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ABSTRACT

Robot-assisted surgery (RAS) has significantly improved patient outcomes by re-
ducing blood loss, shortening hospital stays, and accelerating recovery. Despite
these benefits, the widespread adoption of RAS has been slowed by a shortage of
trained robotic surgeons and limited access to robotic systems. One of the major
limitations is access to academic materials and expertise in this domain, which are
mostly limited to private company programs or a few textbooks. In this regard,
foundation and large language models (LLMs) have been shown to excel in infor-
mation retrieval and knowledge synthesis. However, none have been specifically
adapted to the complexities of the RAS domain. To address this gap, we introduce
RASRAG, a RankLLaMA-based Tree Retrieval-Augmented Generation frame-
work that leverages a hierarchical structure derived from the source textbook. Our
contributions are: (1) a novel tree-based RAG architecture in which RankLLaMA
jointly performs agentic exploration and reranking along the hierarchy (“forest
of knowledge”), yielding more relevant retrieval than embedding-only baselines,
fine-tuned models, and alternative RAG methods; (2) a publicly available, first-of-
its-kind question—answer benchmark curated by five surgeons and two physicians,
reflecting real-world RAS clinical inquiries; and (3) clinically grounded evalua-
tion protocol, including blind grading of both model and human answers by sur-
geons and RAG-specific retrieval and answer quality measures. RASRAG with
significantly smaller models matches or outperforms state-of-the-art LLMs, fine-
tuned LLMs, and existing RAG architectures regarding precision and relevance
for domain-specific tasks.

Robotic-assisted surgery (RAS) has emerged as a preferred platform for delivering minimally in-
vasive surgery (MIS), owing to its enhanced dexterity, superior visualization, and ergonomic bene-
fits Fong et al. (2025). However, despite its increasing use, the adoption of RAS remains uneven.
Many surgeons continue to face substantial barriers to obtaining the necessary training, and the spe-
cialized skills required for MIS are not evenly distributed across the surgical workforce Cole et al.
(2018). Consequently, access to RAS, and in particular to proficient surgeons and institutional in-
frastructure, remains limited in many areas, contributing to disparities in care and the persistence of
the so-called MIS deserts Schneider et al. (2021).

Large Language Models (LLMs) have recently shown great promise in synthesizing large amounts
of information and providing high-quality contextual insights Bommasani et al. (2021). For exam-
ple, OpenAI’s GPT-4 OpenAl et al. (2024) has demonstrated innovative capabilities across various
applications. These models have been widely adopted in fields such as education Antu et al. (2023);
Li et al. (2023b) and medicine Singhal et al. (2025); Sallam (2023); Thirunavukarasu et al. (2023).
LLaVA-Med Li et al. (2023a), for instance, integrates vision and language models to interpret med-
ical images through natural language prompts. Similarly, BioGPT Luo et al. (2022) and MedPaLM
2 Qian et al. (2024) are specialized in generating accurate responses to clinical questions. LLMs
are also beginning to show promise in surgical contexts, including scientific writing Altmie et al.
(2023), diagnostic imaging Liu et al. (2024), and preoperative management Cheng et al. (2023).

GPT-4 was recently evaluated on a two-part surgical board examination, achieving accuracy rates be-
tween 63.6% and 83.3% across various specialties Oh et al. (2023). Additionally, SurgeryLLM Ong
et al. (2024) employed a Retrieval-Augmented Generation (RAG) framework to incorporate clinical
knowledge and generate patient-specific surgical recommendations. However, no language model
has been designed specifically for RAS. Existing models Wu et al. (2024), Li et al. (2023a), and Luo
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et al. (2022) incorporate surgical data only within broader training corpora He et al. (2025); Pal et al.
(2022), with no documented efforts to train explicitly on RAS knowledge.
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Positioning the patient's arms in towel slings
before a bilateral mastectomy benefits the
procedure by speeding up the transition between
sides during the operation, thus saving time.
Additionally, this method helps maintain the
sterility of the operating field more effectively
compared to repeatedly repositioning the arms
during the surgery.
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Figure 1: High-level schematic of the RASRAG search process, designed to mimic an expert’s
workflow for finding information in a surgical textbook. (1) RASRAG begins by extracting key-
words from the user query to identify the most relevant surgical procedure. (2) Once a procedure is
selected, the system performs a hierarchical search through its associated documents, (ii) collecting
a set of potential candidate contexts along the way. (i) If a definite context that fully answers the
query is found, the search terminates immediately, and that context is passed to the LLM for answer
generation. (iii) However, if the search of the procedure’s documents completes without finding any
relevant context, the system moves to the next most promising procedure and repeats the process.

