping object names in the original dataset following Prompt 1 and
Prompt 2 nomenclature, we have 14,400 and 3600 instances in the new randomized datasets. From
now on, we will be referring to the randomized Plansformer models as Plansformer-[domain](random)-
Prompt[x], where, domain and x are variables specifying the domain on which Plansformer is trained
on and the prompt number followed for object names. We then tested the randomized models on
the dataset released in Valmeekam et al. [2022]. The object names in Valmeekam et al. [2022] are
single lettered alphabets. The performance of different models on 500 bw problem instances from
Valmeekam et al. [2022] are shown in Table 5.

From Table 5, it can be observed that the model trained on a randomized bw dataset according
to Prompt 1 achieves 67.40% valid plans, followed by Plansformer-bw (original model trained on
the non-randomized dataset with objects named b1, b2, and so on). It is observed that a drop in
performance is encountered with increasing addition of alphabets in the object names. For example,
an object name "abcd12" would be treated as an out-of-vocabulary token by LLMs (and hence,
Plansformer) and eventually be tokenized in no way that is meaningful for the application in study.
This experimentation provides additional insights that all variants of Plansformer perform better
when the object names look different than the action names. On the other hand, if we follow a
simple technique of mapping object names [Huang et al., 2022] from the new test set to the object
names similar to the train set and generate a plan with this mapped problem instance as input to any
Plansformer-bw model (randomized or otherwise), we were able to achieve around 80% valid plans
(Plansformer-bw(random)-Prompt1 gave 81.97% valid plans, Plansformer-bw(random)-Prompt2
gave 80.29% valid plans, and Plansformer-bw gave 82.56% valid plans).

Rest of the experiments on object randomization are carried out with Prompt 2 in order to under-
stand the worst-case performance of Plansformer possible for plan generation. We have tested the
randomized models and base models on both randomized and original validation datasets, as shown
in Table 6. It can be seen that the randomized Plansformer models generate lesser valid plans than the
base models, with a maximum drop in performance of 15.41% in the Hanoi domain (Plansformer-hn
produces 84.97% valid plans on hn vs 69.56% valid plans with randomized train and test domains).
The results show that randomization of variables can have a performance impact ranging from main-
taining the performance to a degradation based on the difficulty/complexity of the domain. Since an
LLM learns over its inputs, such a performance is not surprising. One easy way to retain performance
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is by mapping the unique parameter names in test problems to internal naming scheme (used during
training) that does not degrade the performance.

E.2.5 Augmented Dataset

With additional copies of the same problem instance but consisting of different objects names using
nomenclatures Prompt 1 and 2, we wanted to created an augmented dataset for each domain. Thus, the
augmented dataset consists a total of 43,200 problem instances for each domain. A single Plansformer
model is trained using this augmented dataset and Table 7 shows the results obtained by such a
Plansformer model trained on augmented bw dataset.

Plansformer model trained on augmenented data outperforms other existing Plansformer-bw variants
by a fair margin. The original Plansformer-bw base model generated 90.04% valid plans (tested on
non randomized bw test-bed), whereas the new model trained on the larger dataset obtained 97.77%
on the same test bed (second row in the table above). The result is quite interesting as the new
model trained on 3 different variants of the same problem instance gave a performance boost of 7%,
providing us with alternate ways for the language model on planning domain to learn better.

F Plansformer Architecture

Figure 31 shows the layer-wise architecture that makes up Plansformer. All these layers are updated
during the fine-tuning process. We inherit this architecture from CodeT5, and do not freeze any layers
during our fine-tuning process involved for constructing Plansformer.
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Test Domain Valid Plans
bw-test + Randomized bw-[Prompt1 & Prompt2]-test 99.06%
bw-test 97.77%
Randomized bw-Prompt1-test 98.41%
Randomized bw-Prompt2-test 96.25%

Table 7: Results obtained by Plansformer trained on augmented blocksworld data and tested using
various sets

Test Domain Valid Plans Cost-Optimal Plans Invalid Plans
bw 95.83% 93.75% Failed = 4.17%, Incomplete = 0%
hn 79.25% 76.72% Failed = 2.34%, Incomplete = 18.41%
gr 78.44% 50.61% Failed = 15.03%, Incomplete = 6.53%
dl 63.03% 55.25% Failed = 2.81%, Incomplete = 34.16%

Table 8: Plan Validation results obtained by a single Plansformer model (trained on all domains) and
tested on individual test sets of the domains

Figure 20: Plansformer-dl variants performance on blocksworld at various stages of fine-tuning

Figure 21: Plansformer-dl variants performance on hanoi at various stages of fine-tuning
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Figure 22: Plansformer-dl variants performance on grippers at various stages of fine-tuning

Figure 23: Plansformer-gr variants performance on blocksworld at various stages of fine-tuning

Figure 24: Plansformer-gr variants performance on hanoi at various stages of fine-tuning
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Figure 25: Plansformer-gr variants performance on driverlog at various stages of fine-tuning

Figure 26: Plansformer-hn variants performance on blocksworld at various stages of fine-tuning

Figure 27: Plansformer-hn variants performance on gripper at various stages of fine-tuning
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Figure 28: Plansformer-dl variants performance on driverlog at various stages of fine-tuning
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Figure 29: Comparison of valid plans generated by Plansformer-bw-dl derived models with
Plansformer-dl trained using similar data points.
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Figure 30: Comparison of valid plans generated by Plansformer-bw-gr derived models with
Plansformer-gr trained using similar data points.
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T5ForConditionalGeneration(
(shared): Embedding(32100, 768)
(encoder): T5Stack(

(embed_tokens): Embedding(32100, 768)
(block): ModuleList(

(0): T5Block(
(layer): ModuleList(

(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(

(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)
(relative_attention_bias): Embedding(32, 12)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(1): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(2): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

Figure 31: Plansformer Layers
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)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(3): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(4): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
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)
)
(5): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(6): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(7): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
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(1): T5LayerFF(
(DenseReluDense): T5DenseActDense(

(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(8): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(9): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(10): T5Block(

(layer): ModuleList(
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(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(

(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(11): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
)
(final_layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(decoder): T5Stack(

(embed_tokens): Embedding(32100, 768)
(block): ModuleList(

(0): T5Block(
(layer): ModuleList(

(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(

(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)
(relative_attention_bias): Embedding(32, 12)
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)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(1): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(2): T5Block(

(layer): ModuleList(
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(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(

(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(3): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
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(dropout): Dropout(p=0.1, inplace=False)
)

)
)
(4): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(5): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
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(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(6): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(7): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)
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)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(8): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(9): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
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(1): T5LayerCrossAttention(
(EncDecAttention): T5Attention(

(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(10): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
(11): T5Block(

(layer): ModuleList(
(0): T5LayerSelfAttention(

(SelfAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
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(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(1): T5LayerCrossAttention(

(EncDecAttention): T5Attention(
(q): Linear(in_features=768, out_features=768, bias=False)
(k): Linear(in_features=768, out_features=768, bias=False)
(v): Linear(in_features=768, out_features=768, bias=False)
(o): Linear(in_features=768, out_features=768, bias=False)

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(2): T5LayerFF(

(DenseReluDense): T5DenseActDense(
(wi): Linear(in_features=768, out_features=3072, bias=False)
(wo): Linear(in_features=3072, out_features=768, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): ReLU()

)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
)
(final_layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)

)
(lm_head): Linear(in_features=768, out_features=32100, bias=False)

)
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