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Abstract001

As large language models (LLMs) scale to002
longer contexts, the quadratic cost of atten-003
tion poses computational and memory chal-004
lenges. Segmenting inputs mitigates this but005
breaks inter-segment dependencies. We pro-006
pose TARMER, a task-aware recursive prompt007
compression method with a memory buffer. It008
jointly models compression and generation as009
a single forward pass, avoiding intermediate010
short prompts. Guided by task descriptions011
and queries, TARMER enhances semantic un-012
derstanding and task-specific redundancy re-013
duction. Experiments on dialogue, multiple-014
choice, and out-of-distribution tasks show that015
TARMER achieves up to 16× compression016
with minimal performance drop, using a mem-017
ory buffer with constant space complexity.018

1 Introduction019

As LLMs gain prominence in language understand-020

ing and generation (Li et al., 2024b,c), managing021

long contexts efficiently has become a key chal-022

lenge. Transformer-based models (Vaswani, 2017)023

use self-attention (Bahdanau, 2014) to model token024

dependencies, but its quadratic complexity with025

sequence length leads to substantial memory and026

compute costs. This limits LLMs in in-context027

learning (Dong et al., 2024; Li et al., 2024a), dia-028

logue (Hosseini-Asl et al., 2020; Savchenko and029

Savchenko, 2024), and Retrieval-Augmented Gen-030

eration (RAG) (Lewis et al., 2020).031

To optimize the processing of long texts, prior032

work explores sparse attention (Child et al., 2019;033

Fu et al., 2022), sliding windows (Beltagy et al.,034

2020), and extended positional encoding (Chen035

et al., 2023). As these often require training from036

scratch, prompt compression has gained attention037

for its lower training cost. Typical prompt com-038

pression methods often segment the context to fit039

limited window sizes (Li et al., 2023; Chevalier040

et al., 2023; Yen et al., 2024) (Figure 1a). How-041
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Figure 1: Comparison of different soft prompt compres-
sion paradigms. (a) Context chunks are compressed
independently, (b) Recursive compression incorporat-
ing chunk dependencies, (c) The proposed task-aware
recursive compression with memory buffer.

ever, compressing raw input overlooks dynamic 042

redundancy, which can vary across tasks (e.g., sum- 043

marization vs. QA) and even across queries within 044

the same task. 045

In response, we propose a task-aware prompt 046

compression method that conditions each segment 047

on the task description and current query. This 048

facilitates dynamic redundancy removal by lever- 049

aging specific conditions, making the compression 050

more task-specific. For instance, in QA, the model 051

prioritizes question-relevant segments; in dialogue, 052

it highlights contextually salient turns dynamically 053

adapting to the current interaction and minimizing 054

the reliance on redundant prior exchanges. 055

Furthermore, simply segmenting the original 056

long contexts poses challenges, as global relation- 057

ships between segments are disrupted, hindering 058

the capture of long-range dependencies. Since the 059

compression within each segment suffers from win- 060

dow locality, it fails to eliminate redundancy across 061

segments, exacerbating the context fragmentation 062
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issue (Dai, 2019). As a result, infrequent but crucial063