Retrieval-augmented generation (RAG) systems combine LLMs with external knowledge sources to
improve factual accuracy Lewis et al. (2021). In practice, a RAG pipeline first retrieves the top-k
relevant passages using dense vector retrievers such as DPR Karpukhin et al. (2020); Lewis et al.
(2021). These candidate passages are then optionally reranked by neural models to prioritize the
most useful information Ma et al. (2024). Such techniques have been widely applied in medical
question-answering. Using domain-specific corpora (e.g., PubMed abstracts, clinical notes), RAG
reduces hallucinations and improves reliability in medical QA Ngo et al. (2024). However, simple
top-k retrieval may struggle with complex queries that require reasoning over a hierarchy of con-
cepts. To address this, recent methods build structured retrieval paths. For example, graph-based
systems link extracted entities into medical knowledge graphs Wu & et al. (2024), and multi-agent
RAG frameworks coordinate specialized retrievers across multiple sources. Others exploit LLM
“planning” or “tree-of-thought” strategies. For example, Fatehkia et al. (2024) uses a tree of en-
tity contexts to augment RAG, while Li et al. (2024) uses the Tree-of-Reviews to explore or prune
branches during multi-hop retrieval dynamically.

This study presents a high-precision RAG framework for robotic-assisted surgery, built on a seman-
tic tree representation of the leading published textbook Giulianotti et al. (2023) and powered by the
RankLLLaMA model Ma et al. (2024) (Figure 1). At each node of the tree, a fine-tuned LLaMA-2
reranker compares the user’s query with candidate text chunks from child nodes, selecting the most
relevant path and discarding others. Unlike previous tree-based retrieval approaches Li et al. (2024),
our method uses reranking not to expand reasoning, but to guide semantic navigation through a
structured corpus. This dynamic path selection improves retrieval precision, avoiding irrelevant sec-
tions and yielding accurate, context-sensitive answers from our curated database, often with visual
support. Designed to assist surgeons, residents, and educators, this system also lays the foundation
for future developments in autonomous robotic-assisted surgery.
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Robotic-assisted surgery (RAS) presents a unique scenario: the knowledge base is sparse, highly
specialized, and semantically siloed. Only a few shared sections share semantics, such as the instru-
ment requirements or the trocar placement, and the details are crucial for distinguishing procedures
that appear similar. For example, robotic cholecystectomy instrument requirements largely overlap
with those of a robotic low anterior resection, but differ in fine-grained details. For this reason, we
prioritize high precision and domain-specificity over generality. Minor factual inaccuracies (e.g.,
specifying the wrong endoscope angle, 0° instead of 30°) can invalidate an otherwise correct instru-
ment list (in this case, by compromising depth perception, a critical factor in RAS).

Therefore, our framework is guided by two primary design goals: (i) Traceability, ensuring that
all answers are grounded in validated sources so users can verify the provenance of the informa-
tion; and (ii) Deployment feasibility, as our system is optimized for clinical and academic settings
where massive models like GPT-5 may be impractical due to the lack of transparency. Given these
requirements and current studies Ovadia et al. (2023); Gekhman et al. (2024), we focus on a re-
trieval architecture to ensure the highest possible precision, and not on fine-tuning models as they
have proved to increase hallucination rates, and could also lead to model misalignment Betley et al.
(2025). An example of a question-answer can be found in Figure 2.

Question:
Which instruments are positioned in each port when using the da Vinci Xi system for a right upper lobectomy?

RASRAG: 8/10

Surgeon: 8/10 GPT4-o0: 5/10 GPT5-A1: 6/10
For a right upper lobectomy using the da
Vinci Xi system, the stapler is usually With the da Vinci Xi system, the
inserted through the posterior port The dissection instrument, the long camera is typically placed in the 7th

(incision R2), which is typically equipped | bipolar grasper, is positioned in the
with a 12mm trocar. The specific roles of | | utility incision (R1), the camera in

intercostal space at the midaxillary

Scissors or sealer in Arm 1, " . i
line. Robotic arms are positioned

grasper in Arm 2, camera in Arm 3,

other ports may vary depending on the port S, the fenestrated bipolar N anterior and posterior to the camera,
surgical team's preference, but generally, forceps in port R2, and the tip-up 2elindlietaclog ik while the assistant port is placed
the left-hand port (incision L1) would fenestrated grasper in port R3. anteriorly. This distribution provides
house the camera, while the right-hand optimal ergonomics.

port (incision R1) would hold the
dissecting instrument.

Figure 2: Question Answer example graded by 3 surgeons that demonstrates RASRAG’s clinical
precision. Our system retrieves and contextualizes current, evidence-based standards for RAS. This
output contrasts with that of baseline models, which may offer an incorrect, or imprecise answer.
This example underscores our system’s commitment to clinical detail and highlights the need for
evaluation methods that can recognize and reward such nuance.

1 RASRAG: EXPLORING TREE-DATABASES WHILE DOING RERANKING

1.1 ANSWERING RAS QUERIES

RAS lacks the comprehensive textbooks and standardized curricula available for traditional surgical
disciplines, instead relying on a patchwork of vendor-led modules, isolated academic papers, and
institutional training of varying quality (e.g., Intuitive Surgical (2025)). Often, the training primar-
ily addresses technical operation rather than clinical decision-making. Although structured training
models emphasize core components such as didactics and console practice, these programs remain
largely institution-specific and unstandardized. Furthermore, robotic surgery requires new theo-
retical knowledge, such as optimal endoscopic or trocar positions to minimize arm collisions. To
bridge this gap, new textbooks are emerging, such as Costello (2023) and Giulianotti et al. (2023).
This study uses Giulianotti et al. (2023) to design a knowledge database as a knowledge tree. The
textbook describes 30 RAS procedures, explaining the preoperative setup (instrument requirements,
patient placement, trocar placement), contraindications, and surgical steps in each case while high-
lighting possible anatomical variations. Therefore, the knowledge forest is composed of 30 trees,
one for each procedure (chapter of the textbook).

