Under review as a conference paper at ICLR 2026

FROM OFFLINE TO ONLINE MEMORY-FREE AND TASK-
FREE CONTINUAL LEARNING VIA FINE-GRAINED HY-
PERGRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) aims to learn from a non-stationary data stream where the
underlying distribution changes over time. While recent advances have produced
efficient memory-free methods in the offline CL (offCL) setting, online CL (onCL)
remains dominated by memory-based approaches. The transition from offCL to
onCL is challenging, as many offline methods rely on (1) prior knowledge of task
boundaries and (2) sophisticated scheduling or optimization schemes, both of which
are unavailable when data arrives sequentially and can be seen only once. In this
paper, we investigate the adaptation of state-of-the-art memory-free offCL methods
to the online setting. We first show that augmenting these methods with lightweight
prototypes significantly improves performance, albeit at the cost of increased
Gradient Imbalance, resulting in a biased learning towards earlier tasks. To address
this issue, we introduce Fine-Grained Hypergradients, an online mechanism for
rebalancing gradient updates during training. Our experiments demonstrate that the
synergy between prototype memory and hypergradient reweighting substantially
allows for improved performance of memory-free methods in onCL. Code will be
released upon acceptance.

1 INTRODUCTION

Continual Learning (CL) has gained significant popularity over the past decade (Kirkpatrick et al.
(2017); |[Rao et al.| (2019); Zhou et al.| (2024a))). The core idea is to learn from a sequence of data
rather than a fixed dataset. As a result, the data distribution may change, and new classes can emerge,
often leading to the well-known problem of Catastrophic Forgetting (French|(1999)). In this paper,
we focus specifically on the Class Incremental Learning problem (Hsu et al.| (2018))).

CL scenarios are typically divided into two categories: offline Continual Learning (offCL) (Tiwari
et al. (2022))) and online Continual Learning (onCL) (Mai et al.|(2022)). The former, which is the more
widely studied setting, assumes that the data sequence is clearly segmented into discrete tasks and that
training within each task is analogous to conventional learning. Specifically, data within each task are
assumed to be i.i.d., and the model can be trained over multiple epochs before transitioning to the next
task. In contrast, onCL assumes a stream-like data arrival, where each sample is observed only once,
requiring rapid adaptation. To further align with real-world conditions, several recent studies consider
scenarios with unclear or blurry task boundaries (Koh et al.|(2023)); | Bang et al.| (2022)), removing
access to task identity altogether. These differences make offCL methods poorly transferable to onCL,
as many rely on multiple epochs and task boundary information. Representation-based methods such
as RANPAC (McDonnell et al.[(2024)) and EASE (Zhou et al.|(2024b))) are prominent examples: they
depend on task boundaries to compute task-specific representations, rendering them incompatible
with onCL. In this paper, we aim to explore how offCL research can contribute to the onCL Task-Free
and Memory-Free scenario.

In Online Task-Free Continual Learning (Aljundi et al|(2019); [Koh et al.|(2023)), state-of-the-art
approaches heavily rely on memory buffer (Michel et al.|(2024); [Wei et al.| (2023); |Guo et al.| (2022);
Gu et al.| (2022); [Wei et al.| (2025)); [Ye & Bors|(2024)). Indeed, memory-based methods are well
designed for onCL as they can be used in Task-Free scenarios and naturally tackle online difficulties by
allowing data stored in memory to be seen multiple times. However, practically, the usage of memory

Under review as a conference paper at ICLR 2026

can be limited by hardware or privacy constraints. Conceptually, relying on memory does not solve
the Continual Learning problem, but rather avoids it. Therefore, memory-free methods (Wang et al.
(2022b)); Smith et al.|(2023); Roy et al.| (2024)); Wang et al.|(2022a)) are a key step towards solving
Continual Learning problems fundamentally, and their adaptation online makes them suitable for
more realistic scenarios. Building upon prior works that leverage prototypes (De Lange & Tuytelaars
(2021); |Weit et al.| (2023)); McDonnell et al.| (2024); Zhou et al.|(2024b)), we show that a simple yet
effective way to adapt memory-free offCL methods to the online setting is to use prototypes as a
simple memory buffer for the last Fully Connected (FC) layer only. While this approach improves
accuracy, it also introduces an undesirable side effect: increased Gradient Imbalance (GI) (He|(2024));
Guo et al.|(2023)); Dong et al.|(2023)), leading to a biased learning towards earlier tasks.

Another major challenge in onCL is tuning the Learning Rate (LR). While most offCL methods rely
on advanced LR optimization schemes, a common practice in onCL is to use the same fixed LR and
optimizer for all methods (Gu et al.| (2022); Mai et al.[(2021); Moon et al.|(2023); [Lin et al.| (2023)),
typically Stochastic Gradient Descent (SGD) with a fixed LR of 0.1. However, this design choice
is overly restrictive, as the optimal LR varies significantly across methods and datasets. It is well
known that a poorly chosen LR can critically hinder final performance. An alternative strategy is to
tune the LR on one dataset and transfer it to others (Michel et al.|(2024))). While more realistic, this
approach provides no guarantee of generalization across datasets.

In this paper, we propose to address both the Gradient Imbalance and LR optimization challenges
encountered in onCL by introducing Fine-Grained Hypergradients (FGH), a novel higher-order
optiization strategy which dynamically reweights the individual gradients during training. The core
idea is to extend hypergradient theory (Baydin et al.| (2018))) to learn low-level gradient weights
instead of high-level LR. FGH not only mitigates gradient imbalance but also improves accuracy
under suboptimal LR settings. To demonstrate its effectiveness, we introduce a novel evaluation
strategy that assesses performance across a range of initial LR values. Our contributions are as
follows:

* We bridge the gap between off CL and onCL by adapting various memory-free offCL
methods to the online setting and achieving state-of-the-art performances;

* We address GI and the absence of LR optimization strategies in onCL by introducing a novel
high-order optimization strategy named Fine-Grained Hypergradients;

* We propose a more realistic multi-LR evaluation and show improved performance when
combining our method with state-of-the-art offCL techniques.

2 RELATED WORK

2.1 CONTINUAL LEARNING WITH BLURRY BOUNDARIES

Continual Learning (CL) is generally framed as training a model fy(-), parameterized by 6, on a
sequence of K tasks. Each task, indexedby k£ € 1, --- | K, is associated with a dataset Dy, which may
be drawn from a distinct distribution. In Class Incremental Learning (Hsu et al.|(2018))), each dataset
is composed of data-label pairs, Dy, = (X, Vx). In online CL (onCL), data arrive in a stream and can
typically be observed only once (He et al.|(2020)), making access to clear task boundaries unlikely.
Consequently, several studies propose working under boundary-free scenarios (Buzzega et al.| (2020)),
where task changes are unknown. However, when task changes are clear, they may still be inferred.
To better model intermediate cases, the blurry boundary setting has been introduced (Koh et al.
(2023); Bang et al.| (2022); [Michel et al.|(2024))). Of particular interest is the Si-Blurry setting (Moon
et al.| (2023))), in which task boundaries are not only blurry but also allow classes to appear or
disappear across multiple tasks. This setup is more reflective of real-world scenarios while also
presenting additional challenges for continual learning algorithms.

2.2 CONTINUAL LEARNING WITH MEMORY BUFFER

Memory buffers remain among the most practical and effective strategies for mitigating forgetting
in onCL (Raghavan et al.|(2024bja); |Guo et al.[(2022); [Su et al.| (2025); He & Zhu|(2022);|Caccia
et al.[(2022);|Ye & Bors|(2024); | Wang et al.| (2024bza); Buzzega et al.| (2021)). Some works have
even shown that memory alone can yield competitive performance (Prabhu et al.| (2020); Michel
et al.| (2022)), highlighting its importance in the online setting. As a result, memory buffering is

Under review as a conference paper at ICLR 2026

1

1

1

1

1

1

' L _ Update at 1

: V[, 0'" oy - VLOP) - VL)

seinjea

/ 3 c
o
. IS — Forward
g - > Backward
\j 3 Frozen
2 Learned

Figure 1: Overall training procedure of FGH when combined with prompt-tuning strategies.

considered a core component of many onCL methods. In contrast, offCL has recently seen a shift
toward memory-free approaches (He et al.|(2025); |Liang & Li| (2024); McDonnell et al.| (2024);
Wang et al.| (2022a))). While some memory-free methods have been adapted to the online setting,
their performance typically lags behind memory-based approaches (Moon et al.[(2023); |Wei1 et al.
(2025))). In this work, we aim to bridge this gap by leveraging memory-free offCL methods in the
onCL setting.

2.3 HYPERGRADIENTS AND GRADIENT RE-WEIGHTING

Hypergradients (Baydin et al.| (2018); Almeida et al.[|(1999)) address the challenge of optimizing
learning rates in standard training setups. The key idea is to derive a gradient descent algorithm
that updates the learning rate itself. Notably, it is demonstrated that computing the dot product of
consecutive gradients, VL(6;) - VL(0,_1), is sufficient to perform one update step for the learning
rate. Here, ¢ is the current step index, 6 denotes the model parameters, and L is the loss function.
However, such techniques have traditionally been developed for offline training and applied at a
global scale. In the context of CL, gradient re-weighting strategies have been explored primarily in
replay-based methods, often focusing on the last layer. For example, previous work has proposed
manually re-weighting the gradient at the loss level to reduce its accumulation during training,
addressing the issue of Gradient Imbalance (Guo et al.| (2023); He|(2024)). In this work, we extend
this idea by introducing Fine-Grained Hypergradients, which enable learned gradient re-weighting
across all trainable parameters, not just the last layer. This approach allows for more precise control
of gradient dynamics during training in onCL scenarios.

3 METHODOLOGY

Aiming to bring offCL and onCL research fields closer, this work proposes to adapt and improve
existing off CL memory-free methods to the onCL, memory-free, and task-free problem. Firstly, we
present the online adaptation and challenges induced by the onCL context. Secondly, we propose
to leverage simple prototypes as an efficient way to counter forgetting, without storing input data.
Eventually, to counter the challenges regarding Learning Rate selection and Gradient Imbalance, we
propose a novel online adaptive gradient-reweighting strategy called Fine-Grained Hypergradients.

3.1 FROM OFFLINE TO ONLINE

Adapting offline methods to the online setting is non-trivial. We highlight key components of offCL
methods and outline the modifications necessary to make them applicable in the online scenario.

Removing Task Boundary Information. Typically, most offline methods take advantage of the
task boundaries knowledge (Zhou et al.| (2024b); McDonnell et al.| (2024)); Liang & Li| (2024);
Smith et al.| (2023)); [Wang et al.| (2022bza); |[Roy et al.|(2024))). While representation-based methods
cannot be adapted online as the exact task change is required to recompute representations, most
prompt-based methods happen to be more flexible as the task information is used solely to freeze
certain prompts in the prompt pool (Smith et al. (2023)); Wang et al.| (2022b)). Such a prompt-freezing

Under review as a conference paper at ICLR 2026

strategy tackles prompt forgetting during training in offCL. Therefore, if learned prompts are never
frozen, prompt-based approaches can easily be trained in task-free onCL. More details regarding the
parameters used are given in the Appendix.

Learning Rate Selection. When training offCL methods, the choice of the LR as well as the
use of an LR scheduler is particularly impactful. In general, LR selection remains a difficult topic
in Continual Learning, as, in theory, future datasets are unknown and hyperparameter search is
unavailable (Cha & Chol(2024)). This problem is even more pronounced in the online setting, as not
even a learning rate scheduler can be used, since the length and boundaries of tasks are considered
unknown. More importantly, naively transferring LR values used in offCL to onCL often leads to
unsatisfactory performance. Therefore, we evaluate every online method with various fixed learning
rate values and report the results in Section[d.3] Additional information regarding the evaluation
procedure is provided in Section @.T}

Gradient Imbalance. Gradient Imbalance (He|(2024);|Guo et al.|(2023);|Dong et al.|(2023))) in
Continual Learning occurs when the model suffers from larger gradients toward specific samples or
classes during training. An example of such an imbalance with larger gradients for earlier classes is
given in Figure[2] The main consequence is that the model will give stronger updates with regard to
specific classes. While this problem can similarly be observed offline, it is most severe in onCL as (1)
each data point is seen only once, so the training cannot be adapted from task to task, (2) the usage
of memory increases such imbalance (He| (2024))), and as discussed above, memory is adamant in
onCL. When adapting offCL methods in onCL, we not only observe GI, but see an increase in such
imbalance when introducing prototypes in Section [3.2]

3.2 PROTOTYPES AS A PROXY FOR MEMORY

As discussed above, memory is at the core of most state-of-the-art onCL methods. In this study, we
propose leveraging online prototypes to act as a memory buffer for the last layer only. In this context,
we compute prototypes P = {1011€l , pz2, SRR pzr} for each class during training. Let us consider a
model fy parameterized by 6 such that for an input z € R?, with d being the dimension of the input
space, we have fo(z) = h,(z)T - W, where W € R!¢, ¢ is the number of classes, [is the dimension
of the output of h,,, and § = {w, W}. In this context, h,, would typically be a pre-trained model,
and W is the weight of the final FC layer (including the bias). For a given class j, the class prototype
pij computed over k; samples is updated when encountering a new sample xij 41~ For simplicity,

we omit the j index in k; going forward. Therefore, we leverage a simple prototype update rule:

i kepl+ha(aly) W
P = k+1 ’

1th

where xi 41 isthe k + encountered sample of class j. For all classes, prototypes are initialized

such that p{, = 0. Prototypes are then used to recalibrate the final FC layer, analogous to replaying
the average of past data representations during training. In this sense, we define the prototype-based
loss term as:

-1 ‘ ,
Lp=—) log(()" W), @)
J€Cola
where Coig = {j € {1,---, ¢} | pj, # 0}. Lp is the cross-entropy loss with respect to prototypes

of encountered classes. As discussed in section 5] while using prototypes as a memory buffer can
significantly improve the performance of the considered methods, it also increases the GI in the final
layer of continually trained models (He|(2024)).

