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ABSTRACT

Continual Learning (CL) aims to learn from a non-stationary data stream where the
underlying distribution changes over time. While recent advances have produced
efficient memory-free methods in the offline CL (offCL) setting, online CL (onCL)
remains dominated by memory-based approaches. The transition from offCL to
onCL is challenging, as many offline methods rely on (1) prior knowledge of task
boundaries and (2) sophisticated scheduling or optimization schemes, both of which
are unavailable when data arrives sequentially and can be seen only once. In this
paper, we investigate the adaptation of state-of-the-art memory-free offCL methods
to the online setting. We first show that augmenting these methods with lightweight
prototypes significantly improves performance, albeit at the cost of increased
Gradient Imbalance, resulting in a biased learning towards earlier tasks. To address
this issue, we introduce Fine-Grained Hypergradients, an online mechanism for
rebalancing gradient updates during training. Our experiments demonstrate that the
synergy between prototype memory and hypergradient reweighting substantially
allows for improved performance of memory-free methods in onCL. Code will be
released upon acceptance.

1 INTRODUCTION

Continual Learning (CL) has gained significant popularity over the past decade (Kirkpatrick et al.
(2017); |[Rao et al.| (2019); Zhou et al.| (2024a))). The core idea is to learn from a sequence of data
rather than a fixed dataset. As a result, the data distribution may change, and new classes can emerge,
often leading to the well-known problem of Catastrophic Forgetting (French|(1999)). In this paper,
we focus specifically on the Class Incremental Learning problem (Hsu et al.| (2018))).

CL scenarios are typically divided into two categories: offline Continual Learning (offCL) (Tiwari
et al. (2022))) and online Continual Learning (onCL) (Mai et al.|(2022)). The former, which is the more
widely studied setting, assumes that the data sequence is clearly segmented into discrete tasks and that
training within each task is analogous to conventional learning. Specifically, data within each task are
assumed to be i.i.d., and the model can be trained over multiple epochs before transitioning to the next
task. In contrast, onCL assumes a stream-like data arrival, where each sample is observed only once,
requiring rapid adaptation. To further align with real-world conditions, several recent studies consider
scenarios with unclear or blurry task boundaries (Koh et al.|(2023)); | Bang et al.| (2022)), removing
access to task identity altogether. These differences make offCL methods poorly transferable to onCL,
as many rely on multiple epochs and task boundary information. Representation-based methods such
as RANPAC (McDonnell et al.[(2024)) and EASE (Zhou et al.|(2024b))) are prominent examples: they
depend on task boundaries to compute task-specific representations, rendering them incompatible
with onCL. In this paper, we aim to explore how offCL research can contribute to the onCL Task-Free
and Memory-Free scenario.

In Online Task-Free Continual Learning (Aljundi et al|(2019); [Koh et al.|(2023)), state-of-the-art
approaches heavily rely on memory buffer (Michel et al.|(2024); [Wei et al.| (2023); |Guo et al.| (2022);
Gu et al.| (2022); [Wei et al.| (2025)); [Ye & Bors|(2024)). Indeed, memory-based methods are well
designed for onCL as they can be used in Task-Free scenarios and naturally tackle online difficulties by
allowing data stored in memory to be seen multiple times. However, practically, the usage of memory
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can be limited by hardware or privacy constraints. Conceptually, relying on memory does not solve
the Continual Learning problem, but rather avoids it. Therefore, memory-free methods (Wang et al.
(2022b)); Smith et al.|(2023); Roy et al.| (2024)); Wang et al.|(2022a)) are a key step towards solving
Continual Learning problems fundamentally, and their adaptation online makes them suitable for
more realistic scenarios. Building upon prior works that leverage prototypes (De Lange & Tuytelaars
(2021); |Weit et al.| (2023)); McDonnell et al.| (2024); Zhou et al.|(2024b)), we show that a simple yet
effective way to adapt memory-free offCL methods to the online setting is to use prototypes as a
simple memory buffer for the last Fully Connected (FC) layer only. While this approach improves
accuracy, it also introduces an undesirable side effect: increased Gradient Imbalance (GI) (He|(2024));
Guo et al.|(2023)); Dong et al.|(2023)), leading to a biased learning towards earlier tasks.

Another major challenge in onCL is tuning the Learning Rate (LR). While most offCL methods rely
on advanced LR optimization schemes, a common practice in onCL is to use the same fixed LR and
optimizer for all methods (Gu et al.| (2022); Mai et al.[(2021); Moon et al.|(2023); [Lin et al.| (2023)),
typically Stochastic Gradient Descent (SGD) with a fixed LR of 0.1. However, this design choice
is overly restrictive, as the optimal LR varies significantly across methods and datasets. It is well
known that a poorly chosen LR can critically hinder final performance. An alternative strategy is to
tune the LR on one dataset and transfer it to others (Michel et al.|(2024))). While more realistic, this
approach provides no guarantee of generalization across datasets.

In this paper, we propose to address both the Gradient Imbalance and LR optimization challenges
encountered in onCL by introducing Fine-Grained Hypergradients (FGH), a novel higher-order
optiization strategy which dynamically reweights the individual gradients during training. The core
idea is to extend hypergradient theory (Baydin et al.| (2018))) to learn low-level gradient weights
instead of high-level LR. FGH not only mitigates gradient imbalance but also improves accuracy
under suboptimal LR settings. To demonstrate its effectiveness, we introduce a novel evaluation
strategy that assesses performance across a range of initial LR values. Our contributions are as
follows:

* We bridge the gap between off CL and onCL by adapting various memory-free offCL
methods to the online setting and achieving state-of-the-art performances;

* We address GI and the absence of LR optimization strategies in onCL by introducing a novel
high-order optimization strategy named Fine-Grained Hypergradients;

* We propose a more realistic multi-LR evaluation and show improved performance when
combining our method with state-of-the-art offCL techniques.

2 RELATED WORK

2.1 CONTINUAL LEARNING WITH BLURRY BOUNDARIES

Continual Learning (CL) is generally framed as training a model fy(-), parameterized by 6, on a
sequence of K tasks. Each task, indexedby k£ € 1, --- | K, is associated with a dataset Dy, which may
be drawn from a distinct distribution. In Class Incremental Learning (Hsu et al.|(2018))), each dataset
is composed of data-label pairs, Dy, = (X, Vx). In online CL (onCL), data arrive in a stream and can
typically be observed only once (He et al.|(2020)), making access to clear task boundaries unlikely.
Consequently, several studies propose working under boundary-free scenarios (Buzzega et al.| (2020)),
where task changes are unknown. However, when task changes are clear, they may still be inferred.
To better model intermediate cases, the blurry boundary setting has been introduced (Koh et al.
(2023); Bang et al.| (2022); [Michel et al.|(2024))). Of particular interest is the Si-Blurry setting (Moon
et al.| (2023))), in which task boundaries are not only blurry but also allow classes to appear or
disappear across multiple tasks. This setup is more reflective of real-world scenarios while also
presenting additional challenges for continual learning algorithms.

2.2 CONTINUAL LEARNING WITH MEMORY BUFFER

Memory buffers remain among the most practical and effective strategies for mitigating forgetting
in onCL (Raghavan et al.|(2024bja); |Guo et al.[(2022); [Su et al.| (2025); He & Zhu|(2022);|Caccia
et al.[(2022);|Ye & Bors|(2024); | Wang et al.| (2024bza); Buzzega et al.| (2021)). Some works have
even shown that memory alone can yield competitive performance (Prabhu et al.| (2020); Michel
et al.| (2022)), highlighting its importance in the online setting. As a result, memory buffering is
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Figure 1: Overall training procedure of FGH when combined with prompt-tuning strategies.

considered a core component of many onCL methods. In contrast, offCL has recently seen a shift
toward memory-free approaches (He et al.|(2025); |Liang & Li| (2024); McDonnell et al.| (2024);
Wang et al.| (2022a))). While some memory-free methods have been adapted to the online setting,
their performance typically lags behind memory-based approaches (Moon et al.[(2023); |Wei1 et al.
(2025))). In this work, we aim to bridge this gap by leveraging memory-free offCL methods in the
onCL setting.

2.3 HYPERGRADIENTS AND GRADIENT RE-WEIGHTING

Hypergradients (Baydin et al.| (2018); Almeida et al.[|(1999)) address the challenge of optimizing
learning rates in standard training setups. The key idea is to derive a gradient descent algorithm
that updates the learning rate itself. Notably, it is demonstrated that computing the dot product of
consecutive gradients, VL(6;) - VL(0,_1), is sufficient to perform one update step for the learning
rate. Here, ¢ is the current step index, 6 denotes the model parameters, and L is the loss function.
However, such techniques have traditionally been developed for offline training and applied at a
global scale. In the context of CL, gradient re-weighting strategies have been explored primarily in
replay-based methods, often focusing on the last layer. For example, previous work has proposed
manually re-weighting the gradient at the loss level to reduce its accumulation during training,
addressing the issue of Gradient Imbalance (Guo et al.| (2023); He|(2024)). In this work, we extend
this idea by introducing Fine-Grained Hypergradients, which enable learned gradient re-weighting
across all trainable parameters, not just the last layer. This approach allows for more precise control
of gradient dynamics during training in onCL scenarios.

3 METHODOLOGY

Aiming to bring offCL and onCL research fields closer, this work proposes to adapt and improve
existing off CL memory-free methods to the onCL, memory-free, and task-free problem. Firstly, we
present the online adaptation and challenges induced by the onCL context. Secondly, we propose
to leverage simple prototypes as an efficient way to counter forgetting, without storing input data.
Eventually, to counter the challenges regarding Learning Rate selection and Gradient Imbalance, we
propose a novel online adaptive gradient-reweighting strategy called Fine-Grained Hypergradients.

3.1 FROM OFFLINE TO ONLINE

Adapting offline methods to the online setting is non-trivial. We highlight key components of offCL
methods and outline the modifications necessary to make them applicable in the online scenario.

Removing Task Boundary Information. Typically, most offline methods take advantage of the
task boundaries knowledge (Zhou et al.| (2024b); McDonnell et al.| (2024)); Liang & Li| (2024);
Smith et al.| (2023)); [Wang et al.| (2022bza); |[Roy et al.|(2024))). While representation-based methods
cannot be adapted online as the exact task change is required to recompute representations, most
prompt-based methods happen to be more flexible as the task information is used solely to freeze
certain prompts in the prompt pool (Smith et al. (2023)); Wang et al.| (2022b)). Such a prompt-freezing
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strategy tackles prompt forgetting during training in offCL. Therefore, if learned prompts are never
frozen, prompt-based approaches can easily be trained in task-free onCL. More details regarding the
parameters used are given in the Appendix.