information is overlooked. To tackle this challenge,064

we propose a condition-aware recursive compres-065

sion paradigm. The core idea is to introduce a re-066

cursive mechanism where the compression of each067

subsequent segment is conditioned on the infor-068

mation provided by the preceding segments. This069

allows the model to update its global representation070

using the pre-stored compressed information from071

earlier segments, thereby overcoming local limita-072

tions and reducing cross-segment redundancy.073

Prior work (Rae et al., 2020) shows that stor-074

ing past activations in external memory is more075

effective than using state vectors. However, most076

external memory methods (Chevalier et al., 2023;077

Kim et al., 2024) use concatenation to update the078

memory, which causes linear growth in storage079

costs with segments. In contrast, human working080

memory operates efficiently despite limited capac-081

ity (Baddeley, 1992). Inspired by this, we intro-082

duce a fixed-length memory buffer to store global083

context (Figure 1c), updated via a learned merg-084

ing function. This enables constant memory usage085

while preserving compression effectiveness.086

During inference, the model is prompted with087

task descriptions and specific inputs, followed by088

end-to-end prompt compression and response gen-089

eration. Our soft prompt compression eliminates090

intermediate discrete short discrete prompts (Li091

et al., 2023; Jiang et al., 2023b; Pan et al., 2024),092

storing the compressed version in hidden represen-093

tations while optimizing key information retention.094

In summary, our contributions are as follows:095

• We propose a novel task-aware recursive096

soft prompt compression paradigm, which ef-097

fectively identifies dynamic redundancy un-098

der varying conditions and removes cross-099

segment redundancy.100

• We introduce a fixed-length memory cache101

mechanism with a customized merging func-102

tion that ensures constant space complexity,103

making it particularly suitable for resource-104

constrained scenarios.105

• Extensive experiments on tasks such as dia-106

logue generation, out-of-distribution recom-107

mendation, and in-context learning demon-108

strate the superiority of our method. Our109

approach achieves up to a 16x prompt com-110

pression ratio without compromising perfor-111

mance.112

2 Related Work 113

2.1 Prompt Compression 114

Prompt compression generates concise prompts 115

for downstream tasks and falls into two main cat- 116

egories. 1) Discrete hard prompt compression: 117

These methods use a compression model to shorten 118

input text, which is then fed into a separate task 119

model. Entropy-based approaches (e.g., Selective 120

Context (Li et al., 2023)) remove low-information 121

content, while LLMLingua (Jiang et al., 2023b) and 122

LLMLingua-2 (Pan et al., 2024) use LLMs to de- 123

tect semantic redundancy. 2) Soft prompt compres- 124

sion: These methods optimize continuous embed- 125

dings (soft prompts) for end-to-end tasks without 126

separate models (Lester et al., 2021). Distillation- 127

based approaches (Wingate et al., 2022) align distri- 128

butions but require re-optimization per prompt and 129

lack generality. Compressive Transformer (Rae 130

et al., 2020) compresses activations via convolu- 131

tions. GIST (Mu et al., 2024) uses input-dependent 132

tokens for attention. ICAE (Ge et al., 2023) 133

adopts an encoder-decoder, while AutoCompres- 134

sor (Chevalier et al., 2023) recursively summarizes 135

segments. Our method falls into this category, en- 136

hancing global redundancy removal via a memory 137

cache that mitigates recursive forgetting. 138

2.2 Long Context Learning for LLMs 139

Existing methods for long sequences include ex- 140

panding the window (Nijkamp et al., 2023), in- 141

terpolating positional embeddings (Chen et al., 142

2023), and modifying attention, e.g., sparse (Child 143

et al., 2019) or sliding-window (Beltagy et al., 144

2020) mechanisms (Peng et al., 2023). Addition- 145

ally, recent work explores long-term memory for 146

LLMs. Transformer-XL (Dai, 2019) preserves 147

past activations, while MANNs (Meng and Huang, 148

2018) use external memory matrices to boost ca- 149

pacity. RMT (Bulatov et al., 2022) models mem- 150

ory via read-write tokens, and Memorizing Trans- 151

former (Wu et al., 2022) applies memory at the top 152

layer, updating it with kNN. MemoryBank (Zhong 153

et al., 2024) incorporates the Forgetting Curve to 154

enhance long-term memory. In contrast to these 155

approaches, our method does not directly aim to ex- 156

pand the context window of LLMs. Our approach 157

enables efficient access to broader context with 158

lower cost and latency, without retraining or ar- 159

chitectural changes, making it complementary to 160

existing techniques. 161
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Task description: Please answer the following 

questions based on the provided document. 

Document 1: Actress Halle Berry has been sharing a 

number of stunning photos ... 

Document 2: In Halle Berry's newest Instagram post... 

…

Document K: Both Halle and her John Wick co-star …

Query: Where has Halle Berry been filming recently?

(long hard prompt)

Compressor

Compressed representation (short soft prompt)

Interpreter

In Morocco

𝒔

Figure 2: Illustration of the soft prompt compression
paradigm. The compressor generates compressed em-
beddings, which the interpreter uses to create responses.
Our compressor and interpreter share parameters and
are optimized in an end-to-end manner.