3.3 FINE-GRAINED HYPERGRADIENTS

In order to give the model the capacity to adapt its LR at a local and global level, we introduce
Fine-Grained Hypergradients. FGH introduces independent weights for each trainable parameter,
allowing fine-grained adaptation of individual gradients during the learning process, rather than
only high-level learning rate adaptation. Formally, let us consider the update rule for an individual
parameter 6" € 6 induced by gradient-based optimization algorithms over parameters 6, given a
learning rate 7:

= 07— VL)), 3)

Under review as a conference paper at ICLR 2026

where ¢ is the iteration index and 1 < m < D with D € R™ the number of trainable parameters. To
reweight the learned gradient, we introduce step-dependent weighting coefficients, leading to the
following update rule:

051 = 01" — iV L(0;"), ©)
where o} € R™* is the parameter-dependent gradient weighting coefficient at step ¢. While such
gradient weighting strategies were previously limited to the last layer and computed with hand-crafted

rules (He|(2024))), we propose learning them during training. In particular, we aim to construct a
higher-level update for o such that:

OL(0;")

m m
alti =at —f
t+1 t m
0o}

&)
with 8 € R the hypergradient learning rate. To compute the partial derivative, we apply the chain

rule and make use of the fact that 0" = 67", — a*nV.L(0}), such that:

AL (07 oo

daj" daj"

= VL) - =—nVL(O) - VLEO™,). (6)

The resulting Fine-Grained Hypergradients update becomes, for any 1 < m < D:
oy =o' + - VLO") - VL0), @)

where v = 7. Our FGH module gives the model the capacity to modify the LR locally, potentially
mitigating GI, as well as globally, potentially tackling the problem of unknown LR. Naturally, this
introduces an additional hyperparameter. We discuss this limitation in Section[5 For clarity, the
relation presented in equation[7]relies on an SGD update. In practice, we favor a momentum-based
update. Its details implementation is provided in the Appendix.

3.4 OVERALL TRAINING PROCEDURE

Considering a baseline memory-free offCL. method trained by minimizing a baseline loss Lpgs¢, We
can adapt it to onCL by introducing prototypes and FGH in the training procedure. We simply add
the extra loss term £, which amounts to minimizing the overall loss £ = Ly4sc + £,,. Additionally,
we modify the gradient update to adjust the gradient weights as defined in Section[3.3] Furthermore,
we leverage batch-wise masking to consider the logits of classes that are only present in the current
batch. An overview of the training procedure is given in Figure

4 EXPERIMENTS

4.1 EVALUATION PROCEDURE

Metric. We follow previous work and define the Average Performance (AP) as the average of the
accuracies computed after each task during training (Zhou et al.| (2024a))). More details in Appendix.

Multi-Learning-Rate Evaluation. Since finding the optimal LR in onCL is an especially hard
task, we introduce a new evaluation setting based on a multi-LR evaluation. Indeed, we propose to
give the performances of the compared methods with various LR values. In particular, each method
is evaluated given three cases: (1) Using a low LR value, (2) Using a high LR value, (3) Using the
best LR value found after conducting a small search for v and the LR on VTAB (Zhai et al.| (2019)).
Specifically, we experiment for LR values in {5 x 107> 5 x 10~3}. The intuition behind such values
is that we reckon that the optimal LR is likely to fall into that range, and such values are often used in
the literature. Such a metric should emphasize the validity of the approach when the optimal LR is
unknown, leading to a fairer comparison than using the same LR blindly for every approach.

4.2 EXPERIMENTAL SETTING

Baselines and Datasets. In order to demonstrate the benefits of our approach, we integrate it with
several state-of-the-art methods in offCL, when adapting them to onCL. Notably, L2P (Wang et al.
(2022b)), DualPrompt (Wang et al.|(2022a))), CODA (Smith et al.| (2023))), ConvPrompt (Roy et al.
(2024)). These methods are not naturally suited for the online case, so they had to be adapted, as

Under review as a conference paper at ICLR 2026

Table 1: Average performance (%) of all considered baselines in the Si-Blurry setting. + ours refers
to combining baselines with prototypes and FGH. Best HP refers to the best set of LR and found
on VTAB. In some cases, the best HP coincides with one of the default HP values.

Dataset CIFAR100 CUB ImageNet-R

LearningRate 5% 107 5x107® BestHP | 5x10™® 5x 107 BestHP | 5x 107 5x 107 Best HP
Fine-tuning 29.541644 2461030 2.42+026 | 6134187 1.424027 1.38+024 | 3.961070 1.38+017 1.49+026
Linear probe 22.15+380 35.59+414 35.59+414 | 2.241040 49.371275 49.371275 | 3.831041 34.53i156 34.53+156
ER 81.331304 3.144063 81.334304 | 52454302 1.56+033 52.454302 | 55.06+192 2.00+043 55.06+1.9
ER + Linear probe | 34.69+544 79.97+224 79.744245 | 4.34+002 64.20+137 64.07+145 | 7.70+002 54.52+110 53.98+1.11
MVP 21.57+227 41.42+600 36.88+197 | 2.73+065 47.114+262 39.12428 | 4.19+055 31.35+220 28.48+1.18
oLoRA 36.27+401 27.04+718 34.67+751 | 5.04+156 49.044224 47374151 | 8.82+150 33.084367 39.29457m
CODA 15144378 71.12+447 56.03+210 | 0.83+035 53.17+196 35904633 | 1.92+062 47.65+140 32.93:+155
— + ours 44214804 79474223 69.04+256 | 4.50+063 68.64+310 47494525 | 9.95+170 57.16+117 41.68+232
L2P 10.80+430 58.20+650 58.204650 | 0.46+024 30.57+385 30.57+385 | 1.05+020 27174461 27.17+461
— + ours 33.054801 79.224302 79.224302 | 2.00+098 68.68+220 68.68+220 | 5.80+147 59.89+205 59.89+205
DualPrompt 15.68+353 66.90+504 53.394535 | 0.97+042 52.32+240 43.76+304 | 1.80+030 46.05+174 35274261
— + ours 42124634 75231321 70.34+144 | 5431008 74.89+151 67.38+313 | 10.11+138 57.68+170 51.86+1.15
ConvPrompt 24.55+380 75.01+s16 75.014s06 | 0.64+023 56.27+084 56.27+084 | 1.18+002 46.75+180 46.75+150
— +ours 44231320 86.341359 86.341350 | 4431113 73.88+0s7 73.88+0s7 | 3.78:022 62.621011 62.62:0.11

described in Section[3.1] Additionally, we compare adapted methods to state-of-the-art memory-
free onCL methods MVP (Moon et al.| (2023)) and Online LORA (oLoRA) (Wei et al.| (2025)).
Eventually, we experimented with Experience Replay (ER) (Rolnick et al.| (2019)) to compare
with a traditional memory-based approach, as well as fine-tuning and linear probe baselines. We
evaluate our method on CUB (Wah et al.|(2011)), ImageNet-R (Hendrycks et al.| (2021)) and
CIFAR100 (Krizhevsky|(2012)). As introduced above, we conduct a small hyperparameter search
regarding the LR on VTAB (Zhai et al.|(2019)), which is referred to as the best columns in Tables E]
and 2] More details in the Appendix.

Clear and Blurry Boundaries. We experiment in clear boundaries settings, for continuity with
previous work, despite its lack of realism for onCL. In that sense, we consider an initial count of 10
classes for the first task, with an increment of 10 classes per task. This results in 10 tasks with 10
classes per task for CIFAR100, as well as 20 tasks with 10 classes per task for CUB and ImageNet-R.
However, to evaluate our method in more realistic scenarios, we reckon the Si-Blurry (Moon et al.
(2023))) setting to be the most relevant to our study case. Specifically, we use their implementation of
Stochastic incremental Blurry boundaries (Si-Blurry). We use the same number of tasks as for the
clear setting. In this case, some classes can appear or disappear during training, and the transitions
are not necessarily clear. More details on this setting can be found in the Appendix.

Implementation Details. Every method is evaluated in the onCL context, where only one pass
over the data is allowed. The batch size is fixed at 100 to simulate small data increments with a low
storage budget in the context of fast adaptation. The backbone used for all compared approaches is a
ViT-base (Dosovitskiy et al.[(2021)), pre-trained on ImageNet 21k. Each experiment was conducted
over 10 runs, and the average and standard deviation are reported, except for ConvPrompt and oLoRA,
where only 3 runs were used due to their intensive computation requirements. The memory size of
memory-based methods is set to 1000. Each run was conducted with a different seed, which also
impacted the task generation process. For all experiments, we use v = 1 as the default value. More
details on the selection of -y can be found in Section[5.2] More details are given in the Appendix.

4.3 EXPERIMENTAL RESULTS

Improvement over suboptimal LR. As shown in Table[T]and Table [2] augmenting the considered
baselines with our proposed strategy consistently yields performance improvements. Moreover, the
strongest memory-free methods are always achieved when our strategy is employed. Notably, the
relative gain is most pronounced when starting from a suboptimal LR. For instance, on CIFAR100
with ConvPrompt (Table , using an initial LR of 5 x 1075 results in a performance improvement
of 26.3%, whereas with a higher LR of 5 x 10~3 the improvement is 13.8%. A similar trend can
be observed in Table [3] where the benefit of incorporating FGH over prototypes becomes more
significant at lower LR values.

Methods for offCL are Powerful onCL Learners. We evaluate in both clear and blurry settings,
reporting Average Performance in Table[2]and Table[I] For offCL methods (without + ours), we apply

Under review as a conference paper at ICLR 2026

Table 2: Average Performances (%) of all considered baselines, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5x 107° 5x 1072 BestHP 5x 107 5x107% BestHP 5x107° 5x 10~® Best HP
Fine-tuning 29.83z056 2.93:000 2.93:000 | 5.89z001 1.70=0.15 1.77s014 | 9142004 2.16:033 1.92:0.15
Linear probe 12.50:145 30.372063 30.37:063 | 0.80:022 53.40:162 53.40:162 | 1.872031 35.54s104 35.54z104
ER 81.73:060 2.95:006 81.73:060 | 42924321 1.76:020 42.92:321 | 53.43:110 2172035 53.43:110
ER + Linear probe | 33.69:1.47 81.79s121 81.13s121 | 2.35:024 63.035108 62.81:003 | 6.042083 51.62:106 50.25:102
MVP 21.60:158 33.10:075 24.97+104 | 2.85:076 57.17s136 51.08s206 | 4.20:073 35.53:131 34.53:14
oLoRA 35.35s503 22.99s177 29.08:139 | 3.88:140 53.15:390 43444206 | 7.01:058 3691179 48.90:1.73
CODA 247126 71.62:235 66.66:308 | 2.542068 61.04208 49.13:305 | 3.642087 62.33:197 53.63:205
< + ours 58.76+228 78.50:143 71.40s386 | 5.842113 70.320270 56.63:397 | 13.02:138 64412125 58.33:200
L2P 20.95:440 64.86:378 64.86:378 | 2.032075 35.67:336 35.67:336 | 3.50:116 43.15:281 43.15:2s1
— + ours 52.95:004 82.26:076 82.26:076 | 3.94s112 72.60:1.16 72.60:106 | 11.82:142 66.96:050 66.96:0.0
DualPrompt 23.24:15 69.172227 6477252 | 2.62:000 61.26:238 55.62:206 | 3.642046 59.55:123 54.23:005
< + ours 528419 75.01c132 72.74:102 | 6.09:108 78.56:087 73.30:050 | 13.50:100 63.742051 62.47x105
ConvPrompt 33.80:071 73.88:3.15 73.88:315 | 2.14s054 65.96:278 65.96:278 | 3.07:037 59.60:020 59.60:020
< + ours 60.07:137 87.65:037 87.65:037 | 5.54:110 75.73:012 75.73:012 | 6.89:032 69.76:138 69.76:138

Table 3: Average Performances (%) of all considered baselines with and without prototypes as
memory and FGH, in the Si-Blurry setting. Results over 10 runs are displayed, and v = 1.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5x10™° 5x 107 5x10™° 5x107% 5x10° 5x 1073
CODA 15144378 T1.12+447 | 0.832035 53.17x196 | 1.92s0620 47.65+14
—~+P 31.27+6905 78.18433 1.69:03 62.934478 | 4.36:s1.11 55.924184
— + FGH 22.27+s588 69.66s324 | 0.842034 50.45:043 | 2.14s011 4431301
< + P+ FGH | 44.21:804 79.47:223 | 4.5:063 68.64:3.19 | 9.95:179 57.16:1.17
L2P 10.8:430 58.216.50 0.46:024 30.57s385 | 1.05:020 27.171461
—+P 22.81s661 78.13s315 | 0.82:030 64.184326 | 2.39s068 57.83+200
— + FGH 15.444576 55.66:425 | 0.46:023 27.68s364 | 1.15:033 24.15458
<~ + P+ FGH | 33.05:801 79.22:302 | 2.0:098 68.68+229 | 5.8:1.47 59.89:2.05
DualPrompt 15.68:353 66.9:504 | 0.97:042 52.32:24 | 1.8s030 46.0541.74
—+P 30.12s566 74.224303 | 2.072067 71.96s16 | 4432084 58.37:1.03
— + FGH 22.26:549 63931376 | 0.962043 50.2:257 | 2.09:053 40.02:2242
< + P+ FGH | 42.12:63¢ 75.23:321 | 5.43:008 74.89:151 | 10.11:138 57.68:17
ConvPrompt 24.55:38 75.01ss06 | 0.64023 56.27:084 | 1.18s002 46.75418
—+P 423572 8414507 | 1.9:06 70.81s086 | 2.415026 57.42:058
— + FGH 28.64:04 759971 | 0.83:015 5596227 | 1.19:004 49.39:060
— +P+FGH | 44.23:329 86.34:350 | 4.43:1.13 73.88:087 | 3.782022 62.62:0.11

only the adaptation described in Section[3.1} Interestingly, these methods prove highly effective in the
online setting, often outperforming MVP and oLoRA, despite being originally designed for offline
learning. A likely explanation is that prior work typically applied offline hyperparameters directly
to the online problem, leading to suboptimal results. In some cases, such as CIFAR100 with an LR
of 5 x 107°, oLoRA achieves the strongest performance among memory-free baselines. However,
under the Best HP setting, offCL. methods consistently achieve substantially better results. It is also
worth noting that MVP and oLoRA depend on several additional hyperparameters, which may not
generalize across scenarios. Together, these observations highlight the central role of learning rate
and hyperparameter selection in Continual Learning.