Learning Rate Selection. When training offCL methods, the choice of the LR as well as the
use of an LR scheduler is particularly impactful. In general, LR selection remains a difficult topic
in Continual Learning, as, in theory, future datasets are unknown and hyperparameter search is
unavailable (Cha & Chol(2024)). This problem is even more pronounced in the online setting, as not
even a learning rate scheduler can be used, since the length and boundaries of tasks are considered
unknown. More importantly, naively transferring LR values used in offCL to onCL often leads to
unsatisfactory performance. Therefore, we evaluate every online method with various fixed learning
rate values and report the results in Section[d.3] Additional information regarding the evaluation
procedure is provided in Section @.T}

Gradient Imbalance. Gradient Imbalance (He|(2024);|Guo et al.|(2023);|Dong et al.|(2023))) in
Continual Learning occurs when the model suffers from larger gradients toward specific samples or
classes during training. An example of such an imbalance with larger gradients for earlier classes is
given in Figure[2] The main consequence is that the model will give stronger updates with regard to
specific classes. While this problem can similarly be observed offline, it is most severe in onCL as (1)
each data point is seen only once, so the training cannot be adapted from task to task, (2) the usage
of memory increases such imbalance (He| (2024))), and as discussed above, memory is adamant in
onCL. When adapting offCL methods in onCL, we not only observe GI, but see an increase in such
imbalance when introducing prototypes in Section [3.2]

3.2 PROTOTYPES AS A PROXY FOR MEMORY

As discussed above, memory is at the core of most state-of-the-art onCL methods. In this study, we
propose leveraging online prototypes to act as a memory buffer for the last layer only. In this context,
we compute prototypes P = {1011€l , pz2, SRR pzr} for each class during training. Let us consider a
model fy parameterized by 6 such that for an input z € R?, with d being the dimension of the input
space, we have fo(z) = h,(z)T - W, where W € R!¢, ¢ is the number of classes, [ is the dimension
of the output of h,,, and § = {w, W}. In this context, h,, would typically be a pre-trained model,
and W is the weight of the final FC layer (including the bias). For a given class j, the class prototype
pij computed over k; samples is updated when encountering a new sample xij 41~ For simplicity,

we omit the j index in k; going forward. Therefore, we leverage a simple prototype update rule:

i kepl+ha(aly) W
P = k+1 ’

1th

where xi 41 isthe k + encountered sample of class j. For all classes, prototypes are initialized

such that p{, = 0. Prototypes are then used to recalibrate the final FC layer, analogous to replaying
the average of past data representations during training. In this sense, we define the prototype-based
loss term as:

-1 ‘ ,
Lp=— ) log(()" W), @)
J€Cola
where Coig = {j € {1,---, ¢} | pj, # 0}. Lp is the cross-entropy loss with respect to prototypes

of encountered classes. As discussed in section 5] while using prototypes as a memory buffer can
significantly improve the performance of the considered methods, it also increases the GI in the final
layer of continually trained models (He|(2024)).

3.3 FINE-GRAINED HYPERGRADIENTS

In order to give the model the capacity to adapt its LR at a local and global level, we introduce
Fine-Grained Hypergradients. FGH introduces independent weights for each trainable parameter,
allowing fine-grained adaptation of individual gradients during the learning process, rather than
only high-level learning rate adaptation. Formally, let us consider the update rule for an individual
parameter 6" € 6 induced by gradient-based optimization algorithms over parameters 6, given a
learning rate 7:

= 07— VL)), 3)
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where ¢ is the iteration index and 1 < m < D with D € R™ the number of trainable parameters. To
reweight the learned gradient, we introduce step-dependent weighting coefficients, leading to the
following update rule:

051 = 01" — iV L(0;"), ©)
where o} € R™* is the parameter-dependent gradient weighting coefficient at step ¢. While such
gradient weighting strategies were previously limited to the last layer and computed with hand-crafted

rules (He|(2024))), we propose learning them during training. In particular, we aim to construct a
higher-level update for o such that:

OL(0;")

m m
alti =at —f
t+1 t m
0o}

&)
with 8 € R the hypergradient learning rate. To compute the partial derivative, we apply the chain

rule and make use of the fact that 0" = 67", — a*nV.L(0} ), such that:

AL (07 oo

daj" daj"

= VL) - =—nVL(O) - VLEO™,). (6)

The resulting Fine-Grained Hypergradients update becomes, for any 1 < m < D:
oy =o' + - VLO") - VL0 ), @)

where v = 7. Our FGH module gives the model the capacity to modify the LR locally, potentially
mitigating GI, as well as globally, potentially tackling the problem of unknown LR. Naturally, this
introduces an additional hyperparameter. We discuss this limitation in Section[5 For clarity, the
relation presented in equation[7]relies on an SGD update. In practice, we favor a momentum-based
update. Its details implementation is provided in the Appendix.

3.4 OVERALL TRAINING PROCEDURE

Considering a baseline memory-free offCL. method trained by minimizing a baseline loss Lpgs¢, We
can adapt it to onCL by introducing prototypes and FGH in the training procedure. We simply add
the extra loss term £, which amounts to minimizing the overall loss £ = Ly4sc + £,,. Additionally,
we modify the gradient update to adjust the gradient weights as defined in Section[3.3] Furthermore,
we leverage batch-wise masking to consider the logits of classes that are only present in the current
batch. An overview of the training procedure is given in Figure

4 EXPERIMENTS

4.1 EVALUATION PROCEDURE

Metric. We follow previous work and define the Average Performance (AP) as the average of the
accuracies computed after each task during training (Zhou et al.| (2024a))). More details in Appendix.

Multi-Learning-Rate Evaluation. Since finding the optimal LR in onCL is an especially hard
task, we introduce a new evaluation setting based on a multi-LR evaluation. Indeed, we propose to
give the performances of the compared methods with various LR values. In particular, each method
is evaluated given three cases: (1) Using a low LR value, (2) Using a high LR value, (3) Using the
best LR value found after conducting a small search for v and the LR on VTAB (Zhai et al.| (2019)).
Specifically, we experiment for LR values in {5 x 107> 5 x 10~3}. The intuition behind such values
is that we reckon that the optimal LR is likely to fall into that range, and such values are often used in
the literature. Such a metric should emphasize the validity of the approach when the optimal LR is
unknown, leading to a fairer comparison than using the same LR blindly for every approach.

4.2 EXPERIMENTAL SETTING

Baselines and Datasets. In order to demonstrate the benefits of our approach, we integrate it with
several state-of-the-art methods in offCL, when adapting them to onCL. Notably, L2P (Wang et al.
(2022b)), DualPrompt (Wang et al.|(2022a))), CODA (Smith et al.| (2023))), ConvPrompt (Roy et al.
(2024)). These methods are not naturally suited for the online case, so they had to be adapted, as
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Table 1: Average performance (%) of all considered baselines in the Si-Blurry setting. + ours refers
to combining baselines with prototypes and FGH. Best HP refers to the best set of LR and  found
on VTAB. In some cases, the best HP coincides with one of the default HP values.

Dataset CIFAR100 CUB ImageNet-R

LearningRate 5% 107 5x107® BestHP | 5x10™® 5x 107 BestHP | 5x 107 5x 107 Best HP
Fine-tuning 29.541644 2461030  2.42+026 | 6134187  1.424027  1.38+024 | 3.961070  1.38+017  1.49+026
Linear probe 22.15+380  35.59+414  35.59+414 | 2.241040  49.371275 49.371275 | 3.831041  34.53i156 34.53+156
ER 81.331304  3.144063  81.334304 | 52454302 1.56+033  52.454302 | 55.06+192  2.00+043  55.06+1.9
ER + Linear probe | 34.69+544 79.97+224  79.744245 | 4.34+002  64.20+137 64.07+145 | 7.70+002  54.52+110 53.98+1.11
MVP 21.57+227 41.42+600 36.88+197 | 2.73+065 47.114+262 39.12428 | 4.19+055  31.35+220 28.48+1.18
oLoRA 36.27+401 27.04+718 34.67+751 | 5.04+156  49.044224 47374151 | 8.82+150  33.084367 39.29457m
CODA 15144378 71.12+447  56.03+210 | 0.83+035  53.17+196 35904633 | 1.92+062  47.65+140 32.93:+155
— + ours 44214804 79474223 69.04+256 | 4.50+063 68.64+310 47494525 | 9.95+170  57.16+117  41.68+232
L2P 10.80+430 58.20+650 58.204650 | 0.46+024  30.57+385 30.57+385 | 1.05+020 27174461 27.17+461
— + ours 33.054801  79.224302  79.224302 | 2.00+098  68.68+220 68.68+220 | 5.80+147  59.89+205 59.89+205
DualPrompt 15.68+353  66.90+504  53.394535 | 0.97+042  52.32+240 43.76+304 | 1.80+030 46.05+174 35274261
— + ours 42124634 75231321 70.34+144 | 5431008  74.89+151 67.38+313 | 10.11+138  57.68+170 51.86+1.15
ConvPrompt 24.55+380  75.01+s16  75.014s06 | 0.64+023  56.27+084 56.27+084 | 1.18+002  46.75+180 46.75+150
— +ours 44231320 86.341359 86.341350 | 4431113 73.88+0s7 73.88+0s7 | 3.78:022  62.621011  62.62:0.11

described in Section[3.1] Additionally, we compare adapted methods to state-of-the-art memory-
free onCL methods MVP (Moon et al.| (2023)) and Online LORA (oLoRA) (Wei et al.| (2025)).
Eventually, we experimented with Experience Replay (ER) (Rolnick et al.| (2019)) to compare
with a traditional memory-based approach, as well as fine-tuning and linear probe baselines. We
evaluate our method on CUB (Wah et al.|(2011)), ImageNet-R (Hendrycks et al.| (2021)) and
CIFAR100 (Krizhevsky|(2012)). As introduced above, we conduct a small hyperparameter search
regarding the LR on VTAB (Zhai et al.|(2019)), which is referred to as the best columns in Tables E]
and 2] More details in the Appendix.

Clear and Blurry Boundaries. We experiment in clear boundaries settings, for continuity with
previous work, despite its lack of realism for onCL. In that sense, we consider an initial count of 10
classes for the first task, with an increment of 10 classes per task. This results in 10 tasks with 10
classes per task for CIFAR100, as well as 20 tasks with 10 classes per task for CUB and ImageNet-R.
However, to evaluate our method in more realistic scenarios, we reckon the Si-Blurry (Moon et al.
(2023))) setting to be the most relevant to our study case. Specifically, we use their implementation of
Stochastic incremental Blurry boundaries (Si-Blurry). We use the same number of tasks as for the
clear setting. In this case, some classes can appear or disappear during training, and the transitions
are not necessarily clear. More details on this setting can be found in the Appendix.

Implementation Details. Every method is evaluated in the onCL context, where only one pass
over the data is allowed. The batch size is fixed at 100 to simulate small data increments with a low
storage budget in the context of fast adaptation. The backbone used for all compared approaches is a
ViT-base (Dosovitskiy et al.[(2021)), pre-trained on ImageNet 21k. Each experiment was conducted
over 10 runs, and the average and standard deviation are reported, except for ConvPrompt and oLoRA,
where only 3 runs were used due to their intensive computation requirements. The memory size of
memory-based methods is set to 1000. Each run was conducted with a different seed, which also
impacted the task generation process. For all experiments, we use v = 1 as the default value. More
details on the selection of -y can be found in Section[5.2] More details are given in the Appendix.

4.3 EXPERIMENTAL RESULTS

Improvement over suboptimal LR.  As shown in Table[T]and Table [2] augmenting the considered
baselines with our proposed strategy consistently yields performance improvements. Moreover, the
strongest memory-free methods are always achieved when our strategy is employed. Notably, the
relative gain is most pronounced when starting from a suboptimal LR. For instance, on CIFAR100
with ConvPrompt (Table , using an initial LR of 5 x 1075 results in a performance improvement
of 26.3%, whereas with a higher LR of 5 x 10~3 the improvement is 13.8%. A similar trend can
be observed in Table [3] where the benefit of incorporating FGH over prototypes becomes more
significant at lower LR values.

