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Abstract

By accessing only the surrogate model, attackers can craft adversarial
perturbations to fool black-box victim models into misclassifying a given
image into the target class. However, the misalignment between surrogate
models and victim models raises concerns about defining what constitutes a
successful targeted attack in a black-box setting. In our work, we empirically
identify that the vision-language foundation model CLIP is a natural good
indicator to evaluate a good transferable targeted attacks. We find that a
successful transferable targeted attack not only confuse the model on the
vision modality towards the target class, but also fool the model on the
text modality between the original class and target class. Motivated by
this finding, we propose a simple yet effective regularization term to boost
the existing transferable targeted attacks. We also revisit the feature-based
attacks, and propose to boost the performance by enhancing the fine-grained
features. Extensive experiments on the ImageNet-1k dataset demonstrate
the effectiveness of our proposed methods. We hope our finding can motivate
future research on the understanding of targeted attacks and develop more
powerful techniques.

1 Introduction

While deep neural networks have achieved remarkable progress across various applications,
their vulnerability to adversarial examples has raised significant concerns regarding the
reliability of their practical deployment. Adversaries can craft targeted attacks to generate
imperceptible perturbations and add them to benign samples, manipulating the decisions of
these models. Moreover, the existence of adversarial transferability enables the application of
adversarial examples generated on white-box surrogate models to efficiently attack black-box
models as well. Exploring methods to enhance the transferability of targeted adversarial
attacks can provide valuable insights into the nature of adversarial examples and motivate
the design of robust learning techniques for trustworthy AI applications.

Targeted attacks are more challenging than untargeted ones because they require the crafted
perturbation to not only confuse the neural networks but also to misclassify the object
as a specific target class. Several studies have explored transferable targeted adversarial
attacks, focusing on designing advanced objectives, input transformations, and feature- and
model-based attack methods. These methods optimize the perturbation based on feedback
from the neural networks to achieve the target class. For instance, Zhao et al. (2021) and
Weng et al. (2023) propose maximizing the logit of the target class, while Inkawhich et al.
(2019b), Gao et al. (2021), and Inkawhich et al. (2019a) suggest amplifying the image features
associated with the target class, etc. Despite these strategies and tricks designed to enhance
performance, a natural question arises: What is the key factor contributing to successful
targeted attacks in a black-box setting?

To answer this question, we first need criteria to justify the success of black-box targeted
attacks in general. As shown in fig. 1, while previous work usually evaluates targeted
attack performance on a limited number of victim models, it fails to establish a reliable
criterion when there is no knowledge about the dataset used to train the victim models,
e.g., the potential misalignment in the definition of the target class between the surrogate
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model and the target model in an open-world setting. To address this problem, we pro-
pose leveraging CLIP as a fair indicator to evaluate the effectiveness of different targeted
attack methods. There are two main reasons for using CLIP: First, CLIP is a foundation
model trained on a large-scale dataset, making it more robust than conventional mod-
els. Second, CLIP is trained on hundreds of billions of image-text pairs, creating a more
interpretable latent space that combines vision and language modalities. A successful
targeted attack in a black-box setting should not only be robust enough to transfer to
various models but also closely align with the target class in both vision and text modalities.

Figure 1: CLIP is a natural good indicator to model the
target class information and evaluate the target adver-
sarial attack performance under the black-box setting.

In this work, we empirically iden-
tify that the CLIP model without
fine-tuning is a naturally good in-
dicator to evaluate a successful tar-
geted attack under the practical
black-box setting. Motivated by
this finding, we propose to distill
the direction towards the targeted
class during attack and design a
simple yet effective regularization
term to further boost the perfor-
mance of existing powerful transfer-
able attack methods. Besides, dur-
ing the evaluation process, we find
the feature-based attacks always
achieve the spurious performance
compared with others, which moti-
vates us to deep dive into its effec-
tiveness. We also conduct empiri-
cal study on the key factor contibuting to its success, and propose to leverage the fine-graiend
features to further improve the performance. Extensive experiments on Imagenet-1K dataset
verify the effectiveness of our method.

