
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM OFFLINE TO ONLINE MEMORY-FREE AND TASK-
FREE CONTINUAL LEARNING VIA FINE-GRAINED HY-
PERGRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) aims to learn from a non-stationary data stream where the
underlying distribution changes over time. While recent advances have produced
efficient memory-free methods in the offline CL (offCL) setting, online CL (onCL)
remains dominated by memory-based approaches. The transition from offCL to
onCL is challenging, as many offline methods rely on (1) prior knowledge of task
boundaries and (2) sophisticated scheduling or optimization schemes, both of which
are unavailable when data arrives sequentially and can be seen only once. In this
paper, we investigate the adaptation of state-of-the-art memory-free offCL methods
to the online setting. We first show that augmenting these methods with lightweight
prototypes significantly improves performance, albeit at the cost of increased
Gradient Imbalance, resulting in a biased learning towards earlier tasks. To address
this issue, we introduce Fine-Grained Hypergradients, an online mechanism for
rebalancing gradient updates during training. Our experiments demonstrate that the
synergy between prototype memory and hypergradient reweighting substantially
allows for improved performance of memory-free methods in onCL. Code will be
released upon acceptance.

1 INTRODUCTION

Continual Learning (CL) has gained significant popularity over the past decade (Kirkpatrick et al.
(2017); Rao et al. (2019); Zhou et al. (2024a)). The core idea is to learn from a sequence of data
rather than a fixed dataset. As a result, the data distribution may change, and new classes can emerge,
often leading to the well-known problem of Catastrophic Forgetting (French (1999)). In this paper,
we focus specifically on the Class Incremental Learning problem (Hsu et al. (2018)).

CL scenarios are typically divided into two categories: offline Continual Learning (offCL) (Tiwari
et al. (2022)) and online Continual Learning (onCL) (Mai et al. (2022)). The former, which is the more
widely studied setting, assumes that the data sequence is clearly segmented into discrete tasks and that
training within each task is analogous to conventional learning. Specifically, data within each task are
assumed to be i.i.d., and the model can be trained over multiple epochs before transitioning to the next
task. In contrast, onCL assumes a stream-like data arrival, where each sample is observed only once,
requiring rapid adaptation. To further align with real-world conditions, several recent studies consider
scenarios with unclear or blurry task boundaries (Koh et al. (2023); Bang et al. (2022)), removing
access to task identity altogether. These differences make offCL methods poorly transferable to onCL,
as many rely on multiple epochs and task boundary information. Representation-based methods such
as RANPAC (McDonnell et al. (2024)) and EASE (Zhou et al. (2024b)) are prominent examples: they
depend on task boundaries to compute task-specific representations, rendering them incompatible
with onCL. In this paper, we aim to explore how offCL research can contribute to the onCL Task-Free
and Memory-Free scenario.

In Online Task-Free Continual Learning (Aljundi et al. (2019); Koh et al. (2023)), state-of-the-art
approaches heavily rely on memory buffer (Michel et al. (2024); Wei et al. (2023); Guo et al. (2022);
Gu et al. (2022); Wei et al. (2025); Ye & Bors (2024)). Indeed, memory-based methods are well
designed for onCL as they can be used in Task-Free scenarios and naturally tackle online difficulties by
allowing data stored in memory to be seen multiple times. However, practically, the usage of memory

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

can be limited by hardware or privacy constraints. Conceptually, relying on memory does not solve
the Continual Learning problem, but rather avoids it. Therefore, memory-free methods (Wang et al.
(2022b); Smith et al. (2023); Roy et al. (2024); Wang et al. (2022a)) are a key step towards solving
Continual Learning problems fundamentally, and their adaptation online makes them suitable for
more realistic scenarios. Building upon prior works that leverage prototypes (De Lange & Tuytelaars
(2021); Wei et al. (2023); McDonnell et al. (2024); Zhou et al. (2024b)), we show that a simple yet
effective way to adapt memory-free offCL methods to the online setting is to use prototypes as a
simple memory buffer for the last Fully Connected (FC) layer only. While this approach improves
accuracy, it also introduces an undesirable side effect: increased Gradient Imbalance (GI) (He (2024);
Guo et al. (2023); Dong et al. (2023)), leading to a biased learning towards earlier tasks.

Another major challenge in onCL is tuning the Learning Rate (LR). While most offCL methods rely
on advanced LR optimization schemes, a common practice in onCL is to use the same fixed LR and
optimizer for all methods (Gu et al. (2022); Mai et al. (2021); Moon et al. (2023); Lin et al. (2023)),
typically Stochastic Gradient Descent (SGD) with a fixed LR of 0.1. However, this design choice
is overly restrictive, as the optimal LR varies significantly across methods and datasets. It is well
known that a poorly chosen LR can critically hinder final performance. An alternative strategy is to
tune the LR on one dataset and transfer it to others (Michel et al. (2024)). While more realistic, this
approach provides no guarantee of generalization across datasets.

In this paper, we propose to address both the Gradient Imbalance and LR optimization challenges
encountered in onCL by introducing Fine-Grained Hypergradients (FGH), a novel higher-order
optiization strategy which dynamically reweights the individual gradients during training. The core
idea is to extend hypergradient theory (Baydin et al. (2018)) to learn low-level gradient weights
instead of high-level LR. FGH not only mitigates gradient imbalance but also improves accuracy
under suboptimal LR settings. To demonstrate its effectiveness, we introduce a novel evaluation
strategy that assesses performance across a range of initial LR values. Our contributions are as
follows:

• We bridge the gap between offCL and onCL by adapting various memory-free offCL
methods to the online setting and achieving state-of-the-art performances;

• We address GI and the absence of LR optimization strategies in onCL by introducing a novel
high-order optimization strategy named Fine-Grained Hypergradients;

• We propose a more realistic multi-LR evaluation and show improved performance when
combining our method with state-of-the-art offCL techniques.

2 RELATED WORK

2.1 CONTINUAL LEARNING WITH BLURRY BOUNDARIES

Continual Learning (CL) is generally framed as training a model fθ(·), parameterized by θ, on a
sequence of K tasks. Each task, indexed by k ∈ 1, · · · ,K, is associated with a dataset Dk, which may
be drawn from a distinct distribution. In Class Incremental Learning (Hsu et al. (2018)), each dataset
is composed of data-label pairs, Dk = (Xk,Yk). In online CL (onCL), data arrive in a stream and can
typically be observed only once (He et al. (2020)), making access to clear task boundaries unlikely.
Consequently, several studies propose working under boundary-free scenarios (Buzzega et al. (2020)),
where task changes are unknown. However, when task changes are clear, they may still be inferred.
To better model intermediate cases, the blurry boundary setting has been introduced (Koh et al.
(2023); Bang et al. (2022); Michel et al. (2024)). Of particular interest is the Si-Blurry setting (Moon
et al. (2023)), in which task boundaries are not only blurry but also allow classes to appear or
disappear across multiple tasks. This setup is more reflective of real-world scenarios while also
presenting additional challenges for continual learning algorithms.

2.2 CONTINUAL LEARNING WITH MEMORY BUFFER

Memory buffers remain among the most practical and effective strategies for mitigating forgetting
in onCL (Raghavan et al. (2024b;a); Guo et al. (2022); Su et al. (2025); He & Zhu (2022); Caccia
et al. (2022); Ye & Bors (2024); Wang et al. (2024b;a); Buzzega et al. (2021)). Some works have
even shown that memory alone can yield competitive performance (Prabhu et al. (2020); Michel
et al. (2022)), highlighting its importance in the online setting. As a result, memory buffering is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Overall training procedure of FGH when combined with prompt-tuning strategies.

considered a core component of many onCL methods. In contrast, offCL has recently seen a shift
toward memory-free approaches (He et al. (2025); Liang & Li (2024); McDonnell et al. (2024);
Wang et al. (2022a)). While some memory-free methods have been adapted to the online setting,
their performance typically lags behind memory-based approaches (Moon et al. (2023); Wei et al.
(2025)). In this work, we aim to bridge this gap by leveraging memory-free offCL methods in the
onCL setting.

2.3 HYPERGRADIENTS AND GRADIENT RE-WEIGHTING

Hypergradients (Baydin et al. (2018); Almeida et al. (1999)) address the challenge of optimizing
learning rates in standard training setups. The key idea is to derive a gradient descent algorithm
that updates the learning rate itself. Notably, it is demonstrated that computing the dot product of
consecutive gradients, ∇L(θt) · ∇L(θt−1), is sufficient to perform one update step for the learning
rate. Here, t is the current step index, θ denotes the model parameters, and L is the loss function.
However, such techniques have traditionally been developed for offline training and applied at a
global scale. In the context of CL, gradient re-weighting strategies have been explored primarily in
replay-based methods, often focusing on the last layer. For example, previous work has proposed
manually re-weighting the gradient at the loss level to reduce its accumulation during training,
addressing the issue of Gradient Imbalance (Guo et al. (2023); He (2024)). In this work, we extend
this idea by introducing Fine-Grained Hypergradients, which enable learned gradient re-weighting
across all trainable parameters, not just the last layer. This approach allows for more precise control
of gradient dynamics during training in onCL scenarios.

3 METHODOLOGY

Aiming to bring offCL and onCL research fields closer, this work proposes to adapt and improve
existing offCL memory-free methods to the onCL, memory-free, and task-free problem. Firstly, we
present the online adaptation and challenges induced by the onCL context. Secondly, we propose
to leverage simple prototypes as an efficient way to counter forgetting, without storing input data.
Eventually, to counter the challenges regarding Learning Rate selection and Gradient Imbalance, we
propose a novel online adaptive gradient-reweighting strategy called Fine-Grained Hypergradients.

3.1 FROM OFFLINE TO ONLINE

Adapting offline methods to the online setting is non-trivial. We highlight key components of offCL
methods and outline the modifications necessary to make them applicable in the online scenario.

Removing Task Boundary Information. Typically, most offline methods take advantage of the
task boundaries knowledge (Zhou et al. (2024b); McDonnell et al. (2024); Liang & Li (2024);
Smith et al. (2023); Wang et al. (2022b;a); Roy et al. (2024)). While representation-based methods
cannot be adapted online as the exact task change is required to recompute representations, most
prompt-based methods happen to be more flexible as the task information is used solely to freeze
certain prompts in the prompt pool (Smith et al. (2023); Wang et al. (2022b)). Such a prompt-freezing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

strategy tackles prompt forgetting during training in offCL. Therefore, if learned prompts are never
frozen, prompt-based approaches can easily be trained in task-free onCL. More details regarding the
parameters used are given in the Appendix.

Learning Rate Selection. When training offCL methods, the choice of the LR as well as the
use of an LR scheduler is particularly impactful. In general, LR selection remains a difficult topic
in Continual Learning, as, in theory, future datasets are unknown and hyperparameter search is
unavailable (Cha & Cho (2024)). This problem is even more pronounced in the online setting, as not
even a learning rate scheduler can be used, since the length and boundaries of tasks are considered
unknown. More importantly, naively transferring LR values used in offCL to onCL often leads to
unsatisfactory performance. Therefore, we evaluate every online method with various fixed learning
rate values and report the results in Section 4.3. Additional information regarding the evaluation
procedure is provided in Section 4.1.

Gradient Imbalance. Gradient Imbalance (He (2024); Guo et al. (2023); Dong et al. (2023)) in
Continual Learning occurs when the model suffers from larger gradients toward specific samples or
classes during training. An example of such an imbalance with larger gradients for earlier classes is
given in Figure 2. The main consequence is that the model will give stronger updates with regard to
specific classes. While this problem can similarly be observed offline, it is most severe in onCL as (1)
each data point is seen only once, so the training cannot be adapted from task to task, (2) the usage
of memory increases such imbalance (He (2024)), and as discussed above, memory is adamant in
onCL. When adapting offCL methods in onCL, we not only observe GI, but see an increase in such
imbalance when introducing prototypes in Section 3.2.

3.2 PROTOTYPES AS A PROXY FOR MEMORY

As discussed above, memory is at the core of most state-of-the-art onCL methods. In this study, we
propose leveraging online prototypes to act as a memory buffer for the last layer only. In this context,
we compute prototypes P = {p1k1

, p2k2
, · · · , pckc

} for each class during training. Let us consider a
model fθ parameterized by θ such that for an input x ∈ Rd, with d being the dimension of the input
space, we have fθ(x) = hw(x)

T ·W , where W ∈ Rl,c, c is the number of classes, l is the dimension
of the output of hw, and θ = {w,W}. In this context, hw would typically be a pre-trained model,
and W is the weight of the final FC layer (including the bias). For a given class j, the class prototype
pjkj

computed over kj samples is updated when encountering a new sample xj
kj+1. For simplicity,

we omit the j index in kj going forward. Therefore, we leverage a simple prototype update rule:

pjk+1 =
k · pjk + hw(x

j
k+1)

k + 1
, (1)

where xj
k+1 is the k + 1th encountered sample of class j. For all classes, prototypes are initialized

such that pj0 = 0. Prototypes are then used to recalibrate the final FC layer, analogous to replaying
the average of past data representations during training. In this sense, we define the prototype-based
loss term as:

LP =
-1
c

∑
j∈Cold

log
(
(pj)T ·W j

)
, (2)

where Cold = {j ∈ {1, · · · , c} | pjk ̸= 0}. LP is the cross-entropy loss with respect to prototypes
of encountered classes. As discussed in section 5, while using prototypes as a memory buffer can
significantly improve the performance of the considered methods, it also increases the GI in the final
layer of continually trained models (He (2024)).