3 Method162

We propose TARMER, a parameter-efficient soft163

prompt compression framework that unifies prompt164

compression and response generation by optimiz-165

ing a single language model, as shown in Figure 2.166

3.1 Problem Definition167

Let T denote the text space, and given an in-168

put query xq ∈ T , K context segments xd =169

{xd1 , xd2 , . . . , xdK} ∈ T , and a target output170

sequence y = [y1, y2, . . . , yn] ∈ T , where171

y1, y2, . . . , yn are n tokens of the target response172

sequence. The context segments can include para-173

graphs from long documents or a set of retrieved174

documents. Assume a pre-trained language model175

fθ : T → R+, which models the probability distri-176

bution over the text space T . A typical approach177

for predicting the output y involves using the full178

context as:179

y ∼ fθ(·|xd, xq), (1)180

where xd is the context and xq is the task-specific181

query. However, this method incurs increasing182

memory and computational costs as the context183

length grows. Existing prompt compression frame-184

works aim to alleviate this issue by compressing185

lengthy and complex prompts into shorter prompts.186

General prompt compression methods (Jiang187

et al., 2023b; Ge et al., 2023) compress each con-188

text segment xdi ∈ xd into smaller summary se-189

quence si, which are then assembled into the final 190

compressed prompt sequence s = [s1, s2, . . . , sm]. 191

This compressed prompt s captures the core in- 192

formation of xd with far fewer tokens. The com- 193

pressed prompt s is then appended to the input 194

query xq and provided to the language model fθ 195

to generate a response ŷ ∈ T that ought to be sim- 196

ilar to the output generated using the full context. 197

When the summary s ∈ T , i.e., the compressed 198

prompt is discrete text, the corresponding method 199

is hard prompt compression. When s is an embed- 200

ding representation in the latent space, the method 201

corresponds to soft prompt compression, and our 202

approach falls within this paradigm. 203

Our method performs global chunk-based recur- 204

sive compression with the input query xq and the 205

specific task description xtask, enabling the com- 206

pressed vector s to consider both the current task 207

and the specific query. Our task-aware recursive 208

compression method is described in Section 3.2. 209

3.2 Task-Aware Recursive Compression 210

Considering that soft prompts can interpolate be- 211

tween many token embeddings, enabling more 212

abstract representations than a single discrete to- 213

ken (Wingate et al., 2022). In this paper, we adopt 214

the framework of soft prompt compression. 215

We define two types of memory units: segment 216

memory for the current chunk and sequence mem- 217

ory for the entire sequence of chunks. The segment 218

memory is stored in compressed token embeddings, 219

which originate from the language model’s embed- 220

ding space spanning thousands of dimensions, thus 221

possessing high information transmission capac- 222

ity. The sequence memory is updated through seg- 223

ment memories and concatenated with subsequent 224

chunks or queries to generate future segment mem- 225

ories or the final response. 226

Segment Memory. We expect model fθ to 227

generalize to unseen tasks. Given a new task t, the 228

model should be able to compress the representa- 229

tion based on the task description xtask, the input 230

query xq, and the context xd to produce accurate re- 231

sponses without any additional training. Therefore, 232

we concatenate xtask and xq in the input to enforce 233

both task-related and query-related constraints: 234

Seg_mem1 = Mθ(xtask, xq, xd1 ,COMP), (2) 235

where COMP is the compressed token appended to 236

the text sequence, and its corresponding latent rep- 237

resentation merges the task description and query 238
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information. Subsequent segment memories are239