Our contributions are summarized as follows,

• We propose a new metric based on the CLIP to identify the effectiveness of the
transferable adversarial attack.

• We design a simple yet effective regularization term to enhance the existing transfer-
able adversarial attacks.

• We empirically identify the key factors contributing to the effectiveness of the
feature-based attack, and propose to leverage more fine-grained features to boost
the performance.

• We conduct experiments on ImageNet-1K dataset to validate the effectiveness of our
proposed method.

2 Related work

2.1 Targeted Transferable Adversarial Attack

Szegedy et al. (2014) first identifies the existence of adversarial examples, which are crafted
by adding the human-imperceptible perturbation on benign samples to fool models’ decisions.
Targeted transferable adversarial attacks are the most threatening in real-world applications,
which target manipulating the black-box models’ decisions at attackers’ will. Many methods
have been proposed for targeted transferable adversarial attacks, which can be generally
categorized into four kinds, namely the input transformation-, advanced objective-, feature-
and model-based methods.

Input transformation-based methods advocate exploiting the input diversity for better
generalization ability in the optimization process, thus improving the adversarial transferabil-
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ity. While the methods studying the untargeted adversarial attacks can be directly used in
the context of targeted attacks, such as DIM, TIM, and Admix, there are some novel input
transformation-based methods mainly studying the targeted attacks. For example, Byun
et al. (2022) diverse the inputs based on 3D objects to enhance the targeted adversarial
attacks. Liu & Lyu (2024) propose a local mix-up strategy to randomly mix regions of
transformed adversarial images with each other, thus boosting the input diversity towards
better targeted adversarial attack performance.

Advanced objective-based methods design specialized loss functions to boost targeted
adversarial attacks. Li et al. (2020) introduce the Poincare distance as the similarity metric
to make the gradient more self-adaptive and suitable in the context of targeted attacks, thus
alleviating the curing of inherent noise in decreasing the transferability. Zhao et al. (2021)
propose the logit loss to directly enlarge the logit output of the targeted class to boost the
targeted attack performance. Weng et al. (2023) proposes to increase the logit margin to
deal with the saturation problem for better targeted adversarial transferability.

Feature-based methods focus on optimizing the latent space of adversarial images to
improve the targeted adversarial transferability. Wei et al. (2023) enhances the targeted
adversarial transferability by maximizing the similarity between the latent features of original
images and cropped images. Inkawhich et al. (2019b) and Gao et al. (2021) optimize the
feature of adversarial examples towards that of the image from target class. Inkawhich et al.
(2019a) attack the image by maximizing its posterior probability of the features for the target
class. Byun et al. (2023) fuses features of other benign samples with those of adversarial
examples to boost the targeted adversarial transferability,

Model-based methods train better surrogate models or directly use the generative model to
generate adversarial perturbation for targeted adversarial attacks. Springer et al. (2021) find
that a surrogate model that is more robust to adversarial perturbation can be leveraged to
craft adversarial examples with highly targeted adversarial transferability. Yang et al. (2022a)
propose a hierarchical generative network to generate targeted adversarial perturbation to
fool neural networks. Wang et al. (2023) design a generative adversarial training framework
for targeted attacks, which consists of a generator used for crafting targeted adversarial
examples, and feature-label dual discriminators to detect the adversarial examples from the
images of the target class.

2.2 Adversarial Defense

Several strategies have been proposed to mitigate the risk of adversarial attacks on neural
networks. These include adversarial training (Madry et al., 2018; Tramèr et al., 2018; Wang
et al., 2021), input preprocessing (Xie et al., 2018; Naseer et al., 2020), feature denoising (Liao
et al., 2018; Xie et al., 2019; Yang et al., 2022b), and certified defenses (Raghunathan et al.,
2018; Gowal et al., 2019; Cohen et al., 2019), among others. Liao et al. (2018) developed a
denoising autoencoder, referred to as the High-level Representation Guided Denoiser (HGD),
which aims to cleanse adversarial perturbations. Xie et al. (2018) introduced a technique
that involves random resizing of the image and adding padding to reduce adversarial effects,
called Randomized Resizing and Padding (R&P). Xu et al. (2018) proposed the Bit Depth
Reduction (Bit-Red) method, which reduces the bit depth per pixel to mitigate perturbations.
Liu et al. (2019) defended against adversarial attacks using a JPEG-based compression
method on adversarial images. Cohen et al. (2019) employed randomized smoothing (RS) to
train a certifiably robust classifier. Naseer et al. (2020) proposed a Neural Representation
Purifier (NRP) designed to eliminate perturbations. We use defense methods to evaluate the
performance of targeted adversarial attacks.