Ablation Study. To clarify the contribution of each component of our method, we include the
performance of the original baselines, followed by the performance of these baselines combined with
Prototypes only (+ OP), and the performance of these baselines combined with FGH (+ FGH). These
results are included in Tables [3] for the blurry scenario. While it is clear that the use of prototypes
is largely beneficial, in some situations, the addition of FGH can lead to a drop in performance.
One explanation for this observation is the reverse GI induced by the usage of FGH, as presented in
Section [5.1]and Figure[2] Larger gradients on newer tasks induce faster learning of newly introduced
classes, with the risk of increased forgetting on earlier classes. Even though this imbalance might be
favorable, leveraging FGH without any stability-focused measures can lead to lower performance.

Under review as a conference paper at ICLR 2026

Nonetheless, the combination of both strategies largely leads to the best performance. We give more
details on this stability-plasticity trade-off in the Appendix.

5 DISCUSSIONS

5.1 PROTOTYPES AND FGH SYNERGY

FGH impact on Gradient Imbalance. To analyze the inner workings between prototypes and
FGH, let us consider the last classification layer W as defined in Section Each column W/, with
j € {1, ¢} as a class index, corresponds to the class-specific weights of the last layer. Therefore, at
a training step ¢, we can define the class-specific gradient g] = V.L(W/). We are interested in the

average gradient norm throughout training, which is ¢/ = — i;”l“” |lg7]|, with £, being the

tmax

maximum number of training steps. Similarly, we define the fask-specific gradient norm at the end of
training for a task k as G* = ICilkl > icc, 97 with Cj, being the classes present in task k. We define:

Gk

Gh—- =
" maxi<i<rt Gl

®

as the normalized average gradient norm corresponding to a task k at the end of training. We show the
values of G¥ at the end of training for CODA on CIFAR100 in the clear setting and an LR of 5 x 10 3
in Figure 2| Several observations can be made: (1) When training in onCL, a strong GI occurs,
favoring stronger gradients for earlier classes than for later classes. (2) When introducing prototypes
(+ P), despite a gain in performance, such an imbalance is increased. This behavior is expected as the
prototype induces an additional gradient corresponding to older classes when training on the current
task. (3) FGH reverses and reduces the imbalance when compared with using prototypes, leading to
larger gradient values for the later classes. We argue that this imbalance is favorable because a larger
LR usually implies rapid adaptability of the model, which is desired for newer classes, while older
classes typically require lower gradients for more stability. Coefficients of variation are given in the
appendix for a more detailed analysis of this behavior.

1.0 Fg
-ED':
g BN CODA
205t 1] mm coba+p
© CODA + FGH
& BN CODA +P +FGH

0'00123456789

Task id k&

Figure 2: Values of the average normalized gradients per task G* for CODA on CIFAR100, 10 tasks.
When including FGH, we display the resulting gradient after multiplying by the coefficients.

Underlying Intuition. To illustrate how FGH mitigates GI, Figure [3]shows task-specific gradient
values with and without FGH. We observe that gradients are amplified more strongly for later tasks
than for earlier ones, a trend confirmed across methods (see Appendix). According to the update rule
in equation [7} gradients for early tasks change direction frequently, leading to smaller coefficient
growth, whereas later tasks produce more stable gradients and thus larger coefficients. Intuitively, this
mechanism down-weights unstable, high-magnitude gradients from early tasks while emphasizing
the smaller, steadier gradients of later tasks, thereby correcting the imbalance.

5.2 SELECTING 7y

The main drawback of leveraging FGH is the addition of an extra hyperparameter . To provide
some additional insight into the impact of on the final performance, we experiment with v €
{1076,1075,--- 1,10} and show the results in Figure 4] It is important to note that v = 0 is
equivalent to disabling the FGH mechanism. Therefore, it can be observed that for all methods, on

Under review as a conference paper at ICLR 2026

S Without FGH With FGH

g 20k —— CODA g ; CODA + FGH

g i ——- CODA +P i M“‘ m ——- CODA +P + FGH
3 10 \,‘Ib\ Wi i

3 \ i\ ;

E 0 AV s — J' |lv’ (W “fr A J‘\ _______ -
& 0 50 100 150 200 250 0 50 100 150 200 250

Training step Training step

(a) G? on CIFAR100 with CODA (10 tasks).

Without FGH With FGH
: : : : : : ; : . :
D 75t —— CODA | l . CODA + FGH
B —:— CODA +P | n [—— CODA +P+FGH
1 . | } i
250 by il i
S :li\'f‘f\}"“‘ yr\\’\ll"”\’l”
2 st SR b |
£ / i
O» _.__Mm—l*_—‘_.—__‘ —— J‘ : ‘\Al—-—._._: o
380 400 420 440 460 480 500 380 400 420 440 460 480 500
Training step Training step

(b) G on CIFAR100 with CODA (10 tasks).

Figure 3: Values of gradients for CODA on CIFAR100 with 10 tasks, with and without prototypes and
FGH. When including FGH, we show the resulting gradient after multiplication by the coefficients.

both datasets, larger values of v lead to substantial improvement over the baselines. Nonetheless,
higher values of v may lead to unstable training due to high gradients. Therefore, we set v = 1 for
all experiments by default. Even though FGH introduces an additional hyperparameter, its impact is
positive in all cases when combined with prototypes.

—e— CODA —e— DualPrompt L2P
g — — g
o [) 70 ./-/ 1
3 : . o - » Fo——t—t——0—
5 60 e o e O .
Q i i v]
2 60 =
N j
= 4o} | sof=tme e
> i !
< 1 1 i 1 I I 1 1
107> 1073 107! 10! 107> 1073 107! 10!
Y Y

Figure 4: Average Accuracy (%) on VTAB (left) and CUB (right), in the Si-blurry setting, with
an incremental step of 5 classes per task, an LR of 5 x 1072, for CODA, DualPrompt, and L2P
combined with prototypes and FGH, for varying values of ~.

6 CONCLUSION

In this paper, we tackled the problem of Online Memory-Free Task-Free Continual Learning, an
especially realistic problem. In that sense, we propose to narrow the gap between offCL and onCL
research fields by adapting state-of-the-art off CL methods to the onCL problem by leveraging
prototypes as a simple memory replacement. However, such a strategy increases gradient imbalance
towards earlier classes and results in biased training. Moreover, limitations regarding the choice
of the optimal LR remain unaddressed. Therefore, we introduced Fine-Grained Hypergradients
(FGH) for Gradient Imbalance adjustment and online LR adaptation. Our method consistently
outperforms existing memory-free onCL approaches, such as MVP and oLoRA, across a wide range
of experimental settings. The synergy between these components enables more efficient and balanced
learning throughout the training process. Overall, our results demonstrate significant performance
improvements, encouraging further connections between offCL and onCL research. Eventually, this
approach offers a promising path towards scalable and efficient online learning solutions.

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254-11263,
2019.

Luis B Almeida, Thibault Langlois, José D Amaral, and Alexander Plakhov. Parameter adaptation in
stochastic optimization. In On-line learning in neural networks, pp. 111-134, 1999.

Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song, Jung-Woo Ha, and Jonghyun Choi. Online
continual learning on a contaminated data stream with blurry task boundaries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9275-9284, 2022.

Atilim Giines Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In Sixth International Conference on
Learning Representations, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In Advances in Neural
Information Processing Systems, volume 33, pp. 15920-15930, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience
replay: a bag of tricks for continual learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 2180-2187. IEEE, 2021.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In International
Conference on Learning Representations, 2022.

Sungmin Cha and Kyunghyun Cho. Hyperparameters in continual learning: a reality check. arXiv
preprint arXiv:2403.09066, 2024.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from
non-stationary data streams. Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8250-8259, 2021.

Jiahua Dong, Wenqi Liang, Yang Cong, and Gan Sun. Heterogeneous forgetting compensation
for class-incremental learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11742-11751, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128-135, 1999.

Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not Just Selection, but Exploration: Online Class-
Incremental Continual Learning via Dual View Consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7432-7441, 2022.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Online Continual Learning through Mutual Information
Maximization. In Proceedings of the 39th International Conference on Machine Learning, pp.
8109-8126, 2022. URL https://proceedings.mlr.press/v162/guo22g.htmll

Yiduo Guo, Bing Liu, and Dongyan Zhao. Dealing with cross-task class discrimination in online

continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11878-11887, 2023.

10

https://proceedings.mlr.press/v162/guo22g.html

Under review as a conference paper at ICLR 2026

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16668—16677,
2024.

Jiangpeng He and Fengqing Zhu. Online continual learning via candidates voting. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3154-3163,
January 2022.

Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learning in online scenario.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
2020.

Jiangpeng He, Zhihao Duan, and Fengqing Zhu. Cl-lora: Continual low-rank adaptation for rehearsal-
free class-incremental learning. arXiv preprint arXiv:2505.24816, 2025.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340-8349, 2021.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Hyunseo Koh, Minhyuk Seo, Jihwan Bang, Hwanjun Song, Deokki Hong, Seulki Park, Jung-Woo
Ha, and Jonghyun Choi. Online boundary-free continual learning by scheduled data prior. In
International Conference on Learning Representations, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638-23647, 2024.

Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based
contrastive replay for online class-incremental continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24246-24255, 2023.

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting
the nearest class mean classifier in online class-incremental continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3589-3599, 2021.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28-51,
2022.

Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

Nicolas Michel, Romain Negrel, Giovanni Chierchia, and Jean-Fmncois Bercher. Contrastive learning

for online semi-supervised general continual learning. In 2022 IEEE International Conference on
Image Processing (ICIP), pp. 1896—1900. IEEE, 2022.

11

Under review as a conference paper at ICLR 2026

Nicolas Michel, Maorong Wang, Ling Xiao, and Toshihiko Yamasaki. Rethinking momentum
knowledge distillation in online continual learning. In Forty-first International Conference on
Machine Learning, 2024.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understand-
ing the role of training regimes in continual learning. Advances in Neural Information Processing
Systems, 33:7308-7320, 2020.

Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class incremental
learning on stochastic blurry task boundary via mask and visual prompt tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11731-11741, 2023.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision-ECCV 2020: 16th European Conference,
Proceedings, Part II 16, pp. 524-540, 2020.

Siddeshwar Raghavan, Jiangpeng He, and Fengqing Zhu. Delta: Decoupling long-tailed online
continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 4054—4064, June 2024a.

Siddeshwar Raghavan, Jiangpeng He, and Fengqing Zhu. Online class-incremental learning for
real-world food image classification. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 8195-8204, January 2024b.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. Advances in neural information processing
systems, 32, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence Replay for Continual Learning. In Advances in Neural Information Processing Systems,
volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
fa7cdfadlabaaf8370ebedad’/alfflc3-Abstract.html.

Anurag Roy, Riddhiman Moulick, Vinay K Verma, Saptarshi Ghosh, and Abir Das. Convolutional
prompting meets language models for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23616-23626, 2024.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909-11919, 2023.

Shibin Su, Zhaojie Chen, Guogiang Liang, Shizhou Zhang, and Yanning Zhang. Dual supervised
contrastive learning based on perturbation uncertainty for online class incremental learning. In
International Conference on Pattern Recognition, pp. 32—47. Springer, 2025.

Hai-Long Sun, Da-Wei Zhou, De-Chuan Zhan, and Han-Jia Ye. Pilot: A pre-trained model-based
continual learning toolbox, 2025.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Ger: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99-108, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Maorong Wang, Nicolas Michel, Jiafeng Mao, and Toshihiko Yamasaki. Dealing with synthetic data

contamination in online continual learning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

12

https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html

Under review as a conference paper at ICLR 2026

Maorong Wang, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki. Improving plasticity in online
continual learning via collaborative learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23460-23469, 2024b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631-648.
Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139-149, 2022b.

Xiwen Wei, Guihong Li, and Radu Marculescu. Online-lora: Task-free online continual learning via
low rank adaptation. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 6634-6645. IEEE, 2025.

Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online prototype
learning for online continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 18764—18774, 2023.

Fei Ye and Adrian G Bors. Online task-free continual generative and discriminative learning via
dynamic cluster memory. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 26202-26212, 2024.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey. In International Joint Conference on Artificial Intelligence, pp.
8363-8371, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23554-23564, 2024b.

13

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION AND ALGORITHM

A.1 IMPLEMENTATION

For our implementation, we rely on the LAMDA-PILOT repository (Sun et al.[(2025)), available at
https://github.com/LAMDA-CL/LAMDA-PILOT. The implementation of existing methods
was adapted to an online scenario.

A.2 ALGORITHM

The implementation that we used for our experiments is based on an Adam update. For the sake of
clarity, we present our method with SGD and Adam. We omitted the bias, logits mask, and coefficient
clamping from the pseudo-code. Therefore, we give the full details of the procedure in Algorithms 2]
and[I] in a pseudo-code Pytorch-like implementation.

Algorithm 1 PyTorch-like pseudo-code of integrating prototypes as memory and FGH with baselines.

gamma, grad_weight, old_grad = 1, {}, {}

for x, y in dataloader:
h, y_hat = network(x) # features and logits
loss_baseline = criterion_baseline(y_hat, y) # Baseline loss
proto, labels = get_prototypes() # Prototypes as memory
loss_p = cross_entropy (network.fc(proto), labels) # Eqg. 2
loss = loss_baseline + loss_p
loss.backward() # compute gradients

Fine-Grained Hypergradient update
for i, param in enumerate (network.parameters()) :
curr_grad = param.grad
if curr_grad is not None:
if i in grad_weight.keys():

grad_weight [i] = grad_weight[i] + gamma * curr_grad = old_grad[i]
param.grad = grad_weight[i] * param.grad

else:
grad_weight[i] = 1.0

old_grad[i] = curr_grad

optim.step ()
update_proto(h, y) # Eg. 1

A.3 BACKBONE

We leverage a ViT-base (Dosovitskiy et al.|(2021)), pre-trained on ImageNet-21k. Precisely, we use
the implementation of the timm library, available at https://huggingface.co/timm, with
model name "vit_base_patch16_224".