Methods for offCL are Powerful onCL Learners. We evaluate in both clear and blurry settings,
reporting Average Performance in Table[2]and Table[I] For offCL methods (without + ours), we apply



Under review as a conference paper at ICLR 2026

Table 2: Average Performances (%) of all considered baselines, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and  found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate  5x 107° 5x 1072 BestHP 5x 107 5x107% BestHP 5x107° 5x 10~® Best HP
Fine-tuning 29.83z056  2.93:000 2.93:000 | 5.89z001 1.70=0.15 1.77s014 | 9142004 2.16:033 1.92:0.15
Linear probe 12.50:145  30.372063 30.37:063 | 0.80:022  53.40:162 53.40:162 | 1.872031  35.54s104  35.54z104
ER 81.73:060 2.95:006  81.73:060 | 42924321 1.76:020  42.92:321 | 53.43:110 2172035 53.43:110
ER + Linear probe | 33.69:1.47  81.79s121  81.13s121 | 2.35:024  63.035108  62.81:003 | 6.042083  51.62:106  50.25:102
MVP 21.60:158  33.10:075 24.97+104 | 2.85:076  57.17s136  51.08s206 | 4.20:073  35.53:131  34.53:14
oLoRA 35.35s503 22.99s177 29.08:139 | 3.88:140  53.15:390 43444206 | 7.01:058 3691179  48.90:1.73
CODA 247126 71.62:235 66.66:308 | 2.542068  61.04208 49.13:305 | 3.642087  62.33:197  53.63:205
< + ours 58.76+228  78.50:143 71.40s386 | 5.842113  70.320270  56.63:397 | 13.02:138 64412125  58.33:200
L2P 20.95:440 64.86:378 64.86:378 | 2.032075  35.67:336  35.67:336 | 3.50:116  43.15:281  43.15:2s1
— + ours 52.95:004  82.26:076  82.26:076 | 3.94s112 72.60:1.16  72.60:106 | 11.82:142  66.96:050  66.96:0.0
DualPrompt 23.24:15  69.172227 6477252 | 2.62:000  61.26:238 55.62:206 | 3.642046  59.55:123  54.23:005
< + ours 528419 75.01c132  72.74:102 | 6.09:108  78.56:087 73.30:050 | 13.50:100  63.742051 62.47x105
ConvPrompt 33.80:071  73.88:3.15  73.88:315 | 2.14s054  65.96:278  65.96:278 | 3.07:037  59.60:020  59.60:020
< + ours 60.07:137  87.65:037 87.65:037 | 5.54:110  75.73:012  75.73:012 | 6.89:032  69.76:138 69.76:138

Table 3: Average Performances (%) of all considered baselines with and without prototypes as
memory and FGH, in the Si-Blurry setting. Results over 10 runs are displayed, and v = 1.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5x10™° 5x 107 5x10™° 5x107% 5x10° 5x 1073
CODA 15144378 T1.12+447 | 0.832035  53.17x196 | 1.92s0620  47.65+14
—~+P 31.27+6905  78.18433 1.69:03  62.934478 | 4.36:s1.11  55.924184
— + FGH 22.27+s588  69.66s324 | 0.842034  50.45:043 | 2.14s011 4431301
< + P+ FGH | 44.21:804 79.47:223 | 4.5:063 68.64:3.19 | 9.95:179  57.16:1.17
L2P 10.8:430  58.216.50 0.46:024  30.57s385 | 1.05:020  27.171461
—+P 22.81s661  78.13s315 | 0.82:030  64.184326 | 2.39s068  57.83+200
— + FGH 15.444576  55.66:425 | 0.46:023  27.68s364 | 1.15:033  24.15458
<~ + P+ FGH | 33.05:801  79.22:302 | 2.0:098 68.68+229 | 5.8:1.47 59.89:2.05
DualPrompt 15.68:353  66.9:504 | 0.97:042  52.32:24 | 1.8s030 46.0541.74
—+P 30.12s566  74.224303 | 2.072067  71.96s16 | 4432084  58.37:1.03
— + FGH 22.26:549 63931376 | 0.962043  50.2:257 | 2.09:053  40.02:2242
< + P+ FGH | 42.12:63¢  75.23:321 | 5.43:008  74.89:151 | 10.11:138 57.68:17
ConvPrompt 24.55:38  75.01ss06 | 0.64023  56.27:084 | 1.18s002  46.75418
—+P 423572 8414507 | 1.9:06 70.81s086 | 2.415026  57.42:058
— + FGH 28.64:04 759971 | 0.83:015 5596227 | 1.19:004  49.39:060
— +P+FGH | 44.23:329 86.34:350 | 4.43:1.13  73.88:087 | 3.782022  62.62:0.11

only the adaptation described in Section[3.1} Interestingly, these methods prove highly effective in the
online setting, often outperforming MVP and oLoRA, despite being originally designed for offline
learning. A likely explanation is that prior work typically applied offline hyperparameters directly
to the online problem, leading to suboptimal results. In some cases, such as CIFAR100 with an LR
of 5 x 107°, oLoRA achieves the strongest performance among memory-free baselines. However,
under the Best HP setting, offCL. methods consistently achieve substantially better results. It is also
worth noting that MVP and oLoRA depend on several additional hyperparameters, which may not
generalize across scenarios. Together, these observations highlight the central role of learning rate
and hyperparameter selection in Continual Learning.

Ablation Study. To clarify the contribution of each component of our method, we include the
performance of the original baselines, followed by the performance of these baselines combined with
Prototypes only (+ OP), and the performance of these baselines combined with FGH (+ FGH). These
results are included in Tables [3] for the blurry scenario. While it is clear that the use of prototypes
is largely beneficial, in some situations, the addition of FGH can lead to a drop in performance.
One explanation for this observation is the reverse GI induced by the usage of FGH, as presented in
Section [5.1]and Figure[2] Larger gradients on newer tasks induce faster learning of newly introduced
classes, with the risk of increased forgetting on earlier classes. Even though this imbalance might be
favorable, leveraging FGH without any stability-focused measures can lead to lower performance.
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Nonetheless, the combination of both strategies largely leads to the best performance. We give more
details on this stability-plasticity trade-off in the Appendix.

5 DISCUSSIONS

5.1 PROTOTYPES AND FGH SYNERGY

FGH impact on Gradient Imbalance. To analyze the inner workings between prototypes and
FGH, let us consider the last classification layer W as defined in Section Each column W/, with
j € {1, ¢} as a class index, corresponds to the class-specific weights of the last layer. Therefore, at
a training step ¢, we can define the class-specific gradient g] = V.L(W/). We are interested in the

average gradient norm throughout training, which is ¢/ = — i;”l“” |lg7]|, with £, being the

tmax

maximum number of training steps. Similarly, we define the fask-specific gradient norm at the end of
training for a task k as G* = ICilkl > icc, 97 with Cj, being the classes present in task k. We define:

Gk

Gh—- =
" maxi<i<rt Gl

®

as the normalized average gradient norm corresponding to a task k at the end of training. We show the
values of G¥ at the end of training for CODA on CIFAR100 in the clear setting and an LR of 5 x 10 3
in Figure 2| Several observations can be made: (1) When training in onCL, a strong GI occurs,
favoring stronger gradients for earlier classes than for later classes. (2) When introducing prototypes
(+ P), despite a gain in performance, such an imbalance is increased. This behavior is expected as the
prototype induces an additional gradient corresponding to older classes when training on the current
task. (3) FGH reverses and reduces the imbalance when compared with using prototypes, leading to
larger gradient values for the later classes. We argue that this imbalance is favorable because a larger
LR usually implies rapid adaptability of the model, which is desired for newer classes, while older
classes typically require lower gradients for more stability. Coefficients of variation are given in the
appendix for a more detailed analysis of this behavior.

1.0 Fg
-ED':
g BN CODA
205t 1] mm coba+p
© CODA + FGH
& BN CODA +P +FGH

0'00123456789

Task id k&

Figure 2: Values of the average normalized gradients per task G* for CODA on CIFAR100, 10 tasks.
When including FGH, we display the resulting gradient after multiplying by the coefficients.

Underlying Intuition. To illustrate how FGH mitigates GI, Figure [3]shows task-specific gradient
values with and without FGH. We observe that gradients are amplified more strongly for later tasks
than for earlier ones, a trend confirmed across methods (see Appendix). According to the update rule
in equation [7} gradients for early tasks change direction frequently, leading to smaller coefficient
growth, whereas later tasks produce more stable gradients and thus larger coefficients. Intuitively, this
mechanism down-weights unstable, high-magnitude gradients from early tasks while emphasizing
the smaller, steadier gradients of later tasks, thereby correcting the imbalance.

5.2  SELECTING 7y

The main drawback of leveraging FGH is the addition of an extra hyperparameter . To provide
some additional insight into the impact of  on the final performance, we experiment with v €
{1076,1075,--- 1,10} and show the results in Figure 4] It is important to note that v = 0 is
equivalent to disabling the FGH mechanism. Therefore, it can be observed that for all methods, on
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(a) G? on CIFAR100 with CODA (10 tasks).

Without FGH With FGH
: : : : : : ; : . :
D 75t —— CODA | l . CODA + FGH
B —:— CODA +P | n [ —— CODA +P+FGH
1 . | } i
250 by il i
S :li\'f‘f\}"“‘ yr\\’\ll"”\’l”
2 st SR b |
£ / i
O» _.__Mm—l*_—‘_.—__‘ —— J‘ : ‘\Al—-—._._: ...... o
380 400 420 440 460 480 500 380 400 420 440 460 480 500
Training step Training step
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Figure 3: Values of gradients for CODA on CIFAR100 with 10 tasks, with and without prototypes and
FGH. When including FGH, we show the resulting gradient after multiplication by the coefficients.

both datasets, larger values of v lead to substantial improvement over the baselines. Nonetheless,
higher values of v may lead to unstable training due to high gradients. Therefore, we set v = 1 for
all experiments by default. Even though FGH introduces an additional hyperparameter, its impact is
positive in all cases when combined with prototypes.

—e— CODA —e— DualPrompt L2P
g — — g
o [ ) 70 ./-/ 1
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Figure 4: Average Accuracy (%) on VTAB (left) and CUB (right), in the Si-blurry setting, with
an incremental step of 5 classes per task, an LR of 5 x 1072, for CODA, DualPrompt, and L2P
combined with prototypes and FGH, for varying values of ~.

6 CONCLUSION

In this paper, we tackled the problem of Online Memory-Free Task-Free Continual Learning, an
especially realistic problem. In that sense, we propose to narrow the gap between offCL and onCL
research fields by adapting state-of-the-art off CL methods to the onCL problem by leveraging
prototypes as a simple memory replacement. However, such a strategy increases gradient imbalance
towards earlier classes and results in biased training. Moreover, limitations regarding the choice
of the optimal LR remain unaddressed. Therefore, we introduced Fine-Grained Hypergradients
(FGH) for Gradient Imbalance adjustment and online LR adaptation. Our method consistently
outperforms existing memory-free onCL approaches, such as MVP and oLoRA, across a wide range
of experimental settings. The synergy between these components enables more efficient and balanced
learning throughout the training process. Overall, our results demonstrate significant performance
improvements, encouraging further connections between offCL and onCL research. Eventually, this
approach offers a promising path towards scalable and efficient online learning solutions.
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A IMPLEMENTATION AND ALGORITHM

A.1 IMPLEMENTATION

For our implementation, we rely on the LAMDA-PILOT repository (Sun et al.[(2025)), available at
https://github.com/LAMDA-CL/LAMDA-PILOT. The implementation of existing methods
was adapted to an online scenario.

