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Abstract

As large language models (LLMs) scale to
longer contexts, the quadratic cost of atten-
tion poses computational and memory chal-
lenges. Segmenting inputs mitigates this but
breaks inter-segment dependencies. We pro-
pose TARMER, a task-aware recursive prompt
compression method with a memory buffer. It
jointly models compression and generation as
a single forward pass, avoiding intermediate
short prompts. Guided by task descriptions
and queries, TARMER enhances semantic un-
derstanding and task-specific redundancy re-
duction. Experiments on dialogue, multiple-
choice, and out-of-distribution tasks show that
TARMER achieves up to 16x compression
with minimal performance drop, using a mem-
ory buffer with constant space complexity.

1 Introduction

As LLMs gain prominence in language understand-
ing and generation (Li et al., 2024b,c), managing
long contexts efficiently has become a key chal-
lenge. Transformer-based models (Vaswani, 2017)
use self-attention (Bahdanau, 2014) to model token
dependencies, but its quadratic complexity with
sequence length leads to substantial memory and
compute costs. This limits LLMs in in-context
learning (Dong et al., 2024; Li et al., 2024a), dia-
logue (Hosseini-Asl et al., 2020; Savchenko and
Savchenko, 2024), and Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020).

To optimize the processing of long texts, prior
work explores sparse attention (Child et al., 2019;
Fu et al., 2022), sliding windows (Beltagy et al.,
2020), and extended positional encoding (Chen
etal., 2023). As these often require training from
scratch, prompt compression has gained attention
for its lower training cost. Typical prompt com-
pression methods often segment the context to fit
limited window sizes (Li et al., 2023; Chevalier
et al., 2023; Yen et al., 2024) (Figure 1a). How-
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Figure 1: Comparison of different soft prompt compres-
sion paradigms. (a) Context chunks are compressed
independently, (b) Recursive compression incorporat-
ing chunk dependencies, (c) The proposed task-aware
recursive compression with memory buffer.

ever, compressing raw input overlooks dynamic
redundancy, which can vary across tasks (e.g., sum-
marization vs. QA) and even across queries within
the same task.

In response, we propose a task-aware prompt
compression method that conditions each segment
on the task description and current query. This
facilitates dynamic redundancy removal by lever-
aging specific conditions, making the compression
more task-specific. For instance, in QA, the model
prioritizes question-relevant segments; in dialogue,
it highlights contextually salient turns dynamically
adapting to the current interaction and minimizing
the reliance on redundant prior exchanges.

Furthermore, simply segmenting the original
long contexts poses challenges, as global relation-
ships between segments are disrupted, hindering
the capture of long-range dependencies. Since the
compression within each segment suffers from win-
dow locality, it fails to eliminate redundancy across
segments, exacerbating the context fragmentation



issue (Dai, 2019). As a result, infrequent but crucial
information is overlooked. To tackle this challenge,
we propose a condition-aware recursive compres-
sion paradigm. The core idea is to introduce a re-
cursive mechanism where the compression of each
subsequent segment is conditioned on the infor-
mation provided by the preceding segments. This
allows the model to update its global representation
using the pre-stored compressed information from
earlier segments, thereby overcoming local limita-
tions and reducing cross-segment redundancy.
Prior work (Rae et al., 2020) shows that stor-
ing past activations in external memory is more
effective than using state vectors. However, most
external memory methods (Chevalier et al., 2023;
Kim et al., 2024) use concatenation to update the
memory, which causes linear growth in storage
costs with segments. In contrast, human working
memory operates efficiently despite limited capac-
ity (Baddeley, 1992). Inspired by this, we intro-
duce a fixed-length memory buffer to store global
context (Figure Ic), updated via a learned merg-
ing function. This enables constant memory usage
while preserving compression effectiveness.
During inference, the model is prompted with
task descriptions and specific inputs, followed by
end-to-end prompt compression and response gen-
eration. Our soft prompt compression eliminates
intermediate discrete short discrete prompts (Li
et al., 2023; Jiang et al., 2023b; Pan et al., 2024),
storing the compressed version in hidden represen-
tations while optimizing key information retention.
In summary, our contributions are as follows:

* We propose a novel task-aware recursive
soft prompt compression paradigm, which ef-
fectively identifies dynamic redundancy un-
der varying conditions and removes cross-
segment redundancy.