3.3 FINE-GRAINED HYPERGRADIENTS

In order to give the model the capacity to adapt its LR at a local and global level, we introduce
Fine-Grained Hypergradients. FGH introduces independent weights for each trainable parameter,
allowing fine-grained adaptation of individual gradients during the learning process, rather than
only high-level learning rate adaptation. Formally, let us consider the update rule for an individual
parameter θm ∈ θ induced by gradient-based optimization algorithms over parameters θ, given a
learning rate η:

θmt+1 = θmt − η∇L(θmt), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where t is the iteration index and 1 ≤ m ≤ D with D ∈ R+ the number of trainable parameters. To
reweight the learned gradient, we introduce step-dependent weighting coefficients, leading to the
following update rule:

θmt+1 = θmt − αm
t+1η∇L(θmt), (4)

where αm
t ∈ R+⋆ is the parameter-dependent gradient weighting coefficient at step t. While such

gradient weighting strategies were previously limited to the last layer and computed with hand-crafted
rules (He (2024)), we propose learning them during training. In particular, we aim to construct a
higher-level update for αm

t such that:

αm
t+1 = αm

t − β
∂L(θmt)

∂αm
t

, (5)

with β ∈ R+ the hypergradient learning rate. To compute the partial derivative, we apply the chain
rule and make use of the fact that θmt = θmt−1 − αm

t η∇L(θmt−1), such that:

∂L(θmt)

∂αm
t

= ∇L(θmt) · ∂θ
m
t

∂αm
t

= −η∇L(θmt) · ∇L(θmt−1). (6)

The resulting Fine-Grained Hypergradients update becomes, for any 1 ≤ m ≤ D:

αm
t+1 = αm

t + γ · ∇L(θmt) · ∇L(θmt−1), (7)

where γ = βη. Our FGH module gives the model the capacity to modify the LR locally, potentially
mitigating GI, as well as globally, potentially tackling the problem of unknown LR. Naturally, this
introduces an additional hyperparameter. We discuss this limitation in Section 5. For clarity, the
relation presented in equation 7 relies on an SGD update. In practice, we favor a momentum-based
update. Its details implementation is provided in the Appendix.

3.4 OVERALL TRAINING PROCEDURE

Considering a baseline memory-free offCL method trained by minimizing a baseline loss Lbase, we
can adapt it to onCL by introducing prototypes and FGH in the training procedure. We simply add
the extra loss term Lp, which amounts to minimizing the overall loss L = Lbase + Lp. Additionally,
we modify the gradient update to adjust the gradient weights as defined in Section 3.3. Furthermore,
we leverage batch-wise masking to consider the logits of classes that are only present in the current
batch. An overview of the training procedure is given in Figure 1.

4 EXPERIMENTS

4.1 EVALUATION PROCEDURE

Metric. We follow previous work and define the Average Performance (AP) as the average of the
accuracies computed after each task during training (Zhou et al. (2024a)). More details in Appendix.

Multi-Learning-Rate Evaluation. Since finding the optimal LR in onCL is an especially hard
task, we introduce a new evaluation setting based on a multi-LR evaluation. Indeed, we propose to
give the performances of the compared methods with various LR values. In particular, each method
is evaluated given three cases: (1) Using a low LR value, (2) Using a high LR value, (3) Using the
best LR value found after conducting a small search for γ and the LR on VTAB (Zhai et al. (2019)).
Specifically, we experiment for LR values in {5× 10−5, 5× 10−3}. The intuition behind such values
is that we reckon that the optimal LR is likely to fall into that range, and such values are often used in
the literature. Such a metric should emphasize the validity of the approach when the optimal LR is
unknown, leading to a fairer comparison than using the same LR blindly for every approach.

4.2 EXPERIMENTAL SETTING

Baselines and Datasets. In order to demonstrate the benefits of our approach, we integrate it with
several state-of-the-art methods in offCL, when adapting them to onCL. Notably, L2P (Wang et al.
(2022b)), DualPrompt (Wang et al. (2022a)), CODA (Smith et al. (2023)), ConvPrompt (Roy et al.
(2024)). These methods are not naturally suited for the online case, so they had to be adapted, as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average performance (%) of all considered baselines in the Si-Blurry setting. + ours refers
to combining baselines with prototypes and FGH. Best HP refers to the best set of LR and γ found
on VTAB. In some cases, the best HP coincides with one of the default HP values.

Dataset CIFAR100 CUB ImageNet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 29.54±6.44 2.46±0.30 2.42±0.26 6.13±1.87 1.42±0.27 1.38±0.24 3.96±0.70 1.38±0.17 1.49±0.26

Linear probe 22.15±3.89 35.59±4.14 35.59±4.14 2.24±0.49 49.37±2.75 49.37±2.75 3.83±0.41 34.53±1.56 34.53±1.56

ER 81.33±3.04 3.14±0.63 81.33±3.04 52.45±3.02 1.56±0.33 52.45±3.02 55.06±1.92 2.00±0.43 55.06±1.92

ER + Linear probe 34.69±5.44 79.97±2.24 79.74±2.45 4.34±0.92 64.20±1.37 64.07±1.45 7.70±0.92 54.52±1.19 53.98±1.11

MVP 21.57±2.27 41.42±6.00 36.88±1.97 2.73±0.65 47.11±2.62 39.12±2.82 4.19±0.55 31.35±2.29 28.48±1.18

oLoRA 36.27±4.01 27.04±7.18 34.67±7.51 5.04±1.56 49.04±2.24 47.37±1.51 8.82±1.59 33.08±3.67 39.29±5.71

CODA 15.14±3.78 71.12±4.47 56.03±2.10 0.83±0.35 53.17±1.96 35.90±6.33 1.92±0.62 47.65±1.40 32.93±1.85

↪→ + ours 44.21±8.04 79.47±2.23 69.04±2.56 4.50±0.63 68.64±3.19 47.49±5.25 9.95±1.79 57.16±1.17 41.68±2.32

L2P 10.80±4.39 58.20±6.59 58.20±6.59 0.46±0.24 30.57±3.85 30.57±3.85 1.05±0.29 27.17±4.61 27.17±4.61

↪→ + ours 33.05±8.01 79.22±3.02 79.22±3.02 2.00±0.98 68.68±2.29 68.68±2.29 5.80±1.47 59.89±2.05 59.89±2.05

DualPrompt 15.68±3.53 66.90±5.04 53.39±5.35 0.97±0.42 52.32±2.40 43.76±3.94 1.80±0.39 46.05±1.74 35.27±2.61

↪→ + ours 42.12±6.34 75.23±3.21 70.34±1.44 5.43±0.98 74.89±1.51 67.38±3.13 10.11±1.38 57.68±1.70 51.86±1.15

ConvPrompt 24.55±3.80 75.01±5.16 75.01±5.16 0.64±0.23 56.27±0.84 56.27±0.84 1.18±0.02 46.75±1.80 46.75±1.80

↪→ + ours 44.23±3.29 86.34±3.59 86.34±3.59 4.43±1.13 73.88±0.87 73.88±0.87 3.78±0.22 62.62±0.11 62.62±0.11

described in Section 3.1. Additionally, we compare adapted methods to state-of-the-art memory-
free onCL methods MVP (Moon et al. (2023)) and Online LORA (oLoRA) (Wei et al. (2025)).
Eventually, we experimented with Experience Replay (ER) (Rolnick et al. (2019)) to compare
with a traditional memory-based approach, as well as fine-tuning and linear probe baselines. We
evaluate our method on CUB (Wah et al. (2011)), ImageNet-R (Hendrycks et al. (2021)) and
CIFAR100 (Krizhevsky (2012)). As introduced above, we conduct a small hyperparameter search
regarding the LR on VTAB (Zhai et al. (2019)), which is referred to as the best columns in Tables 1
and 2. More details in the Appendix.
Clear and Blurry Boundaries. We experiment in clear boundaries settings, for continuity with
previous work, despite its lack of realism for onCL. In that sense, we consider an initial count of 10
classes for the first task, with an increment of 10 classes per task. This results in 10 tasks with 10
classes per task for CIFAR100, as well as 20 tasks with 10 classes per task for CUB and ImageNet-R.
However, to evaluate our method in more realistic scenarios, we reckon the Si-Blurry (Moon et al.
(2023)) setting to be the most relevant to our study case. Specifically, we use their implementation of
Stochastic incremental Blurry boundaries (Si-Blurry). We use the same number of tasks as for the
clear setting. In this case, some classes can appear or disappear during training, and the transitions
are not necessarily clear. More details on this setting can be found in the Appendix.
Implementation Details. Every method is evaluated in the onCL context, where only one pass
over the data is allowed. The batch size is fixed at 100 to simulate small data increments with a low
storage budget in the context of fast adaptation. The backbone used for all compared approaches is a
ViT-base (Dosovitskiy et al. (2021)), pre-trained on ImageNet 21k. Each experiment was conducted
over 10 runs, and the average and standard deviation are reported, except for ConvPrompt and oLoRA,
where only 3 runs were used due to their intensive computation requirements. The memory size of
memory-based methods is set to 1000. Each run was conducted with a different seed, which also
impacted the task generation process. For all experiments, we use γ = 1 as the default value. More
details on the selection of γ can be found in Section 5.2. More details are given in the Appendix.

4.3 EXPERIMENTAL RESULTS

Improvement over suboptimal LR. As shown in Table 1 and Table 2, augmenting the considered
baselines with our proposed strategy consistently yields performance improvements. Moreover, the
strongest memory-free methods are always achieved when our strategy is employed. Notably, the
relative gain is most pronounced when starting from a suboptimal LR. For instance, on CIFAR100
with ConvPrompt (Table 2), using an initial LR of 5× 10−5 results in a performance improvement
of 26.3%, whereas with a higher LR of 5 × 10−3 the improvement is 13.8%. A similar trend can
be observed in Table 3, where the benefit of incorporating FGH over prototypes becomes more
significant at lower LR values.

Methods for offCL are Powerful onCL Learners. We evaluate in both clear and blurry settings,
reporting Average Performance in Table 2 and Table 1. For offCL methods (without + ours), we apply

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Average Performances (%) of all considered baselines, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 29.83±0.56 2.93±0.00 2.93±0.00 5.89±0.91 1.70±0.15 1.77±0.14 9.14±0.94 2.16±0.33 1.92±0.15

Linear probe 12.50±1.45 30.37±0.63 30.37±0.63 0.80±0.22 53.40±1.62 53.40±1.62 1.87±0.31 35.54±1.04 35.54±1.04

ER 81.73±0.60 2.95±0.06 81.73±0.60 42.92±3.21 1.76±0.20 42.92±3.21 53.43±1.19 2.17±0.35 53.43±1.19

ER + Linear probe 33.69±1.47 81.79±1.21 81.13±1.21 2.35±0.24 63.03±1.08 62.81±0.93 6.04±0.83 51.62±1.06 50.25±1.02

MVP 21.60±1.58 33.10±0.75 24.97±1.24 2.85±0.76 57.17±1.36 51.08±2.06 4.20±0.73 35.53±1.31 34.53±1.84

oLoRA 35.35±5.23 22.99±1.77 29.08±1.39 3.88±1.40 53.15±3.92 43.44±2.96 7.01±0.58 36.91±1.79 48.90±1.73

CODA 24.71±2.62 71.62±2.35 66.66±3.08 2.54±0.68 61.04±2.98 49.13±3.05 3.64±0.87 62.33±1.97 53.63±2.05

↪→ + ours 58.76±2.28 78.50±1.43 71.40±3.86 5.84±1.13 70.32±2.70 56.63±3.97 13.02±1.38 64.41±1.25 58.33±2.09

L2P 20.95±4.49 64.86±3.78 64.86±3.78 2.03±0.75 35.67±3.36 35.67±3.36 3.50±1.16 43.15±2.81 43.15±2.81

↪→ + ours 52.95±2.94 82.26±0.76 82.26±0.76 3.94±1.12 72.60±1.16 72.60±1.16 11.82±1.42 66.96±0.80 66.96±0.80

DualPrompt 23.24±1.59 69.17±2.27 64.77±2.52 2.62±0.69 61.26±2.38 55.62±2.06 3.64±0.46 59.55±1.23 54.23±0.95

↪→ + ours 52.84±2.19 75.01±1.32 72.74±1.02 6.09±1.08 78.56±0.87 73.30±0.80 13.50±1.02 63.74±0.51 62.47±1.05