We created two classes of non-overlapping text units using the RecursiveCharacterTextSplit-
ter Chase (2022). Small-Text Units (STUs) use a chunk_size of 1,000, while Big-Text Units
(BTUs) use a chunk_size of 10,000. The distribution of the resulting STUs for each procedure is
shown in Figure 15. This process also supports a multimodal output; by storing all textbook images,
any figure referenced within a retrieved text unit can be loaded and presented to the user. Since this
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feature is implemented via straightforward string matching between the text and image names, we
do not elaborate on it further in this study.

1.2 STATISTICAL ASSUMPTIONS

To keep our retrieval search tractable while ensuring completeness within each unit (e.g., avoiding
the retrieval of partially explanatory chunks), we make three hierarchical assumptions. The evidence
we used to justify these assumptions can be found in Appendix A.1.

Chapter-level conditional independence: We assume that once we select the most promising chap-
ter C'hy, the remaining chapters provide no additional information about the answer A.

P(A| Cho,Chy,...,Ch,) = P(A| Chy)

This justifies our strategy of exploring chapters sequentially and stopping the search as soon as a
sufficiently high-scoring candidate is found (case 4 in Fig. 1).

BTU/STU insufficiency Let {B;};c; be the BTUs of a chapter, and for each i € I let {S; ; }e,
be its STUs. Let A be a fixed family of admissible answers.

* Across BTUs: For every proper subset ' C I, there exists a € A that is retrieved by
{B; :i € I'} but not retrieved by {B; : i € T'}.

» Within a BTU: For each ¢ € I and every proper subset U C J;, there exists a € A that is
supported by {By, : k € I\ {i}} U{S;; : j € J;} but not supported by
{BkaEI\{i}}U{Si7j jGU}

Any proper subcollection of BTUs (or STUs within a chosen BTU) can miss some answers; hence
the search must (i) locate a relevant BTU and (ii) scan all of its STUs.

1.3 SEARCH STRATEGY

To improve upon traditional cosine similarity methods, which often suffer from inductive bias and
are heavily dependent on the quality of the embedding space, we adopt an LLM-based search strat-
egy. At the core of this approach is RankLLaMA Ma et al. (2024), a LLM-based ranking engine that
evaluates the semantic relevance between a query and a set of candidate texts. Unlike embedding-
only techniques, RankLLLaMA leverages full language understanding, allowing for more accurate
scoring even when lexical overlap is low or when the query involves nuanced intent.

We model the decision process as a single tree, 7', represented by a nested dictionary structure. The
tree initially branches into 30 main nodes, {r;}32,, each corresponding to a specific RAS proce-
dure. Each procedure r; is composed of m; BTU nodes, {b;; };”;1 Finally, each BTU node b;;
branches into n;; STU leaf nodes, { Sij k}Z;I, which represent subordinate explanatory elements or

sub-decisions. Thus, the tree can be formally described as a mapping:

s 130
T: {7’2- = {big = {sin} ey j:l}-,l M

Given a user query ¢, our objective is to identify the most relevant root node r* from the decision
tree T'. The procedure begins by extracting the top five keywords from the query using KeyBERT:
kw = KeyBERT(g). Next, each root node r; is ranked against the keywords using the RankLLaMA
scoring function, rank(-, -), which evaluates the relevance between its two inputs. We then select
the two highest-scoring root nodes:

i} = argmax {rank(kw,r;)}, i35 = arg max {rank(kw,r;)} 2

i iiy

For each candidate root node 7., we compute the average scores of the BTUs against the query g,
fie = Z:”:l rank(g, b;~;). We then select the candidate with the highest p;+:

* * *
rT =Ty, X =arg max [ 3)
wefiy iz}

We define a set of relevance thresholds:

B B S S S
{Tdef’ Tcands Tdefs Tcand» Tul’lCeI‘ta.iIl}
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along with an exploration cap, £y .x (formerly the “stubbornness limit”). These are treated as tunable
hyperparameters. The relevance thresholds are tuned by doing sensitivity analysis (Appendix A.2)
with illustrative examples provided in Appendix A.5.

From this chosen r*, let B = {b,+;};-| and

Bgiey if rank(q, bge;) > 7'dBef
bg:*j € Bcand if TdBef > rank(q, bfb*j) > Tc]fxnd (4)
] otherwise

If the set of definite BTUs (Bget) is not empty (Bger # ), its elements are returned immediately
as precise hits, and the search terminates as a direct application of the Chapter-level conditional
independence. Otherwise, the procedure explores the set of STUs (S = {sm*y*k}fo’*) contained
within each candidate BTU (B.anq), collecting

Sdef if  rank(q, sgryrx) > TdSef
Secand if T&S;;f > rank(q, Sﬁ*y*k) > Tcse;nd
Szry*k € . S S (5)
Suncertain if Teand > rank(q, sm*y*k) > Tecand
) otherwise

As soon as the set of definite STUs (Sqef) is not empty, its element is returned, and the process
concludes. If it is empty, the set of candidate hits (Scanq) is returned instead, after searching through
all the STUs. If both Sger and Scang are empty, the set of uncertain hits (Suncertain) i held as a final
fallback option.