* We introduce a fixed-length memory cache
mechanism with a customized merging func-
tion that ensures constant space complexity,
making it particularly suitable for resource-
constrained scenarios.

» Extensive experiments on tasks such as dia-
logue generation, out-of-distribution recom-
mendation, and in-context learning demon-
strate the superiority of our method. Our
approach achieves up to a 16x prompt com-
pression ratio without compromising perfor-
mance.

2 Related Work

2.1 Prompt Compression

Prompt compression generates concise prompts
for downstream tasks and falls into two main cat-
egories. 1) Discrete hard prompt compression:
These methods use a compression model to shorten
input text, which is then fed into a separate task
model. Entropy-based approaches (e.g., Selective
Context (Li et al., 2023)) remove low-information
content, while LLMLingua (Jiang et al., 2023b) and
LLMLingua-2 (Pan et al., 2024) use LLMs to de-
tect semantic redundancy. 2) Soft prompt compres-
sion: These methods optimize continuous embed-
dings (soft prompts) for end-to-end tasks without
separate models (Lester et al., 2021). Distillation-
based approaches (Wingate et al., 2022) align distri-
butions but require re-optimization per prompt and
lack generality. Compressive Transformer (Rae
et al., 2020) compresses activations via convolu-
tions. GIST (Mu et al., 2024) uses input-dependent
tokens for attention. ICAE (Ge et al.,, 2023)
adopts an encoder-decoder, while AutoCompres-
sor (Chevalier et al., 2023) recursively summarizes
segments. Our method falls into this category, en-
hancing global redundancy removal via a memory
cache that mitigates recursive forgetting.

2.2 Long Context Learning for LLMs

Existing methods for long sequences include ex-
panding the window (Nijkamp et al., 2023), in-
terpolating positional embeddings (Chen et al.,
2023), and modifying attention, e.g., sparse (Child
et al., 2019) or sliding-window (Beltagy et al.,
2020) mechanisms (Peng et al., 2023). Addition-
ally, recent work explores long-term memory for
LLMs. Transformer-XL (Dai, 2019) preserves
past activations, while MANNs (Meng and Huang,
2018) use external memory matrices to boost ca-
pacity. RMT (Bulatov et al., 2022) models mem-
ory via read-write tokens, and Memorizing Trans-
former (Wu et al., 2022) applies memory at the top
layer, updating it with kKNN. MemoryBank (Zhong
et al., 2024) incorporates the Forgetting Curve to
enhance long-term memory. In contrast to these
approaches, our method does not directly aim to ex-
pand the context window of LLMs. Our approach
enables efficient access to broader context with
lower cost and latency, without retraining or ar-
chitectural changes, making it complementary to
existing techniques.



ﬁask description: Please answer the following
questions based on the provided document.
Document 1: Actress Halle Berry has been sharing a
number of stunning photos ...
Document 2: In Halle Berry's newest Instagram post...

Document K: Both Halle and her John Wick co-star ...
Query: Where has Halle Berry been filming recently?
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Compressed representation (short soft prompt)
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Figure 2: Illustration of the soft prompt compression
paradigm. The compressor generates compressed em-
beddings, which the interpreter uses to create responses.
Our compressor and interpreter share parameters and
are optimized in an end-to-end manner.

3 Method

We propose TARMER, a parameter-efficient soft
prompt compression framework that unifies prompt
compression and response generation by optimiz-
ing a single language model, as shown in Figure 2.

3.1 Problem Definition

Let 7 denote the text space, and given an in-
put query z, € 7, K context segments rg =

{a,,%dy,-..,za,} € T, and a target output
sequence y = [y1,Y2,-.-,Yn] € T, where
Y1,Y2, - - ., Yn are n tokens of the target response

sequence. The context segments can include para-
graphs from long documents or a set of retrieved
documents. Assume a pre-trained language model
fo : T — R, which models the probability distri-
bution over the text space 7. A typical approach
for predicting the output y involves using the full
context as:

nyQ("xdvxq)v (1)

where x4 is the context and z, is the task-specific
query. However, this method incurs increasing
memory and computational costs as the context
length grows. Existing prompt compression frame-
works aim to alleviate this issue by compressing
lengthy and complex prompts into shorter prompts.