generated based on this:240

Seg_memi = Mθ(Seg_memi−1, xdi ,COMP), (3)241

where i ranges from 2 to K. The recursive process242

indicates that the current token only needs to access243

the state vector from the previous step to complete244

the current inference step.245

Sequence Memory. The above recursive de-246

sign of segment memory is inspired by the Mamba-247

based LLM (Gu and Dao, 2023), which is essen-248

tially a state space model. However, in Mamba,249

the state vector at each time step can only store a250

limited amount of historical context. As the context251

length increases, memory forgetting occurs, which252

degrades inference performance. To address this,253

we propose a compromise sequence memory used254

to cache the historical segment memories. Our key255

difference from the traditional approach is the intro-256

duction of memory buffer strategies, which allow257

the model to control the sequence memory used by258

effectively managing the historical context.259

A vanilla strategy involves concatenating the260

segment memory with the current memory pool at261

each step to build the global context:262

Seq_memi = Concat(MemoryPooli−1,Seg_memi−1),

(4)263

where MemoryPooli−1 is the accumulated memory264

from previous segments and Seg_memi−1 is the265

newly generated segment memory. The concate-266

nation strategy, while simple, leads to a growing267

memory pool. As K increases, this can result in268

substantial memory overhead.269

To address this, we introduce the memory270

buffer strategy, which aims to limit the growth271

of memory size while maintaining essential con-272

text information. In this strategy, the sequence273

memory is not simply concatenated but updated274

by a memory editing model Eθ, which adjusts the275

memory pool by selectively retaining critical infor-276

mation from past segment memories. The updated277

sequence memory is denoted as:278

Seq_memi = Eθ(MemoryPooli−1,Seg_memi−1), (5)279

where Eθ is a memory editing model with two280

transformer blocks that compute self-attention over281

the segment memory and the global memory pool.282

The editing model ensures that the memory size283

does not increase with K and remains bounded by284

a fixed length. This memory buffer design allows285

the model to focus on the most relevant information 286

across the entire sequence without the need to store 287

all historical segments. By adopting the memory 288

buffer strategy, we achieve a significant reduction 289

in memory usage, especially when handling large 290

amounts of context, while still retaining sufficient 291

historical context for accurate responses. 292

Since the sequence memory contains the key 293

information of all chunks, during inference, the 294

final response sequence can be generated using the 295

global sequence memory: 296

ŷ = fθ(Seq_memK , xq). (6) 297

3.3 Optimization 298

Optimization Function. In this work, we do 299

not introduce additional decoders, as in other soft 300

prompt methods such as ICAE (Ge et al., 2023) or 301

CEPE (Yen et al., 2024). Instead, we directly opti- 302

mize the encoder in an end-to-end manner for target 303

response. Unlike optimizing all parameters of the 304

encoder, we only optimize the LoRA adapters and 305

the embedding layer of the COMP tokens. 306

Given the final sequence memory Seq_memK 307

and the input query xq, we compute the probability 308

distribution over the next token in the sequence us- 309

ing the pre-trained language model Mθ. The objec- 310

tive is to minimize the cross-entropy loss between 311

the predicted output and the ground truth target re- 312

sponse. Let ŷ = [ŷ1, ŷ2, . . . , ŷn] represent the pre- 313

dicted output sequence, and y = [y1, y2, . . . , yn] 314

represent the ground truth target sequence. The 315

probability distribution over the next token, condi- 316

tioned on the sequence memory Seq_memK and 317

query xq, is given by: 318

P (ŷn|Seq_memK , xq) = fθ(ŷn|Seq_memK , xq), (7) 319

where n = 1, 2, . . . , N and N is the total number 320

of tokens. The cross-entropy loss at each position 321

n is computed as: 322

Ln = − logP (yn|Seq_memK , xq). (8) 323

yn is the true token at position n, and 324

P (yn|Seq_memK , xq) is the predicted probability. 325

The total cross-entropy loss for the response se- 326

quence is the sum of the individual token losses: 327

LCE =
N∑

n=1

Ln = −
N∑

n=1

logP (yn|Seq_memK , xq).

(9) 328
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The goal of optimization is to minimize the to-329

