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Abstract

In the realm of Large Language Models, the001
balance between instruction data quality and002
quantity has become a focal point. Recognizing003
this, we introduce a self-guided methodology004
for LLMs to autonomously discern and select005
cherry samples from vast open-source datasets,006
effectively minimizing manual curation and po-007
tential cost for instruction tuning an LLM. Our008
key innovation, the Instruction-Following Diffi-009
culty (IFD) metric, emerges as a pivotal metric010
to identify discrepancies between a model’s011
expected responses and its autonomous gener-012
ation prowess. Through the adept application013
of IFD, cherry samples are pinpointed, leading014
to a marked uptick in model training efficiency.015
Empirical validations on datasets like Alpaca016
and WizardLM underpin our findings; with a017
mere 10% of conventional data input, our strat-018
egy showcases improved results. This synthe-019
sis of self-guided cherry-picking and the IFD020
metric signifies a transformative leap in the op-021
timization of LLMs, promising both efficiency022
and resource-conscious advancements. Codes,023
data, and models will be available.024

1 Introduction025

Large Language Models (LLMs) have revolution-026

ized the landscape of artificial intelligence (Tou-027

vron et al., 2023a,b; Penedo et al., 2023; Scao et al.,028

2022). Notable models such as GPT-3 (Brown029

et al., 2020) and GPT-4 (OpenAI, 2023) leverage030

extensive datasets and advanced training method-031

ologies to exhibit high-level text understanding and032

generation capabilities. The applications of these033

models extend across diverse domains, including034

interactive systems, automated content generation,035

and support for scientific inquiries.036

Instruction fine-tuning (Wei et al., 2022; Long-037

pre et al., 2023) is a method employed to refine038

the performance of LLMs by providing specific039

guidelines or instructions during the model’s train-040

ing phase. It operates by supplying the LLM with041

explicit training instructions to produce the corre- 042

sponding outputs that are more congruent with the 043

desired responses. A well-formulated instruction 044

or prompt provides essential contextual informa- 045

tion, refining the model’s capability to generate rel- 046

evant and task-specific outputs (Taori et al., 2023; 047

Ouyang et al., 2022). 048

Based on the findings from Wang et al. (2022b) 049

and Self-Instruct (Wang et al., 2023b) early experi- 050

ments, reducing the number of instances per task 051

does not degrade the model’s generalization per- 052

formance to unseen tasks. While conventionally, 053

instruction tuning is predominantly relied on amass- 054

ing vast datasets. A seminal revelation from the 055

LIMA (Zhou et al., 2023) highlights the art of in- 056

struction tuning: rather than a sheer volume of data, 057

it’s the quality of the data that dictates the model’s 058

performance. LIMA’s findings emphasize that even 059

a limited amount of manually curated, high-quality 060

data can elevate the model’s instruction-following 061

prowess. While it underscores the efficacy of data 062

overabundance, the question of how to automati- 063

cally identify high-quality data from a vast ocean 064

of available datasets remains under investigation. 065

To bridge this gap, our study puts forth a method 066

for autonomously sifting through expansive open- 067

source datasets to discover the most impactful train- 068

ing samples. We coin these samples as “cherry 069

data,” designating those data fragments that hold 070

the potential to exponentially enhance LLM in- 071

struction tuning. At the heart of our research is 072

the hypothesis that during their preliminary train- 073

ing stages with carefully chosen instruction data, 074

LLMs can develop an intrinsic capability to dis- 075

cern instructions. This foundational understanding 076

equips them with the discernment to assess the 077

quality of broader datasets, thus making it possible 078

to estimate the instruction-following difficulty in a 079

self-guided manner. 080

Our methodology encompasses a self-guided ap- 081

proach to extract cherry data from the target dataset, 082
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subsequently training a more refined cherry model.083

This process pivots from the prevailing data quan-084

tity emphasis to prioritizing data quality. Initially,085

the model is familiarized with a fraction of the tar-086

get dataset during the “Learning from Brief Experi-087

ence” phase. This preliminary knowledge paves the088

way for the subsequent “Evaluating Based on Ex-089

perience” phase, where we meticulously evaluate090

the model’s response generation.091

Under the hypothesis that LLMs have acquired092

all critical knowledge during pre-training, our goal093

is to devise a metric for evaluating instruction-094

following difficulty. Adhering to the objective095

of minimizing cross-entropy loss in model train-096

ing, we use this metric to gauge the training data’s097

impact, with a specific focus on isolating the in-098

structional component from the answer’s influence.099

We achieve this by comparing the loss when the100

model generates a response with and without in-101

structional context. This comparison forms the102

basis of our Instruction-Following Difficulty (IFD)103

score, which assesses the extent of instructional104

assistance in response generation. A higher IFD105

score, indicating minimal instructional help, sug-106

gests greater difficulty. We propose that selecting107

samples with moderate IFD scores during instruc-108

tion tuning strikes an optimal balance, effectively109

improving the model’s ability to process and follow110

complex instructions, essential for its learning and111

adaptation to advanced tasks.112

Harnessing these insights, the “Retraining from113

Self-Guided Experience” phase utilizes cherry data114

with standout IFD scores to hone the model, cul-115

minating in our superior cherry models. The net116

result is a model that aligns more adeptly with in-117

structions, ensuring enhanced performance. This118

self-guided approach starkly contrasts with exist-119

ing techniques (Chen et al., 2023), which typically120

engage external models for data curation.121

Extensive experimental results validate the ef-122

ficacy of our method. By applying our method-123

ology to the Alpaca and WizardLM instruction124

tuning datasets, our model outperforms the offi-125

cial Alpaca model with only approximately 5%126

data selected and outperforms the reimplemented127

WizardLM model with approximately 10% data128

selected. The key contributions of this paper:129

• We propose a self-guided approach enabling130

models to autonomously “select cherry data”131

from vast open-source datasets. This innova-132

tion minimizes manual curation and optimizes133

the use of existing data resources, reducing134

Figure 1: Overview of our proposed method.

costs and streamlining training. 135

• We introduce the Instruction-Following Diffi- 136

culty (IFD) metric as a tool to identify gaps 137

in a model’s responses versus its autonomous 138

generation capability. Using the IFD metric, 139

we can pinpoint these cherry samples, opti- 140

mizing model training efficiency. 141

• Backed by validation on datasets like Alpaca 142

and WizardLM, our strategy demonstrates en- 143

hanced outcomes with only 10% of the typical 144

data input, emphasizing our approach’s effi- 145

ciency and transformative impact. 146

• We provide a different model-specific view in 147

measuring the difficulty of new instructions, 148

which may benefit future instruction data gen- 149

eration work. 150

2 Methodology 151

As illustrated in Figure 1, our methodology is di- 152

vided into three core phases: Learning from Brief 153

Experience, Evaluating Based on Experience, and 154

Retraining from Self-Guided Experience. The ini- 155

tial phase emphasizes equipping the model with a 156

basic instruction-following capability using select 157

portions of the dataset. The subsequent phase in- 158

troduces a novel metric to evaluate the instruction- 159

following difficulty score of each sample based on 160

the previously trained pre-experienced model. Fi- 161

nally, after obtaining difficulty scores in the target 162

dataset, the cherry samples are defined and sampled 163

to train our final model, which we call the cherry 164

models. In our experiments, the underlying model 165

used is the Meta LLaMA (Touvron et al., 2023a), 166

complemented by the target dataset. 167

2.1 Learning from Brief Experience 168

This phase aims to equip the initial model with 169

a basic instruction-following capability by forc- 170

2



ing the model to first experience a subset of171

the target dataset. Specifically, for the initial172

full target dataset, D0 contains n triplets x =173

(Instruction, [Input], Answer), we define the174

string Question = map(Instruction, [Input])175

as the complete instruction. The map function176

is aligned with the original target dataset. Each177

word in Question(Q) and Answer(A) is denoted178

as xQi and xAi respectively. Let LLMθ denote the179

LLM we use and θ represent the weight of LLMs,180

specifically, θ0 represents the pre-trained base LLM181

model. Then the instruction embeddings for each182

sample xj are obtained by:183

[hQj,1, ..h
Q
j,m] = LLMθ0(w

Q
j,1, ..w

Q
jm

) (1)184

185

hQj =

∑m
i=1 h

Q
j,i

m
(2)186

where wQ
j,i represents the ith word of Question187

strings of sample j and hQj,i represents its corre-188

sponding last hidden states.189

To ensure the diversity of instructions exposed to190

the initial model, the basic clustering technique K-191

Means on these instruction embeddings is utilized.192

Motivated by LIMA’s finding, we are motivated to193

make this experience process as brief as possible by194

sampling only a few instances in each cluster which195

we call pre-experienced samples. Specifically, we196

generate 100 clusters on instruction embeddings197

and sample 10 instances in each cluster. Then the198

initial model is trained for only 1 epoch with these199

samples to obtain our brief pre-experienced model.200

2.2 Evaluating Based on Experience201

In the instruction-tuning process, the loss of a sam-202

ple pair (Q,A)is calculated by continuously pre-203

dicting the next tokens given the instruction Q and204

their proceeding words:205

Lθ(A|Q) = − 1

N

N∑
i=1

logP (wA
i |Q,wA

1 , w
A
2 , . . . , w

A
i−1; θ)

(3)206

where N is the number of words of the ground-207

truth answer A. We denote this averaged cross-208

entropy loss as the Conditioned Answer Score209

sθ(A|Q) = Lθ(A|Q).1 This metric evaluates210

the model’s capability to generate appropriate re-211

sponses based on provided instructions. It mea-212

sures the extent to which the model’s output aligns213

1We use different symbols to differentiate the loss when
used as an objective function and the loss when used as a
score.

with both the instruction and the corresponding 214

correct answer. 215

Under this circumstance, a higher sθ(A|Q) does 216

not mean a harder instruction to follow, it may sim- 217

ply be caused by the inherent factor of string A 218

itself. In the pre-LLM era, when models are re- 219

quired to learn both the knowledge and instruction- 220

following ability during finetuning, it is reasonable 221

to simply use sθ(A|Q) as an indicator for the diffi- 222

culty of a sample. However, things change a little 223

for current LLMs, which have learned most of the 224

knowledge in the pre-training phase and only need 225

to learn to align and follow the instructions. To 226

estimate the difficulty of following instructions of 227

a given sample, we introduce the Direct Answer 228

Score sθ(A): 229

sθ(A) = − 1

N

N∑
i=1

logP (wA
i |wA

1 , . . . , w
A
i−1; θ).