A.4 BATCH WISE LOGITS MASK

Another key component when training offline is the usage of a logits mask. Let z € R¢ denote the
logits output of the trained model. In the offline case, the logits mask m is defined such that

{0, ifjel,
Il’lj = .
—00, otherwise.

With), the ensemble of classes that the model has been exposed to at the current time of training.
The masked logits are then computed as

Z =7+ m.

In the blurry boundaries setting, classes can appear and disappear several times during training and
across tasks. In that sense, we adopt a more flexible version of the logits mask where YV = Vyq¢ch-
With Vyatcn, the set of all classes present in the current batch.

14

#Eq.

7

https://github.com/LAMDA-CL/LAMDA-PILOT
https://huggingface.co/timm

Under review as a conference paper at ICLR 2026

Algorithm 2 PyTorch-like pseudo-code of our Adam-based method integration with other baselines.
Extra details are given in this version regarding bias consideration and batch-wise masking.

Adam parameters

m = 0

v = 0

betal = 0.9

beta2 = 0.999

step = 0

Hypergrad parameters

gamma = le-3

grad_weight = torch.ones(n_classes)

prev_grad = None

for x, y in dataloader:
Baseline loss
h, logits_base = network (x) # features and logits
Batch-wise masking

mask = [1i for i in range(logits_b.shape[-1]) if i not in y.unique()]
logits_b[:, mask] = float('—-inf'")
loss_baseline = criterion_baseline(logits_b, vy)

FC recalibration
proto, labels = get_prototypes()

logits = network.fc(proto)
Batch-wise masking
mask = [1 for i in range(logits.shape[-1]) if i not in labels.unique()]

logits[:, mask] = float ('—-inf")
loss_op = cross_entropy(logits, labels)

loss = loss_baseline + loss_op

optim.zero_grad()
loss.backward ()

Class-Wise Hypergradient update

curr_W = network.fc.weight.grad

curr_B = network.fc.bias.grad

curr_grad = torch.cat ([curr_W, curr_B.unsqueeze(l)], dim=1)
if prev_grad is not None:

Adam update

= betal * m + (1 - betal) % curr_grad

= beta?2 v + (1 - beta2) * (curr_grad *x 2)
m_hat = m (1 — betal xx step)

v_hat = v (1 - beta2 =x step)

curr_grad m_hat / (torch.sqgrt (v_hat) + 1e-8)

=S

I~~~ %

grad_weight += gamma * (curr_grad @ prev_grad.T).diag() #Eqg. 7
for i in range(n_classes):
network.fc.weight.grad[i, :] = network.fc.weight.grad[i, :] » grad_weight[i]
network.fc.bias.grad[i] = network.fc.bias.grad[i] » grad_weight[i]
prev_grad = curr_grad
optim.step ()

update_proto(h, y) # Eq. 1

A.5 IMPACT OF LR ON THE STABILITY-PLASTICITY TRADE-OFF.

It is clear that selecting an appropriate learning rate is essential for optimal performance. In standard
scenarios, the impact of its choice on loss minimization and convergence speed has been extensively
studied 2016)). For offCL, previous studies have considered to impact of the LR on
forgetting (Mirzadeh et al.| (2020)). Notably, a higher LR would increase forgetting, and vice versa.
Intuitively, the learning rate gives direct control on the plasticity-stability tradeoff (Wang et al.|
(2024b)). To confirm such behavior in onCL, we experiment with larger and smaller LR values. As

15

Under review as a conference paper at ICLR 2026

0F— ‘
=5 x 102
B r=5x10°° I I I
X
- 11 AUl
% 40+
=
8
20+
0

0 1 2 3 4 5 6 7T 8 9
Task ID

Figure AS: Task-wise accuracy (%) of DualPrompt at the end of training on CIFAR100, split in 10
tasks, for LR values in {5 x 1075, 5 x 1072}, with a batch size of 10.

Table B4: Hyperparameters tested on VTAB, clear setting, an increment of 5 classes per task.
Hyperpameters used for Best HP as written in bold.

Method | Learning Rate | v

Fine-tuning [0.001, 0.005, 0.01, 0.05, 0.1] N/A

Linear probe [0.001, 0.005, 0.01, 0.05, 0.1] N/A

ER [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] | N/A

ER + Linear probe | [0.001, 0.005, 0.01, 0.05, 0.1] N/A

MVP [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] N/A

oLoRA [0.001, 0.005, 0.01, 0.05, 0.1] N/A

CODA [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
ConvPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
DualPrompt [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]
L2P [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] [0.00001,0.0001, 0.001, 0.01, 0.1, 1, 10]

can be seen in Figure when trained with a higher learning rate (5 x 10~2), the model tends to
obtain higher performances on the latest tasks while exhibiting especially low performances on earlier
tasks. When trained with a lower LR (5 x 10~?), the model tends to achieve better performance on
earlier tasks compared to training with a higher LR. In other words, a high LR value induces more
plasticity and less stability, and vice versa.

A.6 HYPERPARAMETERS GRID SEARCHED ON VTAB

In the presented results, we display a Best HP column, which corresponds to the results obtained
for the best hyperparameters obtained on VTAB. The objective is to simulate a realistic scenario
where the online continual learning datasets are not available for hyperparameter search. Therefore,
a realistic solution is to conduct a grid search on an available dataset and hopefully successfully
transfer the found hyperparameters to the new datasets. In this work, we search only for the value of
the learning rate and v when combining with FGH. The hyperparameters explored for all methods
are presented in Table[B4]

B DATASETS AND BASELINES

B.1 DATASETS

The backbone used for all our experiments has been pre-trained on ImageNet-21k, making it unfair
to experiment on such datasets. Following previous work (2025))), we showcase the
performance of our approach and experiment with the following datasets:

16

Under review as a conference paper at ICLR 2026

¢ CUB (Wah et al.|(2011))): The CUB dataset (Caltech-UCSD Birds-200) contains 200 bird
species with 11,788 images, annotated with attributes and part locations for fine-grained
classification. We use an increment of 10 classes per task, resulting in 20 tasks (with 10
classes per task).

* ImageNet-R (Hendrycks et al|(2021))): ImageNet-R is a set of images labeled with Im-
ageNet label renditions. It contains 30,000 images spanning 200 classes, focusing on
robustness with images in various artistic styles. We use an increment of 10 classes per task,
resulting in 20 tasks (with 10 classes per task).

¢ CIFAR-100 (Krizhevsky| (2012)): CIFAR-100 consists of 60,000 32 x 32 color images
across 100 classes, with 500 images per class, split into 500 training and 100 test samples
per class. We use an increment of 10 classes per task, resulting in 10 tasks (with 10 classes
per task).

* Visual Task Adaptation Benchmark (VTAB) (Zhai et al.[(2019)): VTAB contains the
following 19 tasks that are derived from several public datasets. We use an increment of 5
classes per task, resulting in 10 tasks (with 5 classes per task).

B.2 BASELINES

Offline methods adapted to Online Prompt learning-based methods (Zhou et al.| (2024a))) are
particularly suited for being combined with our approach in onCL as they all capitalize on a final FC
layer for classification. Therefore, we consider the following.

* L2P (Wang et al. (2022b))): Learning to Prompt (L2P) is the foundation of prompt learning
methods in Continual Learning. The main idea is to learn how to append a fixed-sized
prompt to the input of the ViT (Dosovitskiy et al.|(2021))). The ViT stays frozen; only the
appended prompt as well as the FC layer are trained.

* DualPrompt (Wang et al.| (2022a)): DualPrompt follows closely the work of L2P by
addressing forgetting in the prompt level with task-specific prompts as well as higher-level
long-term prompts.

* CODA (Smith et al.|(2023))): CODA-prompt improves prompt learning by computing the
prompt on the fly, leveraging a component pool and an attention mechanism. Therefore,
CODA benefits from a single gradient flow.

¢ ConvPrompt (Roy et al.|(2024))): ConvPrompt leverages convolutional prompts and dy-
namic task-specific embeddings while incorporating text information from large language
models.

Online memory-free and task-free methods

* MVP (Moon et al.| (2023))): MVP uses learned instance-wise logit masking, contrastive
visual prompt tuning for Continual Learning in the Si-Blurry context.

¢ Online LoRA (oLoRA) (Wei et al.| (2025)): Trains a LoRA (Hu et al.| (2022))) module
for each task in the online task-free setting by detecting task-change by estimating the
convergence of the model.

Mainstream baselines Additionally, we considered traditional baselines when working with
continual learning methods:

* Fine-tuning: Straightforward fine-tuning where the backbone is fine-tuned on new tasks by
training all the present weights without any specific constraint

* Linear probe: Fine-tuning training where only the last fully connected (FC) layer is trained.
All other weights are frozen.

» Experience Replay (ER) (Rolnick et al.|(2019)): A memory-based approach that reuses
the experience of previous tasks to train the model on the new task. In our experiments, we
limit the memory size to 1000 samples, and retrieve 100 samples at each training iteration.

* ER + Linear probe: This method consists of training a Linear probe (Alain & Bengio
(2016))) method and incorporating an ER mechanism. In our experiments, we limit the
memory size to 1000 samples, and retrieve 100 samples at each training iteration.

17

Under review as a conference paper at ICLR 2026

C ADAPTATION OF METHODS TO OUR SETUP

Since most methods compared here were originally designed for offCL, they had to be specifically
adapted to the onCL scenario. In that sense, some parameters have been chosen arbitrarily, based on
their offCL values, without additional hyperparameter search. Such a situation is similar to one that
would be observed in real-world cases where an offCL model tries to be adapted to an onCL problem.
For all methods, we use a learning rate, no scheduler, and Adam optimizer. Of course, we disabled an
operation that was operated at task change. Additionally, even though MVP was indeed designed
for online cases, we found several differences between their training procedure and ours, which we
discuss below.

Adaptation of CODA. In their original paper and implementation (Smith et al.| (2023)), the
authors require freezing components after each task, therefore having task-specific components.
Typically, they show that performances tend to plateau for more than 100 components, and for a
10-task sequence, they would reserve 10 components per task. In our implementation, we decided
to similarly use 100 components for the entire training. However, we train all components together
at all times during training since we cannot know when the correct time to freeze or unfreeze
them. For other parameters, we followed the original implementation. Code adapted from https:
//github.com/LAMDA-CL/LAMDA-PILOT

Adaptation of ConvPrompt. ConvPrompt (Roy et al.|(2024))) is a method that heavily relies on
task boundaries in its original implementation, notably by incorporating five new prompts per task.
Contrary to CODA, allocating the maximum number of prompt generators at all times, without a
freeze, would induce an important training time constraint. Therefore, we only use five prompt
generators at all times. Despite this reduction in overall parameters, ConvPrompt still achieves
competitive results in the clear setting. However, its performances drastically fall off in the Si-
Blurry case. Further, an in-depth adaptation of ConvPrompt in the online context could potentially
improve its performance; however, such a study is not covered in this work. Code adapted from
https://github.com/CVIR/convprompt.

Adaptation of DualPrompt. Similar to CODA, but on a prompt level, DualPrompt (Wang et al.
(2022a))) requires freezing prompts at task change. For adapting it to onCL, we chose to use all prompts
at all times without freezing the prompt pool. The E-Prompt pool size is set to 10 and the G-Prompt
pool size is set to 5. Code adapted from https://github.com/LAMDA-CL/LAMDA-PILOT,

Adaptation of L2P. The same logic as the one described for CODA and DualPrompt applies to
L2P (Wang et al.|(2022b)). In that sense, we use the entire prompt pool at all times without freezing.
The prompt pool size is set to 10. Code adapted from https://github.com/LAMDA-CL/
LAMDA-PILOT,

Adaptation and Performances of MVP Even though MVP (Moon et al.|(2023)) is designed for
the online case, its original training setup differs slightly. Firstly, the batch size is set to 32 (we
use 100), and they similarly consider that each batch can be used for 3 separate gradient steps. In
that sense, the performances reported in the original paper might be higher as they trained on a
slightly more constrained setup. Secondly, the authors use the same learning rate and optimizer for
each compared method, which, as we argued in this work, might lead to different results, relatively
speaking, compared to other methods. Such experimental differences might lead to the performances
obtained in our experiments, which are, in most cases, surprisingly low. The code was adapted from
https://github.com/KU-VGI/Si-Blurry.

Adaptation and Performances of oLoRA Even though oLLoRA (Wei et al.|(2025)) is designed
for online problems, it relies on several hyperparameters. Notably, it requires computing a moving
average of the current loss, which, depending on the batch size and task size, can lead to significantly
different results. For example, on the CUB dataset, a task consists of 400 images. In our setup, the
batch size is 100, so the default window size of 5 would span over multiple tasks. Such behavior
makes the working mechanism of oLoRA very sensitive to the setup. Other hyperparameters include
variance and mean loss threshold for triggering loss change detection. Similarly, this is very dependent

18

https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/CVIR/convprompt
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/LAMDA-CL/LAMDA-PILOT
https://github.com/KU-VGI/Si-Blurry

Under review as a conference paper at ICLR 2026

on the dataset. Lastly, a loss weighting term must be grid-searched for optimal results. Code adapted
fromhttps://github.com/christina200/online—-lora—-officiall

D ADDITIONAL EVLUATION METRICS

Here, we report additional metrics in the clear and blurry boundary contexts for all methods for
additional insights into the performance.