ConvPrompt 33.80±0.71 73.88±3.15 73.88±3.15 2.14±0.54 65.96±2.78 65.96±2.78 3.07±0.37 59.60±0.29 59.60±0.29

↪→ + ours 60.07±1.37 87.65±0.37 87.65±0.37 5.54±1.10 75.73±0.12 75.73±0.12 6.89±0.32 69.76±1.38 69.76±1.38

Table 3: Average Performances (%) of all considered baselines with and without prototypes as
memory and FGH, in the Si-Blurry setting. Results over 10 runs are displayed, and γ = 1.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 5× 10−5 5× 10−3 5× 10−5 5× 10−3

CODA 15.14±3.78 71.12±4.47 0.83±0.35 53.17±1.96 1.92±0.62 47.65±1.4

↪→ + P 31.27±6.95 78.18±3.3 1.69±0.39 62.93±4.78 4.36±1.11 55.92±1.84

↪→ + FGH 22.27±5.88 69.66±3.24 0.84±0.34 50.45±2.43 2.14±0.71 44.31±3.01

↪→ + P + FGH 44.21±8.04 79.47±2.23 4.5±0.63 68.64±3.19 9.95±1.79 57.16±1.17

L2P 10.8±4.39 58.2±6.59 0.46±0.24 30.57±3.85 1.05±0.29 27.17±4.61

↪→ + P 22.81±6.61 78.13±3.15 0.82±0.39 64.18±3.26 2.39±0.68 57.83±2.09

↪→ + FGH 15.44±5.76 55.66±4.25 0.46±0.23 27.68±3.64 1.15±0.33 24.15±5.8

↪→ + P + FGH 33.05±8.01 79.22±3.02 2.0±0.98 68.68±2.29 5.8±1.47 59.89±2.05

DualPrompt 15.68±3.53 66.9±5.04 0.97±0.42 52.32±2.4 1.8±0.39 46.05±1.74

↪→ + P 30.12±5.66 74.22±3.93 2.07±0.67 71.96±1.6 4.43±0.84 58.37±1.93

↪→ + FGH 22.26±5.49 63.93±3.76 0.96±0.43 50.2±2.57 2.09±0.53 40.02±2.42

↪→ + P + FGH 42.12±6.34 75.23±3.21 5.43±0.98 74.89±1.51 10.11±1.38 57.68±1.7

ConvPrompt 24.55±3.8 75.01±5.16 0.64±0.23 56.27±0.84 1.18±0.02 46.75±1.8

↪→ + P 42.3±3.72 84.14±3.07 1.9±0.63 70.81±0.86 2.41±0.26 57.42±2.58

↪→ + FGH 28.64±2.04 75.99±7.1 0.83±0.15 55.96±2.7 1.19±0.04 49.39±0.69

↪→ + P + FGH 44.23±3.29 86.34±3.59 4.43±1.13 73.88±0.87 3.78±0.22 62.62±0.11

only the adaptation described in Section 3.1. Interestingly, these methods prove highly effective in the
online setting, often outperforming MVP and oLoRA, despite being originally designed for offline
learning. A likely explanation is that prior work typically applied offline hyperparameters directly
to the online problem, leading to suboptimal results. In some cases, such as CIFAR100 with an LR
of 5× 10−5, oLoRA achieves the strongest performance among memory-free baselines. However,
under the Best HP setting, offCL methods consistently achieve substantially better results. It is also
worth noting that MVP and oLoRA depend on several additional hyperparameters, which may not
generalize across scenarios. Together, these observations highlight the central role of learning rate
and hyperparameter selection in Continual Learning.

Ablation Study. To clarify the contribution of each component of our method, we include the
performance of the original baselines, followed by the performance of these baselines combined with
Prototypes only (+ OP), and the performance of these baselines combined with FGH (+ FGH). These
results are included in Tables 3 for the blurry scenario. While it is clear that the use of prototypes
is largely beneficial, in some situations, the addition of FGH can lead to a drop in performance.
One explanation for this observation is the reverse GI induced by the usage of FGH, as presented in
Section 5.1 and Figure 2. Larger gradients on newer tasks induce faster learning of newly introduced
classes, with the risk of increased forgetting on earlier classes. Even though this imbalance might be
favorable, leveraging FGH without any stability-focused measures can lead to lower performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Nonetheless, the combination of both strategies largely leads to the best performance. We give more
details on this stability-plasticity trade-off in the Appendix.

5 DISCUSSIONS

5.1 PROTOTYPES AND FGH SYNERGY

FGH impact on Gradient Imbalance. To analyze the inner workings between prototypes and
FGH, let us consider the last classification layer W as defined in Section 3.2. Each column W j , with
j ∈ {1, c} as a class index, corresponds to the class-specific weights of the last layer. Therefore, at
a training step t, we can define the class-specific gradient gjt = ∇L(W j

t). We are interested in the
average gradient norm throughout training, which is gj = 1

tmax

∑tmax

t=1 ||gjt ||, with tmax being the
maximum number of training steps. Similarly, we define the task-specific gradient norm at the end of
training for a task k as Gk = 1

|Ck|
∑

j∈Ck
gj , with Ck being the classes present in task k. We define:

Gk
n =

Gk

max1≤l≤T Gl
(8)

as the normalized average gradient norm corresponding to a task k at the end of training. We show the
values of Gk

n at the end of training for CODA on CIFAR100 in the clear setting and an LR of 5×10¯3

in Figure 2. Several observations can be made: (1) When training in onCL, a strong GI occurs,
favoring stronger gradients for earlier classes than for later classes. (2) When introducing prototypes
(+ P), despite a gain in performance, such an imbalance is increased. This behavior is expected as the
prototype induces an additional gradient corresponding to older classes when training on the current
task. (3) FGH reverses and reduces the imbalance when compared with using prototypes, leading to
larger gradient values for the later classes. We argue that this imbalance is favorable because a larger
LR usually implies rapid adaptability of the model, which is desired for newer classes, while older
classes typically require lower gradients for more stability. Coefficients of variation are given in the
appendix for a more detailed analysis of this behavior.

Figure 2: Values of the average normalized gradients per task Gk
n for CODA on CIFAR100, 10 tasks.

When including FGH, we display the resulting gradient after multiplying by the coefficients.

Underlying Intuition. To illustrate how FGH mitigates GI, Figure 3 shows task-specific gradient
values with and without FGH. We observe that gradients are amplified more strongly for later tasks
than for earlier ones, a trend confirmed across methods (see Appendix). According to the update rule
in equation 7, gradients for early tasks change direction frequently, leading to smaller coefficient
growth, whereas later tasks produce more stable gradients and thus larger coefficients. Intuitively, this
mechanism down-weights unstable, high-magnitude gradients from early tasks while emphasizing
the smaller, steadier gradients of later tasks, thereby correcting the imbalance.

5.2 SELECTING γ

The main drawback of leveraging FGH is the addition of an extra hyperparameter γ. To provide
some additional insight into the impact of γ on the final performance, we experiment with γ ∈
{10−6, 10−5, · · · , 1, 10} and show the results in Figure 4. It is important to note that γ = 0 is
equivalent to disabling the FGH mechanism. Therefore, it can be observed that for all methods, on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) G2 on CIFAR100 with CODA (10 tasks).

(b) G9 on CIFAR100 with CODA (10 tasks).

Figure 3: Values of gradients for CODA on CIFAR100 with 10 tasks, with and without prototypes and
FGH. When including FGH, we show the resulting gradient after multiplication by the coefficients.

both datasets, larger values of γ lead to substantial improvement over the baselines. Nonetheless,
higher values of γ may lead to unstable training due to high gradients. Therefore, we set γ = 1 for
all experiments by default. Even though FGH introduces an additional hyperparameter, its impact is
positive in all cases when combined with prototypes.

Figure 4: Average Accuracy (%) on VTAB (left) and CUB (right), in the Si-blurry setting, with
an incremental step of 5 classes per task, an LR of 5 × 10−5, for CODA, DualPrompt, and L2P
combined with prototypes and FGH, for varying values of γ.

6 CONCLUSION

In this paper, we tackled the problem of Online Memory-Free Task-Free Continual Learning, an
especially realistic problem. In that sense, we propose to narrow the gap between offCL and onCL
research fields by adapting state-of-the-art offCL methods to the onCL problem by leveraging
prototypes as a simple memory replacement. However, such a strategy increases gradient imbalance
towards earlier classes and results in biased training. Moreover, limitations regarding the choice
of the optimal LR remain unaddressed. Therefore, we introduced Fine-Grained Hypergradients
(FGH) for Gradient Imbalance adjustment and online LR adaptation. Our method consistently
outperforms existing memory-free onCL approaches, such as MVP and oLoRA, across a wide range
of experimental settings. The synergy between these components enables more efficient and balanced
learning throughout the training process. Overall, our results demonstrate significant performance
improvements, encouraging further connections between offCL and onCL research. Eventually, this
approach offers a promising path towards scalable and efficient online learning solutions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263,
2019.

Luís B Almeida, Thibault Langlois, José D Amaral, and Alexander Plakhov. Parameter adaptation in
stochastic optimization. In On-line learning in neural networks, pp. 111–134, 1999.

Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song, Jung-Woo Ha, and Jonghyun Choi. Online
continual learning on a contaminated data stream with blurry task boundaries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9275–9284, 2022.

Atılım Güneş Baydin, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In Sixth International Conference on
Learning Representations, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In Advances in Neural
Information Processing Systems, volume 33, pp. 15920–15930, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience
replay: a bag of tricks for continual learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 2180–2187. IEEE, 2021.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In International
Conference on Learning Representations, 2022.

Sungmin Cha and Kyunghyun Cho. Hyperparameters in continual learning: a reality check. arXiv
preprint arXiv:2403.09066, 2024.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from
non-stationary data streams. Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8250–8259, 2021.

Jiahua Dong, Wenqi Liang, Yang Cong, and Gan Sun. Heterogeneous forgetting compensation
for class-incremental learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11742–11751, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not Just Selection, but Exploration: Online Class-
Incremental Continual Learning via Dual View Consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7432–7441, 2022.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Online Continual Learning through Mutual Information
Maximization. In Proceedings of the 39th International Conference on Machine Learning, pp.
8109–8126, 2022. URL https://proceedings.mlr.press/v162/guo22g.html.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Dealing with cross-task class discrimination in online
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11878–11887, 2023.

10

https://proceedings.mlr.press/v162/guo22g.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16668–16677,
2024.

Jiangpeng He and Fengqing Zhu. Online continual learning via candidates voting. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3154–3163,
January 2022.

Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learning in online scenario.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
2020.

Jiangpeng He, Zhihao Duan, and Fengqing Zhu. Cl-lora: Continual low-rank adaptation for rehearsal-
free class-incremental learning. arXiv preprint arXiv:2505.24816, 2025.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Hyunseo Koh, Minhyuk Seo, Jihwan Bang, Hwanjun Song, Deokki Hong, Seulki Park, Jung-Woo
Ha, and Jonghyun Choi. Online boundary-free continual learning by scheduled data prior. In
International Conference on Learning Representations, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638–23647, 2024.

Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based
contrastive replay for online class-incremental continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24246–24255, 2023.

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting
the nearest class mean classifier in online class-incremental continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3589–3599, 2021.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022.

Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

Nicolas Michel, Romain Negrel, Giovanni Chierchia, and Jean-Fmnçois Bercher. Contrastive learning
for online semi-supervised general continual learning. In 2022 IEEE International Conference on
Image Processing (ICIP), pp. 1896–1900. IEEE, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nicolas Michel, Maorong Wang, Ling Xiao, and Toshihiko Yamasaki. Rethinking momentum
knowledge distillation in online continual learning. In Forty-first International Conference on
Machine Learning, 2024.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understand-
ing the role of training regimes in continual learning. Advances in Neural Information Processing
Systems, 33:7308–7320, 2020.

Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class incremental
learning on stochastic blurry task boundary via mask and visual prompt tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11731–11741, 2023.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Proceedings, Part II 16, pp. 524–540, 2020.

Siddeshwar Raghavan, Jiangpeng He, and Fengqing Zhu. Delta: Decoupling long-tailed online
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 4054–4064, June 2024a.

Siddeshwar Raghavan, Jiangpeng He, and Fengqing Zhu. Online class-incremental learning for
real-world food image classification. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 8195–8204, January 2024b.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. Advances in neural information processing
systems, 32, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence Replay for Continual Learning. In Advances in Neural Information Processing Systems,
volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html.

Anurag Roy, Riddhiman Moulick, Vinay K Verma, Saptarshi Ghosh, and Abir Das. Convolutional
prompting meets language models for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23616–23626, 2024.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

Shibin Su, Zhaojie Chen, Guoqiang Liang, Shizhou Zhang, and Yanning Zhang. Dual supervised
contrastive learning based on perturbation uncertainty for online class incremental learning. In
International Conference on Pattern Recognition, pp. 32–47. Springer, 2025.