(4) 230

which measures LLM’s ability to generate this an- 231

swer alone. This metric gauges the inherent dif- 232

ficulty or challenge posed by the answer in iso- 233

lation, without the contextual guidance from its 234

corresponding instruction. A higher direct answer 235

score may suggest that the answer is inherently 236

more challenging or intricate for the model to gen- 237

erate. 238

Further, analyzing the balance between a sam- 239

ple’s inherent challenge and the model’s capabil- 240

ities in following it sheds light on the intricacies 241

of estimating the difficulty of the instruction of 242

a given sample. Specifically, we try to estimate 243

the Instruction-Following Difficulty (IFD) scores 244

IFDθ(Q,A) on following instruction of a given 245

(Q,A) pairs by calculating the ratio between sθ(A) 246

and sθ(A|Q): 247

IFDθ(Q,A) =
sθ(A|Q)

sθ(A)
(5) 248

Under this circumstance, the influence of LLM’s 249

intrinsic ability to fit the answer string is partially 250

alleviated. The score measures the degree how a 251

given instruction benefits the alignment of the cor- 252

responding response. High IFD scores infer the in- 253

ability of the model to align responses to the given 254

corresponding instructions, which in turn indicates 255

the difficulty of an instruction. It is worth noting 256

that this IFDθ(Q,A) is a model-specific value, and 257

we use our pre-experienced model to obtain all 258

these values in the target dataset. 259
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2.3 Retraining from Self-Guided Experience260

In alignment with the Introduction’s concept of261

“cherry data” — high-impact training samples that262

significantly enhance LLM performance — and its263

impact on LLM performance, this phase involves264

systematically labeling each instance in the target265

dataset and sorting them based on their Instruction-266

Following Difficulty (IFD) scores. Aligned with267

previous work (Xu et al., 2023) which emphasizes268

the difficulty of samples, we define those with rel-269

atively higher IFD scores as the cherry samples.270

Moreover, the dense scores from our method pro-271

vide better flexibility in deciding how much data to272

be used. Then these cherry samples are used upon273

initial pre-trained LLM to obtain the cherry models.274

The whole process is in a self-guided manner and275

no external models are required.276

3 Experimental Setup277

3.1 Datasets278

Training Datasets The Alpaca dataset (Taori279

et al., 2023) from Stanford University, encom-280

passes 52002 instruction-following samples. De-281

veloped using the self-instruct (Wang et al., 2023b)282

approach with text-davinci-003. Though initially283

competitive, its dependence on text-davinci-003284

posed data quality concerns. WizardLM dataset285

(Xu et al., 2023) leverages the Evol-Instruct algo-286

rithm to improve the quality of instruction data.287

Furthermore, the incorporation of ChatGPT dur-288

ing the reformulation guarantees high fidelity of289

data. Of its 250, 000 instructions, we primarily290

utilized the WizardLM-7b subset, consisting of291

70, 000 samples.292

Test Datasets To ensure comprehensive and un-293

biased assessment, we employed 5 diverse test294

sets: Vicuna (Chiang et al., 2023), Koala (Vu295

et al., 2023), WizardLM (Xu et al., 2023), Self-296

instruct (Wang et al., 2023b), and LIMA (Zhou297

et al., 2023). These test sets contain approximately298

1000 human curated instructions, closed-domain299

or closed-domain for different tasks from differ-300

ent sources. Among them, Vicuna and WizardLM301

further provide the specific sub-category for each302

instruction, making it possible for in-depth analy-303

sis. SAlthough all of these test sets are introduced304

to guarantee the variety of testing, we select all of305

these sets to offer a broader palette of instruction306

types than the typical one or two test sets.307

3.2 Implementation Details 308

Rooted in the Llama-7b pre-trained model, our 309

training framework aligns with protocols from Al- 310

paca and WizardLM datasets. The Adam optimizer 311

(Kingma and Ba, 2017), with a 2 × 10−5 learn- 312

ing rate and a batch size of 128, steers the training 313

across three epochs. Our pre-experienced models, 314

however, undergo just a single epoch of training. 315

Training on the Alpaca dataset necessitated a max 316

input length of 512. For WizardLM, we opted for 317

a 1024 input length due to hardware constraints 318

while its original model used 2048, which offers 319

an inherent edge to the original model. Another 320

challenge with WizardLM was “AI censure” in- 321

stances. Taking a leaf from the Vicuna strategy, we 322

filtered these samples, resulting in a streamlined 323

WizardLM subset with 63655 entries. Our data 324

selection methodology was then applied to this sub- 325

set. Samples with IFD scores higher than 1 will 326

be filtered out before selection. For experiments 327

on llama2-7b and llama2-13b models, we utilize 328

the instruction prompt from Vicuna (Chiang et al., 329

2023). Thanks to the Flash Attention mechanism 330

(Dao et al., 2022), all models on llama2 use the 331

max length of 2048. 332

3.3 Evaluation Metric 333

3.3.1 Pair-wise Comparison 334

Assessing the instruction-following capabilities of 335

LLMs is challenging. While extensive research 336

is dedicated to creating automated evaluation met- 337

rics for LLMs (Chang et al., 2023), human judg- 338

ment remains unmatched. However, it’s both 339

labor-intensive and potentially influenced by bi- 340

ases. Leveraging the recent advancements in inde- 341

pendent LLM evaluations (Zheng et al., 2023; Chi- 342

ang et al., 2023; Li et al., 2023), we utilize GPT4 343

and ChatGPT for comparative evaluations. Follow- 344

ing (Chen et al., 2023), for each instruction in the 345

test dataset, models that need to be compared are 346

prompted to generate responses respectively. Then 347

an API model, either GPT4 or ChatGPT, assigns 348

scores for their responses. The model is regarded 349

to be better in this dataset only if its answer is 350

preferred by the judging model. 351

In the evaluation, each model’s response is rated 352

by the judge on a scale from 1 to 10, reflecting 353

attributes like relevance and accuracy. To further 354

address the positional bias (Ko et al., 2020; Wang 355

et al., 2023a), we send the responses of two models 356

to the judge twice with different orders and com- 357
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pare their scores. Thus we define one model to be358

seen as winning only if it does not lose in both the359

ordering, specifically:360

• Wins: outperforms in both or wins in one and361

ties in the other.362

• Tie: ties in both or wins in one and loses in363

the other.364

• Loses: lags in both or ties in one and loses in365

the other.366

This evaluation serves as the foundation of our367

experimental outcomes.368

3.3.2 Benchmarks369

The performances on two recently popular bench-370

marks for LLMs are also provided: Huggingface371

Open LLM Leaderboard2 and AlpacaEval Leader-372

board3. Huggingface Open LLM Leaderboard eval-373

uates LLMs using (Gao et al., 2021), a unified374

framework to test generative language models on375

a large number of different evaluation tasks, on376

4 key benchmarks including ARC (Clark et al.,377

2018), HellaSwag (Zellers et al., 2019), MMLU378

(Hendrycks et al., 2021) and TruthfulQA (Lin et al.,379

2022). AlpacaEval Leaderboard provides an LLM-380

based automatic evaluation based on AlpacaFarm381

(Dubois et al., 2023) evaluation set, in which the382

model responses are compared with responses of383

Davinci003 by GPT4.384

3.3.3 Human Evaluation385

To better illustrate the efficacy of our method, fur-386

ther human evaluation is conducted. Specifically,387

we randomly sampled 20 instructions from each388

test set to generate a new random set containing389

100 instructions in total. Then 3 human participants390

are asked to compare the responses generated by391

the models to be compared. For each comparison,392

3 options are given (Win, Tie, and Loss) and the393

final results are determined by the majority voting394

of the participants.395

4 Experimental Results396

4.1 Main Results397

In this section, we first present our primary pair-398

wise evaluation results in Figure 2. (a) our model399

trained with only approximately 5% of the orig-400

inal Alpaca data beats the Alpaca model trained401

with full data. (b) our model trained with only ap-402

proximately 10% of the original WizardLM data403

2https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

3https://tatsu-lab.github.io/alpaca_eval

Figure 2: Comparing our models trained on selected
data with full data. (a) Comparison between our model
with 5% Alpaca data and the official Alpaca model. (b)
Comparison between our model with 10% WizardLM
data and the reimplemented WizardLM model. Both
(a) and (b) use GPT4 as the judge. Each horizontal bar
represents a comparison in a specific test set.

beats the reimplemented WizardLM model under 404

the same training configuration which is described 405

in the Implementation Details. 406

Moreover, we craft subsets containing the top 407

5%, 10%, 15%, and 20% of the target datasets and 408

train models on these distinct subsets, enabling 409

us to investigate the performance changes. As 410

shown in Figure 3, we draw the overall winning 411

rate changes across the data growth, which is calcu- 412

lated as (Num(Win)−Num(Lose))/Num(All) +1, 413

providing a direct indicator on the comparison with 414

the full-data trained models. A consistent observa- 415

tion across both datasets is that with merely 10% of 416

selectively chosen data, our models manage to ex- 417

ceed the results of models trained on the full dataset. 418

These findings not only highlight the efficiency of 419

our data selection strategy but also underscore the 420

potential of training powerful models with signif- 421

icantly reduced data requirements. By validating 422

our approach on the renowned Alpaca dataset and 423

the more intricate WizardLM dataset, we empha- 424

size the wide applicability and robustness of our 425

proposed method. 426

The comparison between our cherry models 427
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Figure 3: The winning score changes over data
growth comparing our models with corresponding full-
data models. The winning score is calculated as
(Num(Win)−Num(Lose))/Num(All) +1. The Number
of Wins, Losses, and All are calculated across all five
test sets we used. When the value is higher than 1.0, it
means this model performs better than the comparison.
Comparisons in this figure are performed by ChatGPT.