D.1 AVERAGE PERFORMANCES

We follow previous work and define the Average Performance (AP) as the average of the accura-
cies computed after each task during training (Zhou et al.| (2024a))). Formally, when training on
{Dy,---,Dr}, we define A, = % Zle a1, as the Average Accuracy (AA), with a; ;, being the
accuracy on task [after training on Dy. Building on this, we define the Average Performance (AP) as:

1 T
szk;/tk. 9)

D.2 FINAL AVERAGE ACCURACY

We report the final average accuracy Ar as per the definition given in the main draft. Such results are
presented in Tables[BT0|and [BTT]

D.3 PERFORMANCES ON PREVIOUS TASKS

We report the accuracy at the end of training on previous tasks when training in the clear setting.
Notably, show the accuracy for each method on the first 10 tasks in Table [BI2] It can be observed
that for earlier tasks, leveraging FGH and Prototypes (+ ours) leads to the best performances on
older tasks, see for example the performances of CODA on CIFAR-100 on the first task, presented in

Tables[B12]to[B21]

D.4 TIME COMPLEXITY

Experiments were run on various machines, including Quadro RTX 8000 50Go GPU, Tesla V100
16Go GPU, and A100 40Go GPU. In this section, we report the times of execution of each method.
To do so, we run all methods (except oLoRA) on a single Quadro RTX 8000 50Go GPU, for the CUB
dataset, clear setting, with a batch size of 100. Since oLoRA requires a lot a GPU memory, we have
to evaluate its training time and memory consumption on two Quadro RTX 8000 50Go GPUs. The
results are presented in Table[B3] It can be observed that the time consumption overhead of including
prototypes and FGH is minimal.

D.5 SprATIAL COMPLEXITY

Fine-Grained Hypergradients. The usage of FGH requires storing one float per trainable parameter
D as well as previous gradient values of those parameters. This amounts to a total of D x D additional
floats to store. We show memory footprint on GPU in Table B5|using a Quadro RTX 8000 50Go
GPU, on the CUB dataset, clear setting, with a batch size of 100.

Prototypes. Storing prototypes only requires one vector of dimension / per class, with [= 768 in
the case of ViT-base. Additionally, an extra integer per class must be stored to keep track of the index
of the update of each class-dependent prototype. If the index is stored as a float, the additional amount
of floating points to store is ¢ x (I 4 1), with ¢ the number of classes, and [the output dimension
of the backbone. We show memory footprint on GPU in Table [B5|using a Quadro RTX 8000 50Go
GPU, on CUB dataset, clear setting, with a batch size of 100.

19

https://github.com/christina200/online-lora-official

Under review as a conference paper at ICLR 2026

Table BS: Time and Spatial complexity of compared methods on CUB in the clear setting, with a
batch size of 100.

Method Time (min) Memory Footprint (MB)
Fine-tuning 3m26s 17,089
Linear probe 2m40s 2,566
ER 4m54s 34,481
ER + Linear probe | 3m12s 4,647
MVP 5m22s 12,722
oLoRA 5m20s 56,357
CODA 5m37s 16,923

—+P S5m47s 16,921
— + FGH Sm54s 18,287
< + ours 5m55s 18,288
L2P 5m32s 14,090
—+P 5m35s 14,092
— + FGH 5m43s 14,090
<~ + ours S5m43s 14,092
DualPrompt 5m12s 11,827
—+P Sml4s 11,829
— + FGH 5m23s 11,828
<~ + ours Sml8s 11,829
ConvPrompt 1h12m24s 11,708
—+P 1h12m33s 11,709
— + FGH 1h12m22s 11,708
— + ours 1h12m40s 11,709

E ADDITIONAL EXPERIMENTS

E.1 DETAILS ON GRADIENT IMBALANCE

In the following, we give additional insights into the results displayed in Figure 2]regarding GI. In
this regard, we computed the coefficient of variation across normalized class-wise gradients. Namely,
we compute the std/mean ratio on the data presented in said Figure. The results are presented in
Table

Method Coefficient of Variation Comments Perfs
CODA 0.3353 Baseline 71.12
CODA +P 0.5069 GI increased 78.18
CODA + FGH 0.3488 GI reversed and slightly increased 69.66
CODA + P + FGH 0.3107 Gl reversed and decreased compared to P 79.47

Table B6: Comparison of Methods with Coefficient of Variation and Performance

E.2 DETAILS ON STABILITY-PLASTICITY TRADE-OFF

In the following, we report results that are already presented in task-wise tables. The objective here
is to show that for smaller learning rate values, we observe that FGH improves plasticity, and why
Prototypes improve stability. Looking at the results presented in Table[B7] it can be seen that using
prototypes particularly increases performance on earlier tasks while FGH focuses more on later tasks.
Overall, the best performances are obtained by combining both strategies.

E.3 LONGER TASK SEQUENCE
We conducted brief experiments regarding the performance of CODA + ours on Imagenet-R, non-

blurry, with an increment of 2 classes per task, for various values of v, with and without prototypes.
The results are displayed in Table

20

Under review as a conference paper at ICLR 2026

Task L2P L2P+P L2P+FGH L2P+P+FGH

1 4.51 44.5 6.46 65.77
2 6.01 53.14 9.47 70.37
3 12.44 52.87 16.32 67.65
4 16.15 55.65 23.01 67.59
5 21.37 49.55 30.11 61.33
6 28.82 51.25 39.19 61.40
7 25.11 44.49 36.20 51.86
8 3434 46.98 46.26 53.13
9 3275 37.89 42.71 41.6
10 30.16 29.04 39.34 29.14

Table B7: Task-wise performance of L2P on CIFAR100 with an initial LR of 5 x 107>,

v +P Average Performances

0 0 32.7
05 0 30.35
1 0 32.7
0 1 38.9
0.5 1 44.4
1 1 38.1

Table B8: Average Performances for Different Values of v and +P

E.4 ADDITIONAL MEMORY SIZES

In the main paper, all memory sizes are limited to 1000 for ER-based methods. In the following, we
show additional performances for ER with larger memory sizes on CIFAR100 and Imagenet-R for an
initial LR of 5 x 10~°. The results are presented in Table

Table B9: Performance of ER on CIFAR100 and ImageNet-R with varying memory sizes and a
learning rate of 5 x 1075,

Dataset 1000 5000 10000

CIFARI00 (ER) 8120 85.88 86.94
ImageNet-R (ER) 53.35 5830 58.63

F DETAILS ON THE SI-BLURRY SETTING

We followed the procedure and code made available by the authors of MVP (Moon et al.| (2023))
in order to generate the Si-Blurry versions of the datasets. Notably, we use M = 10 and N = 50,
following the original work. The number of tasks is the same as in the clear setting. We show the
number of images per class appearance during training for a subset of classes to give a better overview
of this training environment in Figure

G ADDITIONAL GRADIENT VALUES

Following the analysis on the interactions between FGH and prototypes with regard to past gradients,
we include the gradients norm of previous task for more tasks and methods in Figure[A7|to Figure[A36]

21

Under review as a conference paper at ICLR 2026

= classO = classl6 = class50 = class78 = class85 = class99
‘5
©
faa}
=
3%
©
£
) s
9]
el
€
=1
1 =
o Lua A nAD | » s TrRining glep
100k 200k 300k 400k 500k

Figure A6: Example of class apparition during training in the Si-Blurry setting on CIFAR100. The
y-axis represents the average number of images of a given class present in the current batch size of
10.

Without FGH With FGH
" 5T . CODA i CODA + FGH
g —-— CODA +P i —-— CODA +P + FGH
£ 501 i
= |
O |
2504 \ i {
% W L
& : T
ot e . i — I
0 50 100 150 200 0 50 100 150 200
Training step Training step

Figure A7: Values of G! for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
“6 —— CODA CODA + FGH
= 201 —— CcODA+P | [| —-— CODA +P + FGH
& i bbb
E i i f.-*ryf Wi ,‘-!i
C1or Pl
(o} 14 |
<
E i hir .
= 0 \ s - —_— "u' ! J"\'JV'w -iL
50 100 150 200 250 50 100 150 200 250
Training step Training step

Figure A8: Values of G2 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

22

Under review as a conference paper at ICLR 2026

Without FGH With FGH
% —— CODA l!l . CODA + FGH
2 —— CODA +P 1]] —— CODA +P +FGH
2 M i
g 20| i
6}]{5 (il i |
< | |
K _[‘Nww i i
<
= ok - " L _._.l: -L"‘»-._._T"-J‘\._.__._..\ ——
100 150 200 250 300 100 150 200 250 300
Training step Training step

Figure A9: Values of G2 for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
3 —— CODA CODA + FGH
© 40 |
% —:— CODA +P Ei —:— CODA +P + FGH
= TN
8 ".i I! N "J! \
O 20t LKL R T
g B
% < .' i
= | \ A A 4
ot _I*"W-'wv — LSS SN . ¥ SRV WS
150 200 250 300 350 150 200 250 300 350
Training step Training step

Figure A10: Values of G* for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
e 40f —— CODA) ’ CODA + FGH
% —— CODA +P ll" [} Il\ ﬁ —:— CODA + P + FGH
3 it
S 20 i fiy
) it !
2 A
= _MW'\ | " . '\'
0 - — | KK S ;
200 250 300 350 400 200 250 300 350 400
Training step Training step

Figure A11: Values of G® for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
75 j i j :]
% —— CODA . CODA + FGH
= 5ol —-— CODA +P | i!i!i'!,\’ —:— CODA + P + FGH
E Ly !“;","s'\"":
S sl it 1
% f !
B 3
a ok _f\“"‘"““"’"*"‘ : _._.l: h'\-_._A_.I:\,.:‘\..A._._r'v.'\.__._._;\.\._
250 300 350 400 450 250 300 350 400 450
Training step Training step

Figure A12: Values of G for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

23

Under review as a conference paper at ICLR 2026

Without FGH With FGH
60F : : v : F ; ! :
> —— CODA CODA + FGH
= —— CODA+P - —-— CODA + P + FGH
.2 40 il "
= b,“' Ml 1
] UG Tl)
5 i S Wiey] L
~ 20} : =14 ;y' ¥
% [)
3 | |
a oF _A‘* R ! ! —— LI R, e
300 350 400 450 500 300 350 400 450 500
Training step Training step

Figure A13: Values of G” for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
2 7 —— CODA CODA + FGH
:‘E s —— CODA +P ‘ —-— CODA + P + FGH
E | bW A le' I }l M
< s by L
% v
& A A :
oF : " - - R——— : e PP o PP S———
325 350 375 400 425 450 475 500 325 350 375 400 425 450 475 500
Training step Training step

Figure A14: Values of G® for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
75 —— CODA ‘ | i 1 CODA + FGH
g —— CODA+P | N | —— CODA+P+FGH
g 50 |] Ill'“\ \’l'\, ’||'.1 !
AL |
g iRy "1‘! i
%% S5 i
& ol M jl [AN e
380 400 420 440 460 480 500 380 400 420 440 460 480 500
Training step Training step

Figure A15: Values of G° for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
3 I —— CoDA ' CODA + FGH Il‘ A
£ —— CODA+P —— CODA+P+FGH |l S It
£ 50 § M| /\, A
5 AT
3 i/\/ VA 1 '\\/v
S 25 AN
E: /
£ ok —_/“\W\ : : e e — /‘ | L

430 440 450 460 470 480 490 500 430 440 450 460 470 480 490 500
Training step Training step

Figure A16: Values of G'° for CODA on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

24

Under review as a conference paper at ICLR 2026

Without FGH With FGH
: : . l : : :
T 150 — L2P i L2P + FGH
‘E —— L2P+P i —-— L2P+P+FGH
5100 i
& i
6} R
Z 50 !
% n, it .
< " y A
s N | | e I | L
0 50 100 150 200 0 50 100 150 200
Training step Training step

Figure A17: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
< 30 — 2P _ii||{ T L2P + FGH
z —— L2P+P :iii-ﬁ i i| —— L2P+P+FGH
R it
6 | i 1] ' 'iif,
S0}] i 'h !
2 I I b)
2 v\ dA
& | IV jri*a f
ok B 1 e ! — LY NS S SR, e
50 100 150 200 250 50 100 150 200 250
Training step Training step

Figure A18: Values of G? for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
b 40+ — L2P |i| L2P + FGH
z —— L2P+P W —— L2P+P+FGH
3 i
520t | AR T |
° . i i
7 \ |
A) i [
c 0 —N’V‘M . — i"’L»._._._..\."\'l\n\.__.._._!\.w _______ —
100 150 200 250 300 100 150 200 250 300
Training step Training step

Figure A19: Values of G* for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
% — L2P l‘l | L2P + FGH
Z 40 —— L2P+P ol | —— L2P+P+FGH
2 iid i
g AT
S (RN '
3 i
E: | ‘\ ! B
oF : _._.l.‘ YN\ !\“‘4 _______ iV B
150 200 250 300 350 150 200 250 300 350
Training step Training step

Figure A20: Values of G* for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

25

Under review as a conference paper at ICLR 2026

Without FGH With FGH
60 T i T i I
% — L2P I ! L2P + FGH
- — | .
P L2P+P | | i(\'”‘! o S — L2P + P + FGH
3 o AN
5 iFA
w 20} | i
%] i
& | I‘\ i,
ot ‘ —_ A P dvia D e ——
200 250 300 350 400 200 250 300 350 400
Training step Training step

Figure A21: Values of G® for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

100 Without FGH With FGH
% — L2P ' L2P + FGH
% —= L2P+P : —:— L2P+P+FGH
g 50 -
© "‘y | "/U\-'<,
= |] i
< l .
& _)“M"" . . T'\'\‘\.._./\._.J'I'\._._.._‘\.« -
250 300 350 400 450 250 300 350 400 450
Training step Training step

Figure A22: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
% — Lop 1 L2P + FGH
2 a0} —— L2P+P l? b g —— L2P+P+FGH
2 oAl ’lu 'y’\{l |
& i
= 20t '
¥ l p
s | s
& 0 _f“/‘-’v—-‘/vw\ 4 "\"\:\4__,_,_;‘,\.\,_ A
300 350 400 450 500 300 350 400 450 500
Training step Training step

Figure A23: Values of G” for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
: . : . . T | :
%5 — L2P i L2P + FGH
= —— L2P+P { }n —— L2P+P+FGH
2 I
g sor ,\“HU A Ay
©) i Wk ’l
o0
4
<
= ol M . L_ . N
325 350 375 400 425 450 475 500 325 350 375 400 425 450 475 500
Training step Training step