A.2 ALGORITHM

The implementation that we used for our experiments is based on an Adam update. For the sake of
clarity, we present our method with SGD and Adam. We omitted the bias, logits mask, and coefficient
clamping from the pseudo-code. Therefore, we give the full details of the procedure in Algorithms 2]
and[I] in a pseudo-code Pytorch-like implementation.

Algorithm 1 PyTorch-like pseudo-code of integrating prototypes as memory and FGH with baselines.

gamma, grad_weight, old_grad = 1, {}, {}

for x, y in dataloader:
h, y_hat = network(x) # features and logits
loss_baseline = criterion_baseline(y_hat, y) # Baseline loss
proto, labels = get_prototypes() # Prototypes as memory
loss_p = cross_entropy (network.fc(proto), labels) # Eqg. 2
loss = loss_baseline + loss_p
loss.backward() # compute gradients

# Fine-Grained Hypergradient update
for i, param in enumerate (network.parameters()) :
curr_grad = param.grad
if curr_grad is not None:
if i in grad_weight.keys():

grad_weight [i] = grad_weight[i] + gamma * curr_grad = old_grad[i]
param.grad = grad_weight[i] * param.grad

else:
grad_weight[i] = 1.0

old_grad[i] = curr_grad

optim.step ()
update_proto(h, y) # Eg. 1

A.3 BACKBONE

We leverage a ViT-base (Dosovitskiy et al.|(2021)), pre-trained on ImageNet-21k. Precisely, we use
the implementation of the timm library, available at https://huggingface.co/timm, with
model name "vit_base_patch16_224".

A.4 BATCH WISE LOGITS MASK

Another key component when training offline is the usage of a logits mask. Let z € R¢ denote the
logits output of the trained model. In the offline case, the logits mask m is defined such that

{0, ifjel,
Il’lj = .
—00, otherwise.

With ), the ensemble of classes that the model has been exposed to at the current time of training.
The masked logits are then computed as

Z =7+ m.

In the blurry boundaries setting, classes can appear and disappear several times during training and
across tasks. In that sense, we adopt a more flexible version of the logits mask where YV = Vyq¢ch-
With Vyatcn, the set of all classes present in the current batch.
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Algorithm 2 PyTorch-like pseudo-code of our Adam-based method integration with other baselines.
Extra details are given in this version regarding bias consideration and batch-wise masking.

# Adam parameters

m = 0

v = 0

betal = 0.9

beta2 = 0.999

step = 0

# Hypergrad parameters

gamma = le-3

grad_weight = torch.ones(n_classes)

prev_grad = None

for x, y in dataloader:
# Baseline loss
h, logits_base = network (x) # features and logits
# Batch-wise masking

mask = [1i for i in range(logits_b.shape[-1]) if i not in y.unique()]
logits_b[:, mask] = float('—-inf'")
loss_baseline = criterion_baseline(logits_b, vy)

# FC recalibration
proto, labels = get_prototypes()

logits = network.fc(proto)
# Batch-wise masking
mask = [1 for i in range(logits.shape[-1]) if i not in labels.unique() ]

logits[:, mask] = float ('—-inf")
loss_op = cross_entropy(logits, labels)

loss = loss_baseline + loss_op

optim.zero_grad()
loss.backward ()

# Class-Wise Hypergradient update

curr_W = network.fc.weight.grad

curr_B = network.fc.bias.grad

curr_grad = torch.cat ([curr_W, curr_B.unsqueeze(l)], dim=1)
if prev_grad is not None:

Adam update

= betal * m + (1 - betal) % curr_grad

= beta?2 v + (1 - beta2) * (curr_grad *x 2)
m_hat = m (1 — betal xx step)

v_hat = v (1 - beta2 =x step)

curr_grad m_hat / (torch.sqgrt (v_hat) + 1e-8)

=S

I~~~ %

grad_weight += gamma * (curr_grad @ prev_grad.T).diag() #Eqg. 7
for i in range(n_classes):
network.fc.weight.grad[i, :] = network.fc.weight.grad[i, :] » grad_weight[i]
network.fc.bias.grad[i] = network.fc.bias.grad[i] » grad_weight[i]
prev_grad = curr_grad
optim.step ()

update_proto(h, y) # Eq. 1

A.5 IMPACT OF LR ON THE STABILITY-PLASTICITY TRADE-OFF.

It is clear that selecting an appropriate learning rate is essential for optimal performance. In standard
scenarios, the impact of its choice on loss minimization and convergence speed has been extensively
studied 2016)). For offCL, previous studies have considered to impact of the LR on
forgetting (Mirzadeh et al.| (2020)). Notably, a higher LR would increase forgetting, and vice versa.
Intuitively, the learning rate gives direct control on the plasticity-stability tradeoff (Wang et al.|
(2024b)). To confirm such behavior in onCL, we experiment with larger and smaller LR values. As
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Figure AS: Task-wise accuracy (%) of DualPrompt at the end of training on CIFAR100, split in 10
tasks, for LR values in {5 x 1075, 5 x 1072}, with a batch size of 10.

Table B4: Hyperparameters tested on VTAB, clear setting, an increment of 5 classes per task.
Hyperpameters used for Best HP as written in bold.

Method | Learning Rate | v

Fine-tuning [0.001, 0.005, 0.01, 0.05, 0.1] N/A

Linear probe [0.001, 0.005, 0.01, 0.05, 0.1] N/A

ER [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] | N/A

ER + Linear probe | [0.001, 0.005, 0.01, 0.05, 0.1] N/A

MVP [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] N/A

oLoRA [0.001, 0.005, 0.01, 0.05, 0.1] N/A

CODA [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
ConvPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
DualPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
L2P [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]

can be seen in Figure when trained with a higher learning rate (5 x 10~2), the model tends to
obtain higher performances on the latest tasks while exhibiting especially low performances on earlier
tasks. When trained with a lower LR (5 x 10~?), the model tends to achieve better performance on
earlier tasks compared to training with a higher LR. In other words, a high LR value induces more
plasticity and less stability, and vice versa.

A.6 HYPERPARAMETERS GRID SEARCHED ON VTAB

In the presented results, we display a Best HP column, which corresponds to the results obtained
for the best hyperparameters obtained on VTAB. The objective is to simulate a realistic scenario
where the online continual learning datasets are not available for hyperparameter search. Therefore,
a realistic solution is to conduct a grid search on an available dataset and hopefully successfully
transfer the found hyperparameters to the new datasets. In this work, we search only for the value of
the learning rate and v when combining with FGH. The hyperparameters explored for all methods
are presented in Table[B4]

B DATASETS AND BASELINES

B.1 DATASETS

The backbone used for all our experiments has been pre-trained on ImageNet-21k, making it unfair
to experiment on such datasets. Following previous work (2025))), we showcase the
performance of our approach and experiment with the following datasets:
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¢ CUB (Wah et al.|(2011))): The CUB dataset (Caltech-UCSD Birds-200) contains 200 bird
species with 11,788 images, annotated with attributes and part locations for fine-grained
classification. We use an increment of 10 classes per task, resulting in 20 tasks (with 10
classes per task).

* ImageNet-R (Hendrycks et al|(2021))): ImageNet-R is a set of images labeled with Im-
ageNet label renditions. It contains 30,000 images spanning 200 classes, focusing on
robustness with images in various artistic styles. We use an increment of 10 classes per task,
resulting in 20 tasks (with 10 classes per task).

¢ CIFAR-100 (Krizhevsky| (2012)): CIFAR-100 consists of 60,000 32 x 32 color images
across 100 classes, with 500 images per class, split into 500 training and 100 test samples
per class. We use an increment of 10 classes per task, resulting in 10 tasks (with 10 classes
per task).

* Visual Task Adaptation Benchmark (VTAB) (Zhai et al.[(2019)): VTAB contains the
following 19 tasks that are derived from several public datasets. We use an increment of 5
classes per task, resulting in 10 tasks (with 5 classes per task).

B.2 BASELINES

Offline methods adapted to Online Prompt learning-based methods (Zhou et al.| (2024a))) are
particularly suited for being combined with our approach in onCL as they all capitalize on a final FC
layer for classification. Therefore, we consider the following.

* L2P (Wang et al. (2022b))): Learning to Prompt (L2P) is the foundation of prompt learning
methods in Continual Learning. The main idea is to learn how to append a fixed-sized
prompt to the input of the ViT (Dosovitskiy et al.|(2021))). The ViT stays frozen; only the
appended prompt as well as the FC layer are trained.

* DualPrompt (Wang et al.| (2022a)): DualPrompt follows closely the work of L2P by
addressing forgetting in the prompt level with task-specific prompts as well as higher-level
long-term prompts.

* CODA (Smith et al.|(2023))): CODA-prompt improves prompt learning by computing the
prompt on the fly, leveraging a component pool and an attention mechanism. Therefore,
CODA benefits from a single gradient flow.

¢ ConvPrompt (Roy et al.|(2024))): ConvPrompt leverages convolutional prompts and dy-
namic task-specific embeddings while incorporating text information from large language
models.

Online memory-free and task-free methods

* MVP (Moon et al.| (2023))): MVP uses learned instance-wise logit masking, contrastive
visual prompt tuning for Continual Learning in the Si-Blurry context.

¢ Online LoRA (oLoRA) (Wei et al.| (2025)): Trains a LoRA (Hu et al.| (2022))) module
for each task in the online task-free setting by detecting task-change by estimating the
convergence of the model.

Mainstream baselines Additionally, we considered traditional baselines when working with
continual learning methods:

* Fine-tuning: Straightforward fine-tuning where the backbone is fine-tuned on new tasks by
training all the present weights without any specific constraint

* Linear probe: Fine-tuning training where only the last fully connected (FC) layer is trained.
All other weights are frozen.

» Experience Replay (ER) (Rolnick et al.|(2019)): A memory-based approach that reuses
the experience of previous tasks to train the model on the new task. In our experiments, we
limit the memory size to 1000 samples, and retrieve 100 samples at each training iteration.

* ER + Linear probe: This method consists of training a Linear probe (Alain & Bengio
(2016))) method and incorporating an ER mechanism. In our experiments, we limit the
memory size to 1000 samples, and retrieve 100 samples at each training iteration.
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C ADAPTATION OF METHODS TO OUR SETUP

Since most methods compared here were originally designed for offCL, they had to be specifically
adapted to the onCL scenario. In that sense, some parameters have been chosen arbitrarily, based on
their offCL values, without additional hyperparameter search. Such a situation is similar to one that
would be observed in real-world cases where an offCL model tries to be adapted to an onCL problem.
For all methods, we use a learning rate, no scheduler, and Adam optimizer. Of course, we disabled an
operation that was operated at task change. Additionally, even though MVP was indeed designed
for online cases, we found several differences between their training procedure and ours, which we
discuss below.