with baseline models on Huggingface Open LLM428

Leaderboard and AlpacaEval Leaderboard are429

presented in Table 6 where we can see our cherry430

model using 5% Alpaca data outperforms the offi-431

cial Alpaca on both benchmarks, our cherry model432

using 10% WizardLM data has a closed perfor-433

mance compared with our re-implemented Wiz-434

ardLM. These results further showcase the effec-435

tiveness of our automatically selected data.436

Moreover, the human evaluation results also437

showcase the usefulness of our method. When438

comparing the Cherry Alpaca (5%) and the Alpaca439

(100%), there are 49/100 wins for our cherry al-440

paca, 25/100 ties, and 26/100 losses. When com-441

paring the Cherry WizardLM (10%) and the reim-442

plemented WizardLM (100%), there are 37/100443

wins for our Cherry WizardLM, 32/100 ties, and444

31/100 losses.445

4.2 Ablation on Cherry Data Selection446

4.2.1 Data Randomly Selected447

We train various LLaMA-7B models using ran-448

domly chosen data and juxtaposed their perfor-449

mance with that of our models, which employed a450

difficulty ratio. As shown in Figure 4 (labeled as451

Random), models trained on 5%, 10%, or 15% ran-452

dom data consistently underperformed against the453

official Alpaca model. Notably, with an equivalent454

amount of data, our model surpasses the perfor-455

mance of models using randomly selected data,456

underlining our method’s superiority.457

Figure 4: The overall winning score changes over data
growth comparing models using different data selection
strategies with the official Alpaca model. All the com-
parison in this figure is performed by ChatGPT.

4.2.2 Data with Diversity 458

In this experiment, we train a series of models 459

only considering the diversity of the data samples. 460

Specifically, we utilize the same method for obtain- 461

ing diverse samples from the full dataset, in which 462

a k-means algorithm is first implemented, and then 463

data is sampled from each cluster. It is a direct 464

baseline for the situation where only the diversity 465

of data is considered. As illustrated in Figure 4 466

(labeled as Diversity), these models render subpar 467

performance and are similar to the random trained 468

models. This result highlights the necessity of us- 469

ing difficult samples over pure diverse samples. 470

4.2.3 Data with Low IFD Score 471

In this experiment, we aim to underscore the effi- 472

cacy of our proposed IFD score. We train a model 473

using data chosen based on low IFD scores on the 474

pre-experienced model, a direct antithesis to our 475

primary experimental setting. As illustrated in Fig- 476

ure 4 (labeled as Low IFD score), models trained 477

using low IFD scores render subpar performance. 478

This observation highlights the prowess of our met- 479

ric in sifting through high-quality data: a higher 480

score consistently yields superior results compared 481

to the baseline, while a lower score deteriorates the 482

model’s intrinsic performance. 483

4.2.4 Data with High CA Scores 484

For this comparison, we juxtapose our model 485

against one trained on data selected by higher Con- 486

ditioned Anser scores which is equivalent to the 487

loss or perplexity, and is a commonly accepted 488

baseline. As Figure 4 (labeled as High CA score) 489

elucidates, models in this group trail the official 490
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Huggingface Open LLM Leaderboard AlpacaEval
Average ARC HellaSwag MMLU TruthfulQA AlpacaEval

Official Alpaca 50.21 42.65 76.91 41.73 39.55 26.46
Ours (5% Alpaca) 52.06 53.92 79.49 36.51 38.33 34.74
Reimplemented WizardLM∗ 52.79 53.07 77.44 37.75 42.90 61.99
Ours (10% WizardLM) 51.59 52.90 78.95 33.08 41.41 61.44

Table 1: The comparison of performance on Huggingface Open LLM Leaderboard and AlpacaEval Leaderboard.

Alpaca model significantly. The salient difference491

between these models and ours rests on the elimi-492

nation of Direct Answer scores. In models relying493

solely on CA scores, the underlying comprehension494

of the pre-trained LLM towards original answer495

texts isn’t factored in, rendering high CA scores496

ineffective in gauging the intricate nuances of the497

instruction following.498

4.3 Results on Other Models499

In this section, experiments on newer LLaMA2-500

7B and LLaMA2-13B models are conducted as501

shown in Table 2. In these experiments, the IFD502

score of each sample is calculated directly based503

on the corresponding LLaMA2 pre-trained mod-504

els by using prompts from Vicuna (Chiang et al.,505

2023). On both LLaMA2-7B and LLaMA2-13B506

models, our cherry models trained with much less507

data outperform the models trained with original508

full data. These experimental results illustrate the509

consistent advantages of our method and further510

verify the generalizability of our method.511

5 Cherry Data Characteristics512

5.1 Validity of Cherry Data513

Furthermore, we orchestrate a human-centric study514

focused on data selection on the Alpaca data. Here,515

200 samples, comprising both 100 samples from516

the top 5% IFD scores and 100 samples from the517

least 5% IFD scores, are randomly mixed. Three518

human evaluators are tasked to evaluate the dif-519

ficulty of each instruction based on the same six520

aspects mentioned above. Then they are asked521

to categorize each sample pair as Hard or Easy,522

without the necessity to provide specific scores on523

the six aspects. The final results are decided by524

majority voting, which shows that 100 out of 100525

samples from the least 5% IFD scores were labeled526

as Easy. 89 of the 100 top 5% samples are branded527

as Hard, and 11 of the 100 top 5% samples are528

also branded as Easy. This rudimentary human529

study lends further weight to the efficacy of our530

IFD scores in singling out challenging instances.531

5.2 Distributional Characteristics 532

In this segment, our focus is on understanding the 533

distributional properties of the cherry data within 534

the original dataset. Specifically, we first compute 535

the embedding of each instruction in the Alpaca 536

dataset and employ t-SNE for dimensionality reduc- 537

tion, mapping high-dimensional embeddings to 2D 538

space. The visualized vectors, color-coded based 539

on the top or least 5% difficulty ratios, are show- 540

cased in Figure 5. Contrary to conventional beliefs, 541

our cherry data isn’t uniformly scattered. Instead, 542

a palpable demarcation exists between samples of 543

high and low difficulty, challenging prior assump- 544

tions that selected data should span the entire in- 545

struction spectrum and maximize diversity. 546

To delve deeper into the distributional intrica- 547

cies of instruction embeddings, we utilize naive 548

K-means (K=100) for clustering. We home in on 549

10 representative clusters, half of which displayed a 550

significant overlap with the top 5% samples and the 551

other half with the least 5% samples. Clusters dom- 552

inated by low IFD score samples are replete with 553

rudimentary tasks like editing punctuation, words, 554

or sentences. In contrast, high IFD score clusters 555

are typified by deeper, more intricate tasks such 556

as storytelling or elucidation of phenomena. We 557

posit that these in-depth tasks are paramount for 558

aligning large language models, compelling them 559

to rearrange and access their intrinsic knowledge 560

repositories. Our methodology lends partial cre- 561

dence to this hypothesis, leaving room for further 562

exploration. 563

6 Related Work 564

6.1 Data-driven Instruction Tuning 565

Previous instruction tuning collections are typically 566

handcrafted or task-related (Khashabi et al., 2020; 567

Ye et al., 2021; Wei et al., 2022; Wang et al., 2022a; 568

Du et al., 2022; Honovich et al., 2023), (Wang et al., 569

2023b) utilized GPT3 (Brown et al., 2020) to gen- 570

erate 52k distinct instructions which do not directly 571

relate to each task, which paves the way to gener- 572

ating instruction data set by distilling from teacher 573
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Huggingface Open LLM Leaderboard AlpacaEval
Average ARC HellaSwag MMLU TruthfulQA AlpacaEval

Alpaca llama2 7b 55.25 54.35 78.65 47.02 40.98 27.75
Ours (5% Alpaca) 55.78 57.94 80.37 44.19 40.62 36.78
Ours (10% Alpaca) 56.31 58.02 80.42 46.64 40.18 -
Ours (15% Alpaca) 56.37 57.42 80.68 46.40 40.95 -
Alpaca llama2 13b 58.78 57.59 81.98 54.05 41.49 35.00
Ours (5% Alpaca) 61.21 62.37 84.00 55.65 42.82 46.82
Ours (10% Alpaca) 61.02 62.97 83.88 55.29 41.93 -
Ours (15% Alpaca) 61.23 62.37 83.48 55.56 43.42 -

Table 2: The comparison of performance on Huggingface Open LLM Leaderboard and AlpacaEval Leaderboard for

Figure 5: Visualization using t-SNE on instruction em-
beddings from the Alpaca dataset. Red points represent
samples with the top 5% IFD scores and Blue points
represent samples with the least 5% IFD scores.