Figure A24: Values of G® for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

26

Under review as a conference paper at ICLR 2026

Without FGH With FGH
2 75} — L2p - ! L2P + FGH
2 —— L2P+P bk Yoo ,l} —— L2P+P+FGH
S0 . . Wit b5 RA
35 50 =4 i | -l_j'»t, Wl
5 I\Ju V\\,t,'\,‘l_l“‘ vl
S | Wi !
> | Wy |
2 B¢ ‘ ‘ I I.
& R A
07 — : > - - - ; S J | V2 - \._._.‘fa —
380 400 420 440 460 480 500 380 400 420 440 460 480 500
Training step Training step

Figure A25: Values of G for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
= i
S 5] — L2P [L2P + FGH TR ‘
£ —— L2P+P —— L2P+P+FGH "I [I./\ e N
= i H] YA ARV A WIRAl
g 50 NIV YL VA A VAL
=] 1 7 Vi i
z 25¢ 1
o] /
= o TS - S R — /

430 440 450 460 470 480 490 500 430 440 450 460 470 480 490 500
Training step Training step

Figure A26: Values of G'° for L2P on CIFAR100, 10 tasks, with and without prototypes and FGH.
When including FGH, we display the resulting gradient after multiplying by the coefficients. Task
changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH

(=3
(=]

—— DualPrompt | DualPrompt + FGH
—-— DualPrompt + P | —— DualPrompt + P + FGH

i i

Voo

; L A
e ~ 1

Task 1 Gradient G'
i
(=)

0 NESPURIUN A L W ¥ S P
0 50 100 150 200 0 50 100 150 200
Training step Training step

Figure A27: Values of G* for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
% 40 —— DualPrompt ; _‘._ "| { DualPrompt + FGH
= —-— DualPrompt + P i 4’ “‘g'gl —:— DualPrompt + P + FGH
z 4k Al T
g [T T
G 20 | il
) d | | i i
¥ i }iﬁ i
< L b l
T ol \2 2 - — AN HICN U
50 100 150 200 250 50 100 150 200 250
Training step Training step

Figure A28: Values of G2 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

27

Under review as a conference paper at ICLR 2026

Without FGH With FGH
kS —— DualPrompt | DualPrompt + FGH
407 —:— DualPrompt + P | ’@ﬂl‘{ —-— DualPrompt + P + FGH
£ T
E Wil
S 5 TR L -
< i i
% i l
S 1 It t
= ok N L — _.l‘ !\u\‘l\‘_‘x S — e
100 150 200 250 300 100 150 200 250 300

Training step Training step

Figure A29: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
S 51 —— DualPrompt i DualPrompt + FGH
g [—:— DualPrompt + P n L‘llll —:— DualPrompt + P + FGH
5% “‘ri\l i
g { VR
S S
T 25 it #
4 i i
a ok —_ "\.« J!.\. R —
150 200 250 300 35() lé() 200 250 300 35()

Training step Training step

Figure A30: Values of G* for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
% —— DualPrompt i DualPrompt + FGH
£40) —:— DualPrompt + P ili }"Il —:— DualPrompt + P + FGH
g ij'!m\ﬂ ik
z AT
S 5 L1 R |
S fi i L
& | 17 i‘
0 3 ‘ — Wi N AN e Linm
200 250 300 350 400 200 250 300 350 400

Training step Training step

Figure A31: Values of G® for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH

% 40 —— DualPrompt :\"h : !i ; !if‘ DualPrompt + FGH

E —:— DualPrompt + P i iy Lif‘ﬁ,! —:— DualPrompt + P + FGH
;“E i i{il F “I

5 20 i | !

© | # |

% A i S i A

< I ['™ h

a ok . — VAV ! VAV Ao _.J‘\-/\ -

250 300 350 400 450 250 300 350 400 450

Training step Training step

Figure A32: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

28

Under review as a conference paper at ICLR 2026

Without FGH With FGH
k) —— DualPrompt il li DualPrompt + FGH
E 401 —:— DualPrompt + P :‘ ,t‘ i I —:— DualPrompt + P + FGH
E ry II\I 7| (b i
6}
= 20t
¥ g ﬁ.\ ,_\
< WAL |
& ot _M ; ; _._._l'" [l \,"~~'\.-—“l Ve A —
300 350 400 450 500 300 350 400 450 500
Training step Training step

Figure A33: Values of G7 for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
% 100 —— DualPrompt DualPrompt + FGH
‘ﬂ":) —:— DualPrompt + P 1 ' —:— DualPrompt + P + FGH
;"E 50 IH'“!‘ l‘f VJ
O l
Z ! '
E ! '
0 _/\"“ i — / i i{"‘\-_._ TNAN
325 350 375 400 425 450 475 500 325 350 375 400 425 450 475 500
Training step Training step

Figure A34: Values of G® for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
2y 757 —— DualPrompt l P ,'|
= —:— DualPrompt + P | Il i ‘ A ’ ' ”
g 50} ”nﬂ‘,\ Y \llJl\ “\,.
3 \” Y " 1|
2 25¢ DualPrompt + FGH II

= —:— DualPrompt + P + FGH i\

of ,\‘\-V\-‘W-\.— e v ----- S S
380 400 420 440 460 480 500 380 400 420 440 460 480 500

Training step Training step

Figure A35: Values of G for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

Without FGH With FGH
=) ‘ ‘ ‘ ‘ ‘ 3
S st DualPrompt b . - '\
g —:— DualPrompt + P A A A
3 A EAW VAV VA
g0 AVIY AT A B A R 7
&} FATA
E 25r i r f - DualPrompt + FGH
% / —_
& ol —_/\/\ : ‘ S S S /: DualP‘mmpt*'lP"'FGH‘
430 440 450 460 470 480 490 500 430 440 450 460 470 480 490 500
Training step Training step

Figure A36: Values of G'° for DualPrompt on CIFAR100, 10 tasks, with and without prototypes and
FGH. When including FGH, we display the resulting gradient after multiplying by the coefficients.
Task changes every 50 steps. Only 250 steps are displayed for readability.

29

Under review as a conference paper at ICLR 2026

Table B10: Final performances Ar (%) of all considered baselines, in the clear setting. + ours refers
to combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and y
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x 107 5x 107 BestHP 5x 107 5x 107 BestHP 5x 107 5x 107 Best HP
Fine-tuning 9.12:282 1.0:00 1.0:00 | 0.48:012 0.53:000 0.43:015 | 0.76:022 0.74:031 0.63:036
Linear probe 1756151 14512127 14512127 | 1412037 34.96:146 34.96:146 | 2962064 27.332135 27.33x135
ER 69.7:098 1.03:0.11 69.7:008 | 35.91:398 0.37:017 35.91s308 | 39.99:215 0.742021 39.99:2.15
ER + Linear probe | 41.782137 72.25:135 71.08z080 | 3.32:040 48.07:20 47.65:190 | 8.56:068 3833226 37.56:279
MVP 19.76:235 17.42:428 20.18+427 | 1.54s052 34.18:104 1632183 | 2.94s030 23.48:1001 21.8:268
oLoRA 40.072051 3.9:2028 5.0:145 | 4.37:078 31.69:272 26.59:533 | 5. 74410 18.96+3.16 37.09:11.54
CODA 26.02:199 59.341628 55.56:443 | 1.05:028 48.09:252 35.19:461 | 2.24049 4738345 40.131445
— + ours 68.12:168 72.26:24 66.71s353 | 9.52+138 5846504 42.88:422 | 20.072096 51.8:235 44.99:4.45
L2P 21.17:345 49.26s388 49.264388 | 0.65:036 33.2:196 33.24196 | 1.91s044 36.224320 36.224329
— + ours 56.98:211 73.59:183 73.59:183 | 5152252 66.74s144 66. 741144 | 18.0:117 60.23:087 60.23:087
DualPrompt 23.28:160 50.68+338 53.77+343 | 0.92024 52.03:196 48.51:273 | 2.321023 47.89415 46.34+195
— + ours 58.96:143 62.63:333 66.09:1241 | 9.87:186 T2.25:088 65.47:18 | 20.85:105 55.87s141 54.15:164
ConvPrompt 34482251 59.87:626 59.87x626 | 0.65:014 54.96:282 54.96:282 | 1.712008 46.92120 46.92:20
Tabte"8Y1 - Final $8dtihafzdot $2Pae 010 28iG defRd htce1 A8 R/ &7 R1, PP 088810 0085 g

refers to combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and ~
found on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R

Learning Rate 5 x 107 5x 107 BestHP 5x107° 5x107% BestHP 5x 107 5x 10~ Best HP
Fine-tuning 9.85:688 1.03z0.1 1.0:00 | 0.46:014 0.58:0.3 0.49:006 | 0.84:037 0.642034 0.552023
Linear probe 28.61274 18.48:42 18.48:42 | 2.99:068 32.82:242 32.82:0242 | 5.77:0717 23.99:358 23.99:3.58
ER 71.42:296 0.89:103 71422206 | 50.37+236 0.23:035 50.37:236 | 49.24+7.13 1.032063 49.2447.13
ER + Linear probe | 47.39:438 71.72:243 70.72:25 | 6.96:187 51.09s449 51.85:387 | 13.532157 45.87s573 45.79:63
MVP 23.31s302 20.2479 25444503 | 212057 24.57s346 17.232438 | 4.72:065 24.962406 25.14446
oLoRA 49.35+105 4.82+174 494180 | 7245175 34.35:053 30.52:955 | 12,1238 14.744704 35384172
CODA 32.14:311 60.88:831 54.18:645 | 1.46:034 43.19:501 25.37:535 | 3.48:059 37.42:575 31.464366

— + ours 70.53:10 76.112204 70212421 | 1535140 64.97:397 42.92:01 | 23.35:142 51.86:352 40.15:1091
L2P 25.14521 52541604 52.54:604 | 0.95:035 25.14s506 25.144s506 | 2.712047 28.38:713 28.38:7.13

— + ours 59.49:190 75.39:231 75.39:231 | 10372286 66.55:281 66.55:284 | 20.35:144 59.26:101 59.26:191
DualPrompt 29.15+287 52.4x1047 4596847 | 1.342047 46.61:334 33.99:505 | 3.72:006 43.83:104 35.19:3.

— + ours 61.71211 67.74:319 68.56:387 | 16.872135 73.13:073 63.73:743 | 24.192164 55162158 52.02:208
ConvPrompt 38.13s59 63.8:108 63.8:198 | 1.36:032 42.78:283 42.78:283 | 1.882074 44.13:343 44.13:343

TableBY9: Accndty?au df-filie 1ol b the 2RO0SE oRiRY 0B P 1edd Qsttin S 8%, e (R0

combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x 107 5x107% BestHP 5x 107 5x 1073 BestHP 5x10° 5x 107 BestHP

Fine-tuning 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00
Linear probe ‘ 0.412020 0.0:00 0.0:00 ‘ 0.082027 1.38:323 1.381323 ‘ 0.1:022 0.0:00 0.0z00
ER 62.43:207 0.0:00 62.4342097 | 64.67:1304 0.0:00 64.67:13.04 | 38.18+777 0.0:00 38.18+7.77
ER + Linear probe | 38.96:537 64.99:600 61.42:766 | 13.17s503 45.09:1147 46.0721057 | 18.9247.04 2682704 24.2:5.42
MVP 0.01:003 0.05:0.16 0.01:003 | 0.42:06 7.53:574 0.0:00 0.03:008 1.29:132 1.14+1.06
oLoRA ‘ 40.07s051 3.9+2028 5.0s145 ‘ 4.37:078 31.69:272 26.59:533 ‘ 5.74+10 18.96:3.16 37.09:11.54
CODA 5.22:327 2984279 3.85202 | 0.772127 331441408 34.34:126 | 0.85:11 1697785 13.931553

—+P 49.35+574 1574612 24.29:571 | 2.872262 36.17:1026 18.732961 | 7.6:447 35.64:1115 28.21+7.93

— + FGH 6.6139 2.48:239 - 0.68:1.03 32.46:114 - - - -

— + ours 64.86:468 28.92+737 33.08:1174 | 13.02:627 44.95:1840 22.29:10458 | 31.4451041 47.5:1046 28.58:s.52
L2P 451577 29306 293261 | 1.24217m 26.1:1059 26.1:1059 | 1.26:1.30 7.85:601 7.85:601

—+P 44551062 36372730 36.37+739 | 2.99:406 38.8+11.83 38.8+1183 | 7.08+279 38.28:439 38.28:439

— + FGH 6.46:662 2.98s195 2.98:105 | 1.34:183 29.5841342 29.58:13.42 | — - -

— 4 ours 605.77:703 42.584365 42.58:s65 | 15.09030 39.96:1048 39.96:1045 | 27.16s05 48.44465 48.4+465
DualPrompt 4755360 4.99:278 3.13:285 | 0.85:13 43.8141320 4891635 | 1.172008 18.52:71 16.38x674

—+P 45.65:770 18.561636 18.241602 | 4.19:434 68.22:801 59.78:1556 | 10.48:613 46.8:562 37.83:594

— + FGH 6.51+41 0.69=1.24 - 0.77+1.08 47.78+1273 - - - -

— + ours 64.83:503 28.031827 25.14w454 | 19.8487 76.92:65 61.09:1227 | 32.314776 53.72s5617 43.842407
ConvPrompt 5.12478 11.372720 11.37x720 | 0.32:056 541841220 54.1811220 | 0.0:00 18.29:608 18.29:6.08

—+P 38.3:1064 46.5721377 46.5721377 | 3.19:316 53.99:1323 53.99:1323 | 0.43:074 39.76:345 39.76s345

< + ours 38.37:61 66.67:222 66.67:222 | 18.26:7.14 61.51s157 61.512187 | 0.43:074 48.04:567 48.04:s.67

30

Under review as a conference paper at ICLR 2026

Table B13: Accuracy on the second task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refers to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x 107 BestHP 5x10™° 5x107% BestHP 5x10™° 5x 107 BestHP