3 Methodology

Notations. Given the image x with the label y, the attacker can generate the human-
imperceptible adversarial perturbation δ, which leads the image classifier f to misclassify x
into the targeted class ŷ. The optimization of δ can be formulated as follows,
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argmin
δ

L(f(x+ δ), ŷ)), s.t. ∥δ∥∞ < ϵ, (1)

where L is the classification loss, e.g., the cross-entropy function, and ϵ is the maximum
perturbation budget under the L∞ norm constraint. Many studies have identified the
existence of adversarial transferability, where the adversarial examples generated by the
surrogate model f can be used to fool other black-box models.

Settings. In this study, we explore the key factors contributing to a successful transfer-
able targeted attack. In our default setting, we randomly choose 1, 000 images from the
ImageNet-1K dataset as our evaluation set, which are classified by our tested model. The
targeted attacked classes are also randomly generated. We use eight surrogate/victim models,
comprising 1) Convolutional Neural Network (CNNs): ResNet-18, ResNet-101, ResNXt-50,
and DenseNet-121; and 2) transformers: ViT, PiT, Visformer, and Swin. We generate
adversarial examples using different surrogate models and evaluate their performance on
all tested models, i.e., under both the white- and black-box setting. We set the maximum
perturbation magnitude ϵ = 16

255 under the L∞ constraint. Unless otherwise specified, we set
the number of iterations as 300 (Zhao et al., 2021), the step size as 2

255 .

3.1 Overview of Three Popular Methods and Beyond

We start the discussion from studying three popular targeted attack methods, which achieves
the state-of-the-art performance in recent years, and generally followed by others.

Logit (Zhao et al., 2021) directly maximizes the logit output of the target class using
a large number of iterations, achieving superior target transferability. While it is simple
to implement and effective compared to optimizing the loss shown in Eq. (1) (Pros.), it
overlooks the competition class and the original class, leading to performance degradation in
targeted transferability (Cons.).

Logit-margin (Weng et al., 2023) builds upon the Logit attack by scaling the logits with a
temperature factor and an adaptive margin, which is the difference between the top-1 and
top-2 logits. Additionally, it reveals that minimizing the cosine similarity between the input
feature of the final classification layer and the classifier weights of the target category can
improve transferability. This method benefits from considering the competition class (Pros.),
showing significant improvement over the Logit method. However, it is still limited by
under-explored targeted features and exhibits poor transferability across different black-box
models (Cons.).

CFM (Clean Feature Mixup) (Byun et al., 2023) is a targeted adversarial attack method
based on feature fusion. It pre-computes the clean features of benign samples and randomly
mixes them with the features of adversarial examples during the attack process. The diverse
features introduced encourage the attack to explore more alternative optimization directions
on the landscape, thus achieving an effective and efficient targeted transferable attack (Pros.).
However, focusing solely on the feature space of the targeted class limits its potential for
performance improvement (Cons.).

By utilizing the target class information of the surrogate model from different levels, i.e.,
the logit at the most abstracting bottom level to the features at the top level, we observe
consistent improvements in attack performance under the black-box setting (see table 2)
and derive the following assumption: the key to successful transferable targeted attacks is
to fully utilize the generalized information of the target class to amplify robust target class
features while alleviating competition class features, where the competition class is typically
the original class..