Adaptation of CODA. In their original paper and implementation (Smith et al.| (2023)), the
authors require freezing components after each task, therefore having task-specific components.
Typically, they show that performances tend to plateau for more than 100 components, and for a
10-task sequence, they would reserve 10 components per task. In our implementation, we decided
to similarly use 100 components for the entire training. However, we train all components together
at all times during training since we cannot know when the correct time to freeze or unfreeze
them. For other parameters, we followed the original implementation. Code adapted from https:
//github.com/LAMDA-CL/LAMDA-PILOT

Adaptation of ConvPrompt. ConvPrompt (Roy et al.|(2024))) is a method that heavily relies on
task boundaries in its original implementation, notably by incorporating five new prompts per task.
Contrary to CODA, allocating the maximum number of prompt generators at all times, without a
freeze, would induce an important training time constraint. Therefore, we only use five prompt
generators at all times. Despite this reduction in overall parameters, ConvPrompt still achieves
competitive results in the clear setting. However, its performances drastically fall off in the Si-
Blurry case. Further, an in-depth adaptation of ConvPrompt in the online context could potentially
improve its performance; however, such a study is not covered in this work. Code adapted from
https://github.com/CVIR/convprompt.

Adaptation of DualPrompt. Similar to CODA, but on a prompt level, DualPrompt (Wang et al.
(2022a))) requires freezing prompts at task change. For adapting it to onCL, we chose to use all prompts
at all times without freezing the prompt pool. The E-Prompt pool size is set to 10 and the G-Prompt
pool size is set to 5. Code adapted from https://github.com/LAMDA-CL/LAMDA-PILOT,

Adaptation of L2P. The same logic as the one described for CODA and DualPrompt applies to
L2P (Wang et al.|(2022b)). In that sense, we use the entire prompt pool at all times without freezing.
The prompt pool size is set to 10. Code adapted from https://github.com/LAMDA-CL/
LAMDA-PILOT,

Adaptation and Performances of MVP Even though MVP (Moon et al.|(2023)) is designed for
the online case, its original training setup differs slightly. Firstly, the batch size is set to 32 (we
use 100), and they similarly consider that each batch can be used for 3 separate gradient steps. In
that sense, the performances reported in the original paper might be higher as they trained on a
slightly more constrained setup. Secondly, the authors use the same learning rate and optimizer for
each compared method, which, as we argued in this work, might lead to different results, relatively
speaking, compared to other methods. Such experimental differences might lead to the performances
obtained in our experiments, which are, in most cases, surprisingly low. The code was adapted from
https://github.com/KU-VGI/Si-Blurry.

Adaptation and Performances of oLoRA Even though oLLoRA (Wei et al.|(2025)) is designed
for online problems, it relies on several hyperparameters. Notably, it requires computing a moving
average of the current loss, which, depending on the batch size and task size, can lead to significantly
different results. For example, on the CUB dataset, a task consists of 400 images. In our setup, the
batch size is 100, so the default window size of 5 would span over multiple tasks. Such behavior
makes the working mechanism of oLoRA very sensitive to the setup. Other hyperparameters include
variance and mean loss threshold for triggering loss change detection. Similarly, this is very dependent
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on the dataset. Lastly, a loss weighting term must be grid-searched for optimal results. Code adapted
fromhttps://github.com/christina200/online—-lora—-officiall

D ADDITIONAL EVLUATION METRICS

Here, we report additional metrics in the clear and blurry boundary contexts for all methods for
additional insights into the performance.

D.1 AVERAGE PERFORMANCES

We follow previous work and define the Average Performance (AP) as the average of the accura-
cies computed after each task during training (Zhou et al.| (2024a))). Formally, when training on
{Dy,---,Dr}, we define A, = % Zle a1, as the Average Accuracy (AA), with a; ;, being the
accuracy on task [ after training on Dy. Building on this, we define the Average Performance (AP) as:

1 T
szk;/tk. 9)

D.2 FINAL AVERAGE ACCURACY

We report the final average accuracy Ar as per the definition given in the main draft. Such results are
presented in Tables[BT0|and [BTT]

D.3 PERFORMANCES ON PREVIOUS TASKS

We report the accuracy at the end of training on previous tasks when training in the clear setting.
Notably, show the accuracy for each method on the first 10 tasks in Table [BI2] It can be observed
that for earlier tasks, leveraging FGH and Prototypes (+ ours) leads to the best performances on
older tasks, see for example the performances of CODA on CIFAR-100 on the first task, presented in

Tables[B12]to[B21]

D.4 TIME COMPLEXITY

Experiments were run on various machines, including Quadro RTX 8000 50Go GPU, Tesla V100
16Go GPU, and A100 40Go GPU. In this section, we report the times of execution of each method.
To do so, we run all methods (except oLoRA) on a single Quadro RTX 8000 50Go GPU, for the CUB
dataset, clear setting, with a batch size of 100. Since oLoRA requires a lot a GPU memory, we have
to evaluate its training time and memory consumption on two Quadro RTX 8000 50Go GPUs. The
results are presented in Table[B3] It can be observed that the time consumption overhead of including
prototypes and FGH is minimal.

D.5 SprATIAL COMPLEXITY

Fine-Grained Hypergradients. The usage of FGH requires storing one float per trainable parameter
D as well as previous gradient values of those parameters. This amounts to a total of D x D additional
floats to store. We show memory footprint on GPU in Table B5|using a Quadro RTX 8000 50Go
GPU, on the CUB dataset, clear setting, with a batch size of 100.

Prototypes. Storing prototypes only requires one vector of dimension / per class, with [ = 768 in
the case of ViT-base. Additionally, an extra integer per class must be stored to keep track of the index
of the update of each class-dependent prototype. If the index is stored as a float, the additional amount
of floating points to store is ¢ x (I 4 1), with ¢ the number of classes, and [ the output dimension
of the backbone. We show memory footprint on GPU in Table [B5|using a Quadro RTX 8000 50Go
GPU, on CUB dataset, clear setting, with a batch size of 100.
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Table BS: Time and Spatial complexity of compared methods on CUB in the clear setting, with a
batch size of 100.

Method Time (min) Memory Footprint (MB)
Fine-tuning 3m26s 17,089
Linear probe 2m40s 2,566
ER 4m54s 34,481
ER + Linear probe | 3m12s 4,647
MVP 5m22s 12,722
oLoRA 5m20s 56,357
CODA 5m37s 16,923

—+P S5m47s 16,921
— + FGH Sm54s 18,287
< + ours 5m55s 18,288
L2P 5m32s 14,090
—+P 5m35s 14,092
— + FGH 5m43s 14,090
<~ + ours S5m43s 14,092
DualPrompt 5m12s 11,827
—+P Sml4s 11,829
— + FGH 5m23s 11,828
<~ + ours Sml8s 11,829
ConvPrompt 1h12m24s 11,708
—+P 1h12m33s 11,709
— + FGH 1h12m22s 11,708
— + ours 1h12m40s 11,709

E ADDITIONAL EXPERIMENTS

E.1 DETAILS ON GRADIENT IMBALANCE

In the following, we give additional insights into the results displayed in Figure 2]regarding GI. In
this regard, we computed the coefficient of variation across normalized class-wise gradients. Namely,
we compute the std/mean ratio on the data presented in said Figure. The results are presented in
Table

Method Coefficient of Variation Comments Perfs
CODA 0.3353 Baseline 71.12
CODA +P 0.5069 GI increased 78.18
CODA + FGH 0.3488 GI reversed and slightly increased 69.66
CODA + P + FGH 0.3107 Gl reversed and decreased compared to P 79.47

Table B6: Comparison of Methods with Coefficient of Variation and Performance

E.2 DETAILS ON STABILITY-PLASTICITY TRADE-OFF

In the following, we report results that are already presented in task-wise tables. The objective here
is to show that for smaller learning rate values, we observe that FGH improves plasticity, and why
Prototypes improve stability. Looking at the results presented in Table[B7] it can be seen that using
prototypes particularly increases performance on earlier tasks while FGH focuses more on later tasks.
Overall, the best performances are obtained by combining both strategies.

E.3 LONGER TASK SEQUENCE
We conducted brief experiments regarding the performance of CODA + ours on Imagenet-R, non-

blurry, with an increment of 2 classes per task, for various values of v, with and without prototypes.
The results are displayed in Table
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Task L2P L2P+P L2P+FGH L2P+P+FGH

1 4.51 44.5 6.46 65.77
2 6.01 53.14 9.47 70.37
3 12.44  52.87 16.32 67.65
4 16.15  55.65 23.01 67.59
5 21.37  49.55 30.11 61.33
6 28.82  51.25 39.19 61.40
7 25.11 44.49 36.20 51.86
8 3434 46.98 46.26 53.13
9 3275  37.89 42.71 41.6
10 30.16 29.04 39.34 29.14

Table B7: Task-wise performance of L2P on CIFAR100 with an initial LR of 5 x 107>,

v +P Average Performances

0 0 32.7
05 0 30.35
1 0 32.7
0 1 38.9
0.5 1 44.4
1 1 38.1

Table B8: Average Performances for Different Values of v and +P

E.4 ADDITIONAL MEMORY SIZES

In the main paper, all memory sizes are limited to 1000 for ER-based methods. In the following, we
show additional performances for ER with larger memory sizes on CIFAR100 and Imagenet-R for an
initial LR of 5 x 10~°. The results are presented in Table

Table B9: Performance of ER on CIFAR100 and ImageNet-R with varying memory sizes and a
learning rate of 5 x 1075,

Dataset 1000 5000 10000

CIFARI00 (ER) 8120 85.88 86.94
ImageNet-R (ER) 53.35 5830 58.63

F DETAILS ON THE SI-BLURRY SETTING

We followed the procedure and code made available by the authors of MVP (Moon et al.| (2023))
in order to generate the Si-Blurry versions of the datasets. Notably, we use M = 10 and N = 50,
following the original work. The number of tasks is the same as in the clear setting. We show the
number of images per class appearance during training for a subset of classes to give a better overview
of this training environment in Figure

G ADDITIONAL GRADIENT VALUES

Following the analysis on the interactions between FGH and prototypes with regard to past gradients,
we include the gradients norm of previous task for more tasks and methods in Figure[A7|to Figure[A36]
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Figure A6: Example of class apparition during training in the Si-Blurry setting on CIFAR100. The
y-axis represents the average number of images of a given class present in the current batch size of
10.
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Figure A7: Values of G! for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A8: Values of G2 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A9: Values of G2 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A10: Values of G* for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A11: Values of G® for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A12: Values of G for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A13: Values of G” for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A14: Values of G® for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A15: Values of G° for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A16: Values of G'° for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A17: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A18: Values of G? for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A19: Values of G* for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A20: Values of G* for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A21: Values of G® for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A22: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A23: Values of G” for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A24: Values of G® for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A25: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
= i
S 5] — L2P [ L2P + FGH TR ‘
£ —— L2P+P —— L2P+P+FGH "I [ I./\ e N
= i H] YA ARV A WIRAl
g 50 NIV YL VA A VAL
=] 1 7 Vi i
z 25¢ 1
o] /
= o TS - S R — /

430 440 450 460 470 480 490 500 430 440 450 460 470 480 490 500
Training step Training step