General prompt compression methods (Jiang
et al., 2023b; Ge et al., 2023) compress each con-
text segment x4, € x4 into smaller summary se-

quence s;, which are then assembled into the final
compressed prompt sequence s = [S1, 82, . . ., S
This compressed prompt s captures the core in-
formation of x; with far fewer tokens. The com-
pressed prompt s is then appended to the input
query x, and provided to the language model fy
to generate a response § € 7 that ought to be sim-
ilar to the output generated using the full context.
When the summary s € T, i.e., the compressed
prompt is discrete text, the corresponding method
is hard prompt compression. When s is an embed-
ding representation in the latent space, the method
corresponds to soft prompt compression, and our
approach falls within this paradigm.

Our method performs global chunk-based recur-
sive compression with the input query z, and the
specific task description x4, enabling the com-
pressed vector s to consider both the current task
and the specific query. Our task-aware recursive
compression method is described in Section 3.2.

3.2 Task-Aware Recursive Compression

Considering that soft prompts can interpolate be-
tween many token embeddings, enabling more
abstract representations than a single discrete to-
ken (Wingate et al., 2022). In this paper, we adopt
the framework of soft prompt compression.

We define two types of memory units: segment
memory for the current chunk and sequence mem-
ory for the entire sequence of chunks. The segment
memory is stored in compressed token embeddings,
which originate from the language model’s embed-
ding space spanning thousands of dimensions, thus
possessing high information transmission capac-
ity. The sequence memory is updated through seg-
ment memories and concatenated with subsequent
chunks or queries to generate future segment mem-
ories or the final response.

Segment Memory. We expect model fy to
generalize to unseen tasks. Given a new task ¢, the
model should be able to compress the representa-
tion based on the task description x4k, the input
query x4, and the context x4 to produce accurate re-
sponses without any additional training. Therefore,
we concatenate Zyq4x and x4 in the input to enforce
both task-related and query-related constraints:

Seg_mem; = My (Ztqsk, Tq, Zd,, COMP), (2)

where COMP is the compressed token appended to
the text sequence, and its corresponding latent rep-
resentation merges the task description and query



information. Subsequent segment memories are
generated based on this:

Seg_mem; = Mpy(Seg_mem,_,, x4, COMP), (3)

where ¢ ranges from 2 to K. The recursive process

indicates that the current token only needs to access
the state vector from the previous step to complete
the current inference step.

Sequence Memory. The above recursive de-
sign of segment memory is inspired by the Mamba-
based LLM (Gu and Dao, 2023), which is essen-
tially a state space model. However, in Mamba,
the state vector at each time step can only store a
limited amount of historical context. As the context
length increases, memory forgetting occurs, which
degrades inference performance. To address this,
we propose a compromise sequence memory used
to cache the historical segment memories. Our key
difference from the traditional approach is the intro-
duction of memory buffer strategies, which allow
the model to control the sequence memory used by
effectively managing the historical context.

A vanilla strategy involves concatenating the
segment memory with the current memory pool at
each step to build the global context:

Seq_mem,; = Concat(MemoryPool,_;, Seg_mem;_,),

“4)
where MemoryPool,_, is the accumulated memory
from previous segments and Seg_mem;_, is the
newly generated segment memory. The concate-
nation strategy, while simple, leads to a growing
memory pool. As K increases, this can result in
substantial memory overhead.

To address this, we introduce the memory
buffer strategy, which aims to limit the growth
of memory size while maintaining essential con-
text information. In this strategy, the sequence
memory is not simply concatenated but updated
by a memory editing model Ey, which adjusts the
memory pool by selectively retaining critical infor-
mation from past segment memories. The updated
sequence memory is denoted as:

Seq_mem; = Ey(MemoryPool,_;,Seg_mem,_;), (5)

where Ejyg is a memory editing model with two
transformer blocks that compute self-attention over
the segment memory and the global memory pool.
The editing model ensures that the memory size
does not increase with K and remains bounded by
a fixed length. This memory buffer design allows

the model to focus on the most relevant information
across the entire sequence without the need to store
all historical segments. By adopting the memory
buffer strategy, we achieve a significant reduction
in memory usage, especially when handling large
amounts of context, while still retaining sufficient
historical context for accurate responses.