tal cross-entropy loss LCE, which directly drives330

the model to refine its predictions of the target331

response based on the joint optimization of the re-332

cursive compression process, task-awareness, and333

sequence memory. Leveraging soft prompts, the334

loss is computed end-to-end, eliminating the need335

for intermediate discrete prompt tokens or the ad-336

ditional training of separate decoders. In practice,337

only the LoRA adapters, COMP token embeddings,338

and lightweight editor E are updated, reducing the339

parameter space and enhancing learning efficiency.340

Memory Analysis. We analyze the two pro-341

posed memory strategies: the concatenation-based342

strategy TARMER-C and the fixed-length mem-343

ory buffer strategy TARMER-B. We also compare344

them with the traditional full-context mode.345

Traditional long-context methods store the rela-346

tionships between every token in the entire context347

within a large attention matrix. The memory re-348

quirement for this approach grows quadratically349

with the total context length: Mfull = O((K ×350

lc)
2) where lc is the length of each segment, and351

K denotes the total number of segments. The352

concatenation-based strategy, TARMER-C, stores353

the activation of each segment in external mem-354

ory, updating the memory as new segments are355

processed. The memory requirement grows lin-356

early with the number of segments K: Mconcat =357

O(K × lc). In contrast, the fixed-length mem-358

ory buffer strategy, TARMER-B, stores global se-359

quence within a fixed-size memory buffer. Instead360

of concatenating, the buffer retains a fixed-size vec-361

tor and updates it as a new global memory. The362

memory complexity is: Mbuffer = O(1).363

The concatenation-based TARMER-C incurs lin-364

ear memory growth with segment count K. As K365

increases significantly, adding each new segment366

potentially leads to memory pressure. On the other367

hand, the fixed-length memory buffer provides a368

significant improvement by maintaining constant369

memory usage and offers a more scalable solution370

through adjusting the fixed memory size.371

4 Experiments372

In this section, we provide empirical validation373

of the proposed method. Through comparisons374

with existing soft prompt compression approaches,375

we demonstrate the effectiveness of our method.376

In Section 4.3, we further confirm its adaptability377

through ablation studies and additional analyses.378

Methods MetaICL LaMP DailyDialog

No context 51.7 69.5 9.85
Full context 69.9 83.1 5.84
GIST 59.7 79.6 7.68
Compressive 67.6 81.6 6.52
CCM 68.9 84.0 6.17
TARMER-C 70.1 85.5 5.81
TARMER-B 69.8 85.3 5.67

Table 1: Comparison with state-of-the-art soft prompt
compression methods. Accuracy (%) on MetaICL
and LaMP datasets, and perplexity(↓) on DailyDialog
dataset.

4.1 Experimental Setup 379

Implementation Details. In this paper, our objec- 380

tive is to train LLMs end-to-end to perform both 381

long text compression and response generation for 382

downstream tasks. Given that decoder-only mod- 383

els outperform encoder-decoder models in prompt 384

compression (Mu et al., 2024), we use LLaMA- 385

2 (Touvron et al., 2023) and Mistral (Jiang et al., 386

2023a) as the underlying backbones. For model 387

training, we set the length of the compression to- 388

ken <COMP>to 16 by default, with the length of 389

the memory buffer set to 128. For each sample, 390

we prepend the task description and query to the 391

beginning of the first chunk. We leverage LoRA 392

for efficient parameter fine-tuning, rather than full- 393

parameter training, and apply the same LoRA (Hu 394

et al., 2021) configuration and training protocol 395

across all methods. We set the rank r of the LoRA 396

parameters to 8. Additionally, FlashAttention (Dao 397

et al., 2022) is used to accelerate the baseline model 398

experiments. All training is conducted on NVIDIA 399

A100 devices. 400

Datasets We evaluate our method using 401

four datasets: MetaICL (Min et al., 2021), 402

LaMP (Salemi et al., 2023), DailyDialog (Li 403

et al., 2017), and the Prompt-with-Context (PwC) 404

dataset (Ge et al., 2023). First, MetaICL is a 405

multi-task context learning dataset designed to 406

address tasks that were unseen during training, 407

comprising 61 training tasks and 26 unseen test 408

tasks. The evaluation metric used is the accuracy of 409

multiple-choice questions. The LaMP dataset gen- 410

erates personalized recommendations using user 411

profiles, and we evaluate the multiple-choice ac- 412

curacy for new users that were not encountered 413

during training. The DailyDialog dataset evaluates 414

performance in dialogue scenarios, containing se- 415
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TARMER Methods
Judgement (%)

Win Lose Tie

TARMER-C
(LLaMA)

ICAE(k=256) 78.5 10.3 11.2
CCM-concat 73.4 13.1 13.5
Full context 33.7 31.7 34.6

TARMER-B
(LLaMA)

ICAE(k=256) 70.9 11.6 17.5
CCM-concat 66.8 25.1 8.1
Full context 29.6 36.2 34.2

TARMER-C
(Mistral)