Fine-tuning 0.5:1.35 0.0:00 0.0:00 | 0.0z00 0.0:00 0.0=00 0.0=00 0.0=00 0.0z00
Linear probe 1.76:1.56 0.06:013 0.06:013 | 0.08:027 4.79z402 4792402 | 0.32:041 0.42:081 0.42:081
ER 62.07+534 0.0<00 62.07+534 | 57.24132 0.0:00 572432 | 40.57+546 0.0:00 40.57+5.46
ER + Linear probe | 44.28:571 67.03:606 67.221688 | 7.111378 421341469 38.89x1754 | 1632403 27.221650 27.28s521
MVP 133415 0.11z023 - 0.0:00 7.35:47 - 0.37s052 1.8:199 -
oLoRA 14.9:6.68 0.0:00 0.0:00 | 0.63+1.00 8.78:732 2.97:376 | 0.84s146 0.25:043 11.79:1063
CODA 11.4:52 29.814+7.10 - 1.56:252 28.65x11.51 - 1.02+12 21.98x4.05 -

—+P 59.05:664 42.75:763 - 5.15:4.14 35.57+11.26 - 8.88:204 35.44:667 -

— + FGH 16.47:608 20.89:7.97 - 1.56:252 26.36+1274 - - - -

— + ours 68.73:71 5424508 - 19.64:s568 45.65:1277 - 36.15:685 46.16051 -
L2P 6.01:8.11 16.23+560 16.234560 | 1.12213 20.67+1388 20.67=138 | 0.8:1.11 10.34:375 10.34+375

—+P 53.14:s38 56.89:76 56.89:76 | 2.444336 53.0:1279 53.0:1279 | 5.442220 45.3s354 4535354

— + FGH 9.47:0m1 10.5141 10.5141 | 1.1:213 19.88+145 19.88:145 | — - -

— + ours 70.37:579 58.16+725 58.164725 | 10.9541002 55.79:1247 55.79:1247 | 32.08:712 52.57:592 52.57s592
DualPrompt 13.28+622 18.572045 - 1.324175 40.33z102 - 1.09s142 25.614538 -

—+P 56.55:560 28.6:994 - 4484539 70.17+1128 - 10.38+443 50.53x4.11 -

— + FGH 18.62:758 4.924301 - 1.324175 42.12+10.12 - - - -

— + ours 70.0x6.32 35.284s:88 - 18.71+1063 76.09:8.61 - 37.32:700 55.13:6.03 -
ConvPrompt 19.83x1451 40.12127 40.12127 | 0.272046 46.95:532 46.95:53 | 0212037 29.64s404 29.645404

—+P 35.9341027 65.83:110 65.83:110 | 3.84x251 51.34276 51.34:276 | 1.52259 4497334 44.97:334

— + ours 57.3x1.04 72.63:273 72.63:273 | 22.3141137 68.48:408 68.48:498 | 2351407 52.59:373 52.59:373

Table B14: Accuracy on the third task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
LearningRate 5x 107 5x 1073 BestHP 5x107° 5x107% BestHP 5x 10 5x 107 Best HP
Fine-tuning 0.2:042 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00 0.0=00 0.0:00
Linear probe 3.58:243 0.06:0.19 0.06:019 | 0.26:043 7.39:7.84 7.39:784 | 0.42:042 1.28:1.59 1.28:1.59
ER 62.01:757 0.0:00 62.01:757 | 45.23:1207 0.0:00 45.23+1207 | 41.22:430 0.0200 41.22:439
ER + Linear probe | 44.07:601 66.83:80 64.911862 | 5.932484 39.05:1192 39.21s100 | 14.68:314 30.15:634 30.37169
MVP 2.35:041 0.73x1.06 - 0.08x027 10.94:9.81 - 0.89:1.97 3.8643.97 -
oLoRA 12.346.68 0.0:00 0.0:00 29.05:2666 8.67+1433 33.17s3011 | 51.74s02 0.63:084 15.85:11.14
CODA 14.32:1011 46.01051 - 0.84+134 40.51x1678 - 1.93:2.17 30.22:1181 -
—+P 61.79:514 62.85:1083 - 4307 46.09:1272 - 11.643.67 39.91+10s -
— + FGH 20.74+1184 34.76+696 - 0.84+134 39.07:1424 - - - -
— + ours 71.38:567 68.36+7.00 - 21.98:713 51.6:133 - 39.22:77 48.57x453 -
L2P 12.44+1005 26.18:1063 26.1841063 | 0.65:179 20.46:1257 20.46:1257 | 1.21271 15.3s7.01 15.347.01
—+P 52.87s592 65.37:819 65.37ss19 | 1.144305 64.42:1022 64.42+1022 | 8.5914.06 50.06:821 50.064521
— + FGH 16.32:1208 17.25:000 17.251000 | 0.6521.79 21.08:1296 21.08:1296 | — - -
— + ours 67.65:655 64.57:s851 64.57:s851 | 11.03:888 63.87:1050 63.87x1050 | 343121038 55.19:652 55.19:652
DualPrompt 12.34:541 30.04:972 - 0.42:07 49.04:11.44 - 1.68:094 32.92:9.09 -
—+P 51.77:641 34.824771 - 4.19:285 73.38:5.12 - 12.05:416 52.07:2548 -
— + FGH 18.18+s557 8.894358 - 0.42:07 50.02:1128 - - - -
— + ours 66.3+477 3781851 - 2414484 79.8s5.07 - 39.54743 57.79:449 -
ConvPrompt 13.6:00 48.57+1306 48.57:1306 | 0.84z034 42.89:1761 42.89:1761 | 0.85:147 21.72:031 21.721031
—+P 30.07:1151 71.61685 71.6:685 | 5.28ss.68 51.32:629 51.324629 | 1.861322 41.33:276 41.33+276
— + ours 53.37+54 79.31295 79.3:295 | 21.32:05 69.56:1550 69.56+1589 | 2.67 1428 52.444775 52.444775

31

Under review as a conference paper at ICLR 2026

Table B15: Accuracy on the fourth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x107% BestHP 5x107° 5x107® BestHP

Fine-tuning 0.54:099 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00 0.0:00
Linear probe 4.76+179 0.49:1.45 0.49:145 | 0.62:092 5.072s.34 5.07:s534 | 0.62:097 2.33:285 2.33:285
ER 66.35:460 0.0:00 66.35:460 | 38.98:1054 0.0:00 38.98:1054 | 34.96:697 0.0:00 34.96:697
ER + Linear probe | 42.95:626 68.43:480 69.05:527 | 6.574361 38.72:006 37.56:117 | 124765 27.76s890 28.244764
MVP 6.75:4.68 5.76:5.72 - 1.01:18 7.89:6.65 - 0.42:054 4.25:466 -
oLoRA 25.57:2601 0.0s00 0.0:00 1.17:1.02 10.24+9.43 8.91ss71 | 0.33:031 0.0:00 15.45:2240
CODA 20.45:56 589441378 - 1.44+3.05 32.5:688 - 1.6:072 29.01:s65 -

—+P 59.24:404 75.75s502 - 4.28:4.08 44.25:1151 - 10.06:467 34.45:994 -

— + FGH 28.89:1091 45.19:835 - 1444305 33.64+1082 - - - -

— + ours 69.33:5020 76.04+3.36 - 22.63:787 50.18:11.71 - 347141 44.95:1076 -
L2P 16.15:074 41.97:1057 41.9741057 | 1.242254 21.06:1241 21.06:1241 | 1134192 17.15:733 17.15:733

—+P 55.65:653 73.841657 73.84s657 | 2.65:407 55.37+1424 55.3721424 | 9.541678 49.76:876 49.761876

— + FGH 23.01:1064 33.76:830 33.76s830 | 1.33:25 23.2341551 23.23:1551 | — - -

— + ours 67.59:503 73.88:747 73.88:747 | 12.06s50 53.072132 53.072132 | 37.38:1145 54172152 541745
DualPrompt 14.79:66 36.67+725 - 0.47:081 36.89:1078 - 1412113 31.87:s522 -

—+P 51.78:1031 44.45:667 - 2.8442.99 65.33:8.16 - 9.72+464 47.43:823 -

— + FGH 23.06:864 17.68+797 - 0.47:031 38.37:1181 - - - -

— + ours 64.26:51 49.89:768 - 17.88:014 69.35473 - 35.98:1080 52.34z6.5 -
ConvPrompt 19.42447 56.37:1138 56.37:1138 | 1.25:.16 48.53:341 48.53:341 | 0.1:017 29.75:005 29.75:005

— +P 50.77+1359 83.0x471 83.0s471 | 1.874324 62.22:728 62.224728 | 3.26s5.64 52.37:1198 52.37:1198

< + ours 70.2:1389 84.43:32 84.43:32 | 21.84:727 76.98:048 76.98:048 | 8.75:0.03 61.55:652 61.55:652

Table B16: Accuracy on the fifth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x10™® BestHP 5x10™° 5x 10~ Best HP

Fine-tuning 0.93:152 0.0:00 0.0:00 | 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 9.8115.6 22803 22823 | 0.56:099 11,1527 11152731 | 0.812056 3.85:262 3.8526
ER 63.41s625 0.0x00 63.41:625 | 34.64:1014 0.0:00 34.64+10.14 | 36.64:355 0.0:00 36.641355
ER + Linear probe | 41.63:756 68.84:622 64.93:7.41 | 3.44328 35.35:2024 34.66:1281 | 14.982475 28.69s492 28.741522
MVP 12.56:783 9.9247.38 - 1.27+193 12.63+1023 - 0.72+060 6.29:435 -
oLoRA 34.6+955 0.000 0.0:00 2.0s14 13.131684 23.43:s808 | 0.0:00 1.69:184 22.2242004
CODA 245141015 64.12+1327 - 1.48:101 43.67+1205 - 2.04:119 31.29:800 -

—+P 57.74+004 75.1:849 - 3.55:207 48.63:13.71 - 9.06:224 38.6210.8 -

— + FGH 32.28:1002 53.51:612 - 1.48:191 44.86+13.58 - - - -

— + ours 66.78+6.12 74.97+338 - 21.62:806 55.8719.17 - 33.0:861 44.49:631 -
L2P 21.37+1486 55.98:842 55.98:842 | 0.32:10 27 T+1063 2771063 | 1.06:236 21.73:845 21.734848

—+P 49.55:079 77.87s503 T7.872503 | 0.26:050 62.67+1148 62.67+1148 | 8.35:345 51.25:43 51.25u3

— + FGH 30.1121823 49.08:s04 49.08:894 | 0.32:10 26.16:1018 26.16+1018 | — - -

— + ours 61.332061 77.231620 77.231620 | 8.681836 60.0+1431 60.0:1431 | 28.57+845 55.51528 55.54528
DualPrompt 22.8:835 48.66:11.73 - 17721 47.92:11.94 - 0.98:082 34.141594 -

—+P 52.894742 56.22:57 - 3.39:212 66.59:12.65 - 924077 50.07:6.14 -

— + FGH 32.04:004 30.79:11.01 - 1.77:211 49.39:12.19 - - - -

— + ours 64.6:635 61.13:1136 - 19.43:696 68.81:917 - 31.61ss524 53.48:7.11 -
ConvPrompt 4402537 6712649 67.1:649 | 0.562097 67.53:313 67.53:313 | 0.22:021 34.65:955 34.65:955

—+P 66.47+1037 83.0:334 83.0:334 | 4.75s101 60.53+1634 66.53:1634 | 2.324374 48.11s156 48.11+156

< + ours 76.9:7.73 86.33:15 86.33:15 | 22.61:132 64.88:7.12 64.88:7.12 | 4.09:581 61.05:122 61.05:1.22

32

Under review as a conference paper at ICLR 2026

Table B17: Accuracy on the sixth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x10° 5x107% BestHP 5x10™° 5x107% BestHP 5x107° 5x107® BestHP
Fine-tuning 0.73:207 0.0:00 0.0:00 0.0:00 0.0=00 0.0:00 0.0=00 0.0=00 0.0:00
Linear probe 13.07:373 3.9213.06 3.92:306 | 0.42:0m 10.52:885 10.521885 | 1.09:1.04 9.54+6.91 9.54:691
ER 64.01:026 0.07x022 64.01:026 | 31. 741263 0.0:00 31.7:1263 | 34.51s664 0.0:00 34.51s664
ER + Linear probe | 41.2:794 68.26:822 70.19:s0 | 3.424323 33.78:1596 33.24x1244 | 11.83:53 33.14w033 31.96x041
MVP 18.89:6.0 10.32:9.15 - 0.9:1.68 10.67:9.53 - 1.21411 11.86+109 -
oLoRA 29.241733 0.0s00 0.0:00 17.48:23711 5.564552 23.82:907 | 0.56:071 2.8443.68 22.48:1474
CODA 33.59:1357 71.66:9.87 - 0.51z058 46.03:13.74 - 2214121 37.22:1013 -
—+P 5484831 80.35:5.92 - 1.75x165 53.25:1143 - 9.67+249 43.61+1007 -
— + FGH 43.81:1433 59.881037 - 0.51z058 45.81+10.93 - - - -
— + ours 66.31:5.42 78.3:6s - 13.08636 54.34z15.33 - 33.15:766 45941592 -
L2P 28.82:1552 61.31:1386 61.31s1386 | 1.012211 32.25:n31 32.25:1131 | 0.981130 29.08:632 29.08s6.32
—+P 51.254726 80.92:s0 80.92+50 | 1.731220 65.31:823 65.314823 | 6.551626 53.65:773 53.6547.73
— + FGH 39.19:1686 49.36:1353 49.36+1353 | 1.0122.1 30.8+0.84 30.81084 | — - -
— + ours 61.4:7.81 77.7+673 777673 | 7.16:7.61 69.63:738 69.63:738 | 27. 7721223 58.42:451 58.424451
DualPrompt 29.34828 62.5:1134 - 0.25:041 49.04:1254 - 1.08x1.45 42.18:8.15 -
—+P 52.76:47 66.65:1260 - 3.0:268 70.42:8.72 - 8.0516.19 53.06:4.84 -
— + FGH 39.17:s827 43.89:1511 - 0.25:041 49.071241 - - - -
— + ours 63.12:420 72.0721275 - 16.38:514 72.04:5.71 - 32.13:1103 56.05:5.53 -
ConvPrompt 30.97:63 5827002 58.27:092 | 1.0:087 62.72:753 62.72:753 | 0.21x037 46.15:721 46.15:721
—+P 55.43:1551 83.03:393 83.031303 | 4.261379 61.88:2085 61.8812085 | 1.771179 48.14:673 48.14+673
— + ours 61.5¢143¢ 83972236 83.97:236 | 18.93:1297 39.28:2031 39.2842031 | 7.844631 63.22:416 63.22:4.16