Hai-Long Sun, Da-Wei Zhou, De-Chuan Zhan, and Han-Jia Ye. Pilot: A pre-trained model-based
continual learning toolbox, 2025.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Maorong Wang, Nicolas Michel, Jiafeng Mao, and Toshihiko Yamasaki. Dealing with synthetic data
contamination in online continual learning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

12

https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maorong Wang, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki. Improving plasticity in online
continual learning via collaborative learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23460–23469, 2024b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Xiwen Wei, Guihong Li, and Radu Marculescu. Online-lora: Task-free online continual learning via
low rank adaptation. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 6634–6645. IEEE, 2025.

Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online prototype
learning for online continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 18764–18774, 2023.

Fei Ye and Adrian G Bors. Online task-free continual generative and discriminative learning via
dynamic cluster memory. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 26202–26212, 2024.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey. In International Joint Conference on Artificial Intelligence, pp.
8363–8371, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23554–23564, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION AND ALGORITHM

A.1 IMPLEMENTATION

For our implementation, we rely on the LAMDA-PILOT repository (Sun et al. (2025)), available at
https://github.com/LAMDA-CL/LAMDA-PILOT. The implementation of existing methods
was adapted to an online scenario.

A.2 ALGORITHM

The implementation that we used for our experiments is based on an Adam update. For the sake of
clarity, we present our method with SGD and Adam. We omitted the bias, logits mask, and coefficient
clamping from the pseudo-code. Therefore, we give the full details of the procedure in Algorithms 2
and 1, in a pseudo-code Pytorch-like implementation.

Algorithm 1 PyTorch-like pseudo-code of integrating prototypes as memory and FGH with baselines.
gamma, grad_weight, old_grad = 1, {}, {}
for x, y in dataloader:

h, y_hat = network(x) # features and logits
loss_baseline = criterion_baseline(y_hat, y) # Baseline loss
proto, labels = get_prototypes() # Prototypes as memory
loss_p = cross_entropy(network.fc(proto), labels) # Eq. 2
loss = loss_baseline + loss_p
loss.backward() # compute gradients

Fine-Grained Hypergradient update
for i, param in enumerate(network.parameters()):
curr_grad = param.grad
if curr_grad is not None:
if i in grad_weight.keys():
grad_weight[i] = grad_weight[i] + gamma * curr_grad * old_grad[i] #Eq. 7
param.grad = grad_weight[i] * param.grad

else:
grad_weight[i] = 1.0

old_grad[i] = curr_grad
optim.step()
update_proto(h, y) # Eq. 1

A.3 BACKBONE

We leverage a ViT-base (Dosovitskiy et al. (2021)), pre-trained on ImageNet-21k. Precisely, we use
the implementation of the timm library, available at https://huggingface.co/timm, with
model name "vit_base_patch16_224".

A.4 BATCH WISE LOGITS MASK

Another key component when training offline is the usage of a logits mask. Let z ∈ Rc denote the
logits output of the trained model. In the offline case, the logits mask m is defined such that

mj =

{
0, if j ∈ Y,

−∞, otherwise.

With Y , the ensemble of classes that the model has been exposed to at the current time of training.
The masked logits are then computed as

z̃ = z+m.

In the blurry boundaries setting, classes can appear and disappear several times during training and
across tasks. In that sense, we adopt a more flexible version of the logits mask where Y = Ybatch.
With Ybatch, the set of all classes present in the current batch.

14

https://github.com/LAMDA-CL/LAMDA-PILOT
https://huggingface.co/timm

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 PyTorch-like pseudo-code of our Adam-based method integration with other baselines.
Extra details are given in this version regarding bias consideration and batch-wise masking.
Adam parameters
m = 0
v = 0
beta1 = 0.9
beta2 = 0.999
step = 0

Hypergrad parameters
gamma = 1e-3
grad_weight = torch.ones(n_classes)
prev_grad = None
for x, y in dataloader:

Baseline loss
h, logits_base = network(x) # features and logits
Batch-wise masking
mask = [i for i in range(logits_b.shape[-1]) if i not in y.unique()]
logits_b[:, mask] = float('-inf')
loss_baseline = criterion_baseline(logits_b, y)

FC recalibration
proto, labels = get_prototypes()
logits = network.fc(proto)
Batch-wise masking
mask = [i for i in range(logits.shape[-1]) if i not in labels.unique()]
logits[:, mask] = float('-inf')
loss_op = cross_entropy(logits, labels)

loss = loss_baseline + loss_op

optim.zero_grad()
loss.backward()

Class-Wise Hypergradient update
curr_W = network.fc.weight.grad
curr_B = network.fc.bias.grad
curr_grad = torch.cat([curr_W, curr_B.unsqueeze(1)], dim=1)
if prev_grad is not None:
Adam update
m = beta1 * m + (1 - beta1) * curr_grad
v = beta2 * v + (1 - beta2) * (curr_grad ** 2)
m_hat = m / (1 - beta1 ** step)
v_hat = v / (1 - beta2 ** step)
curr_grad = m_hat / (torch.sqrt(v_hat) + 1e-8)

grad_weight += gamma * (curr_grad @ prev_grad.T).diag() #Eq. 7
for i in range(n_classes):

network.fc.weight.grad[i, :] = network.fc.weight.grad[i, :] * grad_weight[i]
network.fc.bias.grad[i] = network.fc.bias.grad[i] * grad_weight[i]

prev_grad = curr_grad
optim.step()

update_proto(h, y) # Eq. 1

A.5 IMPACT OF LR ON THE STABILITY-PLASTICITY TRADE-OFF.

It is clear that selecting an appropriate learning rate is essential for optimal performance. In standard
scenarios, the impact of its choice on loss minimization and convergence speed has been extensively
studied (Ruder (2016)). For offCL, previous studies have considered to impact of the LR on
forgetting (Mirzadeh et al. (2020)). Notably, a higher LR would increase forgetting, and vice versa.
Intuitively, the learning rate gives direct control on the plasticity-stability tradeoff (Wang et al.
(2024b)). To confirm such behavior in onCL, we experiment with larger and smaller LR values. As

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A5: Task-wise accuracy (%) of DualPrompt at the end of training on CIFAR100, split in 10
tasks, for LR values in {5× 10−5, 5× 10−2}, with a batch size of 10.

Table B4: Hyperparameters tested on VTAB, clear setting, an increment of 5 classes per task.
Hyperpameters used for Best HP as written in bold.

Method Learning Rate γ

Fine-tuning [0.001, 0.005, 0.01, 0.05, 0.1] N/A
Linear probe [0.001, 0.005, 0.01, 0.05, 0.1] N/A
ER [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] N/A
ER + Linear probe [0.001, 0.005, 0.01, 0.05, 0.1] N/A
MVP [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] N/A
oLoRA [0.001, 0.005, 0.01, 0.05, 0.1] N/A
CODA [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
ConvPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
DualPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
L2P [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]

can be seen in Figure A5, when trained with a higher learning rate (5× 10−2), the model tends to
obtain higher performances on the latest tasks while exhibiting especially low performances on earlier
tasks. When trained with a lower LR (5× 10−5), the model tends to achieve better performance on
earlier tasks compared to training with a higher LR. In other words, a high LR value induces more
plasticity and less stability, and vice versa.

A.6 HYPERPARAMETERS GRID SEARCHED ON VTAB

In the presented results, we display a Best HP column, which corresponds to the results obtained
for the best hyperparameters obtained on VTAB. The objective is to simulate a realistic scenario
where the online continual learning datasets are not available for hyperparameter search. Therefore,
a realistic solution is to conduct a grid search on an available dataset and hopefully successfully
transfer the found hyperparameters to the new datasets. In this work, we search only for the value of
the learning rate and γ when combining with FGH. The hyperparameters explored for all methods
are presented in Table B4.

B DATASETS AND BASELINES

B.1 DATASETS

The backbone used for all our experiments has been pre-trained on ImageNet-21k, making it unfair
to experiment on such datasets. Following previous work (Sun et al. (2025)), we showcase the
performance of our approach and experiment with the following datasets:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• CUB (Wah et al. (2011)): The CUB dataset (Caltech-UCSD Birds-200) contains 200 bird
species with 11,788 images, annotated with attributes and part locations for fine-grained
classification. We use an increment of 10 classes per task, resulting in 20 tasks (with 10
classes per task).

• ImageNet-R (Hendrycks et al. (2021)): ImageNet-R is a set of images labeled with Im-
ageNet label renditions. It contains 30,000 images spanning 200 classes, focusing on
robustness with images in various artistic styles. We use an increment of 10 classes per task,
resulting in 20 tasks (with 10 classes per task).

• CIFAR-100 (Krizhevsky (2012)): CIFAR-100 consists of 60,000 32 × 32 color images
across 100 classes, with 500 images per class, split into 500 training and 100 test samples
per class. We use an increment of 10 classes per task, resulting in 10 tasks (with 10 classes
per task).

• Visual Task Adaptation Benchmark (VTAB) (Zhai et al. (2019)): VTAB contains the
following 19 tasks that are derived from several public datasets. We use an increment of 5
classes per task, resulting in 10 tasks (with 5 classes per task).

B.2 BASELINES

Offline methods adapted to Online Prompt learning-based methods (Zhou et al. (2024a)) are
particularly suited for being combined with our approach in onCL as they all capitalize on a final FC
layer for classification. Therefore, we consider the following.

• L2P (Wang et al. (2022b)): Learning to Prompt (L2P) is the foundation of prompt learning
methods in Continual Learning. The main idea is to learn how to append a fixed-sized
prompt to the input of the ViT (Dosovitskiy et al. (2021)). The ViT stays frozen; only the
appended prompt as well as the FC layer are trained.

• DualPrompt (Wang et al. (2022a)): DualPrompt follows closely the work of L2P by
addressing forgetting in the prompt level with task-specific prompts as well as higher-level
long-term prompts.

• CODA (Smith et al. (2023)): CODA-prompt improves prompt learning by computing the
prompt on the fly, leveraging a component pool and an attention mechanism. Therefore,
CODA benefits from a single gradient flow.

• ConvPrompt (Roy et al. (2024)): ConvPrompt leverages convolutional prompts and dy-
namic task-specific embeddings while incorporating text information from large language
models.

Online memory-free and task-free methods

• MVP (Moon et al. (2023)): MVP uses learned instance-wise logit masking, contrastive
visual prompt tuning for Continual Learning in the Si-Blurry context.

• Online LoRA (oLoRA) (Wei et al. (2025)): Trains a LoRA (Hu et al. (2022)) module
for each task in the online task-free setting by detecting task-change by estimating the
convergence of the model.

Mainstream baselines Additionally, we considered traditional baselines when working with
continual learning methods:

• Fine-tuning: Straightforward fine-tuning where the backbone is fine-tuned on new tasks by
training all the present weights without any specific constraint

• Linear probe: Fine-tuning training where only the last fully connected (FC) layer is trained.
All other weights are frozen.

• Experience Replay (ER) (Rolnick et al. (2019)): A memory-based approach that reuses
the experience of previous tasks to train the model on the new task. In our experiments, we
limit the memory size to 1000 samples, and retrieve 100 samples at each training iteration.

• ER + Linear probe: This method consists of training a Linear probe (Alain & Bengio
(2016)) method and incorporating an ER mechanism. In our experiments, we limit the
memory size to 1000 samples, and retrieve 100 samples at each training iteration.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ADAPTATION OF METHODS TO OUR SETUP

Since most methods compared here were originally designed for offCL, they had to be specifically
adapted to the onCL scenario. In that sense, some parameters have been chosen arbitrarily, based on
their offCL values, without additional hyperparameter search. Such a situation is similar to one that
would be observed in real-world cases where an offCL model tries to be adapted to an onCL problem.
For all methods, we use a learning rate, no scheduler, and Adam optimizer. Of course, we disabled an
operation that was operated at task change. Additionally, even though MVP was indeed designed
for online cases, we found several differences between their training procedure and ours, which we
discuss below.

Adaptation of CODA. In their original paper and implementation (Smith et al. (2023)), the
authors require freezing components after each task, therefore having task-specific components.
Typically, they show that performances tend to plateau for more than 100 components, and for a
10-task sequence, they would reserve 10 components per task. In our implementation, we decided
to similarly use 100 components for the entire training. However, we train all components together
at all times during training since we cannot know when the correct time to freeze or unfreeze
them. For other parameters, we followed the original implementation. Code adapted from https:
//github.com/LAMDA-CL/LAMDA-PILOT

Adaptation of ConvPrompt. ConvPrompt (Roy et al. (2024)) is a method that heavily relies on
task boundaries in its original implementation, notably by incorporating five new prompts per task.
Contrary to CODA, allocating the maximum number of prompt generators at all times, without a
freeze, would induce an important training time constraint. Therefore, we only use five prompt
generators at all times. Despite this reduction in overall parameters, ConvPrompt still achieves
competitive results in the clear setting. However, its performances drastically fall off in the Si-
Blurry case. Further, an in-depth adaptation of ConvPrompt in the online context could potentially
improve its performance; however, such a study is not covered in this work. Code adapted from
https://github.com/CVIR/convprompt.