Figure A26: Values of G'° for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A27: Values of G* for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A28: Values of G2 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A29: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A30: Values of G* for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A31: Values of G® for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A32: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A33: Values of G7 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A34: Values of G® for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A35: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Figure A36: Values of G'° for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.
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Table B10: Final performances Ar (%) of all considered baselines, in the clear setting. + ours refers
to combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and y
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate  5x 107 5x 107 BestHP 5x 107 5x 107 BestHP 5x 107 5x 107 Best HP
Fine-tuning 9.12:282 1.0:00 1.0:00 | 0.48:012  0.53:000 0.43:015 | 0.76:022  0.74:031 0.63:036
Linear probe 1756151 14512127 14512127 | 1412037 34.96:146 34.96:146 | 2962064  27.332135  27.33x135
ER 69.7:098  1.03:0.11 69.7:008 | 35.91:398 0.37:017  35.91s308 | 39.99:215  0.742021 39.99:2.15
ER + Linear probe | 41.782137  72.25:135  71.08z080 | 3.32:040  48.07:20  47.65:190 | 8.56:068 3833226  37.56:279
MVP 19.76:235  17.42:428  20.18+427 | 1.54s052  34.18:104 1632183 | 2.94s030  23.48:1001 21.8:268
oLoRA 40.072051  3.9:2028 5.0:145 | 4.37:078  31.69:272  26.59:533 | 5. 74410 18.96+3.16  37.09:11.54
CODA 26.02:199  59.341628  55.56:443 | 1.05:028  48.09:252  35.19:461 | 2.24049 4738345 40.131445
— + ours 68.12:168  72.26:24  66.71s353 | 9.52+138 5846504 42.88:422 | 20.072096  51.8:235 44.99:4.45
L2P 21.17:345 49.26s388 49.264388 | 0.65:036  33.2:196 33.24196 | 1.91s044  36.224320  36.224329
— + ours 56.98:211  73.59:183  73.59:183 | 5152252 66.74s144  66. 741144 | 18.0:117  60.23:087  60.23:087
DualPrompt 23.28:160  50.68+338  53.77+343 | 0.92024 52.03:196 48.51:273 | 2.321023  47.89415 46.34+195
— + ours 58.96:143  62.63:333  66.09:1241 | 9.87:186  T2.25:088 65.47:18 | 20.85:105 55.87s141  54.15:164
ConvPrompt 34482251 59.87:626 59.87x626 | 0.65:014  54.96:282 54.96:282 | 1.712008  46.92120 46.92:20
Tabte"8Y1 - Final $8dtihafzdot  $2Pae 010 28iG defRd htce1 A8 R/ &7 R1, PP 088810 0085 g

refers to combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and ~
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5 x 107 5x 107 BestHP 5x107° 5x107% BestHP 5x 107 5x 10~ Best HP
Fine-tuning 9.85:688  1.03z0.1 1.0:00 | 0.46:014  0.58:0.3 0.49:006 | 0.84:037  0.642034 0.552023
Linear probe 28.61274 18.48:42  18.48:42 | 2.99:068  32.82:242 32.82:0242 | 5.77:0717  23.99:358  23.99:3.58
ER 71.42:296  0.89:103 71422206 | 50.37+236 0.23:035  50.37:236 | 49.24+7.13  1.032063  49.2447.13
ER + Linear probe | 47.39:438 71.72:243  70.72:25 | 6.96:187  51.09s449 51.85:387 | 13.532157 45.87s573  45.79:63
MVP 23.31s302  20.2479 25444503 | 212057 24.57s346  17.232438 | 4.72:065  24.962406  25.14446
oLoRA 49.35+105  4.82+174 494180 | 7245175 34.35:053  30.52:955 | 12,1238 14.744704 35384172
CODA 32.14:311 60.88:831  54.18:645 | 1.46:034  43.19:501  25.37:535 | 3.48:059  37.42:575  31.464366

— + ours 70.53:10  76.112204 70212421 | 1535140  64.97:397  42.92:01 | 23.35:142 51.86:352  40.15:1091
L2P 25.14521 52541604 52.54:604 | 0.95:035  25.14s506  25.144s506 | 2.712047  28.38:713  28.38:7.13

— + ours 59.49:190  75.39:231  75.39:231 | 10372286  66.55:281  66.55:284 | 20.35:144  59.26:101  59.26:191
DualPrompt 29.15+287  52.4x1047 4596847 | 1.342047  46.61:334 33.99:505 | 3.72:006  43.83:104  35.19:3.

— + ours 61.71211  67.74:319 68.56:387 | 16.872135 73.13:073  63.73:743 | 24.192164 55162158  52.02:208
ConvPrompt 38.13s59  63.8:108 63.8:198 | 1.36:032  42.78:283 42.78:283 | 1.882074  44.13:343 44.13:343

TableBY9: Accndty?au df-filie 1ol b the 2RO0SE oRiRY 0B P 1edd Qsttin S 8%, e (R0

combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate  5x 107 5x107% BestHP 5x 107 5x 1073 BestHP 5x10° 5x 107 BestHP

Fine-tuning 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00
Linear probe ‘ 0.412020  0.0:00 0.0:00 ‘ 0.082027 1.38:323 1.381323 ‘ 0.1:022 0.0:00 0.0z00
ER 62.43:207  0.0:00 62.4342097 | 64.67:1304 0.0:00 64.67:13.04 | 38.18+777  0.0:00 38.18+7.77
ER + Linear probe | 38.96:537  64.99:600  61.42:766 | 13.17s503  45.09:1147  46.0721057 | 18.9247.04 2682704 24.2:5.42
MVP 0.01:003  0.05:0.16 0.01:003 | 0.42:06 7.53:574 0.0:00 0.03:008 1.29:132 1.14+1.06
oLoRA ‘ 40.07s051  3.9+2028 5.0s145 ‘ 4.37:078 31.69:272  26.59:533 ‘ 5.74+10 18.96:3.16  37.09:11.54
CODA 5.22:327 2984279 3.85202 | 0.772127 331441408  34.34:126 | 0.85:11 1697785 13.931553

—+P 49.35+574 1574612 24.29:571 | 2.872262 36.17:1026  18.732961 | 7.6:447 35.64:1115  28.21+7.93

— + FGH 6.6139 2.48:239 - 0.68:1.03 32.46:114 - - - -

— + ours 64.86:468 28.92+737  33.08:1174 | 13.02:627  44.95:1840  22.29:10458 | 31.4451041  47.5:1046 28.58:s.52
L2P 451577 29306 293261 | 1.24217m 26.1:1059 26.1:1059 | 1.26:1.30 7.85:601 7.85:601

—+P 44551062 36372730 36.37+739 | 2.99:406 38.8+11.83 38.8+1183 | 7.08+279 38.28:439  38.28:439

— + FGH 6.46:662  2.98s195 2.98:105 | 1.34:183 29.5841342  29.58:13.42 | — - -

— 4 ours 605.77:703  42.584365  42.58:s65 | 15.09030  39.96:1048 39.96:1045 | 27.16s05  48.44465 48.4+465
DualPrompt 4755360 4.99:278 3.13:285 | 0.85:13 43.8141320 4891635 | 1.172008 18.52:71 16.38x674

—+P 45.65:770  18.561636  18.241602 | 4.19:434 68.22:801  59.78:1556 | 10.48:613  46.8:562 37.83:594

— + FGH 6.51+41 0.69=1.24 - 0.77+1.08 47.78+1273 - - - -

— + ours 64.83:503  28.031827  25.14w454 | 19.8487 76.92:65  61.09:1227 | 32.314776  53.72s5617  43.842407
ConvPrompt 5.12478 11.372720  11.37x720 | 0.32:056 541841220 54.1811220 | 0.0:00 18.29:608  18.29:6.08

—+P 38.3:1064  46.5721377  46.5721377 | 3.19:316 53.99:1323  53.99:1323 | 0.43:074 39.76:345  39.76s345

< + ours 38.37:61  66.67:222  66.67:222 | 18.26:7.14  61.51s157  61.512187 | 0.43:074 48.04:567  48.04:s.67
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Table B13: Accuracy on the second task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x 107 BestHP 5x10™° 5x107% BestHP 5x10™° 5x 107 BestHP

Fine-tuning 0.5:1.35 0.0:00 0.0:00 | 0.0z00 0.0:00 0.0=00 0.0=00 0.0=00 0.0z00
Linear probe 1.76:1.56  0.06:013  0.06:013 | 0.08:027  4.79z402 4792402 | 0.32:041  0.42:081 0.42:081
ER 62.07+534  0.0<00 62.07+534 | 57.24132 0.0:00 572432 | 40.57+546  0.0:00 40.57+5.46
ER + Linear probe | 44.28:571  67.03:606 67.221688 | 7.111378 421341469  38.89x1754 | 1632403 27.221650  27.28s521
MVP 133415 0.11z023 - 0.0:00 7.35:47 - 0.37s052  1.8:199 -
oLoRA 14.9:6.68 0.0:00 0.0:00 | 0.63+1.00 8.78:732 2.97:376 | 0.84s146  0.25:043  11.79:1063
CODA 11.4:52 29.814+7.10 - 1.56:252 28.65x11.51 - 1.02+12 21.98x4.05 -

—+P 59.05:664  42.75:763 - 5.15:4.14 35.57+11.26 - 8.88:204  35.44:667 -

— + FGH 16.47:608  20.89:7.97 - 1.56:252 26.36+1274 - - - -

— + ours 68.73:71 5424508 - 19.64:s568  45.65:1277 - 36.15:685 46.16051 -
L2P 6.01:8.11 16.23+560  16.234560 | 1.12213 20.67+1388  20.67=138 | 0.8:1.11 10.34:375  10.34+375

—+P 53.14:s38  56.89:76  56.89:76 | 2.444336 53.0:1279 53.0:1279 | 5.442220  45.3s354 4535354

— + FGH 9.47:0m1 10.5141  10.5141 | 1.1:213 19.88+145  19.88:145 | — - -

— + ours 70.37:579  58.16+725  58.164725 | 10.9541002  55.79:1247  55.79:1247 | 32.08:712  52.57:592  52.57s592
DualPrompt 13.28+622  18.572045 - 1.324175 40.33z102 - 1.09s142 25.614538 -

—+P 56.55:560  28.6:994 - 4484539 70.17+1128 - 10.38+443  50.53x4.11 -

— + FGH 18.62:758  4.924301 - 1.324175 42.12+10.12 - - - -

— + ours 70.0x6.32 35.284s:88 - 18.71+1063  76.09:8.61 - 37.32:700  55.13:6.03 -
ConvPrompt 19.83x1451 40.12127  40.12127 | 0.272046  46.95:532  46.95:53 | 0212037 29.64s404  29.645404

—+P 35.9341027  65.83:110  65.83:110 | 3.84x251 51.34276  51.34:276 | 1.52259 4497334 44.97:334

— + ours 57.3x1.04 72.63:273  72.63:273 | 22.3141137 68.48:408  68.48:498 | 2351407 52.59:373  52.59:373