Since the sequence memory contains the key
information of all chunks, during inference, the
final response sequence can be generated using the
global sequence memory:

g = fo(Seq_memp, ). (6)

3.3 Optimization

Optimization Function. In this work, we do
not introduce additional decoders, as in other soft
prompt methods such as ICAE (Ge et al., 2023) or
CEPE (Yen et al., 2024). Instead, we directly opti-
mize the encoder in an end-to-end manner for target
response. Unlike optimizing all parameters of the
encoder, we only optimize the LoRA adapters and
the embedding layer of the COMP tokens.

Given the final sequence memory Seq_mem
and the input query x4, we compute the probability
distribution over the next token in the sequence us-
ing the pre-trained language model Mjy. The objec-
tive is to minimize the cross-entropy loss between
the predicted output and the ground truth target re-
sponse. Let § = [§1, Y2, . . ., Un] represent the pre-
dicted output sequence, and y = [y1, Y2, - - -, Yn]
represent the ground truth target sequence. The
probability distribution over the next token, condi-
tioned on the sequence memory Seq_mem - and
query x4, is given by:

P(:’Qn|seq—memKaxq) = ft‘)@n|seq_mem[{>$q)a @)

wheren = 1,2,..., N and N is the total number
of tokens. The cross-entropy loss at each position
n is computed as:

L, = —log P(yn|Seq_memy, z,).  (8)

Yn 1s the true token at position n, and
P(yn|Seq_memy, z,) is the predicted probability.
The total cross-entropy loss for the response se-
quence is the sum of the individual token losses:

N N

Lcg = Z L, =— Zlog P(yn|Seq_memy, z).
n=1 n=1

)



The goal of optimization is to minimize the to-
tal cross-entropy loss Lcg, which directly drives
the model to refine its predictions of the target
response based on the joint optimization of the re-
cursive compression process, task-awareness, and
sequence memory. Leveraging soft prompts, the
loss is computed end-to-end, eliminating the need
for intermediate discrete prompt tokens or the ad-
ditional training of separate decoders. In practice,
only the LoRA adapters, COMP token embeddings,
and lightweight editor £’ are updated, reducing the
parameter space and enhancing learning efficiency.

Memory Analysis. We analyze the two pro-
posed memory strategies: the concatenation-based
strategy TARMER-C and the fixed-length mem-
ory buffer strategy TARMER-B. We also compare
them with the traditional full-context mode.

Traditional long-context methods store the rela-
tionships between every token in the entire context
within a large attention matrix. The memory re-
quirement for this approach grows quadratically
with the total context length: My = O((K X
1)) where [, is the length of each segment, and
K denotes the total number of segments. The
concatenation-based strategy, TARMER-C, stores
the activation of each segment in external mem-
ory, updating the memory as new segments are
processed. The memory requirement grows lin-
early with the number of segments K: M opcat =
O(K x l.). In contrast, the fixed-length mem-
ory buffer strategy, TARMER-B, stores global se-
quence within a fixed-size memory buffer. Instead
of concatenating, the buffer retains a fixed-size vec-
tor and updates it as a new global memory. The
memory complexity is: Mpyrer = O(1).

The concatenation-based TARMER-C incurs lin-
ear memory growth with segment count K. As K
increases significantly, adding each new segment
potentially leads to memory pressure. On the other
hand, the fixed-length memory buffer provides a
significant improvement by maintaining constant
memory usage and offers a more scalable solution
through adjusting the fixed memory size.

4 Experiments

In this section, we provide empirical validation
of the proposed method. Through comparisons
with existing soft prompt compression approaches,
we demonstrate the effectiveness of our method.
In Section 4.3, we further confirm its adaptability
through ablation studies and additional analyses.

Methods MetalCLL. LaMP DailyDialog
No context 51.7 69.5 9.85
Full context 69.9 83.1 5.84
GIST 59.7 79.6 7.68
Compressive 67.6 81.6 6.52
CCM 68.9 84.0 6.17
TARMER-C 70.1 85.5 5.81
TARMER-B 69.8 85.3 5.67

Table 1: Comparison with state-of-the-art soft prompt
compression methods. Accuracy (%) on MetalCL
and LaMP datasets, and perplexity({) on DailyDialog
dataset.