3.2 Representing the target class by CLIP

How can the information belonging to the target class be represented more generally? The
aforementioned three methods utilize the surrogate model itself. However, as identified by
previous studies, different models share similar regions of interest but differ in their decision
boundaries, which affects adversarial transferability. This difference makes targeted attacks
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Figure 2: We use GradCAM with SESS to visualize the regions of interest for different
models when they misclassify images into various target classes. The red areas indicate the
most important features contributing to the model’s decision, while the blue areas indicate
the least important features.

in a black-box setting more challenging. While untargeted attack methods focus on features
irrelevant to the original class, targeted attack methods need to concentrate on the features
specific to the target class, which are more precise and vary significantly among different
models. These factors make it difficult to model the target class information using only the
local single surrogate model.

To better understand the difficulty of targeted adversarial transferability, we use saliency
maps to visualize the impact of different features on model decisions for specific classes. To
more precisely reflect the contribution of local features, we enhance the performance of the
saliency map with SESS. The results are presented in fig. 2. As seen, when there is a large
difference between the original class and the target class, the regions of interest for the model
show more conflicts across different models. For example, the region of interest for changing
a "cat" to a "dog" remains relatively consistent, while it differs significantly when changing a
"valley" to a "shoe." Different models have significantly different preferences in misclassified
decisions, which can hinder the success of targeted transferable attacks.

To better represent the target class information, we propose leveraging CLIP, which is trained
on hundreds of billions of text-image pairs, resulting in more robust representations in the
latent space. Compared with conventional deep learning models, CLIP uses contrastive
learning, allowing the target class information to be represented jointly by text and vision
modalities. While collecting images to access the general image features of the target class is
challenging, obtaining text representations is easier. These text representations are entangled
with potential image features in the latent space. Thus, it is intuitive to use the cosine
similarity between the features of the image and the text embedding as the distance to the
targeted class.

Table 1: Evaluation on the cosine sim-
ilarity (Sim) of the adversarial example
features with its targeted attack class.

Method Logit Logit-margin CFM
Sim. 22.7 22.8 24.2
ASR. 23.1 23.8 38.6

To validate the reasonability of using CLIP to
model the target class information, we first gen-
erate 1,000 adversarial examples against the
ResNet-18 model using the Logit, Logit-margin,
and CFM methods. Then, we compute the cosine
similarity (Sim.) between the latent features of
the adversarial examples and the targeted class
name. For reference, we also report the average
targeted attack success rate (ASR) on the eight
models. The results are depicted in table 1. We
observe that as the similarity to the targeted class increases, the average attack success
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Table 2: Transferable targeted attack success rate against various models. We respectively
integrate the regularization term (C-) to three advanced targeted attacks methods, namely
the Logit, Logit-margin, and CFM.

Model Method RN-18 RN-101 RX-50 DN-121 ViT PiT Vis Swin Avg

RN-18

Logit 98.9 13.1 16.1 38.4 2.6 3.3 8.7 4.5 12.3
C-Logit 98.9 13.7 19.1 41.9 2.3 3.6 9.3 5.8 13.7

Logit-margin 100.0 15.8 19.5 42.7 2.5 3.6 9.3 5.1 14.1
C-Logit-margin 100.0 16.8 20.4 41.5 5.5 6.6 13.4 8.1 16.0

CFM 98.3 40.7 43.8 65.5 8.8 11.5 25.6 18.8 30.7
C-CFM 98.4 42.1 47.1 70.1 12.1 14.8 30.8 22.2 34.2

DN-121

Logit 19.7 12.4 17.0 98.4 1.5 3.0 6.6 2.7 8.9
C-Logit 20.9 12.5 17.9 98.4 1.9 3.1 8.4 3.6 9.8

Logit-margin 24.3 14.9 20.0 100.0 2.0 3.3 9.1 3.5 11.0
C-Logit-margin 23.6 17.8 24.2 100.0 6.3 6.6 13.5 7.6 14.2

CFM 78.7 64.0 70.0 98.0 21.4 28.2 49.7 34.5 49.5
C-CFM 79.6 66.4 71.1 97.8 27.5 32.5 53.7 40.6 53.1

ViT

Logit 0.8 0.3 0.4 1.1 63.7 3.1 1.0 1.3 1.1
C-Logit 1.0 0.8 0.8 1.1 64.6 5.3 2.1 1.9 1.9