Adaptation of DualPrompt. Similar to CODA, but on a prompt level, DualPrompt (Wang et al.
(2022a)) requires freezing prompts at task change. For adapting it to onCL, we chose to use all prompts
at all times without freezing the prompt pool. The E-Prompt pool size is set to 10 and the G-Prompt
pool size is set to 5. Code adapted from https://github.com/LAMDA-CL/LAMDA-PILOT.

Adaptation of L2P. The same logic as the one described for CODA and DualPrompt applies to
L2P (Wang et al. (2022b)). In that sense, we use the entire prompt pool at all times without freezing.
The prompt pool size is set to 10. Code adapted from https://github.com/LAMDA-CL/
LAMDA-PILOT.

Adaptation and Performances of MVP Even though MVP (Moon et al. (2023)) is designed for
the online case, its original training setup differs slightly. Firstly, the batch size is set to 32 (we
use 100), and they similarly consider that each batch can be used for 3 separate gradient steps. In
that sense, the performances reported in the original paper might be higher as they trained on a
slightly more constrained setup. Secondly, the authors use the same learning rate and optimizer for
each compared method, which, as we argued in this work, might lead to different results, relatively
speaking, compared to other methods. Such experimental differences might lead to the performances
obtained in our experiments, which are, in most cases, surprisingly low. The code was adapted from
https://github.com/KU-VGI/Si-Blurry.

Adaptation and Performances of oLoRA Even though oLoRA (Wei et al. (2025)) is designed
for online problems, it relies on several hyperparameters. Notably, it requires computing a moving
average of the current loss, which, depending on the batch size and task size, can lead to significantly
different results. For example, on the CUB dataset, a task consists of 400 images. In our setup, the
batch size is 100, so the default window size of 5 would span over multiple tasks. Such behavior
makes the working mechanism of oLoRA very sensitive to the setup. Other hyperparameters include
variance and mean loss threshold for triggering loss change detection. Similarly, this is very dependent

18

https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/CVIR/convprompt
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/KU-VGI/Si-Blurry

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

on the dataset. Lastly, a loss weighting term must be grid-searched for optimal results. Code adapted
from https://github.com/christina200/online-lora-official.

D ADDITIONAL EVLUATION METRICS

Here, we report additional metrics in the clear and blurry boundary contexts for all methods for
additional insights into the performance.

D.1 AVERAGE PERFORMANCES

We follow previous work and define the Average Performance (AP) as the average of the accura-
cies computed after each task during training (Zhou et al. (2024a)). Formally, when training on
{D1, · · · ,DT }, we define Ak = 1

k

∑k
l=1 al,k as the Average Accuracy (AA), with al,k being the

accuracy on task l after training on Dk. Building on this, we define the Average Performance (AP) as:

P =
1

T

T∑
k=1

Ak. (9)

D.2 FINAL AVERAGE ACCURACY

We report the final average accuracy AT as per the definition given in the main draft. Such results are
presented in Tables B10 and B11.

D.3 PERFORMANCES ON PREVIOUS TASKS

We report the accuracy at the end of training on previous tasks when training in the clear setting.
Notably, show the accuracy for each method on the first 10 tasks in Table B12. It can be observed
that for earlier tasks, leveraging FGH and Prototypes (+ ours) leads to the best performances on
older tasks, see for example the performances of CODA on CIFAR-100 on the first task, presented in
Tables B12 to B21.

D.4 TIME COMPLEXITY

Experiments were run on various machines, including Quadro RTX 8000 50Go GPU, Tesla V100
16Go GPU, and A100 40Go GPU. In this section, we report the times of execution of each method.
To do so, we run all methods (except oLoRA) on a single Quadro RTX 8000 50Go GPU, for the CUB
dataset, clear setting, with a batch size of 100. Since oLoRA requires a lot a GPU memory, we have
to evaluate its training time and memory consumption on two Quadro RTX 8000 50Go GPUs. The
results are presented in Table B5. It can be observed that the time consumption overhead of including
prototypes and FGH is minimal.

D.5 SPATIAL COMPLEXITY

Fine-Grained Hypergradients. The usage of FGH requires storing one float per trainable parameter
D as well as previous gradient values of those parameters. This amounts to a total of D×D additional
floats to store. We show memory footprint on GPU in Table B5 using a Quadro RTX 8000 50Go
GPU, on the CUB dataset, clear setting, with a batch size of 100.

Prototypes. Storing prototypes only requires one vector of dimension l per class, with l = 768 in
the case of ViT-base. Additionally, an extra integer per class must be stored to keep track of the index
of the update of each class-dependent prototype. If the index is stored as a float, the additional amount
of floating points to store is c × (l + 1), with c the number of classes, and l the output dimension
of the backbone. We show memory footprint on GPU in Table B5 using a Quadro RTX 8000 50Go
GPU, on CUB dataset, clear setting, with a batch size of 100.

19

https://github.com/christina200/online-lora-official

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table B5: Time and Spatial complexity of compared methods on CUB in the clear setting, with a
batch size of 100.

Method Time (min) Memory Footprint (MB)

Fine-tuning 3m26s 17,089
Linear probe 2m40s 2,566

ER 4m54s 34,481
ER + Linear probe 3m12s 4,647

MVP 5m22s 12,722
oLoRA 5m20s 56,357

CODA 5m37s 16,923
↪→ + P 5m47s 16,921
↪→ + FGH 5m54s 18,287
↪→ + ours 5m55s 18,288

L2P 5m32s 14,090
↪→ + P 5m35s 14,092
↪→ + FGH 5m43s 14,090
↪→ + ours 5m43s 14,092

DualPrompt 5m12s 11,827
↪→ + P 5m14s 11,829
↪→ + FGH 5m23s 11,828
↪→ + ours 5m18s 11,829

ConvPrompt 1h12m24s 11,708
↪→ + P 1h12m33s 11,709
↪→ + FGH 1h12m22s 11,708
↪→ + ours 1h12m40s 11,709

E ADDITIONAL EXPERIMENTS

E.1 DETAILS ON GRADIENT IMBALANCE

In the following, we give additional insights into the results displayed in Figure 2 regarding GI. In
this regard, we computed the coefficient of variation across normalized class-wise gradients. Namely,
we compute the std/mean ratio on the data presented in said Figure. The results are presented in
Table B6.

Method Coefficient of Variation Comments Perfs

CODA 0.3353 Baseline 71.12
CODA + P 0.5069 GI increased 78.18
CODA + FGH 0.3488 GI reversed and slightly increased 69.66
CODA + P + FGH 0.3107 GI reversed and decreased compared to P 79.47

Table B6: Comparison of Methods with Coefficient of Variation and Performance

E.2 DETAILS ON STABILITY-PLASTICITY TRADE-OFF

In the following, we report results that are already presented in task-wise tables. The objective here
is to show that for smaller learning rate values, we observe that FGH improves plasticity, and why
Prototypes improve stability. Looking at the results presented in Table B7, it can be seen that using
prototypes particularly increases performance on earlier tasks while FGH focuses more on later tasks.
Overall, the best performances are obtained by combining both strategies.

E.3 LONGER TASK SEQUENCE

We conducted brief experiments regarding the performance of CODA + ours on Imagenet-R, non-
blurry, with an increment of 2 classes per task, for various values of γ, with and without prototypes.
The results are displayed in Table B8.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Task L2P L2P+P L2P+FGH L2P+P+FGH

1 4.51 44.5 6.46 65.77
2 6.01 53.14 9.47 70.37
3 12.44 52.87 16.32 67.65
4 16.15 55.65 23.01 67.59
5 21.37 49.55 30.11 61.33
6 28.82 51.25 39.19 61.40
7 25.11 44.49 36.20 51.86
8 34.34 46.98 46.26 53.13
9 32.75 37.89 42.71 41.6

10 30.16 29.04 39.34 29.14

Table B7: Task-wise performance of L2P on CIFAR100 with an initial LR of 5× 10−5.

γ +P Average Performances
0 0 32.7

0.5 0 30.35
1 0 32.7
0 1 38.9

0.5 1 44.4
1 1 38.1

Table B8: Average Performances for Different Values of γ and +P

E.4 ADDITIONAL MEMORY SIZES

In the main paper, all memory sizes are limited to 1000 for ER-based methods. In the following, we
show additional performances for ER with larger memory sizes on CIFAR100 and Imagenet-R for an
initial LR of 5× 10−5. The results are presented in Table B9.

Table B9: Performance of ER on CIFAR100 and ImageNet-R with varying memory sizes and a
learning rate of 5× 10−5.

Dataset 1000 5000 10000
CIFAR100 (ER) 81.20 85.88 86.94
ImageNet-R (ER) 53.35 58.30 58.63

F DETAILS ON THE SI-BLURRY SETTING

We followed the procedure and code made available by the authors of MVP (Moon et al. (2023))
in order to generate the Si-Blurry versions of the datasets. Notably, we use M = 10 and N = 50,
following the original work. The number of tasks is the same as in the clear setting. We show the
number of images per class appearance during training for a subset of classes to give a better overview
of this training environment in Figure A6.

G ADDITIONAL GRADIENT VALUES

Following the analysis on the interactions between FGH and prototypes with regard to past gradients,
we include the gradients norm of previous task for more tasks and methods in Figure A7 to Figure A36.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure A6: Example of class apparition during training in the Si-Blurry setting on CIFAR100. The
y-axis represents the average number of images of a given class present in the current batch size of
10.

Figure A7: Values of G1 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A8: Values of G2 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure A9: Values of G3 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A10: Values of G4 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A11: Values of G5 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A12: Values of G6 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure A13: Values of G7 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A14: Values of G8 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A15: Values of G9 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A16: Values of G10 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure A17: Values of G1 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A18: Values of G2 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A19: Values of G3 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A20: Values of G4 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure A21: Values of G5 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A22: Values of G6 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A23: Values of G7 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A24: Values of G8 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure A25: Values of G9 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A26: Values of G10 for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Figure A27: Values of G1 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A28: Values of G2 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure A29: Values of G3 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A30: Values of G4 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A31: Values of G5 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A32: Values of G6 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure A33: Values of G7 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A34: Values of G8 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A35: Values of G9 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Figure A36: Values of G10 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table B10: Final performances AT (%) of all considered baselines, in the clear setting. + ours refers
to combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and γ
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 9.12±2.82 1.0±0.0 1.0±0.0 0.48±0.12 0.53±0.09 0.43±0.15 0.76±0.22 0.74±0.31 0.63±0.36

Linear probe 17.56±1.51 14.51±1.27 14.51±1.27 1.41±0.37 34.96±1.46 34.96±1.46 2.96±0.64 27.33±1.35 27.33±1.35

ER 69.7±0.98 1.03±0.11 69.7±0.98 35.91±3.98 0.37±0.17 35.91±3.98 39.99±2.15 0.74±0.21 39.99±2.15

ER + Linear probe 41.78±1.37 72.25±1.35 71.08±0.89 3.32±0.49 48.07±2.0 47.65±1.99 8.56±0.68 38.33±2.6 37.56±2.79

MVP 19.76±2.35 17.42±4.28 20.18±4.27 1.54±0.52 34.18±1.94 16.3±1.83 2.94±0.39 23.48±10.91 21.8±2.68

oLoRA 40.07±9.51 3.9±2.28 5.0±1.45 4.37±0.78 31.69±2.72 26.59±5.33 5.74±1.0 18.96±3.16 37.09±11.54

CODA 26.02±1.99 59.34±6.28 55.56±4.43 1.05±0.28 48.09±2.82 35.19±4.61 2.2±0.49 47.38±3.45 40.13±4.45

↪→ + ours 68.12±1.68 72.26±2.4 66.71±3.53 9.52±1.38 58.46±5.04 42.88±4.22 20.07±0.96 51.8±2.35 44.99±4.45

L2P 21.17±3.45 49.26±3.88 49.26±3.88 0.65±0.36 33.2±1.96 33.2±1.96 1.91±0.44 36.22±3.29 36.22±3.29

↪→ + ours 56.98±2.11 73.59±1.83 73.59±1.83 5.15±2.52 66.74±1.44 66.74±1.44 18.0±1.17 60.23±0.87 60.23±0.87

DualPrompt 23.28±1.69 50.68±3.38 53.77±3.48 0.9±0.24 52.03±1.96 48.51±2.73 2.32±0.23 47.89±1.8 46.34±1.95

↪→ + ours 58.96±1.43 62.63±3.33 66.09±2.41 9.87±1.86 72.25±0.88 65.47±1.8 20.85±1.05 55.87±1.41 54.15±1.64

ConvPrompt 34.48±2.51 59.87±6.26 59.87±6.26 0.65±0.14 54.96±2.82 54.96±2.82 1.71±0.08 46.92±2.9 46.92±2.9