models. After the release of Meta LLaMA(Touvron574

et al., 2023a), the world witnessed a surge of open-575

sourced instruction tuning datasets and LLMs.576

6.2 Instruction Data Selection577

Though consensus has been made that “quality is578

all you need” (Touvron et al., 2023b) for instruc-579

tion tuning, how to find data of good quality other580

than human curation is still an under-explored topic.581

Two recent papers were proposed to bridge this gap582

and shared similar motivations to us: Instruction583

Mining (Cao et al., 2023) and ALPAGASUS(Chen584

et al., 2023). Instruction Mining evaluates a num-585

ber of different indicators and applies a statistical586

regression model for selecting data. However, it587

does not present the performance compared with588

the model trained with full data and its method is589

overly complicated since it has to split all data into590

several bins and fully-trained the models. ALPA-591

GASUS directly utilizes an outside fully-trained592

strong LLM (ChatGPT) to score each sample and593

finally selected 9k Alpaca data to beat the official594

Alpaca trained on full data. Though effective, it 595

neglects the intrinsic ability of the base model and 596

relies too much on extra models. 597

6.3 Data Selection in Active Learning 598

Another topic related to our work is active learning 599

(Cohn et al., 1996), which is a kind of approach 600

where the algorithm selectively queries the ora- 601

cles to label instances that are most informative. 602

It actively decides which data points they want to 603

learn from, optimizing the learning process when 604

labeling data is costly or time-intensive. Though 605

having slightly different goals with our work, the 606

acquisition functions from active learning can be 607

enlightening to our method. Most previous active 608

learning methods work on text classification tasks 609

(Ein-Dor et al., 2020; Yuan et al., 2020; Schröder 610

et al., 2022; Yu et al., 2023), and recently, active 611

learning on text generation tasks was also stud- 612

ied(Perlitz et al., 2023), especially on neural ma- 613

chine translation(Zhao et al., 2020; Gupta et al., 614

2021; Vashistha et al., 2022) and text summariza- 615

tion (Tsvigun et al., 2022). In active learning, the 616

Uncertainty-based approaches share a similar moti- 617

vation to us, selecting the most informative samples 618

for the model which is the least certain. 619

7 Conclusion 620

This study has illuminated the potential of har- 621

nessing the innate capabilities of LLMs for se- 622

lecting high-quality instruction tuning data that fit 623

the model. Through our innovative self-guided ap- 624

proach, LLMs demonstrate the ability to discern 625

and cherry-pick the most pertinent data samples, a 626

concept we’ve aptly termed cherry data. Central to 627

our methodology is the Instruction-Following Dif- 628

ficulty metric, a novel tool adept at gauging the nu- 629

anced differences between a model’s autonomous 630

outputs and expected responses. Our findings not 631

only emphasize the importance of data quality over 632

quantity but also underscore the potential for cost- 633

effective and streamlined LLM training. 634
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Limitation635

The main limitation of this method is the incon-636

venience of training the pre-experienced model.637

The concept of the Instruction-Following Difficulty638

score proposed by us is simple and effective, while639

the inconvenient pre-experienced phase makes it640

hard to directly put our method into usage in real-641

world scenarios. Though experiments on LLaMA2642

models show that calculating IFD scores directly643

on the base LLaMA2 models also promises a good644

selection, we believe using the pre-experienced645

phase is valuable since it equips base models with646

the basic instruction-following ability, making the647

calculation of Conditioned Answer Score more rea-648

sonable. As a result, we believe the use of the pre-649

experienced phase could be a tradeoff: From the650

Research Viewpoint, using pre-experienced mod-651

els is more reasonable and performs better. From652

the Real-world Implementation Viewpoint, di-653

rectly using the base model is more efficient and at654

the same time effective as well.655

References656

Tom Brown, Benjamin Mann, Nick Ryder, Melanie657
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind658
Neelakantan, Pranav Shyam, Girish Sastry, Amanda659
Askell, Sandhini Agarwal, Ariel Herbert-Voss,660
Gretchen Krueger, Tom Henighan, Rewon Child,661
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens662
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-663
teusz Litwin, Scott Gray, Benjamin Chess, Jack664
Clark, Christopher Berner, Sam McCandlish, Alec665
Radford, Ilya Sutskever, and Dario Amodei. 2020.666
Language models are few-shot learners. In Ad-667
vances in Neural Information Processing Systems,668
volume 33, pages 1877–1901. Curran Associates,669
Inc.670

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In-671
struction mining: High-quality instruction data selec-672
tion for large language models.673

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,674
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,675
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,676
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.677
2023. A survey on evaluation of large language mod-678
els.679

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa680
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-681
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.682
2023. Alpagasus: Training a better alpaca with fewer683
data.684

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,685
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan686

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 687
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 688
source chatbot impressing gpt-4 with 90%* chatgpt 689
quality. 690

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 691
Ashish Sabharwal, Carissa Schoenick, and Oyvind 692
Tafjord. 2018. Think you have solved question an- 693
swering? try arc, the ai2 reasoning challenge. 694

David A. Cohn, Zoubin Ghahramani, and Michael I. 695
Jordan. 1996. Active learning with statistical models. 696
In NIPS. 697

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 698
and Christopher Ré. 2022. FlashAttention: Fast and 699
memory-efficient exact attention with IO-awareness. 700
In Advances in Neural Information Processing Sys- 701
tems. 702

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 703
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: 704
General language model pretraining with autoregres- 705
sive blank infilling. In Proceedings of the 60th An- 706
nual Meeting of the Association for Computational 707
Linguistics (Volume 1: Long Papers), pages 320–335, 708
Dublin, Ireland. Association for Computational Lin- 709
guistics. 710

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, 711
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy 712
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca- 713
farm: A simulation framework for methods that learn 714
from human feedback. 715

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, 716
Lena Dankin, Leshem Choshen, Marina Danilevsky, 717
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020. 718
Active Learning for BERT: An Empirical Study. In 719
Proceedings of the 2020 Conference on Empirical 720
Methods in Natural Language Processing (EMNLP), 721
pages 7949–7962, Online. Association for Computa- 722
tional Linguistics. 723

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, 724
Anthony DiPofi, Charles Foster, Laurence Golding, 725
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, 726
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, 727
Ben Wang, Kevin Wang, and Andy Zou. 2021. A 728
framework for few-shot language model evaluation. 729

Kamal Gupta, Dhanvanth Boppana, Rejwanul Haque, 730
Asif Ekbal, and Pushpak Bhattacharyya. 2021. Inves- 731
tigating active learning in interactive neural machine 732
translation. In Proceedings of Machine Translation 733
Summit XVIII: Research Track, pages 10–22, Virtual. 734
Association for Machine Translation in the Americas. 735

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 736
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 737
2021. Measuring massive multitask language under- 738
standing. In International Conference on Learning 739
Representations. 740

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.08701
http://arxiv.org/abs/2307.08701
http://arxiv.org/abs/2307.08701
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://api.semanticscholar.org/CorpusID:9242771
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://aclanthology.org/2021.mtsummit-research.2
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ


Or Honovich, Thomas Scialom, Omer Levy, and Timo741
Schick. 2023. Unnatural instructions: Tuning lan-742
guage models with (almost) no human labor. In743
Proceedings of the 61st Annual Meeting of the As-744
sociation for Computational Linguistics (Volume 1:745
Long Papers), pages 14409–14428, Toronto, Canada.746
Association for Computational Linguistics.747

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish748
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-749
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-750
mat boundaries with a single QA system. In Find-751
ings of the Association for Computational Linguistics:752
EMNLP 2020, pages 1896–1907, Online. Association753
for Computational Linguistics.754

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A755
method for stochastic optimization.756

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo757
Kim, and Jaewoo Kang. 2020. Look at the first758
sentence: Position bias in question answering. In759
Proceedings of the 2020 Conference on Empirical760
Methods in Natural Language Processing (EMNLP),761
pages 1109–1121, Online. Association for Computa-762
tional Linguistics.763

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,764
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and765
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-766
tomatic evaluator of instruction-following models.767
https://github.com/tatsu-lab/alpaca_eval.768

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.769
TruthfulQA: Measuring how models mimic human770
falsehoods. In Proceedings of the 60th Annual Meet-771
ing of the Association for Computational Linguistics772
(Volume 1: Long Papers), pages 3214–3252, Dublin,773
Ireland. Association for Computational Linguistics.774

S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won775
Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret776
Zoph, Jason Wei, and Adam Roberts. 2023. The flan777
collection: Designing data and methods for effective778
instruction tuning. ArXiv, abs/2301.13688.779

OpenAI. 2023. Gpt-4 technical report.780

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,781
Carroll Wainwright, Pamela Mishkin, Chong Zhang,782
Sandhini Agarwal, Katarina Slama, Alex Ray, John783
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,784
Maddie Simens, Amanda Askell, Peter Welinder,785
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.786
Training language models to follow instructions with787
human feedback. In Advances in Neural Information788
Processing Systems, volume 35, pages 27730–27744.789
Curran Associates, Inc.790

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,791
Ruxandra Cojocaru, Alessandro Cappelli, Hamza792
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,793
and Julien Launay. 2023. The refinedweb dataset for794
falcon llm: Outperforming curated corpora with web795
data, and web data only.796

Yotam Perlitz, Ariel Gera, Michal Shmueli-Scheuer, 797
Dafna Sheinwald, Noam Slonim, and Liat Ein-Dor. 798
2023. Active learning for natural language genera- 799
tion. 800

Teven Le Scao, Angela Fan, Christopher Akiki, 801
Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hesslow, 802
Roman Castagn’e, Alexandra Sasha Luccioni, Franc- 803
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan- 804
der M. Rush, Stella Rose Biderman, Albert Web- 805
son, Pawan Sasanka Ammanamanchi, Thomas Wang, 806
Benoît Sagot, Niklas Muennighoff, Albert Villanova 807
del Moral, Olatunji Ruwase, Rachel Bawden, Stas 808
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu 809
Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz 810
Suarez, Victor Sanh, Hugo Laurenccon, Yacine Jer- 811
nite, Julien Launay, Margaret Mitchell, Colin Raf- 812
fel, Aaron Gokaslan, Adi Simhi, Aitor Soroa Etx- 813
abe, Alham Fikri Aji, Amit Alfassy, Anna Rogers, 814
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, 815
Chris C. Emezue, Christopher Klamm, Colin Leong, 816
Daniel Alexander van Strien, David Ifeoluwa Ade- 817
lani, Dragomir R. Radev, Eduardo Gonz’alez Pon- 818
ferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar 819
Natan, Francesco De Toni, Gérard Dupont, Germán 820
Kruszewski, Giada Pistilli, Hady ElSahar, Hamza 821
Benyamina, Hieu Trung Tran, Ian Yu, Idris Abdul- 822
mumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier 823
de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, 824
Jonathan Chang, Jorg Frohberg, Josephine L. To- 825
bing, Joydeep Bhattacharjee, Khalid Almubarak, 826
Kimbo Chen, Kyle Lo, Leandro von Werra, Leon 827
Weber, Long Phan, Loubna Ben Allal, Ludovic Tan- 828
guy, Manan Dey, Manuel Romero Muñoz, Maraim 829
Masoud, Mar’ia Grandury, Mario vSavsko, Max 830
Huang, Maximin Coavoux, and Mayank Singh. 2022. 831
Bloom: A 176b-parameter open-access multilingual 832
language model. ArXiv, abs/2211.05100. 833