ICAE(k=256) 81.0 8.2 10.8
CCM-concat 85.8 5.3 8.9
Full context 56.0 22.5 21.5

TARMER-B
(Mistral)

ICAE(k=256) 77.7 13.4 8.9
CCM-concat 79.0 19.2 1.8
Full context 40.3 28.6 31.1

Table 2: Evaluation using GPT-4 to compare the re-
sponse quality of our TARMER method with that of
other baseline methods.

quences of everyday conversations. We measure416

model performance using perplexity on actual dia-417

logues. The PwC dataset is specifically designed418

for instruction-following tasks that include both419

context and prompts, containing thousands of sam-420

ples. In the case of PwC, we do not rely on a spe-421

cific metric but instead assess the performance of422

generated sequences using GPT-based evaluation.423

4.2 Benchmark Comparison424

Metric Comparisons. As show in Table 1,425

we present performance comparisons across the426

MetaICL, LaMP, and DailyDialog datasets. Based427

on existing open-source code, we compared the428

soft prompt compression methods GIST and CCM,429

both of which aim to compress attention hidden430

states. For CCM, we report the performance of431

the better-performing concat version. To ensure432

a fair comparison, we set the same compression433

ratio for all methods. TARMER-C represents the434

proposed method using a concatenation strategy435

with a complexity of O(n), which is consistent436

with other comparison methods. TARMER-B rep-437

resents the proposed method using a fixed-length438

memory buffer with a complexity of O(1). For439

MetaICL and LaMP, document segments evenly440

contain task-related or user-related information,441

and the redundancy between documents is mini-442

mal. The concat compression strategy often better443

preserves key information. However, in DailyDi-444

alog dataset, the contextual information conveyed445

in later dialogues becomes increasingly important.446

57.0

60.0

63.0

66.0

69.0

4 8 16 32

A
cc

u
ra

cy
(%

)

Compression ratio

GIST ICAE CCM TARMER

Figure 3: Accuracy (%) on MetaICL at different com-
pression ratios.

In such scenarios, where stricter information filter- 447

ing is required, our memory buffer-based approach 448

significantly outperforms the simple concat-based 449

compression strategy. This demonstrates that as the 450

redundancy of contextual information increases, 451

the effectiveness of the memory buffer becomes 452

more pronounced. 453

Comparisons with GPT Evaluations. To evalu- 454

ate the instruction-following performance on down- 455

stream tasks, we not only use fixed metrics but 456

also introduce GPT-based scoring for the gener- 457

ated outputs, as shown in Table 2. We fine-tune 458

using the PwC (Ge et al., 2023) instruction dataset, 459

which consists of 240k (context, query, response) 460

samples for training and 18k samples for test- 461

ing. Our training and testing setup follows the 462

ICAE (Ge et al., 2023) method. We use Mistral- 463

7B-Instruct-v0.2 (Jiang et al., 2023a) and LLaMA- 464

2-7B-chat (Touvron et al., 2023) as our backbone 465

language models. We compare the response qual- 466

ity of our TARMER method (first column) with 467

several existing baseline methods (second column) 468

using GPT-4 (Achiam et al., 2023) to assess which 469

approach performs better or whether they are com- 470

parable. To ensure a fair comparison, all baseline 471

methods utilize the same backbone model, and both 472

ICAE and CCM-concat (Kim et al., 2024) store 473

information from different chunks using memory 474

slots with linear complexity. 475

In Table 2, TARMER-C demonstrates superior 476

performance over ICAE and CCM-concat, and they 477

use the same memory footprint. TARMER-C gains 478

the win rates of 81.0% and 85.8% for Mistral. Com- 479

pared to modeling the full context, TARMER-C 480

achieves a win-tie rate of 77.5%. TARMER-B, 481

which introduces a fixed-size memory buffer, bal- 482

ances memory usage and performance, achieving 483

average win rates of 74.3% and 72.9%, surpassing 484

ICAE and CCM. 485
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Methods No context Full context AutoComp AutoComp-FT CCM-C CCM-M TARMER-C TARMER-B-64 TARMER-B-128

Accuracy 41.4 54.2 48.1 50.9 53.5 52.3 54.4 53.4 53.7
Memory 31 394 156 156 111 41 128 39 77

Table 3: Comparison of accuracy (%) and peak KV memory (MB) with SOTA recursive compression methods using
the OPT-2.7B model.