Table B18: Accuracy on the seventh task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and v found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x107° 5x 1072 BestHP 5x10° 5x 107 BestHP

Fine-tuning 0.13:016 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0=00
Linear probe ‘ 22.16:673 6.58:453 6.58:4.53 ‘ 14217 13.16:1144 13.16211.44 ‘ 212422 15.51s855 15.51zs55
ER 68.97:663 0.0:00 68.97+663 | 38.09:872 0.0:00 38.09:572 | 38.3:545 0.0:00 38.34545
ER + Linear probe | 41.97:836 70.56:634 69.341699 | 4.65:413 36.52:1207 38.45:n158 | 13.32:315 33.847.04 3341826
MVP 21.45:62 13.14:s6 - 0.66:154 13.35:1127 - 1.15:105 15.29:1045 -
oLoRA ‘ 49.03:2385 0.0:00 0.03z0.06 ‘ 418309 20.9411888 20.29:21.12 ‘ 0.52+066 3.734457 1434579
CODA 31.24785 74.07+1053 - 0.67:088 46.45:1523 - 1.33079 43.0:1661 -

—+P 5512679 81.48:5.37 - 2.98:325 50.1s1811 - 7.23:265 49.76+1135 -

— + FGH 44.49:048 66.99:12.44 - 0.67:088 42. 741992 - - - -

— + ours 68.731550 79.734831 - 17.57s2.1 57.91417.99 - 30.76:s49 48.14+1053 -
L2P 251141427 66.08:484 66.08x454 | 0.172054 371721705 371721705 | 1.274143 32.57:0m 32.57:0m

—+P 44.49:+920 82.29:467 82.29s467 | 0.99s185 68.68:1022 68.68+1022 | 9.52:452 57.63:572 57.63:572

— + FGH 36.2:1493 59.06:1195 59.06:1195 | 0.17:054 37.69s1045 37.69s1045 | — - -

— + ours 51.8692 80.26s461 80.26s461 | 4.891515 72.35:07 72.35:07 | 29.9411056 61.92:579 61.924579
DualPrompt 30.55:818 66.76+1201 - 0.76:1.01 55.8411.41 - 1.96:073 47.9:1107 -

—+P 44.59:000 77.419.19 - 3.76435 67.07x9.02 - 9.724531 55.74+7.13 -

— + FGH 40.53:947 51.57x1052 - 0.76:100 56.11:1218 - - - -

— + ours 5484182 81.02:451 - 16.57:634 74.98:s.11 - 32.2:1055 56.31:776 -
ConvPrompt 55.4:8.66 80.732106 80.73:106 | 0.8:079 59.11x2548 59.1112548 | 0.0:00 43.15:1151 43.15:151

—+P 77.07:613 85.47:349 8547340 | 4.66:135 62.52:051 62.52:051 | 2.08x076 52.51s786 52.51:786

< + ours 76.87s583 88.17:216 88.17:216 | 18.83:087 80.46:466 80.46:466 | 6.67+040 63.2:4.64 63.2:4.64

33

Under review as a conference paper at ICLR 2026

Table B19: Accuracy on the eighth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and -y found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x 107 BestHP 5x107° 5x107% BestHP 5x107° 5x107® Best HP

Fine-tuning 1.28:179 0.0:00 0.0:00 | 0.0<00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 27.21ss1a 15.77s748 15.77s748 | 1.624229 20.79x1504 20.79x1504 | 2.072160 16.08:500 16.08:500
ER 73.81s546 0.0:00 73.81s546 | 30.82:1029 0.0z00 30.82+1029 | 37.82:988 0.0:00 37.82:08
ER + Linear probe | 39.34s068 77.82:476 75.47:501 | 3.16133 42.6:1818 42.98:1606 | 11.01:537 34.68:662 35.18:669
MVP 35.61w0.12 17.22:1087 - 1.18x1.69 20.2:1438 - 1.71415 17.97:125 -
oLoRA 65.87+1923 0.1:017 0.03:006 | 0.241042 8.69:836 18.32+1750 | 3.324233 10.124157 44.6+1.66
CODA 373441263 79.844743 - 0.51+111 55.28411.95 - 2.49:161 46.88:s68 -

—+P 55.88:816 86.52:4.15 - 2.29:3.04 59.99:2043 - 8. 71286 48.0247.24 -

— + FGH 52.98:1262 68.37x0.02 - 0.51111 52.32413.12 - - - -

— + ours 73324540 84.0813.49 - 10.94:810 58.11:1721 - 27131540 46.66:5 -
L2P 343441706 70.62:041 70.62:941 | 1.01:223 39.43:08 39.43:128 | 2.61336 36.12481 36.12:51

—+P 46.98:076 87.1:3.42 87.1:342 | 1.09:176 76.13:1045 76.13:1045 | 8.07:345 58.0z635 58.0:635

— + FGH 46.26+1821 59.06+73 59.06:75 | 1.08:233 38.35:1337 38.35:1337 | — - -

— + ours 53.132061 85.19:361 85.19s361 | 7411641 74.0151055 74.01x1055 | 26.95:441 61.55:664 61.55:6.64
DualPrompt 38.12+1265 76.59:0.45 - 1.66:253 58.03:83 - 1.22:086 47.18x1063 -

—+P 47.04+1012 83.64+423 - 3.344418 71.79:93s - 6.69:331 53.29:633 -

— + FGH 48.73:1261 60.69:6.95 - 1.66:253 59.67:071 - - - -

— + ours 57.35:048 83.944324 - 12.95:82 73.56192 - 26.6:461 53.26:673 -
ConvPrompt 58.2342493 7591514 759514 | 0.0z00 73.07:s3 73.07:s58 | 0.0z00 53.12:1248 53.12s1248

—+P 78.4:1157 83.67:.12 83.67x7.02 | 141213 71.02:2533 71.02+2533 | 1.07211 60.95:847 60.95:5.47

— + ours 82.83:777 84.44203 84.41203 | 8.3160 73.0441516 73.04415.16 | 8.65:325 644598 64.4:598

Table B20: Accuracy on the ninth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and -y found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5x107° 5x107% BestHP 5x10° 5x107 BestHP 5x107° 5x 1073 Best HP

Fine-tuning 6.15:005 0.0z00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00 0.0:00
Linear probe 37.661623 22.6:82 22.6:82 | 0.72:078 30.8:1430 30.8s1430 | 2.08:117 17.13s751 17.13w51
ER 78.51x4s 0.0:00 78.51:45 | 37.45:1188 0.0:00 37.45:1188 | 35.92:873 0.0:00 35.92:573
ER + Linear probe | 40.88:663 80.314.91 79.28:572 | 3.07+203 52.0411548 441321280 | 10.72+531 36.53:667 34.89:723
MVP 43.58s645 23.27:1493 - 0.941.23 26.76+126 - 3.0:27 20.39:13.29 -
oLoRA 80.87:414 0.23:03 0.4:061 2144014 20.88:50s 19.02+20.12 | 1.67+233 11.98:118 32.84+1187
CODA 424241464 83.39:462 - 1.14533 60.37+936 - 3444008 47.2542 -

—+P 51.25:076 88.28:232 - 2.82:44 65.46+13.16 - 8.87w6 49.62:1067 -

— + FGH 59.44+1455 77.231862 - 1.14+03 58.56+11.27 - - - -

— + ours 7218534 86.14+108 - 11.26:658 65.34+14.14 - 26.59:641 47.63:66 -
L2P 32.75:1229 77241653 77.244653 | 0.0200 45.99:722 45.994722 | 1.58:21 38.14727 38.14727

—+P 37.89:712 86.99:36 86.99:36 | 1.2:15 79.37:76 79.37:76 | 597442 6038511 60.38:s511

— + FGH 42714132 67.3541043 67.3541043 | 0.0:00 44371030 4437034 | — - -

— + ours 41.6:5.64 87.25:38 87.25:382 | 5.39:4.14 78.19:550 78.19:550 | 20.781593 63.41443 6344443
DualPrompt 34.09:835 79.19:665 - 1.0621.42 65.76:733 - 1.93:12 50.17:6.1 -

—+P 40.39:706 86.63:252 - 3.354321 74.8+6.89 - 7.29:418 56.79:828 -

— + FGH 4517512 63.44734 - 1.06:1.42 66.85:73 - - - -

— 4 ours 48.94:667 86.89:27 - 12.33:405 79.2716.35 - 23.57:843 55.08474 -
ConvPrompt 39.53:38 76.8:0.07 76.8:0.07 | 1.61s14 68491760 68.49:7.60 | 2.31x40 45.3:304 45.3:3.04

—+P 74.43:601 84.93ss3 84.93:55 | 4.56+166 71.92:861 71.92:861 | 3.72:621 58.85:405 58.85:4.05

— + ours 74.53:564 87.0:225 87.0:225 | 19.21164s 81.4:392 81.4:392 | 8.541005 65.56:262 65.56:262

34

Under review as a conference paper at ICLR 2026

Table B21: Accuracy on the tenth task at the end of training, in the clear setting. + ours refers to
combining the baselines with prototypes and FGH. Best HP refer to the best set of LR and « found
on VTAB. In some cases, the best HP is the same as one of the default HP values.

Dataset CIFAR100 CUB Imagenet-R
Learning Rate 5% 107 5x 107 BestHP 5x 107 5x 1072 BestHP 5x107° 5x 1073 BestHP

Fine-tuning 80.7341860 10.0:00 10.0:00 | 0.0:00 0.0:00 1134358 | 0.0s00 0.0:00 0.0=00
Linear probe 5521s66 93.38s335 93.38s33s | 1732183 21.96:009 21.96:000 | 2.1:215 23.77s644 23.771644
ER 95.46:25 10.26:080 95.46:28 | 25.22:933 0.0:00 25.22:033 | 39.17:862 0.0:00 39.17:s62
ER + Linear probe | 42.54+70s 89.44:386 89.02:404 | 4.68:422 33.71s896 36.04ss.12 | 5862392 36.89:633 35.71s75
MVP 55.04:394 93.63:32 - 1.74:236 19.32:s38 - 2431219 23.85:1353 -
oLoRA 86.47:115 38.7:278 49.5:142 | 5.5:7.1 20.245.92 8.94445 115007 15.08:223 27.32:1616
CODA 39711353 82.5447.16 - 0.46:066 63.39:1283 - 1.76:151 53.4:03 -

—+P 42.32:117 92.15:3.14 - 2.1835 59.69:12.16 - 6.461325 54.98:104 -

— + FGH 53.67:1336 72.21s1367 - 0.46:066 58.35:1341 - - -

— + ours 59.56+1073 91.85+225 - 9.76:899 60.8721456 - 24.92:458 50.44778 -
L2P 30.16+1208 74.09:014 74.09:014 | 0.5:078 39.0:8.32 39.0:832 | 2.15419 46.55+441 46.55:441

—+P 29.04:053 87.51s3s0 87.51s3s0 | 1.162138 73.724537 73.72:537 | 6.52487 63.235537 63.23:537

— + FGH 39.34:11282 65.74+1448 65. 7411448 | 0432079 39.64:1176 39.64:1176 | — - -

— + ours 29.14:1007 89.09:351 89.09:351 | 4432434 80.02:778 80.02:778 | 22.96:673 65.11:463 65.11:463
DualPrompt 32.75:051 82.79s4.04 - 0.89:004 65.36:86 - 2.82:162 57.25:451 -

— +P 29.56:734 92914307 - 2.26:16 71.48163 - 8.48+447 59.15:398 -

— + FGH 42.1+105 68.25:935 - 0.89:004 64.75:118 - - - -

— 4+ ours 35.38:766 90.23+324 - 8.09:388 75.2147.03 - 27.55:738 58.6913.97 -
ConvPrompt 58.77:2004 83.53:862 83.53:562 | 0.0x00 71.31608 713608 | 1.38:230 49.930286 49.93:236

—+P 74.03117.46 93.63+3.1 93.63:3.1 | 0.35:061 67.19:849 67.19:849 | 1.68129 51.55:38 51.554138

< + ours 70.23180 92.0s425 92.0:425 | 1.36:1620 73.94:483 73944483 | 6.55:102 60.49:822 60.49:522

35

	Introduction
	Related Work
	Continual Learning with Blurry Boundaries
	Continual Learning with Memory Buffer
	Hypergradients and Gradient Re-weighting

	Methodology
	From Offline to Online
	Prototypes as a Proxy for Memory
	Fine-Grained Hypergradients
	Overall Training Procedure

	Experiments
	Evaluation Procedure
	Experimental Setting
	Experimental Results

	Discussions
	Prototypes and FGH Synergy
	Selecting

	Conclusion
	Implementation and algorithm
	Implementation
	Algorithm
	Backbone
	Batch Wise Logits Mask
	Impact of LR on the Stability-Plasticity trade-off.
	Hyperparameters Grid Searched on VTAB

	Datasets and Baselines
	Datasets
	Baselines

	Adaptation of Methods to Our Setup
	Additional Evluation Metrics
	Average Performances
	Final Average Accuracy
	Performances on Previous Tasks
	Time Complexity
	Spatial Complexity

	Additional Experiments
	Details on Gradient Imbalance
	Details on stability-plasticity trade-off
	Longer Task Sequence
	Additional Memory Sizes

	Details on the Si-Blurry Setting
	Additional Gradient Values