↪→ + ours 66.21±1.54 82.49±0.62 82.49±0.62 9.98±0.96 69.78±0.03 69.78±0.03 5.78±2.71 63.68±1.2 63.68±1.2Table B11: Final performances AT (%) of all considered baselines, in the Si-Blurry setting. + ours
refers to combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 9.85±6.88 1.03±0.1 1.0±0.0 0.46±0.14 0.58±0.13 0.49±0.06 0.84±0.37 0.64±0.34 0.55±0.23

Linear probe 28.61±2.74 18.48±4.2 18.48±4.2 2.99±0.68 32.82±2.42 32.82±2.42 5.77±0.77 23.99±3.58 23.99±3.58

ER 71.42±2.96 0.89±1.03 71.42±2.96 50.37±2.36 0.23±0.35 50.37±2.36 49.24±7.13 1.03±0.63 49.24±7.13

ER + Linear probe 47.39±4.38 71.72±2.43 70.72±2.5 6.96±1.87 51.09±4.49 51.85±3.87 13.53±1.57 45.87±5.73 45.79±6.3

MVP 23.31±3.02 20.2±7.9 25.44±5.23 2.12±0.57 24.57±3.46 17.23±4.38 4.72±0.65 24.96±4.06 25.14±4.6

oLoRA 49.35±1.05 4.82±1.74 4.94±1.89 7.24±1.75 34.35±9.53 30.52±9.55 12.1±2.38 14.74±7.94 35.38±1.72

CODA 32.14±3.11 60.88±8.31 54.18±6.45 1.46±0.34 43.19±5.91 25.37±5.35 3.48±0.59 37.42±5.75 31.46±3.66

↪→ + ours 70.53±1.9 76.11±2.94 70.21±4.21 15.3±1.49 64.97±3.97 42.92±9.1 23.35±1.42 51.86±3.52 40.15±10.91

L2P 25.14±4.21 52.54±6.04 52.54±6.04 0.95±0.35 25.14±5.06 25.14±5.06 2.71±0.47 28.38±7.13 28.38±7.13

↪→ + ours 59.49±1.92 75.39±2.31 75.39±2.31 10.37±2.86 66.55±2.84 66.55±2.84 20.35±1.44 59.26±1.91 59.26±1.91

DualPrompt 29.15±2.87 52.4±10.47 45.96±8.47 1.34±0.47 46.61±3.34 33.99±5.95 3.72±0.96 43.83±1.94 35.19±3.1

↪→ + ours 61.71±2.11 67.74±3.19 68.56±3.87 16.87±1.35 73.13±0.73 63.73±7.43 24.19±1.64 55.16±1.58 52.02±2.08

ConvPrompt 38.13±5.9 63.8±1.98 63.8±1.98 1.36±0.32 42.78±2.83 42.78±2.83 1.88±0.74 44.13±3.43 44.13±3.43

↪→ + ours 62.52±2.96 81.71±1.64 81.71±1.64 15.06±0.96 73.99±3.9 73.99±3.9 12.61±0.83 61.89±4.2 61.89±4.2Table B12: Accuracy on the first task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 0.41±0.29 0.0±0.0 0.0±0.0 0.08±0.27 1.38±3.23 1.38±3.23 0.1±0.22 0.0±0.0 0.0±0.0

ER 62.43±2.97 0.0±0.0 62.43±2.97 64.67±13.04 0.0±0.0 64.67±13.04 38.18±7.77 0.0±0.0 38.18±7.77

ER + Linear probe 38.96±5.37 64.99±6.09 61.42±7.66 13.17±5.13 45.09±11.47 46.07±10.57 18.92±7.04 26.8±7.04 24.2±8.42

MVP 0.01±0.03 0.05±0.16 0.01±0.03 0.42±0.6 7.53±5.74 0.0±0.0 0.03±0.08 1.29±1.32 1.14±1.06

oLoRA 40.07±9.51 3.9±2.28 5.0±1.45 4.37±0.78 31.69±2.72 26.59±5.33 5.74±1.0 18.96±3.16 37.09±11.54

CODA 5.22±3.27 2.98±2.79 3.85±2.02 0.77±1.27 33.14±14.08 34.34±12.6 0.85±1.1 16.97±7.85 13.93±5.53

↪→ + P 49.35±5.74 15.74±6.12 24.29±8.71 2.87±2.62 36.17±10.26 18.73±9.61 7.6±4.47 35.64±11.15 28.21±7.93

↪→ + FGH 6.6±3.9 2.48±2.39 – 0.68±1.03 32.46±11.4 – – – –
↪→ + ours 64.86±4.68 28.92±7.37 33.08±11.74 13.02±6.27 44.95±18.49 22.29±10.48 31.44±10.41 47.5±10.46 28.58±8.82

L2P 4.51±5.77 2.93±2.61 2.93±2.61 1.24±1.71 26.1±10.59 26.1±10.59 1.26±1.39 7.85±6.01 7.85±6.01

↪→ + P 44.5±10.62 36.37±7.39 36.37±7.39 2.99±4.06 38.8±11.83 38.8±11.83 7.08±2.79 38.28±4.39 38.28±4.39

↪→ + FGH 6.46±6.62 2.98±1.95 2.98±1.95 1.34±1.83 29.58±13.42 29.58±13.42 – – –
↪→ + ours 65.77±7.03 42.58±8.65 42.58±8.65 15.09±9.39 39.96±10.48 39.96±10.48 27.16±9.5 48.4±4.65 48.4±4.65

DualPrompt 4.75±3.64 4.99±2.78 3.13±2.85 0.85±1.3 43.81±13.29 48.9±16.35 1.17±0.98 18.52±7.71 16.38±6.74

↪→ + P 45.65±7.79 18.56±6.36 18.24±6.02 4.19±4.34 68.22±8.01 59.78±15.56 10.48±6.13 46.8±5.62 37.83±5.94

↪→ + FGH 6.51±4.1 0.69±1.24 – 0.77±1.08 47.78±12.73 – – – –
↪→ + ours 64.83±5.93 28.03±8.27 25.14±4.54 19.8±8.87 76.92±6.5 61.09±12.27 32.31±7.76 53.72±5.67 43.84±4.97

ConvPrompt 5.1±4.78 11.37±7.29 11.37±7.29 0.32±0.56 54.18±12.29 54.18±12.29 0.0±0.0 18.29±6.08 18.29±6.08

↪→ + P 38.3±10.64 46.57±13.77 46.57±13.77 3.19±3.16 53.99±13.23 53.99±13.23 0.43±0.74 39.76±3.45 39.76±3.45

↪→ + ours 38.37±6.1 66.67±2.22 66.67±2.22 18.26±7.14 61.51±1.87 61.51±1.87 0.43±0.74 48.04±8.67 48.04±8.67

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table B13: Accuracy on the second task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.5±1.35 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 1.76±1.56 0.06±0.13 0.06±0.13 0.08±0.27 4.79±4.02 4.79±4.02 0.32±0.41 0.42±0.81 0.42±0.81

ER 62.07±5.34 0.0±0.0 62.07±5.34 57.2±13.2 0.0±0.0 57.2±13.2 40.57±5.46 0.0±0.0 40.57±5.46

ER + Linear probe 44.28±5.71 67.03±6.96 67.22±6.88 7.11±3.78 42.13±14.69 38.89±17.54 16.3±4.03 27.22±6.59 27.28±5.21

MVP 1.33±1.5 0.11±0.23 – 0.0±0.0 7.35±4.7 – 0.37±0.52 1.8±1.99 –
oLoRA 14.9±6.68 0.0±0.0 0.0±0.0 0.63±1.09 8.78±7.32 2.97±3.76 0.84±1.46 0.25±0.43 11.79±10.63

CODA 11.4±5.2 29.81±7.19 – 1.56±2.52 28.65±11.51 – 1.02±1.2 21.98±4.95 –
↪→ + P 59.05±6.64 42.75±7.63 – 5.15±4.14 35.57±11.26 – 8.88±2.94 35.44±6.67 –
↪→ + FGH 16.47±6.98 20.89±7.97 – 1.56±2.52 26.36±12.74 – – – –
↪→ + ours 68.73±7.1 54.2±5.28 – 19.64±5.68 45.65±12.77 – 36.15±6.85 46.16±9.51 –

L2P 6.01±8.11 16.23±5.69 16.23±5.69 1.1±2.13 20.67±13.88 20.67±13.88 0.8±1.11 10.34±3.75 10.34±3.75

↪→ + P 53.14±8.38 56.89±7.6 56.89±7.6 2.44±3.86 53.0±12.79 53.0±12.79 5.44±2.29 45.3±3.54 45.3±3.54

↪→ + FGH 9.47±9.71 10.51±4.1 10.51±4.1 1.1±2.13 19.88±14.5 19.88±14.5 – – –
↪→ + ours 70.37±5.79 58.16±7.25 58.16±7.25 10.95±10.12 55.79±12.47 55.79±12.47 32.08±7.12 52.57±5.92 52.57±5.92

DualPrompt 13.28±6.22 18.57±9.45 – 1.32±1.75 40.33±10.2 – 1.09±1.42 25.61±5.38 –
↪→ + P 56.55±8.69 28.6±9.94 – 4.48±5.39 70.17±11.28 – 10.38±4.43 50.53±4.11 –
↪→ + FGH 18.62±7.88 4.92±3.61 – 1.32±1.75 42.12±10.12 – – – –
↪→ + ours 70.0±6.32 35.28±8.88 – 18.71±10.63 76.09±8.61 – 37.32±7.09 55.13±6.03 –

ConvPrompt 19.83±14.51 40.1±12.7 40.1±12.7 0.27±0.46 46.95±5.32 46.95±5.32 0.21±0.37 29.64±4.04 29.64±4.04

↪→ + P 35.93±10.27 65.83±11.0 65.83±11.0 3.84±2.51 51.34±27.6 51.34±27.6 1.5±2.59 44.97±3.34 44.97±3.34

↪→ + ours 57.3±1.04 72.63±2.73 72.63±2.73 22.31±11.37 68.48±4.98 68.48±4.98 2.35±4.07 52.59±3.73 52.59±3.73

Table B14: Accuracy on the third task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.2±0.42 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 3.58±2.43 0.06±0.19 0.06±0.19 0.26±0.43 7.39±7.84 7.39±7.84 0.42±0.42 1.28±1.59 1.28±1.59

ER 62.01±7.57 0.0±0.0 62.01±7.57 45.23±12.07 0.0±0.0 45.23±12.07 41.22±4.39 0.0±0.0 41.22±4.39

ER + Linear probe 44.07±6.01 66.83±8.0 64.91±8.62 5.93±4.84 39.05±11.92 39.21±10.9 14.68±3.14 30.15±6.34 30.37±6.9

MVP 2.35±2.41 0.73±1.06 – 0.08±0.27 10.94±9.81 – 0.89±1.97 3.86±3.97 –
oLoRA 12.3±6.68 0.0±0.0 0.0±0.0 29.05±26.66 8.67±14.33 33.17±39.11 51.74±9.2 0.63±0.84 15.85±11.14

CODA 14.32±10.11 46.0±10.51 – 0.84±1.34 40.51±16.78 – 1.93±2.17 30.22±11.81 –
↪→ + P 61.79±5.14 62.85±10.83 – 4.3±2.77 46.09±12.72 – 11.6±3.67 39.91±10.5 –
↪→ + FGH 20.74±11.84 34.76±6.96 – 0.84±1.34 39.07±14.24 – – – –
↪→ + ours 71.38±5.67 68.36±7.09 – 21.98±7.13 51.6±13.32 – 39.22±7.7 48.57±4.53 –

L2P 12.44±10.05 26.18±10.63 26.18±10.63 0.65±1.79 20.46±12.57 20.46±12.57 1.21±2.71 15.3±7.01 15.3±7.01

↪→ + P 52.87±5.92 65.37±8.19 65.37±8.19 1.14±3.05 64.42±10.22 64.42±10.22 8.59±4.06 50.06±8.21 50.06±8.21

↪→ + FGH 16.32±12.08 17.25±9.09 17.25±9.09 0.65±1.79 21.08±12.96 21.08±12.96 – – –
↪→ + ours 67.65±6.55 64.57±8.51 64.57±8.51 11.03±8.88 63.87±10.59 63.87±10.59 34.31±10.38 55.19±6.82 55.19±6.82

DualPrompt 12.34±5.41 30.04±9.72 – 0.42±0.71 49.04±11.44 – 1.68±0.94 32.92±9.09 –
↪→ + P 51.77±6.41 34.82±7.71 – 4.19±2.85 73.38±8.12 – 12.05±4.16 52.07±5.48 –
↪→ + FGH 18.18±5.57 8.89±3.58 – 0.42±0.71 50.02±11.28 – – – –
↪→ + ours 66.3±4.77 37.81±8.51 – 24.14±8.4 79.8±5.17 – 39.5±7.43 57.79±4.49 –