Logit-margin 0.5 0.8 0.5 1.1 75.2 4.2 1.2 1.7 1.4
C-Logit-margin 1.5 1.2 2.1 2.2 60.5 6.3 3.8 3.8 3.0

CFM 15.1 20.3 24.1 20.4 98.4 50.3 45.6 45.9 31.7
C-CFM 20.5 29.5 33.2 32.2 97.8 60.1 52.9 51.0 40.0

PiT

Logit 0.0 0.4 0.0 0.8 0.1 85.8 1.3 1.1 0.5
C-Logit 0.3 1.0 1.0 1.3 1.8 86.5 2.5 1.6 1.4

Logit-margin 0.3 0.4 0.5 0.9 0.7 92.8 1.1 1.2 0.7
C-Logit-margin 0.9 1.0 0.5 1.9 1.8 75.7 2.4 1.8 1.5

CFM 5.3 9.1 12.3 9.1 15.2 98.6 29.6 27.1 15.3
C-CFM 8.3 14.4 17.4 15.2 25.9 99.2 37.6 33.1 22.0

rates also improve. Notably, the targeted class information is modeled only by the target
class name, without involving the visual modality. These results support our argument that:
1) CLIP is a natural and effective indicator for evaluating black-box targeted adversarial
transferability ; and 2) the target class information can be modeled by different modalities in
CLIP’s latent space.

3.3 Leveraging the CLIP to enhance the targeted transferability

We are motivated by the aforementioned findings to leverage CLIP as a helper to enhance
targeted adversarial transferability. Recall that two factors contribute to the success of
targeted attacks: amplifying the target class features and alleviating the original class
features. Thus, we propose two terms to compute the distance of the current adversarial
example to the target class and the original class based on CLIP.

Specifically, for the distance to the target class, we use the text embedding of "[Target
class]" from CLIP to model the feature of the target class, then compute the cosine similarity
between the adversarial example features and the text embedding as the distance. For the
distance to the original class, we use the benign sample embedding from CLIP as the original
class information and also use the cosine similarity to indicate the distance. The optimization
can be formulated as follows:

maxLreg =
Exadv · Eyt

∥Exadv∥∥Eyt∥
− Exadv · Ex

∥Exadv∥∥Ex∥
, (2)

where Exadv , Eyt , Ex are the CLIP embeddings of the adversarial example, the target class
name, and the benign sample, respectively.

Results and insights. We integrate the regularization term eq. (2) into Logit, Logit-margin,
and CFM to form the C-Logit, C-Logit-margin, and C-CFM, respectively, and evaluate
the targeted attack performance. The results are shown in table 2. For reference, we also
report the average attack success rate (Avg) on the seven black-box models. There are three
findings revealed by the results. First, the use of CLIP as guidance in targeted adversarial
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Table 3: Transferable targeted attack success rate against various models. Four strategies
are used in the mix-up operations of CFM attack, including the random (baseline), original,
target, and combination.

Model Strategy RN-18 RN-101 RX-50 DN-121 ViT PiT Vis Swin Avg

RN-18

Random 98.3 40.7 43.8 65.5 8.8 11.5 25.6 18.8 30.7
Original 98.1 41.5 42.8 65.4 9.1 12.1 27.9 19.0 31.1
Target 98.9 31.5 36.1 61.5 6.1 8.1 21.0 12.7 25.3

Combination 98.8 40.4 45.0 67.1 9.8 11.7 28.0 18.4 35.1

DN-121

Random 78.7 64.0 70.0 98.0 21.4 28.2 49.7 34.5 49.5
Original 70.7 63.1 64.9 98.8 21.5 25.7 46.7 30.4 46.1
Target 63.3 44.6 51.0 98.0 8.7 12.9 28.7 16.0 32.2

Combination 72.3 65.9 66.5 98.6 19.7 26.9 47.3 32.5 47.3

ViT

Random 15.1 20.3 24.1 20.4 98.4 50.3 45.6 45.9 31.7
Original 7.8 16.8 18.8 13.6 98.0 49.7 36.1 31.8 24.9
Target 5.1 9.0 10.0 9.1 89.4 30.4 21.2 18.3 14.7