Christopher Schröder, Andreas Niekler, and Martin 834
Potthast. 2022. Revisiting uncertainty-based query 835
strategies for active learning with transformers. In 836
Findings of the Association for Computational Lin- 837
guistics: ACL 2022, pages 2194–2203, Dublin, Ire- 838
land. Association for Computational Linguistics. 839

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 840
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 841
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 842
An instruction-following llama model. https:// 843
github.com/tatsu-lab/stanford_alpaca. 844

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 845
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 846
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 847
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 848
Grave, and Guillaume Lample. 2023a. Llama: Open 849
and efficient foundation language models. 850

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 851
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 852
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 853
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 854
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 855
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 856

10

https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.84
https://doi.org/10.18653/v1/2020.emnlp-main.84
https://doi.org/10.18653/v1/2020.emnlp-main.84
https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://api.semanticscholar.org/CorpusID:256415991
https://api.semanticscholar.org/CorpusID:256415991
https://api.semanticscholar.org/CorpusID:256415991
https://api.semanticscholar.org/CorpusID:256415991
https://api.semanticscholar.org/CorpusID:256415991
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2305.15040
http://arxiv.org/abs/2305.15040
http://arxiv.org/abs/2305.15040
https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:253420279
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971


Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-857
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan858
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,859
Isabel Kloumann, Artem Korenev, Punit Singh Koura,860
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-861
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-862
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-863
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-864
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,865
Ruan Silva, Eric Michael Smith, Ranjan Subrama-866
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-867
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,868
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,869
Melanie Kambadur, Sharan Narang, Aurelien Ro-870
driguez, Robert Stojnic, Sergey Edunov, and Thomas871
Scialom. 2023b. Llama 2: Open foundation and872
fine-tuned chat models.873

Akim Tsvigun, Ivan Lysenko, Danila Sedashov, Ivan874
Lazichny, Eldar Damirov, Vladimir Karlov, Artemy875
Belousov, Leonid Sanochkin, Maxim Panov, Alexan-876
der Panchenko, Mikhail Burtsev, and Artem Shel-877
manov. 2022. Active learning for abstractive text878
summarization. In Findings of the Association for879
Computational Linguistics: EMNLP 2022, pages880
5128–5152, Abu Dhabi, United Arab Emirates. As-881
sociation for Computational Linguistics.882

Neeraj Vashistha, Kriti Singh, and Ramakant Shakya.883
2022. Active learning for neural machine translation.884

Thuy-Trang Vu, Xuanli He, Gholamreza Haffari, and885
Ehsan Shareghi. 2023. Koala: An index for quantify-886
ing overlaps with pre-training corpora.887

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai888
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.889
2023a. Large language models are not fair evaluators.890

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa891
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh892
Hajishirzi. 2023b. Self-instruct: Aligning language893
models with self-generated instructions. In Proceed-894
ings of the 61st Annual Meeting of the Association for895
Computational Linguistics (Volume 1: Long Papers),896
pages 13484–13508, Toronto, Canada. Association897
for Computational Linguistics.898

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-899
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva900
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,901
Anjana Arunkumar, David Stap, Eshaan Pathak,902
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-903
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,904
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,905
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,906
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,907
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,908
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan909
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong910
Shen. 2022a. Super-NaturalInstructions: General-911
ization via declarative instructions on 1600+ NLP912
tasks. In Proceedings of the 2022 Conference on913
Empirical Methods in Natural Language Processing,914
pages 5085–5109, Abu Dhabi, United Arab Emirates.915
Association for Computational Linguistics.916

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo- 917
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva 918
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An- 919
jana Arunkumar, David Stap, et al. 2022b. Super- 920
naturalinstructions: Generalization via declarative 921
instructions on 1600+ nlp tasks. In Proceedings of 922
the 2022 Conference on Empirical Methods in Natu- 923
ral Language Processing, pages 5085–5109. 924

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 925
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 926
Dai, and Quoc V Le. 2022. Finetuned language mod- 927
els are zero-shot learners. In International Confer- 928
ence on Learning Representations. 929

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 930
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 931
Jiang. 2023. Wizardlm: Empowering large language 932
models to follow complex instructions. 933

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. 934
CrossFit: A few-shot learning challenge for cross- 935
task generalization in NLP. In Proceedings of the 936
2021 Conference on Empirical Methods in Natural 937
Language Processing, pages 7163–7189, Online and 938
Punta Cana, Dominican Republic. Association for 939
Computational Linguistics. 940

Yue Yu, Rongzhi Zhang, Ran Xu, Jieyu Zhang, Jiaming 941
Shen, and Chao Zhang. 2023. Cold-start data selec- 942
tion for better few-shot language model fine-tuning: 943
A prompt-based uncertainty propagation approach. 944
In Proceedings of the 61st Annual Meeting of the 945
Association for Computational Linguistics (Volume 946
1: Long Papers), pages 2499–2521, Toronto, Canada. 947
Association for Computational Linguistics. 948

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd- 949
Graber. 2020. Cold-start active learning through self- 950
supervised language modeling. In Proceedings of the 951
2020 Conference on Empirical Methods in Natural 952
Language Processing (EMNLP), pages 7935–7948, 953
Online. Association for Computational Linguistics. 954

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 955
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma- 956
chine really finish your sentence? In Proceedings of 957
the 57th Annual Meeting of the Association for Com- 958
putational Linguistics, pages 4791–4800, Florence, 959
Italy. Association for Computational Linguistics. 960

Yuekai Zhao, Haoran Zhang, Shuchang Zhou, and Zhi- 961
hua Zhang. 2020. Active learning approaches to 962
enhancing neural machine translation. In Findings 963
of the Association for Computational Linguistics: 964
EMNLP 2020, pages 1796–1806, Online. Association 965
for Computational Linguistics. 966

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 967
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 968
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, 969
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 970
llm-as-a-judge with mt-bench and chatbot arena. 971

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 972
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 973

11

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.findings-emnlp.377
https://doi.org/10.18653/v1/2022.findings-emnlp.377
https://doi.org/10.18653/v1/2022.findings-emnlp.377
http://arxiv.org/abs/2301.00688
http://arxiv.org/abs/2303.14770
http://arxiv.org/abs/2303.14770
http://arxiv.org/abs/2303.14770
http://arxiv.org/abs/2305.17926
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2023.acl-long.141
https://doi.org/10.18653/v1/2023.acl-long.141
https://doi.org/10.18653/v1/2023.acl-long.141
https://doi.org/10.18653/v1/2023.acl-long.141
https://doi.org/10.18653/v1/2023.acl-long.141
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2020.findings-emnlp.162
https://doi.org/10.18653/v1/2020.findings-emnlp.162
https://doi.org/10.18653/v1/2020.findings-emnlp.162
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,974
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less975
is more for alignment.976

12

http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206


A Ablation on Pre-Experienced Data977

Selection978

A.1 Number of Pre-Experience Data979

Following the findings from LIMA that 1000 high-980

quality samples are enough to train a reasonably981

good model, we set the amount of data used for982

our pre-experienced model as 1000. However,983

it is still under-investigated how many data sam-984

ples are required to equip the model with basic985

instruction-following ability. Thus this section an-986

alyzes the significance of employing experience-987

augmented models and how the number of pre-988

experienced data affects the final performance of989

our cherry models. For these comparisons, we con-990

duct the experiments where 0, 100, 300, and 500991

pre-experienced samples are utilized to train the992

pre-experienced models for 1 epoch. Using 0 pre-993

experienced samples represents direct use of the994

initial raw model as the pre-experienced model. We995

calculate the IFD scores from these different pre-996

experienced models and select the top 5%, 10%,997

and 15% samples for training while keeping other998

experimental conditions constant.999

As depicted in Figure 6 0 Pre-Experienced Sam-1000

ples, when no pre-experienced samples are uti-1001

lized, the corresponding cherry models have the1002

least performance. These results underline the in-1003

dispensability of an experience-augmented model1004

equipped with foundational instruction-following1005

capabilities. Moreover, even in the absence of a1006

pre-experienced model, our IFD score remains ef-1007

fective in identifying optimal training data as it out-1008

performs the Alpaca model when using 10% of the1009

data. When 100 samples are utilized as shown in1010

100 Pre-Experienced Samples, the corresponding1011

cherry models are slightly better than no samples1012

used but with a similar trend, which indicates that1013

100 samples are not enough for the model to ac-1014

quire the basic instruction-following ability. When1015

adding the number of pre-experienced samples to1016

300, a distinct performance gain is discovered, and1017

further addition of samples does not make the per-1018

formance of corresponding cherry models better.1019

We hypothesize this is when the model is equipped1020

with the basic instruction-following capability and1021

thus can better illustrate the instruction-following1022

score of each instance.1023

A.2 Distribution of Pre-Experience Data1024

To better illustrate what kinds of data are required1025

in the pre-experience process, extensive experi-1026

ments are conducted where we selected 1000 pre- 1027

experienced samples by calculating the IFD scores 1028

based on the initial raw model and utilized these 1029

samples to train the pre-experienced model and fur- 1030

ther get the cherry samples and the cherry model. 1031

Different from our main method where the pre- 1032

experienced samples are selected based on the di- 1033

versity of instruction distribution, this experiment is 1034

used to figure out what is the better strategy for the 1035

pre-experienced model, considering the diversity 1036

of instructions or difficulty of instructions. Another 1037

baseline method is using randomly selected data for 1038

the training of pre-experienced models. The perfor- 1039

mance of using 5%, 10%, and 15% cherry data is 1040

shown in Table 3 compared with the Alpaca model. 1041

Comparing random selection or considering embed- 1042

ding distributions or instruction difficulties, they 1043

all surpass the Alpaca model and are comparable 1044

to each other, indicating the effectiveness of both 1045

strategies and further proving that our IFD metric 1046

is robust across different pre-experienced models. 1047

This experiment further illustrates that what mat- 1048

ters is this pre-experience process, rather than the 1049

sampling strategies for this process. 1050

5% 10% 15% 100%
Random (1000) 1.007 1.047 1.077 1
Distribution (1000) 1.050 1.097 1.064 1
Difficulty (1000) 1.057 1.072 1.096 1

Table 3: The overall winning score changes over the
data growth comparing models with different strategies
of selecting pre-experienced samples with the official
Alpaca model. All the comparison in this table is per-
formed by ChatGPT.