If no precise context is found within 7* (i.e., Beana = 0, or Scana = (), the system initiates a
fallback search procedure. This involves iterating through the next most relevant main nodes r;
(by descending rank(kw, r;)), up to the exploration cap Kax. For each main node, the BTU—STU
search is repeated until a set of candidate STUs is found (rank(q, s) > 7. _,). Once encountered, its
parent main node is selected, and its precise STUs are returned. If the fallback loop completes with-
out finding a precise match, the system returns all previously collected uncertain STUs (Suncertain)
as a best-effort answer.

2 BENCHMARK DATASET FOR RAS QUERY-ANSWERING (QA)

Due to the limited availability of standardized resources in robotic-assisted surgery, no official
benchmark currently exists to evaluate the effectiveness of such systems. To address this gap, we
developed a comprehensive benchmark dataset specifically designed to assess LLMs in the context
of RAS.

Procedures QA Distribution

Ivor Lewis Esophagectomy Selective Nissen Fundoplication

Robotic Transversus Abdominis Release (roboTAR) Heller Myotomy with Modified Dor Fundoplication

Inguinal Hernia Repair D2 Total

Left Adrenalectomy Sleeve Gastrectomy

Left Colectomy Roux-en-Y Gastric Bypass

Radical Right Colectomy with Complete Mesocolic Excision ‘Small Bowel Resection

Paraesophageal Hernia Repair Donor Nephrectomy

Lung Upper L Kidney Transplant

Lung Lobectomies: General Principles and the Total Port, Pancreas Transplant
Enucleation of Pancreatic Tumors Living Donor

Central Pancreatectomy . Gasless Transaxillary Thyroidectomy
Spleen-Preserving Distal Pancreatectomy Transoral Thyroidectomy
Radical Antegrade Modular Pancreatosplenectomy - f Nipple-Sparing Mastectomy
Pancreaticoduodenectomy Extended Thymectomy for Myasthenia Gravis and Thymoma
Splenectomy ) ~. — Radical Esophagectomy with Extended Mediastinal

Figure 3: Distribution of benchmark question—answer pairs across robotic-assisted surgeries (30
procedures; 305 questions)
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To create the benchmark, a diverse team of seven clinicians (five surgeons and two medical doctors)
from varied backgrounds, specialties, and experience levels contributed approximately 10 query-
answer (QA) pairs per procedure. This effort resulted in a final dataset of 305 carefully curated QA
items, with further details on the distribution shown in Figure 3.

3 RESULTS AND DISCUSSION

In this section, we evaluate with three complementary lenses: RAGAS (Es et al. (2024)), NVIDIA
Answer Accuracy (Nvidia (2025)), and expert surgeon grading. RAGAS metrics are well-suited to
measure retrieval quality, e.g., whether the cited context is precise and the answer is faithful to it,
but it can underweight overall answer relevance to the clinical question. NVIDIA Answer Accu-
racy is a strong evaluator of answer relevance and correctness; however, it is highly dependent on
the quality and coverage of the provided ground-truth references—so much so that we also use it
to stress-test and refine the benchmark itself. Finally, a key contribution of our study is an expert
evaluation by three other independent surgeons, which serves as the domain gold standard for clin-
ical relevance and utility. We report all three in tandem to triangulate performance and interpret
divergences between automated metrics and human judgments.

3.1 MODEL EVALUATION WITH RAGAS METRICS

Evaluating LLM performance is a significant challenge, complicated by the nuances of natural lan-
guage that defy traditional machine learning metrics. This difficulty is even more pronounced for
RAG systems. Fortunately, dedicated evaluation frameworks are beginning to emerge to address
this gap. Recent work has introduced several key benchmarks for RAG, including Saad-Falcon
etal. (2023), Es et al. (2024), and Friel et al. (2024), building upon foundational retrieval evaluation
studies Gao et al. (2023).

We evaluated our RAG system’s performance using the metrics from the RAGAS Es et al. (2024)
framework described in Appendix A.3.