Combination 6.7 12.2 12.8 8.9 91.3 40.5 24.3 23.2 18.4

PiT

Random 5.3 9.1 12.3 9.1 15.2 98.6 29.6 27.1 15.4
Original 3.1 6.8 7.2 6.1 17.6 98.0 21.6 19.2 11.7
Target 0.9 1.5 1.0 1.1 2.3 88.8 4.6 4.2 2.2

Combination 1.5 4.5 4.5 3.6 9.1 92.5 10.3 11.8 6.5

attacks significantly boosts performance under the black-box setting, especially for CFM.
It shows an improvement of up to 8.3% and 6.7% on average when using ViT and PiT as
surrogate models. This phenomenon provides further evidence supporting the use of CLIP
to model target class information. Second, the regions of interest used for classifying images
into specific classes vary significantly among different models and architectures. We observe
that the attack success rate on CNNs is very low when using a Transformer as the surrogate
model, and vice versa. Additionally, the attack success rate under the white-box setting
using the Transformer as the surrogate model doesn’t reach 100% even with 300 iterations.
While the untargeted attack success rate approaches 100% in recent studies, the research in
targeted attack success rates remains heavily under-explored. Third, compared with the use
of logit, the features are more helpful to craft targeted adversarial perturbation, where there
is a clear performance gap between the CFM and Logit/Logit-margin.

3.4 Unraveling the Secrets Behind CFM’s Success

From previous results, CFM stands out as the most effective targeted attack method,
leveraging the features of benign samples to craft adversarial perturbations that approach the
target class in the latent space. As discussed in the previous section, CFM employs a mixup
of a limited set of images, neglecting specific information of the target class. Intuitively, in the
context of transferable targeted attacks, one might expect that using more images belonging
to the target class would yield better performance compared to using purely random images.
But does this assumption hold true?

To answer this question, we set up four pool of images used for feature mix-up during the
CFM attack, including 1) Random: we use random images for mix-up, which is the original
implementation of CFM; 2) Original : we use the original image features for mix-up; 3)
Target : we collect the images for each target class, and only the target class images are used
for mixup during the attack; and 3) Combination: we randomly mix-up the target class
image features with the original image features to achieve a good diversity of image features
as well as involving more target features for better guidance.

Results and insights. We present the results in table 3. Contrary to intuition, using the
target strategy does not improve targeted adversarial transferability; it even downgrades
performance by an average of 13.2%. In comparison, the original strategy consistently
achieves better performance, highlighting the importance of fusing original benign sample
features to boost performance rather than directly fusing target class features. Additionally,
we observe that the combination strategy, which mixes original image features with target
class features, further improves targeted adversarial transferability when using CNNs as
surrogate models. This indicates that introducing target class information can enhance
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Table 4: Transferable targeted attack success rate against various models. We compare our
proposed Fine-grained Feature Attack (FFA) with various advanced targeted attack methods,
including SU, IDAA, AA, PoTrip, and CFM.

Model Method RN-18 RN-101 RX-50 DN-121 ViT PiT Vis Swin Avg

RN-18

SU 99.5 7.0 8.0 21.7 0.2 0.4 2.7 1.2 17.6
IDAA 87.5 3.3 3.7 12.7 0.1 0.6 1.9 1.3 13.9
AA 4.8 0.7 0.7 0.8 0.3 0.1 0.1 0.2 1.0

PoTrip 99.9 3.3 5.7 14.9 0.2 0.3 1.3 1.6 15.9
CFM 98.3 40.7 43.8 65.5 8.8 11.5 25.6 18.8 30.7
FFA 98.5 64.3 65.0 83.3 12.1 22.1 40.4 32.1 52.2

DN-121

SU 16.3 9.8 12.1 99.3 0.4 0.5 4.3 1.6 18.0
IDAA 15.5 6.8 9.5 90.2 0.4 1.9 3.5 2.9 16.3
AA 0.6 0.2 0.1 78.1 0.0 0.0 0.0 0.0 9.9