Figure 6: The overall winning score changes over data
growth comparing models with different numbers of pre-
experienced samples with the official Alpaca model. All
the comparison in this figure is performed by ChatGPT.
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B Performance across Sub-Categories1051

To evaluate the performance variations of our1052

model, we scrutinize the capabilities across diverse1053

instruction tasks. To accomplish this, we compare1054

the response of our cherry models, trained with1055

5% Alpaca data and 10% WizardLM data, to their1056

corresponding comparing models, the official Al-1057

paca and the reimplemented WizardLM across sub-1058

categories in the WizardLM and Vicuna test sets,1059

as displayed in Table 4 and Table 5.1060

Our cherry model trained on Alpaca data exhibits1061

superior or at least comparable performance to the1062

official Alpaca model on most of the subcategories1063

in the Vicuna and WizardLM test sets. Notably,1064

exceptions are observed in the Math and Coding1065

categories, corroborating the observations made by1066

(Chen et al., 2023). We surmise that the base 7B1067

models inherently perform sub-optimally on these1068

two tasks, necessitating a greater volume of data1069

samples to effectively learn the alignment.1070

Our cherry model trained on WizardLM data1071

also has a better or comparable performance com-1072

pared with the reimplemented WizardLM model on1073

most of the subcategories. Specifically, Our model1074

underperforms in Math, Code, Complex Format,1075

and Counterfactual. The main reason our model1076

loses in these categories is the abundance of train-1077

ing data for these categories in the original dataset1078

and the supreme abilities of the original WizardLM1079

in these tasks, which is mentioned in (Xu et al.,1080

2023). As a consequence, when we reduce the1081

number of data used, our model can not be trained1082

on these data-needed categories as much as the1083

original model, thus leading to a relatively incom-1084

parable performance.1085
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Math Coding Writing Generic Knowledge Roleplay Common-sense Fermi Counterfactual
Alpaca 0.33 / 0.33 / 0.33 0.14 / 0.43 / 0.43 0.60 / 0.20 / 0.20 0.60 / 0.10 / 0.30 0.60 / 0.20 / 0.20 0.60 / 0.10 / 0.30 0.60 / 0.20 / 0.30 0.50 / 0.30 / 0.20 0.70 / 0.10 / 0.20

WizardLM 0.00 / 0.33 / 0.67 0.00 / 0.29 / 0.71 0.60 / 0.20 / 0.20 0.40 / 0.40 / 0.20 0.70 / 0.30 / 0.00 0.40 / 0.30 / 0.30 0.70 / 0.30 / 0.00 0.50 / 0.30 / 0.20 0.20 / 0.20 / 0.60

Table 4: The comparison between our cherry models and their corresponding comparing models on sub-categories
in Vicuna test sets, using GPT4 as the judge.

Math CodeGeneration Writing Computer Reasoning ComplexFormat CodeDebug CommonSense Counterfactual
Alpaca 0.21 / 0.37 / 0.42 0.28 / 0.33 / 0.39 0.56 / 0.17 / 0.28 0.40 / 0.33 / 0.27 0.31 / 0.54 / 0.15 0.50 / 0.25 / 0.25 0.50 / 0.50 / 0.00 0.55 / 0.11 / 0.33 1.00 / 0.00 / 0.00

WizardLM 0.42 / 0.37 / 0.21 0.33 / 0.28 / 0.39 0.50 / 0.44 / 0.06 0.33 / 0.40 / 0.27 0.38 / 0.23 / 0.38 0.25 / 0.25 / 0.50 0.40 / 0.40 / 0.20 0.56 / 0.44 / 0.00 0.00 / 0.38 / 0.62
Multilingual Roleplay Biology Technology Ethics TruthfulQA Sport Law Medicine

Alpaca 0.29 / 0.29 / 0.42 0.67 / 0.17 / 0.17 0.50 / 0.00 / 0.50 0.83 / 0.17 / 0.00 0.67 / 0.00 / 0.33 0.60 / 0.00 / 0.40 1.00 / 0.00 / 0.00 0.40 / 0.00 / 0.60 0.80 / 0.00 / 0.20

WizardLM 0.14 / 0.71 / 0.14 0.33 / 0.33 / 0.33 0.17 / 0.50 / 0.33 0.50 / 0.50 / 0.00 0.17 / 0.83 / 0.00 0.80 / 0.20 / 0.00 0.20 / 0.60 / 0.20 0.20 / 0.60 / 0.20 0.80 / 0.00 / 0.20

Table 5: The comparison between our cherry models and their corresponding comparing models on sub-categories
in WizardLM test sets, using GPT4 as the judge.
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C Results with Official WizardLM1086

In this section, we provide the results of using 40%1087

of the WizardLM data to have a comparable per-1088

formance with the official WizardLM model in a1089

relatively unfair setting. The official WizardLM1090

is uncensored and trained with the max token size1091

of 2048, while our model is trained with the max1092

token size of 1024, representing an inherent dis-1093

advantage of our model. However, even with this1094

situation, our model can still reach a comparable1095

performance with the official WizardLM model,1096

inferring the effectiveness of our method.1097

Figure 7: Comparing our models trained on cherry data
with official WizardLM trained on full data using GPT4
as the judge.
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Huggingface Open LLM Leaderboard AlpacaEval
Average ARC HellaSwag MMLU TruthfulQA AlpacaEval

Official WizardLM 54.18 51.60 77.70 42.70 44.70 67.64
Ours (40% WizardLM) 52.83 53.07 77.79 35.29 45.17 65.09

Table 6: The comparison of performance on Huggingface Open LLM Leaderboard and AlpacaEval Leaderboard.
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D Validity of Cherry Data1098

Our goal in this section is to determine if the data1099

selected based on the IFD scores aligns with known1100

characteristics of high-quality training data. To this1101

end, we randomly sample 100 instances from data1102

with the top 5% scores and the least 5% scores.1103

Utilizing ChatGPT, we evaluate each instruction1104

on six aspects: Scope, Complexity, Clarity, Depth,1105

Simplicity, and Knowledge Required. The results1106

are depicted in Figure 8. Data with a higher IFD1107

score generally scored higher in Scope, Complex-1108

ity, Depth, and Knowledge Required, but lower in1109

Clarity and Simplicity. Simplicity, in particular,1110

have the most pronounced discrepancy. This lends1111

credence to our assertion that our IFD scores aptly1112

gauge instruction complexity. Consequently, our1113

method gravitates towards selecting more intricate1114

samples.1115

Figure 8: The comparison between data instances with
top 5% and least 5% IFD scores from Alpaca data. We
prompt ChatGPT to score the instruction of each data
instance with respect of Scope, Complexity, Clarity,
Depth, Simplicity, and Knowledge Required.

As mentioned in the previous section, we try to1116

evaluate each instruction into six aspects, Scope,1117

Complexity, Clarity, Depth, Simplicity, and Knowl-1118

edge Required. We define these aspects as follows:1119

• Scope: The instruction encompasses the1120

breadth and range of actions or information1121

necessary for successful completion.1122

• Complexity: The instruction integrates mul-1123

tiple steps or concepts that require careful at-1124

tention and understanding.1125

• Clarity: The instruction is articulated straight-1126

forwardly, ensuring it’s easily understood1127

without ambiguity. 1128

• Depth: The instruction provides thorough de- 1129

tails and nuances, ensuring a comprehensive 1130

understanding of the task at hand. 1131

• Simplicity: While thorough, the instruction 1132

avoids unnecessary jargon or convolutions, 1133

making it accessible and easy to follow. 1134

• Knowledge Required: The instruction ac- 1135

knowledges and, if necessary, provides the 1136

foundational knowledge or context the user 1137

needs for successful execution. 1138

From the previous Figure 8, we can see samples 1139

selected with top IFD scores have larger scores in 1140

the aspects that reflect the difficulty of instruction, 1141

including Scope, Complexity, Depth, and Knowl- 1142

edge Required. These samples only underscore 1143

samples with the lowest IFD scores on the aspect of 1144

Clarity and Simplicity. This experiment detailedly 1145

illustrates the difference between samples with high 1146

or low IFD scores and verifies the effectiveness of 1147

our method in measuring the difficulty of an in- 1148

struction. 1149
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E Cherry Example Analysis1150

To illustrate the implications of our findings and1151

demonstrate the characteristics of the data selected1152

by our method, we provide several examples in1153

Figure 9.1154

The first positive example presents the situation1155

that both the direct answer score (DA) and the con-1156

ditioned answer score (CA) are relatively high. In1157

this situation, the high DA means that it is hard for1158

the initial pre-trained LLM to generate this poem,1159

and the high CA means given the instruction does1160

not make the generation of this poem much easier.1161

So it is valuable for LLM to learn this sample. The1162

second positive example presents the situation that1163

both the CA score and DA score are relatively low.1164

The low DA score means that LLM has learned1165

this knowledge it is easy for LLM to generate this1166

sentence. However, providing the corresponding1167

instruction does not change the situation much, in-1168

dicating the poor ability to follow this instruction.1169

The first negative example presents a situation1170

where the response is too short. Due to the intrinsic1171

nature of next token prediction that longer texts1172

tend to have lower perplexity, the DA score is rela-1173

tively high for the response that is too short and thus1174

causes the IFD Score large, which we believe is a1175

good feature of our method. The second negative1176

example presents a situation where the DA score1177

and CA score are relatively small. In this exam-1178

ple, the response is quoted from a book that LLM1179

must have read, thus as a known knowledge, it is1180

easy for LLM to reproduce this sentence. However,1181

with an instruction included, the CA score becomes1182

even much lower, indicating LLM has gained quite1183

a good ability in following this instruction. The1184

third example presents the most common situation,1185

where the instruction is simply not difficult enough.1186
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Positive Examples Negative Examples

[Instruction] Create a poem that tells the story of
a struggle against an unseen force.
[Input]
[Response]
A distant enemy looms on the horizon,
Selves of the light fight despite fear and fatigue.
Innumerable obstacles barring their mission,
Though seeming to weaken, strengths within
achieve.