Table 1: Evaluation of models using Cosine Similarity and RASRAG

[ Model Info Context  Context Faithfulness Answer Semantic Time Time
\ Model Dii ion/Size | Precision Recall ””  Relevancy Similarity | (mean) (total)
Cosine Ling-Embed-Mistral (Kim et al. (2024)) 4096 0.7651 0.9092 0.8598 0.7442 0.7713 2.0 596.5
Similarity multilingual-e5-large-instruct (Wang et al. (2024)) 1024 0.6857 0.8219 0.8631 0.7547 0.7714 1.8 558.1
jina-embeddings-v3 (Sturua et al. (2024)) 1024 0.6619 0.7828 0.9167 0.6912 0.7656 55 1665.4
Mean — — 0.7042 0.8380  0.8799 0.7300 0.7694 31 940.0
Std. dev. — — 0.0540 0.0647 0.0319 0.0340 0.0033 2.1 628.5
Llama-3.2-1B-Instruct (Grattafiori et al. (2024)) 1.24B 0.8725 0.8518 0.8388 0.7730 0.8072 12.3 3814.4
Llama-3.2-1B-Instruct_st15 (Grattafiori et al. (2024)) 1.24B 0.8674 0.8414 0.8107 0.9016 0.7890 8.9 2774.5
Qwen2.5-1.5B-Instruct (Team (2024)) 1.54B 0.8918 0.8579 0.7569 0.9485 0.7793 16.2 5015.3
gemma-3-1b-it (Team (2025)) 1B 0.8798 0.8580 0.8845 0.7352 0.7974 15.5 4802.1
Llama-3.2-3B-Instruct (Grattafiori et al. (2024)) 321B 0.8760 0.8554 0.8851 0.7654 0.7983 13.3 41323
Qwen2.5-3B-Instruct (Team (2024)) 3.09B 0.8768 0.8555 0.8309 0.8369 0.7699 17.9 5540.9
gemma-3-4b-it (Team (2025)) 4.3B 0.8794 0.8383 0.8797 0.8090 0.7972 18.6 5755.1
MedGemma (Sellergren et al. (2025)) 4B 0.8829 0.8511 0.9000 0.8228 0.8121 19.7 5992.6
RASRAG Mistral-7B-Instruct-v0.3 (Jiang et al. (2023)) 7.25B 0.8808 0.8573 0.8811 0.8938 0.7853 16.9 5242.1
Llama-3.1-8B-Instruct (Grattafiori et al. (2024)) 8.03B 0.8835 0.8530 0.8741 0.8548 0.7938 16.6 5140.5
Qwen2.5-7B-Instruct (Team (2024)) 7.62B 0.8778 0.8518 0.8625 0.8780 0.7823 16.8 5214.4
Gptoss-20B (Agarwal et al. (2025)) 20B 0.8760 0.8465 0.6947 0.8627 0.7748 30.0 9113.7
Qwen2.5-32B-Instruct (Team (2024)) 32B 0.8812 0.8477 0.8187 0.8764 0.7784 329 10005.4
Qwen2.5-72B-Instruct (Team (2024)) 72B 0.8799 0.8494  0.7398 0.9455 0.7787 51.8 15739.0
Llama-70B-Instruct (Grattafiori et al. (2024)) 70B 0.8805 0.8562 0.7946 0.8990 0.7838 48.8 14820.8
OpenBio (Ankit Pal (2024)) 72B 0.8796 0.8529 0.8390 0.9432 0.7918 333 10114.2
GPT-5 — 0.8283 0.8416  0.7785 0.6561 0.8102 17.5 5319.8
Gemini-2.5-Pro — 0.8275 0.8356 0.8415 0.7733 0.8021 16.9 5145.6
Mean — — 0.8786 0.8520 0.8504 0.8396 0.7900 15.3 4743.1
Std. dev. — — 0.0065 0.0069 0.0418 0.0684 0.0110 29 911.6

Table 1 presents the performance benchmark of various lightweight models integrated with our RAG
framework. We also evaluated several embedding models on a conventional RAG setup, which
retrieves the context based on the cosine similarity between the embedded context and input query,
and generates responses using Llama-3.2-1B-Instruct Grattafiori et al. (2024). Gemma3-27B Team
(2025) was selected as the judge model due to its recent release, strong performance on standard
benchmarks, and suitability for evaluating response quality. The observed performance variance
across models highlights the robustness and adaptability of our RAG framework. Notably, the results
show that our proposed RASRAG pipeline consistently outperforms the traditional RAG method
across all quality dimensions while maintaining strong semantic fluency.



Under review as a conference paper at ICLR 2026

Comparing our RASRAG with the conventional RAG (cosine similarity) using embedding models,
the average context precision (0.17 1) and average answer relevancy (0.2 1) have significantly im-
proved, while the context recall, faithfulness, and semantic similarity have not changed significantly.
The low variance among the different retrieval strategies shows that the metrics do not heavily rely
on the LLM generating the answers based on the retrieved context. Moreover, it also proves that our
retrieval strategy is the key to providing a better context for the model.

Llama-3.2-1B-Instruct_st15 is the same model as the one above (Llama-3.2-1B-Instruct), but with
reduced stubbornness—i.e., it searches fewer trees when no answers are initially found (cf. 1.1).
We observe that by slightly sacrificing faithfulness and context recall, we gain in answer relevancy.
These differences primarily confirm that our first statistical assumption (1.2) was valid: once a highly
promising candidate is identified early in the ranking, halting the search and returning that result is
sufficient. Conversely, if no suitable answer is found among the top-ranked trees, continuing the
search yields diminishing returns.

These metrics show that our RAG is not dependent on the model generating the answers (as evi-
denced by the diverse panel of models we tested 1B models to closed-weight ones), and even with
a Qwen2.5-1.5 B-Instruct, it can surpass all cosine-based baselines, highlighting that the retrieval
strategy, rather than the model size, is the primary driver of accuracy. While there is a tradeoff be-
tween the performance and the average run time, introducing an average 15s latency still remains
acceptable for most interactive research and clinical decision-support scenarios.