ConvPrompt 13.6±0.9 48.57±13.06 48.57±13.06 0.84±0.84 42.89±17.61 42.89±17.61 0.85±1.47 21.72±9.31 21.72±9.31

↪→ + P 30.07±11.51 71.6±6.85 71.6±6.85 5.28±5.68 51.32±6.29 51.32±6.29 1.86±3.22 41.33±2.76 41.33±2.76

↪→ + ours 53.37±5.4 79.3±2.95 79.3±2.95 21.32±9.5 69.56±15.89 69.56±15.89 2.67±4.28 52.44±7.75 52.44±7.75

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table B15: Accuracy on the fourth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.54±0.99 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 4.76±1.79 0.49±1.45 0.49±1.45 0.62±0.92 5.07±5.34 5.07±5.34 0.62±0.97 2.33±2.85 2.33±2.85

ER 66.35±4.69 0.0±0.0 66.35±4.69 38.98±10.54 0.0±0.0 38.98±10.54 34.96±6.97 0.0±0.0 34.96±6.97

ER + Linear probe 42.95±6.26 68.43±4.89 69.05±5.27 6.57±3.61 38.72±9.06 37.56±11.7 12.47±6.5 27.76±8.92 28.24±7.64

MVP 6.75±4.68 5.76±5.72 – 1.01±1.8 7.89±6.65 – 0.42±0.54 4.25±4.66 –
oLoRA 25.57±26.01 0.0±0.0 0.0±0.0 1.17±1.02 10.24±9.43 8.91±8.71 0.33±0.31 0.0±0.0 15.45±22.49

CODA 20.45±8.6 58.94±13.78 – 1.44±3.05 32.5±6.88 – 1.6±0.72 29.01±8.65 –
↪→ + P 59.24±4.04 75.75±5.02 – 4.28±4.08 44.25±11.51 – 10.06±4.67 34.45±9.94 –
↪→ + FGH 28.89±10.91 45.19±8.85 – 1.44±3.05 33.64±10.82 – – – –
↪→ + ours 69.33±5.02 76.04±3.36 – 22.63±7.87 50.18±11.71 – 34.7±7.41 44.95±10.76 –

L2P 16.15±9.74 41.97±10.57 41.97±10.57 1.24±2.54 21.06±12.41 21.06±12.41 1.13±1.92 17.15±7.33 17.15±7.33

↪→ + P 55.65±6.53 73.84±6.57 73.84±6.57 2.65±4.07 55.37±14.24 55.37±14.24 9.54±6.78 49.76±8.76 49.76±8.76

↪→ + FGH 23.01±10.64 33.76±8.39 33.76±8.39 1.33±2.5 23.23±15.51 23.23±15.51 – – –
↪→ + ours 67.59±5.03 73.88±7.47 73.88±7.47 12.06±5.9 53.07±13.2 53.07±13.2 37.38±11.45 54.17±7.52 54.17±7.52

DualPrompt 14.79±6.6 36.67±7.25 – 0.47±0.81 36.89±10.78 – 1.41±1.13 31.87±8.22 –
↪→ + P 51.78±10.31 44.45±6.67 – 2.84±2.99 65.33±8.16 – 9.72±4.64 47.43±8.23 –
↪→ + FGH 23.06±8.64 17.68±7.97 – 0.47±0.81 38.37±11.81 – – – –
↪→ + ours 64.26±8.1 49.89±7.68 – 17.88±9.14 69.35±7.3 – 35.98±10.89 52.34±6.25 –

ConvPrompt 19.4±4.47 56.37±11.38 56.37±11.38 1.25±2.16 48.53±3.41 48.53±3.41 0.1±0.17 29.75±9.05 29.75±9.05

↪→ + P 50.77±13.59 83.0±4.71 83.0±4.71 1.87±3.24 62.22±7.28 62.22±7.28 3.26±5.64 52.37±11.98 52.37±11.98

↪→ + ours 70.2±13.89 84.43±3.2 84.43±3.2 21.84±7.27 76.98±0.48 76.98±0.48 8.75±9.03 61.55±6.52 61.55±6.52

Table B16: Accuracy on the fifth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.93±1.52 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 9.81±5.26 2.28±2.32 2.28±2.32 0.56±0.99 11.15±7.31 11.15±7.31 0.81±0.56 3.85±2.62 3.85±2.62

ER 63.41±6.25 0.0±0.0 63.41±6.25 34.64±10.14 0.0±0.0 34.64±10.14 36.64±3.55 0.0±0.0 36.64±3.55

ER + Linear probe 41.63±7.56 68.84±6.22 64.93±7.41 3.4±3.28 35.35±20.24 34.66±12.81 14.98±4.75 28.69±4.92 28.74±5.22

MVP 12.56±7.83 9.92±7.88 – 1.27±1.93 12.63±10.23 – 0.72±0.69 6.29±4.85 –
oLoRA 34.6±9.55 0.0±0.0 0.0±0.0 2.0±1.4 13.13±6.84 23.43±8.08 0.0±0.0 1.69±1.84 22.22±20.04

CODA 24.51±10.15 64.12±13.27 – 1.48±1.91 43.67±12.95 – 2.04±1.19 31.29±8.09 –
↪→ + P 57.74±9.04 75.1±8.49 – 3.55±2.97 48.63±13.71 – 9.06±2.24 38.62±9.98 –
↪→ + FGH 32.28±10.92 53.51±6.12 – 1.48±1.91 44.86±13.58 – – – –
↪→ + ours 66.78±6.12 74.97±3.88 – 21.62±8.06 55.87±9.17 – 33.0±8.61 44.49±6.31 –

L2P 21.37±14.86 55.98±8.42 55.98±8.42 0.32±1.0 27.7±10.63 27.7±10.63 1.06±2.36 21.73±8.48 21.73±8.48

↪→ + P 49.55±9.79 77.87±5.03 77.87±5.03 0.26±0.59 62.67±11.48 62.67±11.48 8.35±3.45 51.25±4.32 51.25±4.32

↪→ + FGH 30.11±18.23 49.08±8.94 49.08±8.94 0.32±1.0 26.16±10.18 26.16±10.18 – – –
↪→ + ours 61.33±9.61 77.23±6.29 77.23±6.29 8.68±8.36 60.0±14.31 60.0±14.31 28.57±8.45 55.5±5.28 55.5±5.28

DualPrompt 22.8±8.35 48.66±11.73 – 1.77±2.11 47.92±11.94 – 0.98±0.82 34.14±5.94 –
↪→ + P 52.89±7.42 56.22±8.72 – 3.39±2.12 66.59±12.65 – 9.2±2.77 50.07±6.14 –
↪→ + FGH 32.04±9.04 30.79±11.01 – 1.77±2.11 49.39±12.19 – – – –
↪→ + ours 64.6±6.35 61.13±11.36 – 19.43±6.96 68.81±9.17 – 31.61±5.24 53.48±7.11 –

ConvPrompt 44.0±5.37 67.1±6.49 67.1±6.49 0.56±0.97 67.53±3.13 67.53±3.13 0.22±0.21 34.65±9.55 34.65±9.55

↪→ + P 66.47±10.37 83.0±3.34 83.0±3.34 4.75±1.01 66.53±16.34 66.53±16.34 2.32±3.74 48.11±1.56 48.11±1.56

↪→ + ours 76.9±7.73 86.33±1.5 86.33±1.5 22.61±1.32 64.88±7.12 64.88±7.12 4.09±5.81 61.05±1.22 61.05±1.22

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table B17: Accuracy on the sixth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.73±2.07 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 13.07±3.73 3.92±3.06 3.92±3.06 0.42±0.71 10.52±8.85 10.52±8.85 1.09±1.04 9.54±6.91 9.54±6.91

ER 64.01±9.26 0.07±0.22 64.01±9.26 31.7±12.63 0.0±0.0 31.7±12.63 34.51±6.64 0.0±0.0 34.51±6.64

ER + Linear probe 41.2±7.94 68.26±8.22 70.19±8.9 3.42±3.23 33.78±15.96 33.24±12.44 11.83±5.3 33.14±9.33 31.96±9.41

MVP 18.89±6.0 10.32±9.15 – 0.9±1.68 10.67±9.53 – 1.21±1.1 11.86±10.9 –
oLoRA 29.2±17.33 0.0±0.0 0.0±0.0 17.48±23.71 5.56±5.52 23.82±9.07 0.56±0.71 2.84±3.68 22.48±14.74

CODA 33.59±13.57 71.66±9.87 – 0.51±0.58 46.03±13.74 – 2.21±1.21 37.22±10.13 –
↪→ + P 54.8±8.31 80.35±5.92 – 1.75±1.65 53.25±11.43 – 9.67±2.49 43.61±10.07 –
↪→ + FGH 43.81±14.33 59.88±9.37 – 0.51±0.58 45.81±10.93 – – – –
↪→ + ours 66.31±8.42 78.3±6.8 – 13.08±6.36 54.34±15.83 – 33.15±7.66 45.94±8.92 –

L2P 28.82±15.82 61.31±13.86 61.31±13.86 1.01±2.11 32.25±11.31 32.25±11.31 0.98±1.39 29.08±6.32 29.08±6.32

↪→ + P 51.25±7.26 80.92±5.0 80.92±5.0 1.73±2.29 65.31±8.23 65.31±8.23 6.55±6.26 53.65±7.73 53.65±7.73

↪→ + FGH 39.19±16.86 49.36±13.53 49.36±13.53 1.01±2.11 30.8±9.84 30.8±9.84 – – –
↪→ + ours 61.4±7.81 77.7±6.73 77.7±6.73 7.16±7.61 69.63±7.38 69.63±7.38 27.77±12.23 58.42±4.51 58.42±4.51

DualPrompt 29.3±8.28 62.5±11.34 – 0.25±0.41 49.04±12.54 – 1.08±1.45 42.18±8.15 –
↪→ + P 52.76±4.7 66.65±12.69 – 3.0±2.68 70.42±8.72 – 8.05±6.19 53.06±4.84 –
↪→ + FGH 39.17±8.27 43.89±15.11 – 0.25±0.41 49.07±12.41 – – – –
↪→ + ours 63.12±4.29 72.07±12.75 – 16.38±8.14 72.04±8.71 – 32.13±11.03 56.05±5.53 –

ConvPrompt 30.97±6.3 58.27±9.92 58.27±9.92 1.0±0.87 62.72±7.53 62.72±7.53 0.21±0.37 46.15±7.21 46.15±7.21

↪→ + P 55.43±15.51 83.03±3.93 83.03±3.93 4.26±3.79 61.88±20.85 61.88±20.85 1.77±1.79 48.14±6.73 48.14±6.73

↪→ + ours 61.5±14.34 83.97±2.36 83.97±2.36 18.93±12.97 39.28±29.31 39.28±29.31 7.84±6.81 63.22±4.16 63.22±4.16

Table B18: Accuracy on the seventh task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 0.13±0.16 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 22.16±6.73 6.58±4.53 6.58±4.53 1.4±1.7 13.16±11.44 13.16±11.44 2.12±2.2 15.51±8.55 15.51±8.55

ER 68.97±6.63 0.0±0.0 68.97±6.63 38.09±8.72 0.0±0.0 38.09±8.72 38.3±5.45 0.0±0.0 38.3±5.45

ER + Linear probe 41.97±8.36 70.56±6.34 69.34±6.99 4.65±4.13 36.52±12.07 38.45±11.58 13.32±3.15 33.8±7.94 33.4±8.26

MVP 21.45±7.62 13.14±8.6 – 0.66±1.54 13.35±11.27 – 1.15±1.05 15.29±10.45 –
oLoRA 49.03±23.85 0.0±0.0 0.03±0.06 4.18±3.09 20.94±18.88 20.29±21.12 0.52±0.66 3.73±4.57 14.3±5.79

CODA 31.2±7.85 74.07±10.53 – 0.67±0.88 46.45±15.23 – 1.33±0.79 43.0±16.61 –
↪→ + P 55.1±6.79 81.48±5.37 – 2.98±3.25 50.1±18.11 – 7.23±2.65 49.76±11.35 –
↪→ + FGH 44.49±9.48 66.99±12.44 – 0.67±0.88 42.74±9.92 – – – –
↪→ + ours 68.73±5.59 79.73±8.31 – 17.57±7.11 57.91±17.99 – 30.76±8.49 48.14±10.53 –

L2P 25.11±14.27 66.08±4.84 66.08±4.84 0.17±0.54 37.17±17.05 37.17±17.05 1.27±1.43 32.57±9.71 32.57±9.71

↪→ + P 44.49±9.29 82.29±4.67 82.29±4.67 0.99±1.85 68.68±10.22 68.68±10.22 9.52±5.2 57.63±5.72 57.63±5.72

↪→ + FGH 36.2±14.93 59.06±11.95 59.06±11.95 0.17±0.54 37.69±19.45 37.69±19.45 – – –
↪→ + ours 51.86±9.29 80.26±4.61 80.26±4.61 4.89±5.15 72.35±9.7 72.35±9.7 29.94±10.56 61.92±5.79 61.92±5.79