Memory Efficiency. In Figure 3, we evaluate486

the performance of various soft prompt compres-487

sion methods at different compression ratios on the488

MetaICL dataset. The methods considered for com-489

parison are GIST (Mu et al., 2024), ICAE (Ge et al.,490

2023), and CCM (Kim et al., 2024), with TARMER491

representing our approach that incorporates a mem-492

ory cache mechanism for efficient compression. At493

a compression ratio of 4x, TARMER achieves the494

highest performance (70.3%), outperforming other495

methods. As the compression ratio increases to 32x,496

TARMER’s performance remains stable at 68.5%,497

surpassing the performance of most comparative498

methods at an 8x compression ratio. This indicates499

that the proposed memory buffer mechanism is ro-500

bust, effectively mitigating information loss even at501

higher compression levels. In contrast, other meth-502

ods show varying degrees of performance degra-503

dation as the compression ratio increases. GIST,504

for instance, drops from 63.0% at a ratio of 4x505

to 58.9% at a ratio of 16x, indicating a substan-506

tial loss in performance as more information is507

compressed. Similarly, ICAE and CCM exhibit a508

steady decline in performance as the compression509

ratio increases, with ICAE reaching only 62.0% at510

a ratio of 16x and CCM reaching 61.2% at the same511

compression level. TARMER consistently outper-512

forms these methods across all compression ratios,513

particularly at higher compression levels (16x and514

32x), where it significantly outperforms the other515

methods. This suggests that the memory buffer516

mechanism in TARMER effectively mitigates the517

trade-off between compression and information re-518

tention, enabling it to achieve superior performance519

without relying on excessive memory usage.520

To ensure a fair comparison, we selected sim-521

ilar recurrent baseline methods (Chevalier et al.,522

2023; Kim et al., 2024). The AutoCompressor523

model was pre-trained on the Pile dataset (Gao524

et al., 2020) and fine-tuned with MetaICL to ob-525

tain AutoCompressor-FT. As shown in Table 3, we526

compare accuracy and memory usage on the OPT-527

2.7B model (Zhang et al., 2022). Our method out-528

performs others in both performance and memory529

efficiency. TARMER-C, based on hidden vector530
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Figure 4: Ablation study on the MetaICL with LLaMA.

concatenation, requires only 128MB of memory, 531

lower than most methods. For methods with compa- 532

rable performance, memory usage is typically 2-5 533

times higher than TARMER. Further, TARMER- 534

B’s memory consumption can be adjusted based 535

on buffer size. While slightly lower in accuracy 536

than using the full context, TARMER-B still out- 537

performs other compression methods. In contrast 538

to CCM-M (Kim et al., 2024), which sacrifices ac- 539

curacy, TARMER-B balances memory efficiency 540

and performance better. 541

4.3 Ablation Studies and Additional Analyses 542

Ablation Studies. We conducted a comprehensive 543

ablation study to evaluate the effectiveness of our 544

task-aware recursive prompt compression frame- 545

work with memory buffer. We assessed accuracy 546

on the MetaICL (Min et al., 2021) dataset using 547

LLaMA-7B, as shown in Figure 4. To investigate 548

the impact of different components on TARMER, 549

we introduced the following variants for ablation: 550

1) "Baseline": The context is directly split into 551

multiple chunks, and the embeddings of these 552

chunks are concatenated to generate the response. 553

2) "TARMER w/o Task": Task descriptions and 554

queries are not appended when encoding the con- 555

text chunks. 3) "TARMER w/o Recursion": Pre- 556

vious chunk representations are not used when 557

encoding subsequent chunks. 4) "TARMER w/o 558

Buffer": The memory buffer is replaced with a sim- 559

ple averaging method to update sequence memory, 560

both maintaining constant space complexity. 5) 561
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Figure 5: (a) The effect of the local segment
<COMP>token number. (b) The effect of the global
sequence memory buffer. We conduct comparisons with
strong baseline CCM.