However, this trade-off is justifiable. In specialized domains like robotic-assisted surgery, relying
solely on text embedding similarity is insufficient for accurately retrieving context. A more pow-
erful model, such as RankLLaMA, is necessary to identify truly relevant content. As a result, the
additional computation time is warranted to ensure higher-quality retrieval.

The QA evaluation row by row for each model can be found in the attached repository for Table 1
3.2 NVIDIA ANSWER ACCURACY

Table 2: Nvidia metric evaluation on Surgical VQA benchmark.

Category [ Model | Trial T Trial2 Trial 3 Trial4 Trial 5 [ Mean  Std. Dev.
Ling-Embed-Mistral 0.6634 0.6337 0.6328 0.6328 0.6320 | 0.6389 0.0137
Other RAGs | MedGraph+GPT5 0.8877 0.8877 0.8877 0.8875 0.8875 | 0.8880 0.0004
PaperQA+o04-mini 0.8270 0.8279 0.8270 0.8270 0.8270 | 0.8272 0.0004
Fine-tuned | medGemma 0.3893  0.3885 0.3885 0.3893  0.3885 | 0.3888 0.0004
LLMs OpenBio 0.4533  0.4525 0.4525 0.4525 0.4525 | 0.4527 0.0004
Proprietary Gemini-2.5-Pro 0.5828 0.5852 0.5836 0.5844 0.5836 | 0.5839 0.0009
LLMs GPT-40 0.4942  0.4983 0.4975 0.4983 0.4975 | 0.4972 0.0017
GPT-5 0.5738 0.5746 0.5730 0.5730 0.5730 | 0.5735 0.0007
RASRAG+medGemma 0.7934  0.7943  0.7943 0.7951 0.7934 | 0.7941 0.0007
RASRAG+Mistral-7B 0.8133  0.8127 0.8144 0.8144 0.8127 | 0.8135 0.0009
RASRAG RASRAG+OpenBio 0.8221 0.8221 0.8197 0.8213 0.8213 | 0.8213 0.0010
RASRAG+Gemini2.5-pro | 0.8303 0.8303 0.8295 0.8303 0.8303 | 0.8301 0.0004
RASRAG+GPT5 0.9762 0.9762 0.9761 0.9762 0.9762 | 0.9762 0.0000
Second Book | RASRAG+GPTS 0.8400 0.8400 0.8405 0.8400 0.8400 | 0.8401 0.0002

The RAGAS evaluation revealed limitations in some standard RAG metrics. For instance, the faith-
fulness score often remained high even when an answer was clinically incongruent with the ground
truth, due to an ambiguous process for “claim” extraction. We observed similar issues with con-
text recall. Furthermore, metrics like answer relevancy can penalize models with superior phrasing
capabilities (e.g., GPT-5), as their well-structured answers may deviate in form—though not in sub-
stance—from the ground truth, artificially lowering their scores. To overcome these issues and more
directly measure clinical correctness, we adopted the NVIDIA Answer Accuracy Nvidia (2025)
metric (Table 2).

To demonstrate the effectiveness of our architecture, we compared the performance of RASRAG
against a range of state-of-the-art systems. As shown in Table 1, our implementation significantly
outperforms strong baselines. Our comparison included SOTA proprietary LLMs (GPT-40, GPT-5,
Gemini-2.5-Pro), domain-specific fine-tuned models (medGemma, OpenBio), and other specialized
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RAG architectures (MedGraph, PaperQA). This result supports its strong alignment with expert-
level answers in high-precision clinical contexts.

It is important to note key methodological differences for some baseline comparisons. The Med-
Graph architecture, for instance, is designed for multiple-choice selection rather than free-form gen-
eration; to accommodate this, we created two synthetic incorrect answers to pair with the ground
truth, making its task fundamentally simpler than that of our system. Additionally, the PaperQA
baseline exhibited significantly higher latency (~1 min/question), requiring approximately 2-3 times
the generation time of RASRAG, despite using a proprietary model not run on local hardware.

To test the generalization capabilities of our RASRAG method, we evaluated its performance on
a second, distinct RAS textbook Kim (2014). Because this book covers different procedures and
was published a decade prior to Giulianotti et al. (2023), we generated a new set of 50 question-
answer pairs specifically for this evaluation. While this new QA set was not curated by our expert
panel and thus may not meet the same quality standard as our primary benchmark, the results are
nonetheless informative. Achieving a high NVIDIA Answer Accuracy on this new dataset indicates
that RASRAG can effectively retrieve relevant context to support accurate answer generation, even
when applied to an entirely different knowledge source.

It is crucial to properly interpret these high-accuracy scores. Consequently, even a very high score,
such as the 97% achieved by GPT-5, does not imply that the model surpasses surgeons. Instead, it
reflects that its outputs are extremely similar in content (not form) to those provided by surgeons,
highlighting a shared basis of clinical expertise. This metric is intrinsically unable to demonstrate
superiority, as the highest possible outcome is to reproduce answers that are essentially identical in
content to those of a human expert.