Roots of bravery sustained their cause,
Though many obstacles pushed and pulled.
Heart’s noise drowned out every pause,
Escaping each struggle stronger and full.

The reward of their labors thought clear and light,
The force of the shadows still kept them at bay.
Yet further pushed and tired through the night,
Triumph steadily came in a growing display.

Peace of their struggle found in the morning’s
glow,
Rising higher than any unseen force’s ebb and
flow.
[Direct Answer score (DA)]3.970
[Conditioned Answer score (CA)]3.337
[IFD score]0.928

[Instruction] Give a brief description of the coron-
avirus.
[Input]
[Response]
Coronavirus is a type of virus that can cause ill-
nesses ranging from the common cold to severe
diseases such as Middle East Respiratory Syn-
drome (MERS) and Severe Acute Respiratory
Syndrome (SARS). The virus is named for the
crown-like spikes on its surface. It spreads primar-
ily through close contact with an infected person,
through small droplets from the nose or mouth af-
ter coughing or sneezing. Symptoms can include
fever, tiredness, and dry cough. In severe cases, it
can cause difficulty breathing, pneumonia, kidney
failure, and even death.
[Direct Answer score (DA)]0.761
[Conditioned Answer score (CA)]0.696
[IFD score]0.914

[Instruction] What emotion is expressed in this
tweet?
[Input] I’m so frustrated right now!!
[Response] Frustration
[Direct Answer score (DA)] 6.593
[Conditioned Answer score (CA)] 0.601
[IFD score] 0.091

[Instruction] Identify a famous quote from the
given book
[Input] Book: Pride and Prejudice by Jane Austen
[Response] "It is a truth universally acknowl-
edged, that a single man in possession of a good
fortune, must be in want of a wife."
[Direct Answer score (DA)] 0.497
[Conditioned Answer score] 0.026
[IFD score] 0.053

[Instruction] Generate a report summarizing a con-
versation about car maintenance.
[Input] Joe and Lisa were discussing the im-
portance of regular car maintenance such as oil
changes, tire rotations, and brake inspects.
Joe believes that regular car maintenance is es-
sential for keeping the car operating properly and
avoiding major repairs. Lisa believes that some
car maintenance procedures are unnecessary and
are a waste of money.
[Response]
Joe and Lisa discussed the importance of regular
car maintenance such as oil changes, tire rota-
tions, and brake inspections. Joe believes that
regular car maintenance is essential for keeping
the car operating properly and avoiding major re-
pairs while Lisa believes that some procedures
are unnecessary and are a waste of money. It is
agreed that regular oil changes and tire rotations
are important to maintain the health of the car but
that some other maintenance procedures can be
skipped depending on the age and condition of
the car.
[Direct Answer score (DA)] 1.667
[Conditioned Answer score] 0.599
[IFD score] 0.359

Figure 9: Example instances selected by our proposed method. 2 positive examples and 3 negative examples are
provided.
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F Additional Discussion1187

F.1 Fully-trained Model as Pre-Experienced1188

Model?1189

In our method, efforts are conducted to keep the pre-1190

experience process as simple as possible, however,1191

there still exists a question of whether the fully-1192

trained model can be the pre-experienced model1193

for selecting the cherry samples. To better illustrate1194

this question, the fully-trained Alpaca model is uti-1195

lized as the pre-experienced model for selecting the1196

cherry data, 5%, 10%, and 15% of the cherry data1197

are selected and the corresponding cherry models1198

are trained. The performances are shown in Ta-1199

ble 7, in which the models with the fully-trained1200

Alpaca hardly surpass the Alpaca with fewer data1201

and our models. This experiment proves that the1202

fully-trained model is not appropriate in selecting1203

samples for the initial raw model, which is caused1204

by the overly distribution gap between the fully-1205

trained models and raw models.1206

5% 10% 15% 100%
Ours 1.050 1.097 1.064 1
Fully-trained Alpaca 0.968 0.999 1.005 1

Table 7: The overall winning score changes over the data
growth comparing models with fully-trained Alpaca
as the pre-experienced model with the official Alpaca
model. All the comparison in this table is performed by
ChatGPT.

F.2 How Many Cherry Samples are1207

Required?1208

While extensive experiments with our method on1209

Alpaca and WizardLM prove the effectiveness of1210

our method in selecting high-quality samples from1211

the original target dataset automatically, it is still1212

under-exploring how much data is optimal. Un-1213

like (Chen et al., 2023) in which the scores of tar-1214

get samples are scarce, the dense scores from our1215

method provide better flexibility in deciding how1216

much data you can use. However, this flexibility is1217

also a curse that makes it hard to conclude the opti-1218

mal number of data to select, which is influenced1219

by various factors including the absolute values of1220

the IFD scores, the distribution of hard examples,1221

and the number of data in original datasets. How-1222

ever, from our empirical study, we think selecting1223

samples with the top 10% IFD scores would be a1224

safe and reasonable choice.1225
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G Prompt for Evaluation1226

In this section, we provide the detailed prompt1227

we used for evaluating the performance of two re-1228

sponses for the same instruction as shown in Figure1229

10.1230

Prompt for Performance Evaluation

System Prompt
You are a helpful and precise assistant for checking
the quality of the answer.

User Prompt
[Question]
Question
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]

We would like to request your feedback on the per-
formance of two AI assistants in response to the
user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each assistant re-
ceives an overall score on a scale of 1 to 10, where
a higher score indicates better overall performance.
Please first output a single line containing only two
values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by
a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the
order in which the responses were presented does
not affect your judgment.

Figure 10: The prompt we used to request ChatGPT or
GPT4 to evaluate the responses.
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H Detailed Main Comparison1231

H.1 Comparison with the Official Alpaca1232

As shown in Figure 11, we present the detailed1233

comparison between our cherry models with the1234

official Alpaca (7B) model across different test set1235

with different percentage of cherry data, from 5%1236

to 15%, using ChatGPT as the judge. Starting from1237

5% of the full data, our cherry models outperform1238

the official Alpaca model in all these data scales.1239

H.2 Comparison with the Reimplemented1240

WizardLM1241

As shown in Figure 12, we present the detailed1242

comparison between our cherry models with the1243

reimplemented WizardLM (7B) model across dif-1244

ferent test set with different percentage of cherry1245

data, from 5% to 15%, using ChatGPT as the judge.1246

Our cherry models begin outperforming the reim-1247

plemented WizardLM from the scale of 10% of the1248

data.1249

H.3 Comparison with the Official WizardLM1250

As shown in Figure 13, we show the detailed com-1251

parison between our cherry models with the reim-1252

plemented WizardLM (7B) model across different1253

test set with different percentage of cherry data,1254

from 5% to 40%, using ChatGPT as the judge.1255

When compared with the official WizardLM data,1256

our cherry model achieves a comparable perfor-1257

mance when using 40% of the WizardLM data,1258

which is positive considering the inherent disadvan-1259

tage of our training configuration.1260
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Figure 11: Comparing our cherry models with the official Alpaca model from 5% to 15% of the data using ChatGPT
as the judge. Each horizontal bar represents a comparison in a specific test set.

Figure 12: Comparing our cherry models with the reimplemented WizardLM model from 5% to 15% of the data
using ChatGPT as the judge. Each horizontal bar represents a comparison in a specific test set.

Figure 13: Comparing our cherry models with the official WizardLM model from 5% to 40% of the data using
ChatGPT as the judge. Each horizontal bar represents a comparison in a specific test set.
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I Detailed Ablation Comparison1261

I.1 Data Randomly Selected1262

As shown in Figure 14(a)(b)(c), we show the de-1263

tailed comparison between the models trained with1264

randomly selected data with our cherry models1265

across different test set with different percentage of1266

data, from 5% to 15%, using ChatGPT as the judge.1267

From 5% to 15% of the data, our cherry models1268

consistently outperform the random models.1269

I.2 Data with Low IFD Score1270

As shown in Figure 15, we show the detailed com-1271

parison between the models trained with data se-1272

lected with low IFD scores with our cherry models1273

across different test set with different percentage of1274

data, from 5% to 15%, using ChatGPT as the judge.1275

From 5% to 15% of the data, our cherry models1276

consistently have better performances.1277

I.3 Data with High CA Scores1278

As shown in Figure 16, we show the detailed com-1279

parison between the models trained with data se-1280

lected with high conditioned answer scores with1281

our cherry models across different test set with dif-1282

ferent percentage of data, from 5% to 15%, using1283

ChatGPT as the judge. From 5% to 15% of the1284

data, our cherry models consistently have better1285

performances.1286

I.4 Number of Pre-Experienced Data1287

Figure 17 shows the comparisons when different1288

numbers of pre-experienced samples are utilized to1289

train the pre-experienced model.1290

I.5 Distribution of Pre-Experience Data1291

Figure 18 shows the comparisons when IFD scores1292

are used as the strategy to select pre-experienced1293

data to train the pre-experienced model.1294

I.6 Fully-trained Model as Pre-Experienced1295

Models1296

Figure 19 shows the detailed comparisons when1297

the fully-trained official Alpaca is utilized as the1298

pre-experienced model for selecting cherry data.1299
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Figure 14: Comparing our cherry models with models utilizing randomly selected data from 5% to 15%, using
ChatGPT as the judge. Each horizontal bar represents a comparison in a specific test set.