Table B14: Accuracy on the third task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
LearningRate  5x 107 5x 1073 BestHP 5x107° 5x107% BestHP 5x 10 5x 107 Best HP
Fine-tuning 0.2:042 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00 0.0=00 0.0:00
Linear probe 3.58:243 0.06:0.19 0.06:019 | 0.26:043 7.39:7.84 7.39:784 | 0.42:042 1.28:1.59 1.28:1.59
ER 62.01:757  0.0:00 62.01:757 | 45.23:1207  0.0:00 45.23+1207 | 41.22:430  0.0200 41.22:439
ER + Linear probe | 44.07:601  66.83:80  64.911862 | 5.932484 39.05:1192  39.21s100 | 14.68:314  30.15:634  30.37169
MVP 2.35:041 0.73x1.06 - 0.08x027 10.94:9.81 - 0.89:1.97 3.8643.97 -
oLoRA 12.346.68 0.0:00 0.0:00 29.05:2666 8.67+1433  33.17s3011 | 51.74s02  0.63:084 15.85:11.14
CODA 14.32:1011 46.01051 - 0.84+134 40.51x1678 - 1.93:2.17 30.22:1181 -
—+P 61.79:514  62.85:1083 - 4307 46.09:1272 - 11.643.67 39.91+10s -
— + FGH 20.74+1184  34.76+696 - 0.84+134 39.07:1424 - - - -
— + ours 71.38:567  68.36+7.00 - 21.98:713  51.6:133 - 39.22:77  48.57x453 -
L2P 12.44+1005  26.18:1063  26.1841063 | 0.65:179 20.46:1257  20.46:1257 | 1.21271 15.3s7.01 15.347.01
—+P 52.87s592  65.37:819  65.37ss19 | 1.144305 64.42:1022  64.42+1022 | 8.5914.06 50.06:821  50.064521
— + FGH 16.32:1208  17.25:000  17.251000 | 0.6521.79 21.08:1296 21.08:1296 | — - -
— + ours 67.65:655 64.57:s851 64.57:s851 | 11.03:888  63.87:1050 63.87x1050 | 343121038 55.19:652  55.19:652
DualPrompt 12.34:541 30.04:972 - 0.42:07 49.04:11.44 - 1.68:094 32.92:9.09 -
—+P 51.77:641  34.824771 - 4.19:285 73.38:5.12 - 12.05:416  52.07:2548 -
— + FGH 18.18+s557  8.894358 - 0.42:07 50.02:1128 - - - -
— + ours 66.3+477 3781851 - 2414484 79.8s5.07 - 39.54743 57.79:449 -
ConvPrompt 13.6:00 48.57+1306  48.57:1306 | 0.84z034 42.89:1761  42.89:1761 | 0.85:147 21.72:031  21.721031
—+P 30.07:1151 71.61685 71.6:685 | 5.28ss.68 51.32:629  51.324629 | 1.861322 41.33:276  41.33+276
— + ours 53.37+54  79.31295 79.3:295 | 21.32:05  69.56:1550  69.56+1589 | 2.67 1428 52.444775  52.444775
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Table B15: Accuracy on the fourth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x107% BestHP 5x107° 5x107® BestHP

Fine-tuning 0.54:099 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00 0.0:00
Linear probe 4.76+179 0.49:1.45 0.49:145 | 0.62:092 5.072s.34 5.07:s534 | 0.62:097 2.33:285 2.33:285
ER 66.35:460  0.0:00 66.35:460 | 38.98:1054  0.0:00 38.98:1054 | 34.96:697  0.0:00 34.96:697
ER + Linear probe | 42.95:626  68.43:480  69.05:527 | 6.574361 38.72:006  37.56:117 | 124765  27.76s890  28.244764
MVP 6.75:4.68 5.76:5.72 - 1.01:18 7.89:6.65 - 0.42:054 4.25:466 -
oLoRA 25.57:2601  0.0s00 0.0:00 1.17:1.02 10.24+9.43 8.91ss71 | 0.33:031 0.0:00 15.45:2240
CODA 20.45:56 589441378 - 1.44+3.05 32.5:688 - 1.6:072 29.01:s65 -

—+P 59.24:404  75.75s502 - 4.28:4.08 44.25:1151 - 10.06:467  34.45:994 -

— + FGH 28.89:1091  45.19:835 - 1444305 33.64+1082 - - - -

— + ours 69.33:5020 76.04+3.36 - 22.63:787  50.18:11.71 - 347141 44.95:1076 -
L2P 16.15:074  41.97:1057  41.9741057 | 1.242254 21.06:1241  21.06:1241 | 1134192 17.15:733  17.15:733

—+P 55.65:653  73.841657  73.84s657 | 2.65:407 55.37+1424  55.3721424 | 9.541678 49.76:876  49.761876

— + FGH 23.01:1064  33.76:830  33.76s830 | 1.33:25 23.2341551  23.23:1551 | — - -

— + ours 67.59:503  73.88:747  73.88:747 | 12.06s50  53.072132  53.072132 | 37.38:1145 54172152 541745
DualPrompt 14.79:66  36.67+725 - 0.47:081 36.89:1078 - 1412113 31.87:s522 -

—+P 51.78:1031  44.45:667 - 2.8442.99 65.33:8.16 - 9.72+464 47.43:823 -

— + FGH 23.06:864  17.68+797 - 0.47:031 38.37:1181 - - - -

— + ours 64.26:51  49.89:768 - 17.88:014  69.35473 - 35.98:1080  52.34z6.5 -
ConvPrompt 19.42447 56.37:1138  56.37:1138 | 1.25:.16 48.53:341  48.53:341 | 0.1:017 29.75:005  29.75:005

— +P 50.77+1359  83.0x471 83.0s471 | 1.874324 62.22:728  62.224728 | 3.26s5.64 52.37:1198  52.37:1198

< + ours 70.2:1389  84.43:32 84.43:32 | 21.84:727  76.98:048  76.98:048 | 8.75:0.03 61.55:652 61.55:652

Table B16: Accuracy on the fifth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x10™® BestHP 5x10™° 5x 10~ Best HP

Fine-tuning 0.93:152 0.0:00 0.0:00 | 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 9.8115.6 22803 22823 | 0.56:099 11,1527 11152731 | 0.812056  3.85:262 3.8526
ER 63.41s625  0.0x00 63.41:625 | 34.64:1014  0.0:00 34.64+10.14 | 36.64:355  0.0:00 36.641355
ER + Linear probe | 41.63:756  68.84:622  64.93:7.41 | 3.44328 35.35:2024  34.66:1281 | 14.982475  28.69s492  28.741522
MVP 12.56:783  9.9247.38 - 1.27+193 12.63+1023 - 0.72+060  6.29:435 -
oLoRA 34.6+955 0.000 0.0:00 2.0s14 13.131684  23.43:s808 | 0.0:00 1.69:184  22.2242004
CODA 245141015 64.12+1327 - 1.48:101 43.67+1205 - 2.04:119  31.29:800 -

—+P 57.74+004  75.1:849 - 3.55:207 48.63:13.71 - 9.06:224  38.6210.8 -

— + FGH 32.28:1002  53.51:612 - 1.48:191 44.86+13.58 - - - -

— + ours 66.78+6.12  74.97+338 - 21.62:806  55.8719.17 - 33.0:861  44.49:631 -
L2P 21.37+1486  55.98:842  55.98:842 | 0.32:10 27 T+1063 2771063 | 1.06:236  21.73:845  21.734848

—+P 49.55:079  77.87s503  T7.872503 | 0.26:050 62.67+1148  62.67+1148 | 8.35:345  51.25:43  51.25u3

— + FGH 30.1121823  49.08:s04  49.08:894 | 0.32:10 26.16:1018  26.16+1018 | — - -

— + ours 61.332061  77.231620  77.231620 | 8.681836 60.0+1431 60.0:1431 | 28.57+845 55.51528 55.54528
DualPrompt 22.8:835 48.66:11.73 - 17721 47.92:11.94 - 0.98:082  34.141594 -

—+P 52.894742  56.22:57 - 3.39:212 66.59:12.65 - 924077 50.07:6.14 -

— + FGH 32.04:004  30.79:11.01 - 1.77:211 49.39:12.19 - - - -

— + ours 64.6:635 61.13:1136 - 19.43:696  68.81:917 - 31.61ss524  53.48:7.11 -
ConvPrompt 4402537 6712649 67.1:649 | 0.562097 67.53:313  67.53:313 | 0.22:021 34.65:955  34.65:955

—+P 66.47+1037  83.0:334 83.0:334 | 4.75s101 60.53+1634  66.53:1634 | 2.324374  48.11s156  48.11+156

< + ours 76.9:7.73 86.33:15 86.33:15 | 22.61:132  64.88:7.12  64.88:7.12 | 4.09:581  61.05:122 61.05:1.22
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Table B17: Accuracy on the sixth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x10° 5x107% BestHP 5x10™° 5x107% BestHP 5x107° 5x107® BestHP
Fine-tuning 0.73:207 0.0:00 0.0:00 0.0:00 0.0=00 0.0:00 0.0=00 0.0=00 0.0:00
Linear probe 13.07:373  3.9213.06 3.92:306 | 0.42:0m 10.52:885  10.521885 | 1.09:1.04 9.54+6.91 9.54:691
ER 64.01:026  0.07x022 64.01:026 | 31. 741263 0.0:00 31.7:1263 | 34.51s664  0.0:00 34.51s664
ER + Linear probe | 41.2:794 68.26:822  70.19:s0 | 3.424323 33.78:1596 33.24x1244 | 11.83:53  33.14w033  31.96x041
MVP 18.89:6.0 10.32:9.15 - 0.9:1.68 10.67:9.53 - 1.21411 11.86+109 -
oLoRA 29.241733  0.0s00 0.0:00 17.48:23711  5.564552 23.82:907 | 0.56:071 2.8443.68 22.48:1474
CODA 33.59:1357  71.66:9.87 - 0.51z058 46.03:13.74 - 2214121 37.22:1013 -
—+P 5484831 80.35:5.92 - 1.75x165 53.25:1143 - 9.67+249 43.61+1007 -
— + FGH 43.81:1433  59.881037 - 0.51z058 45.81+10.93 - - - -
— + ours 66.31:5.42  78.3:6s - 13.08636  54.34z15.33 - 33.15:766 45941592 -
L2P 28.82:1552  61.31:1386 61.31s1386 | 1.012211 32.25:n31 32.25:1131 | 0.981130 29.08:632  29.08s6.32
—+P 51.254726  80.92:s0 80.92+50 | 1.731220 65.31:823  65.314823 | 6.551626 53.65:773  53.6547.73
— + FGH 39.19:1686  49.36:1353  49.36+1353 | 1.0122.1 30.8+0.84 30.81084 | — - -
— + ours 61.4:7.81 77.7+673 777673 | 7.16:7.61 69.63:738  69.63:738 | 27. 7721223 58.42:451 58.424451
DualPrompt 29.34828 62.5:1134 - 0.25:041 49.04:1254 - 1.08x1.45 42.18:8.15 -
—+P 52.76:47  66.65:1260 - 3.0:268 70.42:8.72 - 8.0516.19 53.06:4.84 -
— + FGH 39.17:s827  43.89:1511 - 0.25:041 49.071241 - - - -
— + ours 63.12:420  72.0721275 - 16.38:514  72.04:5.71 - 32.13:1103  56.05:5.53 -
ConvPrompt 30.97:63 5827002  58.27:092 | 1.0:087 62.72:753  62.72:753 | 0.21x037 46.15:721 46.15:721
—+P 55.43:1551  83.03:393  83.031303 | 4.261379 61.88:2085 61.8812085 | 1.771179 48.14:673  48.14+673
— + ours 61.5¢143¢ 83972236 83.97:236 | 18.93:1297 39.28:2031  39.2842031 | 7.844631 63.22:416  63.22:4.16

Table B18: Accuracy on the seventh task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x107° 5x 1072 BestHP 5x10° 5x 107 BestHP