4.1 Experimental Setup

Implementation Details. In this paper, our objec-
tive is to train LLMs end-to-end to perform both
long text compression and response generation for
downstream tasks. Given that decoder-only mod-
els outperform encoder-decoder models in prompt
compression (Mu et al., 2024), we use LLaMA-
2 (Touvron et al., 2023) and Mistral (Jiang et al.,
2023a) as the underlying backbones. For model
training, we set the length of the compression to-
ken <COMP>to 16 by default, with the length of
the memory buffer set to 128. For each sample,
we prepend the task description and query to the
beginning of the first chunk. We leverage LoRA
for efficient parameter fine-tuning, rather than full-
parameter training, and apply the same LoRA (Hu
et al., 2021) configuration and training protocol
across all methods. We set the rank r of the LoRA
parameters to 8. Additionally, FlashAttention (Dao
etal., 2022) is used to accelerate the baseline model
experiments. All training is conducted on NVIDIA
A100 devices.

Datasets We evaluate our method using
four datasets: MetalCL (Min et al., 2021),
LaMP (Salemi et al., 2023), DailyDialog (Li
et al., 2017), and the Prompt-with-Context (PwC)
dataset (Ge et al., 2023). First, MetalCL is a
multi-task context learning dataset designed to
address tasks that were unseen during training,
comprising 61 training tasks and 26 unseen test
tasks. The evaluation metric used is the accuracy of
multiple-choice questions. The LaMP dataset gen-
erates personalized recommendations using user
profiles, and we evaluate the multiple-choice ac-
curacy for new users that were not encountered
during training. The DailyDialog dataset evaluates
performance in dialogue scenarios, containing se-



Judgement (%)
TARMER Methods Win Lose Tie
e | T 10
(LLaMA) -concat . . .
Full context | 33.7 31.7 34.6
(LLaMA) -concat . . .
Full context | 29.6 362 34.2
e |\ (3082
(Mistral) -concat . . .
Full context | 56.0 22.5 21.5
s | A0 DT
(Mistral) -concat . . .
Full context | 40.3 28.6 31.1

Table 2: Evaluation using GPT-4 to compare the re-
sponse quality of our TARMER method with that of
other baseline methods.

quences of everyday conversations. We measure
model performance using perplexity on actual dia-
logues. The PwC dataset is specifically designed
for instruction-following tasks that include both
context and prompts, containing thousands of sam-
ples. In the case of PwC, we do not rely on a spe-
cific metric but instead assess the performance of
generated sequences using GPT-based evaluation.

4.2 Benchmark Comparison

Metric Comparisons. As show in Table 1,
we present performance comparisons across the
MetalCL, LaMP, and DailyDialog datasets. Based
on existing open-source code, we compared the
soft prompt compression methods GIST and CCM,
both of which aim to compress attention hidden
states. For CCM, we report the performance of
the better-performing concat version. To ensure
a fair comparison, we set the same compression
ratio for all methods. TARMER-C represents the
proposed method using a concatenation strategy
with a complexity of O(n), which is consistent
with other comparison methods. TARMER-B rep-
resents the proposed method using a fixed-length
memory buffer with a complexity of O(1). For
MetalCL and LaMP, document segments evenly
contain task-related or user-related information,
and the redundancy between documents is mini-
mal. The concat compression strategy often better
preserves key information. However, in DailyDi-
alog dataset, the contextual information conveyed
in later dialogues becomes increasingly important.

mGIST ICAE

69.0
66.0 r
630 r
60.0 r
57.0
4 8 16 32

Compression ratio

mCCM = TARMER

Accuracy (%)

Figure 3: Accuracy (%) on MetalCL at different com-
pression ratios.

In such scenarios, where stricter information filter-
ing is required, our memory buffer-based approach
significantly outperforms the simple concat-based
compression strategy. This demonstrates that as the
redundancy of contextual information increases,
the effectiveness of the memory buffer becomes
more pronounced.

Comparisons with GPT Evaluations. To evalu-
ate the instruction-following performance on down-
stream tasks, we not only use fixed metrics but
also introduce GPT-based scoring for the gener-
ated outputs, as shown in Table 2. We fine-tune
using the PwC (Ge et al., 2023) instruction dataset,
which consists of 240k (context, query, response)
samples for training and 18k samples for test-
ing. Our training and testing setup follows the
ICAE (Ge et al., 2023) method. We use Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023a) and LLaMA-
2-7B-chat (Touvron et al., 2023) as our backbone
language models. We compare the response qual-
ity of our TARMER method (first column) with
several existing baseline methods (second column)
using GPT-4 (Achiam et al., 2023) to assess which
approach performs better or whether they are com-
parable. To ensure a fair comparison, all baseline
methods utilize the same backbone model, and both
ICAE and CCM-concat (Kim et al., 2024) store
information from different chunks using memory
slots with linear complexity.