"TARMER-Concat": The recursive chunk mem-562

ories are concatenated to replace the fixed-length563

memory buffer, resulting in linear space complex-564

ity. 6) "TARMER": The proposed full model with565

memory buffer.566

In Figure 4, "TARMER w/o Recursion" fails to567

remove redundant chunks due to the lack of inter-568

chunk relationships, causing critical information569

loss and performance degradation as context length-570

ens. "TARMER w/o Buffer" dilutes critical infor-571

mation through averaging, limiting performance572

gains with longer contexts. "TARMER-Concat"573

matches or outperforms the full model in accu-574

racy at longer lengths but incurs linear memory575

consumption. In contrast, TARMER optimally bal-576

ances performance and memory efficiency.577

Analysis of Compressed Memory Length. In578

the segment memory section, we introduce the579

<COMP>token to store the compressed content of580

segments. In the sequence memory strategy, we581

employ a fixed-length vector MemoryPool to store582

the global compressed embeddings. The effects of583

both strategies on the final performance are ana-584

lyzed in the figure. Initially, we vary the length of585

the <COMP>token while fixing the global memory586

length at 128. This implies that as the length of the587

<COMP>token increases, the number of segments588

that can be stored in the global memory decreases,589

as shown in Figure 5(a). Although increasing the590

number of <COMP>tokens allows more informa-591

tion to be retained, it does not necessarily lead to592

improved response quality in the concat strategy,593

as excessive redundant information can introduce594

unnecessary interference. Next, we fix the number595

of <COMP>tokens at 16 and vary global memory596

length, as shown in Figure 5(b). The performance597

of concat strategy is highly sensitive to memory598

size. When the cache is smaller than 128, it per-599

Input
(Batch × Length)

Method
Compress

Time
Decode
Time

End-to-end
Time

4×1024
LLM 0.0 9.1 9.1

TARMER 1.9 2.6 4.5 (2.0×)

4×512
LLM 0.0 7.2 7.2

TARMER 0.7 2.6 3.3 (2.2×)

8×512
LLM 0.0 9.6 9.6

TARMER 1.2 2.6 4.0 (2.4×)

Table 4: Latency comparison of original LLM and our
TARMER.

forms worse than the fixed-length memory buffer. 600

Overall, the proposed TARMER strategy consis- 601

tently outperforms the strong baseline CCM (Kim 602

et al., 2024) at the same compression rate, as seen 603

in Figure 3. 604

Analysis of inference efficiency. As depicted 605

in Table 4, we test different latencies with fixed 606

generation lengths for a fair comparison. Results 607

show that decoding process is the main bottleneck 608

in latency. Our compression method reduces decod- 609

ing complexity with minimal overhead, enabling 610

more than 2x speedup in end-to-end inference. In 611

scenarios, e.g., book and legal document analy- 612

sis, pre-caching the compressed global sequence 613

memory achieves over 3.5x speedup in decoding. 614

Although TARMER does not alter the quadratic 615

time complexity introduced by the self-attention 616

mechanism, its compression and caching strategies 617

accelerate the inference. 618

5 Conclusion 619

To address the computational and memory bot- 620

tlenecks encountered in large language models 621

when processing long input contexts, this paper 622

proposes a task-aware recursive prompt compres- 623

sion paradigm with a fixed-length hidden vec- 624

tor memory cache. Our approach captures long- 625

range dependencies while controlling memory con- 626

sumption by dynamically identifying task-relevant 627

redundancy and removing cross-segment redun- 628

dancy. Moreover, the global memory cache mecha- 629

nism in fixed size constrains memory consump- 630

tion, preventing it from scaling with the input 631

length.Extensive experiments on different bench- 632

marks demonstrate up to 16× prompt compres- 633

sion ratio while maintaining performance and im- 634

proving long-context learning efficiency. Future 635

research could explore the adaptability to various 636

tasks and model architectures, as well as integra- 637

tion with other long-sequence modeling techniques 638

across domains. 639
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6 Limitations640

The proposed fixed-memory buffer strategy re-641

quires manual tuning of the memory buffer’s vector642

dimension, which may introduce additional effort643

during deployment. However, we observe that this644

parameter generalizes well across different datasets.645

As a result, it can be set to a fixed value to achieve646

strong performance without per-task tuning.647
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