DualPrompt 30.55±8.18 66.76±12.01 – 0.76±1.01 55.84±11.41 – 1.96±0.73 47.9±11.97 –
↪→ + P 44.59±9.09 77.4±9.19 – 3.76±3.5 67.07±9.02 – 9.72±5.31 55.74±7.13 –
↪→ + FGH 40.53±9.47 51.57±10.52 – 0.76±1.01 56.11±12.18 – – – –
↪→ + ours 54.84±8.22 81.02±4.51 – 16.57±6.34 74.98±8.11 – 32.2±10.55 56.31±7.76 –

ConvPrompt 55.4±8.66 80.73±10.6 80.73±10.6 0.8±0.79 59.11±25.48 59.11±25.48 0.0±0.0 43.15±11.51 43.15±11.51

↪→ + P 77.07±6.13 85.47±3.49 85.47±3.49 4.66±1.35 62.52±9.51 62.52±9.51 2.08±0.76 52.51±7.86 52.51±7.86

↪→ + ours 76.87±5.83 88.17±2.16 88.17±2.16 18.83±0.87 80.46±4.66 80.46±4.66 6.67±0.49 63.2±4.64 63.2±4.64

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table B19: Accuracy on the eighth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 1.28±1.79 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 27.21±8.14 15.77±7.48 15.77±7.48 1.62±2.29 20.79±15.04 20.79±15.04 2.07±1.69 16.08±5.09 16.08±5.09

ER 73.81±5.46 0.0±0.0 73.81±5.46 30.82±10.29 0.0±0.0 30.82±10.29 37.82±9.88 0.0±0.0 37.82±9.88

ER + Linear probe 39.34±9.68 77.82±4.76 75.47±5.01 3.16±3.3 42.6±18.18 42.98±16.16 11.01±5.37 34.68±6.62 35.18±6.69

MVP 35.61±9.12 17.22±10.87 – 1.18±1.69 20.2±14.8 – 1.71±1.5 17.97±12.5 –
oLoRA 65.87±19.23 0.1±0.17 0.03±0.06 0.24±0.42 8.69±8.36 18.32±17.59 3.32±2.33 10.12±1.57 44.6±1.66

CODA 37.34±12.63 79.84±7.43 – 0.51±1.11 55.28±11.95 – 2.49±1.67 46.88±5.68 –
↪→ + P 55.88±8.16 86.52±4.15 – 2.29±3.04 59.99±20.43 – 8.71±2.86 48.02±7.24 –
↪→ + FGH 52.98±12.62 68.37±9.02 – 0.51±1.11 52.32±13.12 – – – –
↪→ + ours 73.32±5.49 84.08±3.49 – 10.94±8.19 58.11±17.21 – 27.13±5.49 46.66±8.8 –

L2P 34.34±17.96 70.62±9.41 70.62±9.41 1.01±2.23 39.43±12.8 39.43±12.8 2.61±3.36 36.12±8.1 36.12±8.1

↪→ + P 46.98±9.76 87.1±3.42 87.1±3.42 1.09±1.76 76.13±10.45 76.13±10.45 8.07±3.48 58.0±6.35 58.0±6.35

↪→ + FGH 46.26±18.21 59.06±7.8 59.06±7.8 1.08±2.33 38.35±13.37 38.35±13.37 – – –
↪→ + ours 53.13±9.61 85.19±3.61 85.19±3.61 7.41±6.41 74.01±10.55 74.01±10.55 26.95±4.41 61.55±6.64 61.55±6.64

DualPrompt 38.12±12.65 76.59±9.45 – 1.66±2.83 58.03±8.3 – 1.22±0.86 47.18±10.63 –
↪→ + P 47.04±10.12 83.64±4.23 – 3.34±4.18 71.79±9.35 – 6.69±3.31 53.29±6.83 –
↪→ + FGH 48.73±12.61 60.69±6.95 – 1.66±2.83 59.67±9.71 – – – –
↪→ + ours 57.35±9.48 83.94±3.24 – 12.95±8.2 73.56±9.2 – 26.6±4.67 53.26±6.73 –

ConvPrompt 58.23±24.93 75.9±5.14 75.9±5.14 0.0±0.0 73.07±8.8 73.07±8.8 0.0±0.0 53.12±12.48 53.12±12.48

↪→ + P 78.4±11.57 83.67±7.12 83.67±7.12 1.41±1.3 71.02±25.33 71.02±25.33 1.07±1.1 60.95±8.47 60.95±8.47

↪→ + ours 82.83±7.77 84.4±2.03 84.4±2.03 8.3±6.0 73.04±15.16 73.04±15.16 8.65±3.25 64.4±5.98 64.4±5.98

Table B20: Accuracy on the ninth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 6.15±9.25 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 37.66±6.23 22.6±8.2 22.6±8.2 0.72±0.78 30.8±14.39 30.8±14.39 2.08±1.17 17.13±7.51 17.13±7.51

ER 78.51±4.8 0.0±0.0 78.51±4.8 37.45±11.88 0.0±0.0 37.45±11.88 35.92±8.73 0.0±0.0 35.92±8.73

ER + Linear probe 40.88±6.63 80.3±4.91 79.28±5.72 3.07±2.03 52.04±15.48 44.13±12.89 10.72±5.31 36.53±6.67 34.89±7.23

MVP 43.58±6.45 23.27±14.93 – 0.9±1.23 26.76±12.6 – 3.0±2.7 20.39±13.29 –
oLoRA 80.87±4.14 0.23±0.32 0.4±0.61 2.14±2.14 20.88±5.05 19.02±20.12 1.67±2.33 11.98±11.8 32.84±11.87

CODA 42.42±14.64 83.39±4.62 – 1.14±2.33 60.37±9.36 – 3.44±2.28 47.25±7.21 –
↪→ + P 51.25±9.76 88.28±2.32 – 2.82±4.4 65.46±13.16 – 8.87±3.63 49.62±10.67 –
↪→ + FGH 59.44±14.55 77.23±8.62 – 1.14±2.33 58.56±11.27 – – – –
↪→ + ours 72.18±5.34 86.14±1.98 – 11.26±6.88 65.34±14.14 – 26.59±6.41 47.63±6.6 –

L2P 32.75±12.29 77.24±6.53 77.24±6.53 0.0±0.0 45.99±7.22 45.99±7.22 1.58±2.11 38.1±7.27 38.1±7.27

↪→ + P 37.89±7.12 86.99±3.6 86.99±3.6 1.2±1.5 79.37±7.6 79.37±7.6 5.97±4.42 60.38±5.11 60.38±5.11

↪→ + FGH 42.71±13.2 67.35±10.43 67.35±10.43 0.0±0.0 44.37±9.34 44.37±9.34 – – –
↪→ + ours 41.6±8.64 87.25±3.82 87.25±3.82 5.39±4.14 78.19±5.59 78.19±5.59 20.78±5.93 63.4±4.43 63.4±4.43

DualPrompt 34.09±8.35 79.19±6.65 – 1.06±1.42 65.76±7.33 – 1.93±1.2 50.17±6.1 –
↪→ + P 40.39±7.06 86.63±2.82 – 3.35±3.21 74.8±6.89 – 7.29±4.18 56.79±8.28 –
↪→ + FGH 45.17±8.12 63.4±7.34 – 1.06±1.42 66.85±7.3 – – – –
↪→ + ours 48.94±6.67 86.89±2.7 – 12.33±4.95 79.27±6.35 – 23.57±8.43 55.08±7.4 –

ConvPrompt 39.53±3.8 76.8±9.07 76.8±9.07 1.61±1.4 68.49±7.69 68.49±7.69 2.31±4.0 45.3±3.94 45.3±3.94

↪→ + P 74.43±6.01 84.93±5.8 84.93±5.8 4.56±1.66 71.92±8.61 71.92±8.61 3.72±6.21 58.85±4.05 58.85±4.05

↪→ + ours 74.53±5.64 87.0±2.25 87.0±2.25 19.21±6.48 81.4±3.92 81.4±3.92 8.54±9.95 65.56±2.62 65.56±2.62

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table B21: Accuracy on the tenth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and γ found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP 5× 10−5 5× 10−3 Best HP

Fine-tuning 80.73±18.69 10.0±0.0 10.0±0.0 0.0±0.0 0.0±0.0 1.13±3.58 0.0±0.0 0.0±0.0 0.0±0.0

Linear probe 55.21±6.6 93.38±3.35 93.38±3.35 1.73±1.83 21.96±9.99 21.96±9.99 2.1±2.15 23.77±6.44 23.77±6.44

ER 95.46±2.8 10.26±0.89 95.46±2.8 25.22±9.33 0.0±0.0 25.22±9.33 39.17±8.62 0.0±0.0 39.17±8.62

ER + Linear probe 42.54±7.05 89.44±3.86 89.02±4.04 4.68±4.22 33.71±8.96 36.04±8.12 5.86±3.92 36.89±6.33 35.71±7.5

MVP 55.04±3.94 93.63±3.2 – 1.74±2.36 19.32±8.88 – 2.43±2.19 23.85±13.53 –
oLoRA 86.47±1.15 38.7±22.78 49.5±14.2 5.5±7.1 20.2±5.92 8.94±4.5 1.1±0.97 15.08±2.23 27.32±16.16

CODA 39.71±13.53 82.54±7.16 – 0.46±0.66 63.39±12.83 – 1.76±1.51 53.4±9.88 –
↪→ + P 42.32±11.7 92.15±3.14 – 2.18±3.5 59.69±12.16 – 6.46±3.25 54.98±10.4 –
↪→ + FGH 53.67±13.36 72.21±13.67 – 0.46±0.66 58.35±13.41 – – – –
↪→ + ours 59.56±10.73 91.85±2.25 – 9.76±8.99 60.87±14.56 – 24.92±4.8 50.4±7.78 –

L2P 30.16±12.98 74.09±9.14 74.09±9.14 0.5±0.78 39.0±8.32 39.0±8.32 2.15±1.9 46.55±4.41 46.55±4.41

↪→ + P 29.04±9.53 87.51±3.59 87.51±3.59 1.16±1.38 73.72±5.37 73.72±5.37 6.5±4.87 63.23±5.37 63.23±5.37

↪→ + FGH 39.34±12.82 65.74±14.48 65.74±14.48 0.43±0.79 39.64±11.76 39.64±11.76 – – –
↪→ + ours 29.14±10.07 89.09±3.51 89.09±3.51 4.43±4.34 80.02±7.78 80.02±7.78 22.96±6.73 65.11±4.63 65.11±4.63

DualPrompt 32.75±9.51 82.79±4.04 – 0.89±0.94 65.36±8.6 – 2.82±1.62 57.25±4.51 –
↪→ + P 29.56±7.34 92.91±3.07 – 2.26±1.6 71.48±6.8 – 8.48±4.47 59.15±3.98 –
↪→ + FGH 42.1±10.5 68.25±9.35 – 0.89±0.94 64.75±11.8 – – – –
↪→ + ours 35.38±7.66 90.23±3.24 – 8.09±3.88 75.21±7.03 – 27.55±7.38 58.69±3.97 –

ConvPrompt 58.77±20.94 83.53±8.62 83.53±8.62 0.0±0.0 71.3±6.08 71.3±6.08 1.38±2.39 49.93±2.86 49.93±2.86

↪→ + P 74.03±17.46 93.63±3.1 93.63±3.1 0.35±0.61 67.19±8.49 67.19±8.49 1.68±2.9 51.55±13.8 51.55±13.8

↪→ + ours 70.23±8.9 92.0±4.25 92.0±4.25 1.36±1.62 73.94±4.83 73.94±4.83 6.55±10.72 60.49±8.22 60.49±8.22

35

	Introduction
	Related Work
	Continual Learning with Blurry Boundaries
	Continual Learning with Memory Buffer
	Hypergradients and Gradient Re-weighting

	Methodology
	From Offline to Online
	Prototypes as a Proxy for Memory
	Fine-Grained Hypergradients
	Overall Training Procedure

	Experiments
	Evaluation Procedure
	Experimental Setting
	Experimental Results

	Discussions
	Prototypes and FGH Synergy
	Selecting

	Conclusion
	Implementation and algorithm
	Implementation
	Algorithm
	Backbone
	Batch Wise Logits Mask
	Impact of LR on the Stability-Plasticity trade-off.
	Hyperparameters Grid Searched on VTAB

	Datasets and Baselines
	Datasets
	Baselines

	Adaptation of Methods to Our Setup
	Additional Evluation Metrics
	Average Performances
	Final Average Accuracy
	Performances on Previous Tasks
	Time Complexity
	Spatial Complexity

	Additional Experiments
	Details on Gradient Imbalance
	Details on stability-plasticity trade-off
	Longer Task Sequence
	Additional Memory Sizes

	Details on the Si-Blurry Setting
	Additional Gradient Values