3.3 EVALUATION BY EXPERTS

To complement the other automated metrics, we conducted a formal evaluation with three indepen-
dent surgeons who did not participate in the benchmark’s creation. They were tasked with grading
the answers from our RASRAG+Mistral-7B, GPT-40, and GPT-5 on a 0-10 scale to assess factual
correctness, comprehensiveness, and clinical utility. Further details on the grading rubric are avail-
able in Appendix A.4.

Coder Agreement
0.40 | Coo e il GPT-4
Model Krippendorff's Alpha RASRAG
GPT-4 0.744 (95% CI [0.681, 0.803]) Surgeon
0.35 RASRAG 0.793 (95% CI [0.715, 0.865]) GPT-5
Surgeon (GT) 0.722 (95% CI [0.645, 0.793])
GPT-5 0.683 (95% CI [0.596, 0.765])
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Figure 4: Grades distribution by model: GPT-40 (mean score of 5.58), GPT-5 (mean score of 6.62),
RASRAG+Mistral7B (mean score of 8.43), and surgeon’s answers (mean score of 8.00). Error bars
show the standard error of proportions within each grade category in grading for each model (given
3 graders per question).

To ensure an unbiased evaluation, all four responses for each question (our system, GPT-40, GPT-5,
and the ground truth) were anonymized and presented to the surgeons in a randomized order. After
grading, we measured inter-rater reliability using Krippendorff’s alpha Marzi et al. (2024) (95%
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CI, 1000 bootstrap iterations). The resulting scores, all above 0.67, indicate substantial agreement
among the raters and confirm the consistency of the grading process.

The grade distributions, shown in Figure 4, reveal distinct performance patterns (where O indicates
an incorrect answer, 5 partially correct, and 10 correct). As expected, the ground-truth surgeon re-
sponses are clustered at the high end of the scale (8-10). In contrast, GPT-40 and GPT-5 exhibit a
much wider distribution with more frequent low-to-mid scores, suggesting lower reliability. Notably,
our RASRAG system received the highest concentration of perfect scores (grade 10). This may be
because RASRAG generates answers that are systematically comprehensive, explicitly stating de-
tails that human experts, communicating with peers, might omit due to shared inherent knowledge.
The higher inter-rater agreement observed when grading RASRAG’s outputs supports this inter-
pretation, suggesting its answers were unambiguously complete. Overall, these results highlight
the consistency and clinical alignment of RASRAG compared to the general-purpose proprietary
models.

4 CONCLUSION

This study presents a novel and domain-specific Retrieval-Augmented Generation (RAG) frame-
work tailored for Robotic-Assisted Surgery (RAS) called RASRAG, combining a tree-structured
knowledge representation with RankLLLaMA-based semantic retrieval. By constructing a hierarchi-
cal structure from a leading RAS textbook and applying fine-grained semantic reranking at each
node, our RAGAS system enables more context-aware, accurate, and relevant answers compared to
traditional embedding-based methods.

Our contributions include: (1) a high-precision RAGAS pipeline powered by RankLLLaMA, capa-
ble of outperforming cosine-based baselines, scientific specialized models RAG methods, medical
RAG, finetuned models in the medical domain and State of the art LLMs, in both quantitative met-
rics and expert evaluations; and (2) the first publicly available benchmark for RAS QA, curated by
five surgeons and two medical doctors, encompassing over 300 high-quality questions and answers
that reflect real-world clinical needs.

Comprehensive evaluation using RAGAS metrics reveals significant improvements in context pre-
cision (approximately +0.17), semantic similarity, and answer relevancy, while maintaining high
recall and faithfulness. Additionally, a blind evaluation conducted by expert surgeons confirms the
strong factual accuracy and clinical usefulness of answers generated by our RankLLaMA + RAGAS
pipeline, which closely approached human-written responses and outperformed GPT-40 in quality
and consistency. To further confirm this, we validated these results using the Answer Accuracy
NVIDIA metric.

We also note that the precision-recall trade-off, along with the increased latency of the semantic
reranker, suggests important directions for optimization in real-time clinical applications. These
tools will serve as a foundation for scalable, high-accuracy clinical education and decision support.
Second, we will explore ways to improve retrieval latency and context coverage by experimenting
with hybrid retriever architectures, caching mechanisms, and adaptive thresholding strategies. Fi-
nally, we intend to broaden the scope of our QA benchmark by including new procedures, more
diverse clinical scenarios, and potentially multimodal data such as annotated surgical videos and
intraoperative sensor information.

Altogether, this work represents a step toward closing the knowledge accessibility gap in robotic-
assisted surgery and highlights how targeted LLM applications can support medical education, re-
duce variability in training, and bring us closer to practical Al-powered surgical assistance systems.

This methodology could generalize well beyond RAS: for any specialized corpus—such as a newly
released scientific book that base LLMs won’t absorb promptly—the reasonable choice is to process
it through the RASRAG framework, which offers a more robust and timely alternative to fine-tuning.

5 REPRODUCIBILITY

All the work mentioned in this study can be found and reproduced in the following repository .