Fine-tuning 0.13:016 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00
Linear probe ‘ 22.16:673  6.58:453 6.58:4.53 ‘ 14217 13.16:1144  13.16211.44 ‘ 212422 15.51s855  15.51zs55
ER 68.97:663  0.0:00 68.97+663 | 38.09:872  0.0:00 38.09:572 | 38.3:545 0.0:00 38.34545
ER + Linear probe | 41.97:836  70.56:634  69.341699 | 4.65:413  36.52:1207 38.45:n158 | 13.32:315  33.847.04 3341826
MVP 21.45:62  13.14:s6 - 0.66:154  13.35:1127 - 1.15:105 15.29:1045 -
oLoRA ‘ 49.03:2385  0.0:00 0.03z0.06 ‘ 418309 20.9411888  20.29:21.12 ‘ 0.52+066 3.734457 1434579
CODA 31.24785 74.07+1053 - 0.67:088  46.45:1523 - 1.33079 43.0:1661 -

—+P 5512679 81.48:5.37 - 2.98:325  50.1s1811 - 7.23:265 49.76+1135 -

— + FGH 44.49:048  66.99:12.44 - 0.67:088  42. 741992 - - - -

— + ours 68.731550  79.734831 - 17.57s2.1 57.91417.99 - 30.76:s49  48.14+1053 -
L2P 251141427 66.08:484  66.08x454 | 0.172054 371721705 371721705 | 1.274143 32.57:0m  32.57:0m

—+P 44.49:+920  82.29:467  82.29s467 | 0.99s185  68.68:1022  68.68+1022 | 9.52:452 57.63:572 57.63:572

— + FGH 36.2:1493  59.06:1195  59.06:1195 | 0.17:054  37.69s1045  37.69s1045 | — - -

— + ours 51.8692  80.26s461  80.26s461 | 4.891515  72.35:07 72.35:07 | 29.9411056 61.92:579  61.924579
DualPrompt 30.55:818  66.76+1201 - 0.76:1.01  55.8411.41 - 1.96:073  47.9:1107 -

—+P 44.59:000  77.419.19 - 3.76435 67.07x9.02 - 9.724531 55.74+7.13 -

— + FGH 40.53:947  51.57x1052 - 0.76:100  56.11:1218 - - - -

— + ours 5484182 81.02:451 - 16.57:634  74.98:s.11 - 32.2:1055  56.31:776 -
ConvPrompt 55.4:8.66 80.732106  80.73:106 | 0.8:079 59.11x2548  59.1112548 | 0.0:00 43.15:1151 43.15:151

—+P 77.07:613  85.47:349 8547340 | 4.66:135  62.52:051  62.52:051 | 2.08x076 52.51s786  52.51:786

< + ours 76.87s583  88.17:216  88.17:216 | 18.83:087 80.46:466  80.46:466 | 6.67+040 63.2:4.64 63.2:4.64
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Table B19: Accuracy on the eighth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and -y found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x 107 BestHP 5x107° 5x107% BestHP 5x107° 5x107® Best HP

Fine-tuning 1.28:179 0.0:00 0.0:00 | 0.0<00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 27.21ss1a  15.77s748  15.77s748 | 1.624229 20.79x1504  20.79x1504 | 2.072160  16.08:500  16.08:500
ER 73.81s546  0.0:00 73.81s546 | 30.82:1029  0.0z00 30.82+1029 | 37.82:988  0.0:00 37.82:08
ER + Linear probe | 39.34s068  77.82:476  75.47:501 | 3.16133 42.6:1818  42.98:1606 | 11.01:537  34.68:662  35.18:669
MVP 35.61w0.12  17.22:1087 - 1.18x1.69 20.2:1438 - 1.71415 17.97:125 -
oLoRA 65.87+1923  0.1:017 0.03:006 | 0.241042 8.69:836 18.32+1750 | 3.324233 10.124157 44.6+1.66
CODA 373441263 79.844743 - 0.51+111 55.28411.95 - 2.49:161  46.88:s68 -

—+P 55.88:816  86.52:4.15 - 2.29:3.04 59.99:2043 - 8. 71286  48.0247.24 -

— + FGH 52.98:1262  68.37x0.02 - 0.51111 52.32413.12 - - - -

— + ours 73324540 84.0813.49 - 10.94:810  58.11:1721 - 27131540 46.66:5 -
L2P 343441706 70.62:041  70.62:941 | 1.01:223 39.43:08  39.43:128 | 2.61336  36.12481 36.12:51

—+P 46.98:076  87.1:3.42 87.1:342 | 1.09:176 76.13:1045  76.13:1045 | 8.07:345  58.0z635 58.0:635

— + FGH 46.26+1821 59.06+73 59.06:75 | 1.08:233 38.35:1337  38.35:1337 | — - -

— + ours 53.132061  85.19:361  85.19s361 | 7411641 74.0151055  74.01x1055 | 26.95:441  61.55:664  61.55:6.64
DualPrompt 38.12+1265  76.59:0.45 - 1.66:253 58.03:83 - 1.22:086  47.18x1063 -

—+P 47.04+1012 83.64+423 - 3.344418 71.79:93s - 6.69:331 53.29:633 -

— + FGH 48.73:1261  60.69:6.95 - 1.66:253 59.67:071 - - - -

— + ours 57.35:048  83.944324 - 12.95:82  73.56192 - 26.6:461  53.26:673 -
ConvPrompt 58.2342493 7591514 759514 | 0.0z00 73.07:s3 73.07:s58 | 0.0z00 53.12:1248  53.12s1248

—+P 78.4:1157  83.67:.12  83.67x7.02 | 141213 71.02:2533  71.02+2533 | 1.07211 60.95:847  60.95:5.47

— + ours 82.83:777  84.44203 84.41203 | 8.3160 73.0441516  73.04415.16 | 8.65:325 644598 64.4:598

Table B20: Accuracy on the ninth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and -y found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x107 BestHP 5x107° 5x 1073 Best HP

Fine-tuning 6.15:005 0.0z00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 37.661623  22.6:82 22.6:82 | 0.72:078 30.8:1430  30.8s1430 | 2.08:117  17.13s751 17.13w51
ER 78.51x4s  0.0:00 78.51:45 | 37.45:1188  0.0:00 37.45:1188 | 35.92:873  0.0:00 35.92:573
ER + Linear probe | 40.88:663  80.314.91 79.28:572 | 3.07+203 52.0411548 441321280 | 10.72+531  36.53:667  34.89:723
MVP 43.58s645  23.27:1493 - 0.941.23 26.76+126 - 3.0:27 20.39:13.29 -
oLoRA 80.87:414  0.23:03 0.4:061 2144014 20.88:50s  19.02+20.12 | 1.67+233 11.98:118  32.84+1187
CODA 424241464 83.39:462 - 1.14533 60.37+936 - 3444008  47.2542 -

—+P 51.25:076  88.28:232 - 2.82:44 65.46+13.16 - 8.87w6  49.62:1067 -

— + FGH 59.44+1455  77.231862 - 1.14+03 58.56+11.27 - - - -

— + ours 7218534 86.14+108 - 11.26:658  65.34+14.14 - 26.59:641  47.63:66 -
L2P 32.75:1229 77241653  77.244653 | 0.0200 45.99:722 45.994722 | 1.58:21 38.14727 38.14727

—+P 37.89:712  86.99:36 86.99:36 | 1.2:15 79.37:76 79.37:76 | 597442 6038511 60.38:s511

— + FGH 42714132 67.3541043  67.3541043 | 0.0:00 44371030 4437034 | — - -

— + ours 41.6:5.64 87.25:38  87.25:382 | 5.39:4.14 78.19:550  78.19:550 | 20.781593  63.41443 6344443
DualPrompt 34.09:835  79.19:665 - 1.0621.42 65.76:733 - 1.93:12 50.17:6.1 -

—+P 40.39:706  86.63:252 - 3.354321 74.8+6.89 - 7.29:418  56.79:828 -

— + FGH 4517512 63.44734 - 1.06:1.42 66.85:73 - - - -

— 4 ours 48.94:667  86.89:27 - 12.33:405  79.2716.35 - 23.57:843  55.08474 -
ConvPrompt 39.53:38  76.8:0.07 76.8:0.07 | 1.61s14 68491760  68.49:7.60 | 2.31x40  45.3:304 45.3:3.04

—+P 74.43:601  84.93ss3 84.93:55 | 4.56+166 71.92:861  71.92:861 | 3.72:621  58.85:405  58.85:4.05

— + ours 74.53:564  87.0:225 87.0:225 | 19.21164s  81.4:392 81.4:392 | 8.541005  65.56:262  65.56:262
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Table B21: Accuracy on the tenth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5% 107 5x 107 BestHP 5x 107 5x 1072 BestHP 5x107° 5x 1073 BestHP

Fine-tuning 80.7341860  10.0:00 10.0:00 | 0.0:00 0.0:00 1134358 | 0.0s00 0.0:00 0.0=00
Linear probe 5521s66  93.38s335  93.38s33s | 1732183 21.96:009  21.96:000 | 2.1:215 23.77s644  23.771644
ER 95.46:25  10.26:080  95.46:28 | 25.22:933  0.0:00 25.22:033 | 39.17:862  0.0:00 39.17:s62
ER + Linear probe | 42.54+70s  89.44:386  89.02:404 | 4.68:422  33.71s896  36.04ss.12 | 5862392  36.89:633  35.71s75
MVP 55.04:394  93.63:32 - 1.74:236  19.32:s38 - 2431219 23.85:1353 -
oLoRA 86.47:115  38.7:278 49.5:142 | 5.5:7.1 20.245.92 8.94445 115007 15.08:223  27.32:1616
CODA 39711353 82.5447.16 - 0.46:066  63.39:1283 - 1.76:151  53.4:03 -

—+P 42.32:117 92.15:3.14 - 2.1835 59.69:12.16 - 6.461325  54.98:104 -

— + FGH 53.67:1336  72.21s1367 - 0.46:066  58.35:1341 - - -

— + ours 59.56+1073  91.85+225 - 9.76:899  60.8721456 - 24.92:458  50.44778 -
L2P 30.16+1208  74.09:014  74.09:014 | 0.5:078 39.0:8.32 39.0:832 | 2.15419 46.55+441  46.55:441

—+P 29.04:053  87.51s3s0  87.51s3s0 | 1.162138  73.724537  73.72:537 | 6.52487 63.235537  63.23:537

— + FGH 39.34:11282  65.74+1448  65. 7411448 | 0432079 39.64:1176  39.64:1176 | — - -

— + ours 29.14:1007  89.09:351  89.09:351 | 4432434 80.02:778  80.02:778 | 22.96:673  65.11:463  65.11:463
DualPrompt 32.75:051  82.79s4.04 - 0.89:004  65.36:86 - 2.82:162  57.25:451 -

— +P 29.56:734 92914307 - 2.26:16 71.48163 - 8.48+447  59.15:398 -

— + FGH 42.1+105 68.25:935 - 0.89:004  64.75:118 - - - -

— 4+ ours 35.38:766  90.23+324 - 8.09:388  75.2147.03 - 27.55:738  58.6913.97 -
ConvPrompt 58.77:2004 83.53:862  83.53:562 | 0.0x00 71.31608 713608 | 1.38:230  49.930286  49.93:236

—+P 74.03117.46  93.63+3.1 93.63:3.1 | 0.35:061 67.19:849  67.19:849 | 1.68129 51.55:38  51.554138

< + ours 70.23180  92.0s425 92.0:425 | 1.36:1620  73.94:483 73944483 | 6.55:102  60.49:822  60.49:522
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