In Table 2, TARMER-C demonstrates superior
performance over ICAE and CCM-concat, and they
use the same memory footprint. TARMER-C gains
the win rates of 81.0% and 85.8% for Mistral. Com-
pared to modeling the full context, TARMER-C
achieves a win-tie rate of 77.5%. TARMER-B,
which introduces a fixed-size memory buffer, bal-
ances memory usage and performance, achieving
average win rates of 74.3% and 72.9%, surpassing
ICAE and CCM.



Methods

No context Full context AutoComp AutoComp-FT CCM-C CCM-M TARMER-C TARMER-B-64 TARMER-B-128

Accuracy 414 54.2 48.1 50.9
Memory 31 394 156 156

535 523 54.4 534 53.7
111 41 128 39 77

Table 3: Comparison of accuracy (%) and peak KV memory (MB) with SOTA recursive compression methods using

the OPT-2.7B model.

Memory Efficiency. In Figure 3, we evaluate
the performance of various soft prompt compres-
sion methods at different compression ratios on the
MetalCL dataset. The methods considered for com-
parison are GIST (Mu et al., 2024), ICAE (Ge et al.,
2023), and CCM (Kim et al., 2024), with TARMER
representing our approach that incorporates a mem-
ory cache mechanism for efficient compression. At
a compression ratio of 4x, TARMER achieves the
highest performance (70.3%), outperforming other
methods. As the compression ratio increases to 32x,
TARMER'’s performance remains stable at 68.5%,
surpassing the performance of most comparative
methods at an 8x compression ratio. This indicates
that the proposed memory buffer mechanism is ro-
bust, effectively mitigating information loss even at
higher compression levels. In contrast, other meth-
ods show varying degrees of performance degra-
dation as the compression ratio increases. GIST,
for instance, drops from 63.0% at a ratio of 4x
to 58.9% at a ratio of 16x, indicating a substan-
tial loss in performance as more information is
compressed. Similarly, ICAE and CCM exhibit a
steady decline in performance as the compression
ratio increases, with ICAE reaching only 62.0% at
aratio of 16x and CCM reaching 61.2% at the same
compression level. TARMER consistently outper-
forms these methods across all compression ratios,
particularly at higher compression levels (16x and
32x), where it significantly outperforms the other
methods. This suggests that the memory buffer
mechanism in TARMER effectively mitigates the
trade-off between compression and information re-
tention, enabling it to achieve superior performance
without relying on excessive memory usage.

To ensure a fair comparison, we selected sim-
ilar recurrent baseline methods (Chevalier et al.,
2023; Kim et al., 2024). The AutoCompressor
model was pre-trained on the Pile dataset (Gao
et al., 2020) and fine-tuned with MetalCL to ob-
tain AutoCompressor-FT. As shown in Table 3, we
compare accuracy and memory usage on the OPT-
2.7B model (Zhang et al., 2022). Our method out-
performs others in both performance and memory
efficiency. TARMER-C, based on hidden vector

77 | -*Baseline TARMER w/o Task
---TARMER-w/o Recursion TARMER-w/o Buffer
74 —TARMER-Concat -TARMER

7

68

Accuracy (%)

65

62 /”‘—‘\\

59

0 4 8 12 16
Number of contexts

Figure 4: Ablation study on the MetalCL with LLaMA.

concatenation, requires only 128MB of memory,
lower than most methods. For methods with compa-
rable performance, memory usage is typically 2-5
times higher than TARMER. Further, TARMER-
B’s memory consumption can be adjusted based
on buffer size. While slightly lower in accuracy
than using the full context, TARMER-B still out-
performs other compression methods. In contrast
to CCM-M (Kim et al., 2024), which sacrifices ac-
curacy, TARMER-B balances memory efficiency
and performance better.