Figure 15: Comparing our cherry models with models trained with data selected with low IFD score from 5% to
15%, using ChatGPT as the judge. Each horizontal bar represents a comparison in a specific test set.

Figure 16: Comparing our cherry models with models trained with data selected with high conditioned answer
scores from 5% to 15%, using ChatGPT as the judge. Each horizontal bar represents a comparison in a specific test
set.
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Figure 17: Comparing our cherry models with different numbers of pre-experienced samples with the Alpca model
from 5% to 15%, using ChatGPT as the judge. (a)(b)(c) and (d) represent the situation where 0, 100, 300 and 500
pre-experienced samples are utilized respectively.

Figure 18: Comparing models whose pre-experienced data are selected by considering the difficulty of instructions
with the Alpca model from 5% to 15%, using ChatGPT as the judge.

Figure 19: Comparing models with fully-trained Alpaca as the pre-experienced model with the Alpca model from
5% to 15%, using ChatGPT as the judge.
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J More Examples1300

In this section, some positive examples with top1301

5% IFD scores in the Alpaca dataset are presented1302

in Figure 20 and 21. Negative examples with the1303

least 5% IFD scores are presented in Figure 22.1304
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Positive Example

[Instruction] Design a wellness plan for the given
audience
[Input] Expectant Mothers
[Response]
This wellness plan for expectant mothers should
include strategies for physical, emotional and
mental health. Physical health should include
exercise, a healthy diet and adequate rest. Expec-
tant mothers should strive for at least 30 minutes
of moderate exercise such as walking or swim-
ming every day. A nutritious diet should include
a variety of fruits, vegetables and proteins. Ade-
quate sleep is essential for the body and mind to
recharge, so make sure to get seven to eight hours
per night.
Stress management is important for emotional
and mental health. This can include mindfulness
activities, journaling or talking to a friend. Partici-
pating in activities like yoga, meditation or guided
visualization can also be beneficial. Make sure to
take time every day to treat yourself, whether it
be by getting a massage or simply taking a long
bubble bath.
Make sure to take prenatal vitamins as prescribed
by your doctor and attend all of your obstetrician
checkups. It’s also important to stay hydrated by
drinking plenty of water. Schedule regular check-
ins with your doctor to ensure the health of both
you and your baby.

[Instruction] Identify the types of bias in machine
learning
[Input]
[Response]
The types of bias in machine learning include sam-
pling bias, data bias, selection bias, measurement
bias, model bias and inference bias. Sampling
bias occurs when the dataset is not representative
of the population;data bias happens when data is
skewed or incomplete; selection bias arises when
data is chosen in a non-random way; measurement
bias is caused by incorrect labels or noisy data;
model bias arises when the model is overly reliant
on specific features or data; and inference bias is
caused by the model being too simplistic.

[Instruction] Generate a story about a journey in
space.
[Input]
[Response]
It was a beautiful day on Earth, but Andrew was
not content to stay on land. He wanted to explore
and experience the vastness of space. So, on that
fateful day, he set off on an intergalactic voyage
to the farthest reaches of the stars.
...
Exploring this new universe felt like a dream, and
Andrew found himself discovering more wonders
than he had ever imagined. One of his greatest
adventures was traveling to a star that had never
been seen by anyone before him.
Years passed, and Andrew eventually returned to
Earth, full of stories and memories of his travels.
He had learned a great deal about the universe and
made many friends along the way. His journey
had taught him that space is full of boundless
possibilities and wonders, and he will never forget
his time in the stars.

[Instruction] Provide an analysis of the impact of
carbohydrates on human health.
[Input]
[Response]
Carbohydrates are an important part of a balanced
human diet and have been linked to a variety
of health benefits when consumed in appropri-
ate amounts. Carbohydrates are the main source
of energy for the body and are important for the
brain, organs, and muscles to function properly. ...
Choosing complex carbohydrates, such as fruits
and vegetables, whole grains, and legumes, in-
stead of simple carbohydrates that are found in
processed and refined foods, can help to provide
essential vitamins, minerals and other nutrients.
Ultimately, carbohydrates are a necessary part of
a healthy diet and should be consumed in modera-
tion and in a balanced way.

Figure 20: Positive examples sampled from the alpaca dataset with top 5% IFD scores.
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Positive Example

[Instruction] Outline the steps a startup would
need to take to increase brand awareness
[Input]
[Response]
Steps to Increase Brand Awareness for a Startup:
1. Identify target customers: Understand the target
demographic and research their needs and inter-
ests.
2. Develop a content strategy: Use content to en-
gage, inform or entertain customers in order to
establish a connection with them.
3. Share the story: Create a website and create
social media platforms to share the story, mission
or purpose of the startup with customers.
4. Make it interactive: Encourage audience partic-
ipation via competitions, surveys, or polls.
5. Track and analyze data: Measure the response
of customers and use the insights to inform any
changes or adjustments."

[Instruction] Create a poem that is related to the
season of Fall.
[Input]
[Response]
The leaves are falling, leaves of autumn gold,
A gentle breeze, a chill that blows,
The sun that slowly sets, before night comes to
fold,
A season of beauty, with dreams to behold.
The days grow shorter, the sky turns gray,
The land it sighs as summer slips away,
Orange, yellow, and crimson begin to display,
Bringing in a vibrant beauty, during this time of
day.
The winds blow cold, as Frost begins to bite,
The air whispers, chill and full of fright,
It is the season of change, and so we all must
write,
The story of our lives, in the midst of this night."

[Instruction] What are the major components of
the Java programming language?
[Input]
[Response]
The major components of the Java programming
language are the Java Virtual Machine (JVM),
the Java Runtime Environment (JRE), the Java
Platform, the Java Development Kit (JDK), and
the Java Libraries. These components provide
core components such as threading, garbage col-
lection, memory management and reflection, as
well as APIs such as the I/O package, networking,
graphics, and more. The JDK is the most fun-
damental component and is required to compile
Java programs. It contains a compiler, interpreter,
and other tools needed to create Java applications.
The JRE, on the other hand, contains the neces-
sary components to execute the Java programs.
The JVM takes the compiled Java programs and
executes them. Lastly, the Java Libraries are a
vast collection of software packages written in
Java that provide the necessary components for
programmers to develop applications.

[Instruction] Given a historical event, narrate an
account of it in one paragraph.
[Input] The sinking of the Titanic
[Response]
The sinking of the Titanic was one of the most dev-
astating maritime disasters in history. On April
15th, 1912, the illustrious luxury liner set sail
on its maiden voyage from Southampton, Eng-
land, bound for New York City. Despite being
touted as the ünsinkables̈hip, the Titanic struck an
iceberg and sunk in the early morning hours of
the 15th. It took over two hours for the ship to
completely disappear beneath the surface of the
Atlantic Ocean. Over 1,500 souls were lost, and
the disaster shocked the world. To this day, the
tragedy of the Titanic serves as a somber reminder
of the power of the sea and the fragility of human
life.

Figure 21: Positive examples sampled from the alpaca dataset with top 5% IFD scores.
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Negative Example

[Instruction] What are the three primary colors?
[Input]
[Response]
The three primary colors are red, blue, and yellow.

[Instruction] Determine if the following sentence
is in the simple or the perfect tense: I have cele-
brated my birthday.
[Input]
[Response]
The sentence is in the perfect tense.

[Instruction] Evaluate this sentence for spelling
and grammar mistakes
[Input] He finnished his meal and left the resturant
[Response]
He finished his meal and left the restaurant.

[Instruction] Rewrite the following sentence using
active voice.
[Input] The news report was read by the captain.
[Response]
The captain read the news report.

[Instruction] Based on the description, determine
if the following text is positive or negative senti-
ment.
[Input] It was a disastrous event.
[Response]
Negative sentiment

[Instruction] What is the force on a 1 kg mass due
to the gravitational force?
[Input]
[Response]
The force on a 1 kg mass due to the gravitational
force is 9.8 N.

[Instruction] Transform the following sentence
into the passive voice
[Input] I bought a book
[Response]
A book was bought by me.

[Instruction] Edit the given text so it reads cor-
rectly in terms of grammar, sentence structure and
spelling.
[Input] Me and my friend went to the cinema last
niught and we saw a realy great movei.
[Response]
My friend and I went to the cinema last night and
we saw a really great movie.

[Instruction] Rewrite the following sentence in
a more concise way: "The dog that I saw in the
park, it was black in color."
[Input] The dog that I saw in the park, it was black
in color.
[Response]
I saw a black dog in the park.

[Instruction] Categorize the following text into
one of the two sentiment classes: positive or neg-
ative.
[Input] I didn’t like the product very much be-
cause it was too slow and not user friendly.
[Response]
Negative.

[Instruction] What type of capital did the company
have?
[Input] The company received an equity funding
of $5 million.
[Response]
The company had equity capital.

[Instruction] Name the three main mountain
ranges in the United States.
[Input]
[Response]
The three main mountain ranges in the United
States are the Rocky Mountains, the Appalachian
Mountains, and the Sierra Nevada Mountains.

[Instruction] Edit the following sentence so it uses
the word l̈icentious:̈ Bill and Ted’s behavior was
inappropriate.
[Input]
[Response]
Bill and Ted’s licentious behavior was inappropri-
ate.

Figure 22: Negative examples sampled from the alpaca dataset with the least 5% IFD scores.
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