PoTrip 10.7 6.9 8.7 100.0 0.6 0.9 3.0 0.9 16.5
CFM 78.7 64.0 70.0 98.0 21.4 28.2 49.7 34.5 49.5
FFA 83.6 79.4 80.0 97.3 24.1 40.5 61.3 44.7 63.9

ViT

SU 0.7 0.9 0.7 0.8 39.9 3.4 2.5 2.1 6.4
IDAA 2.6 2.6 4.0 3.8 35.4 8.6 5.8 6.2 8.6
AA 0.0 0.1 0.0 0.2 29.7 0.0 0.0 0.0 3.8

PoTrip 3.3 3.9 5.1 6.1 67.3 15.2 10.6 8.6 15.0
CFM 15.1 20.3 24.1 20.4 98.4 50.3 45.6 45.9 31.7
FFA 21.4 27.3 34.6 31.7 99.3 59.1 52.5 57.8 48.0

PiT

SU 0.5 0.7 0.5 0.5 0.5 76.4 1.7 1.4 10.3
IDAA 1.7 2.3 3.4 2.6 2.0 48.3 7.1 7.3 9.3
AA 0.3 0.1 0.0 0.3 0.0 10.7 0.0 0.0 1.4

PoTrip 2.2 3.1 4.0 3.8 5.1 85.7 8.9 8.3 15.1
CFM 5.3 9.1 12.3 9.1 15.2 98.6 29.6 27.1 15.3
FFA 8.8 17.9 20.6 14.1 17.0 99.7 36.6 38.8 31.7

targeted adversarial transferability without harming the original image features. Among all
experiments, the random strategy consistently achieves good performance across all surrogate
models. This suggests that feature diversity contributes the most to targeted adversarial
transferability.

3.5 Harnessing Fine-Grained Features for better performance

Figure 3: We leverage the fine-grained features
to boost the targeted attack performance of
feature-based attack, i.e., the CFM.

While previous findings have shown that
“suitable guidance from the target class,” i.e.,
the “combination strategy,” boosts targeted
adversarial transferability when using CNNs
as surrogate models, we also observe a sig-
nificant performance drop when applying
this insight to Transformer-based models.
We attribute this to the differences in the
working pipeline between CNNs and Trans-
formers. While CNNs learn to detect ob-
jects from a global perspective, Transform-
ers operate on the patch level. Compared to
CNNs, Transformers can capture more fine-
grained features, making the model more
robust and mitigating the effectiveness of
targeted adversarial perturbations crafted
through global feature mix-up.

Specifically, rather than storing the features
from the original images, we first partition
them into multiple blocks and apply random
input transformations to each block to fur-
ther amplify the local features. Next, we
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forward these augmented images to the neural networks for feature storage. During attacks,
the images are similarly enhanced by block transformations to highlight fine-grained features
and are randomly mixed with the pre-stored fine-grained features. This design fully enhances
feature diversity and introduces more competition among leveragable features, thereby
boosting targeted adversarial transferability.

Results. We present the results in table 4. It can be shown that the FFA consistently
achieves the state-of-the-art performance against different models, with a clear gap of xx.xx%.
It sufficiently supports our argument that paying more attention on fine-grained features could
boost the targeted adversarial transferability. It should be also noted that, though proposed
method is effective on attacking CNNs (some of results even achieve nearly 90% targeted
attack success rate), there remains a room for improving the performance on Transformers.

4 Conclusion

In this work, by studying three advanced targeted adversarial attack methods, we derive the
general insight that modeling the target class information suitably can significantly boost
targeted adversarial transferability. We empirically find that CLIP serves as an excellent
indicator for modeling target class information, enhancing attack performance. We also delve
into feature-based attacks to uncover underlying principles in deisgning an efficient targeted
attack, including the careful design of mix-up strategies and the importance of feature
diversity. Furthermore, we propose leveraging fine-grained features to improve targeted
adversarial transferability. Extensive experiments on the ImageNet-1K dataset, along with
various defense models and commercial APIs, robustly demonstrate the effectiveness of our
proposed method.
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