4.3 Ablation Studies and Additional Analyses

Ablation Studies. We conducted a comprehensive
ablation study to evaluate the effectiveness of our
task-aware recursive prompt compression frame-
work with memory buffer. We assessed accuracy
on the MetalCL (Min et al., 2021) dataset using
LLaMA-7B, as shown in Figure 4. To investigate
the impact of different components on TARMER,
we introduced the following variants for ablation:
1) "Baseline": The context is directly split into
multiple chunks, and the embeddings of these
chunks are concatenated to generate the response.
2) "TARMER w/o Task": Task descriptions and
queries are not appended when encoding the con-
text chunks. 3) "TARMER w/o Recursion": Pre-
vious chunk representations are not used when
encoding subsequent chunks. 4) "TARMER w/o
Buffer": The memory buffer is replaced with a sim-
ple averaging method to update sequence memory,
both maintaining constant space complexity. 5)
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Figure 5: (a) The effect of the local segment
<COMP>token number. (b) The effect of the global
sequence memory buffer. We conduct comparisons with
strong baseline CCM.

"TARMER-Concat": The recursive chunk mem-
ories are concatenated to replace the fixed-length
memory buffer, resulting in linear space complex-
ity. 6) "TARMER": The proposed full model with
memory buffer.

In Figure 4, "TARMER w/o Recursion" fails to
remove redundant chunks due to the lack of inter-
chunk relationships, causing critical information
loss and performance degradation as context length-
ens. "TARMER w/o Buffer" dilutes critical infor-
mation through averaging, limiting performance
gains with longer contexts. "TARMER-Concat"
matches or outperforms the full model in accu-
racy at longer lengths but incurs linear memory
consumption. In contrast, TARMER optimally bal-
ances performance and memory efficiency.

Analysis of Compressed Memory Length. In
the segment memory section, we introduce the
<COMP>token to store the compressed content of
segments. In the sequence memory strategy, we
employ a fixed-length vector MemoryPool to store
the global compressed embeddings. The effects of
both strategies on the final performance are ana-
lyzed in the figure. Initially, we vary the length of
the <COMP>token while fixing the global memory
length at 128. This implies that as the length of the
<COMP>token increases, the number of segments
that can be stored in the global memory decreases,
as shown in Figure 5(a). Although increasing the
number of <COMP>tokens allows more informa-
tion to be retained, it does not necessarily lead to
improved response quality in the concat strategy,
as excessive redundant information can introduce
unnecessary interference. Next, we fix the number
of <COMP>tokens at 16 and vary global memory
length, as shown in Figure 5(b). The performance
of concat strategy is highly sensitive to memory
size. When the cache is smaller than 128, it per-
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Table 4: Latency comparison of original LLM and our
TARMER.

forms worse than the fixed-length memory buffer.
Overall, the proposed TARMER strategy consis-
tently outperforms the strong baseline CCM (Kim
et al., 2024) at the same compression rate, as seen
in Figure 3.

Analysis of inference efficiency. As depicted
in Table 4, we test different latencies with fixed
generation lengths for a fair comparison. Results
show that decoding process is the main bottleneck
in latency. Our compression method reduces decod-
ing complexity with minimal overhead, enabling
more than 2x speedup in end-to-end inference. In
scenarios, e.g., book and legal document analy-
sis, pre-caching the compressed global sequence
memory achieves over 3.5x speedup in decoding.
Although TARMER does not alter the quadratic
time complexity introduced by the self-attention
mechanism, its compression and caching strategies
accelerate the inference.

5 Conclusion

To address the computational and memory bot-
tlenecks encountered in large language models
when processing long input contexts, this paper
proposes a task-aware recursive prompt compres-
sion paradigm with a fixed-length hidden vec-
tor memory cache. Our approach captures long-
range dependencies while controlling memory con-
sumption by dynamically identifying task-relevant
redundancy and removing cross-segment redun-
dancy. Moreover, the global memory cache mecha-
nism in fixed size constrains memory consump-
tion, preventing it from scaling with the input
length.Extensive experiments on different bench-
marks demonstrate up to 16x prompt compres-
sion ratio while maintaining performance and im-
proving long-context learning efficiency. Future
research could explore the adaptability to various
tasks and model architectures, as well as integra-
tion with other long-sequence modeling techniques
across domains.



6 Limitations

The proposed fixed-memory buffer strategy re-
quires manual tuning of the memory buffer’s vector
dimension, which may introduce additional effort
during deployment. However, we observe that this
parameter generalizes well across different datasets.
As aresult, it can be set to a fixed value to achieve
strong performance without per-task tuning.
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