1Anonyrnous repository: https://anonymous.4open.science/r/ICLR_2025-C1DE
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A APPENDICES

A.1 SEMANTIC SIMILARITY AND CHAPTER INDEPENDENCE

We computed semantic similarity among BTUs (section-level text units) extracted per chapter using
the RASRAG structure. Each BTU was embedded with a SentenceTransformer model (all-mpnet-
base-v2), and pairwise cosine similarities were calculated. For intra-chapter analysis, we formed
a similarity matrix within each chapter and summarized only the off-diagonal upper-triangle val-
ues (self-similarities removed). For inter-chapter analysis, we computed cross-chapter similarity
matrices for every chapter pair and flattened all entries. The top histograms plot these intra and
inter distributions, the bar chart reports BTU counts per chapter, and the boxplot compares the two
distributions directly (intra vs inter).

The analysis reveals a clear separation between intra- and inter-chapter semantic similarities. The
top-left histogram shows that intra-chapter BTUs are generally more semantically coherent, with a
mean cosine similarity of 0.61 and a distribution skewed toward higher values, indicating stronger
contextual alignment within the same chapter. In contrast, the top-right histogram demonstrates
that inter-chapter similarities are centered around a lower mean of 0.47, with a symmetric spread
and a substantial proportion of weakly related BTUs, reflecting limited semantic overlap across
chapters. The bottom-left bar plot confirms that BTUs are unevenly distributed among chapters,
which may influence both intra- and inter-chapter similarity distributions. Finally, the bottom-right
boxplot reinforces these trends: intra-chapter similarities consistently exceed inter-chapter ones,
with a higher median and narrower spread, while inter-chapter similarities show a broader range
and multiple high-value outliers, likely representing conceptually related content across chapters.
Together, these results support the conclusion that cross-chapter semantic similarity is comparatively
low, and intra-chapter content is significantly more cohesive.

BTU Semantic Similarity Analysis Overview
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Chapter-level relatedness. Let chapters be indexed by ¢ Chapter ¢ has n, BTUs, with total N =
> . nc. Embed each BTU as z; € R? and let the centroid of chapter ¢’ be

P! = nld Zl’j.

jec’

For afocal BTU i € c, convert its affinities to all other chapter centroid into a probability distribution
using a temperature-controlled softmax, denoted simply as softmax(7):

pi.. (1) = softmax(7)[{z pe : ¢/ #c}].
Smaller 7 sharpens differences; larger 7 smooths them. If no chapter stands out, p; .(7) is near-
uniform. We summarize dispersion with normalized entropy

— 2orpePie () logpi e (7)

Hyorm (i;7) =
norm(lvT) log(Cf 1)

€ [0,1],

and optionally track the top mass pmax(4; 7) = maxe2e Ps s (7).

Within-chapter cohesion . Distribute i’s similarities over all BTUs via softmax(7) and measure
the probability mass that returns to its own chapter:

g (1) = softmax(T)[{cos(xi,xj) D= L...,N}]7 own-mass(i;7) = Zqiﬁj(T).

A random baseline is n./N; values well above it indicate cohesive chapters. Very small 7 can cause
trivial self-peaks, so we interpret away from saturation.

For these two measure we swept 7 € {0.01,0.02,0.03,0.05,0.10, 0.20, 0.30, 0.50, 1.00}

A.1.1 RESULTS AND INTERPRETATION.

The 7-sweep in Fig. 8, and more in details Table 3 are reporting the median-of-medians and mean-
of-medians for both H, ., and own_mass, exhibits a clear knee. At very sharp temperatures
(t < 0.03), the softmax effectively collapses (own-mass = 1, Hyorm =~ 0.10-0.48), rendering
the diagnostic uninformative. At 7 = 0.05, the distribution remains highly peaked (own_mass ~
0.84). By 7 = 0.10, we observe modest yet unsaturated within-chapter cohesion (own_mass =
0.23) while the others-only distributions are already highly diffuse (Hyomm ~ 0.93). For 7 >
0.30, behavior converges toward uniformity across chapters (Hyorm > 0.993), with own_mass
receding to the random-allocation baseline ~ n./N (e.g., 0.0435 at 0.30, 0.0316 at 0.50, 0.0266 at
1.00). Across all temperatures, py,ax remains close to 1/K (with K the number of other chapters),
indicating that probability mass does not concentrate on any single other chapter. Taken together
with the histogram and box-plot separation (intra > inter), these results constitute robust evidence
for chapter independence: no systematic inter-chapter pull is present across a broad temperature
range, while the only persistent structure is a mild, 7-dependent within-chapter preference.
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Figure 8: Example of 4 chapters Intra-chapter semantic similarity between BTUs for a given chapter.
Each thin colored line is one chapter; the thick black line is the global median across chapters. These
panels plot the normalized entropy H,orm Of the others-only distribution and within-chapters ones.
Left shows the median across BTUs per chapter; right shows the mean. High values (= 1) mean
probability over other chapters is diffuse (no single other chapter dominates) and thus support inter-
chapter independence. Low values indicate a systematic pull to a specific other chapter. (This row
is purely inter-chapter.)
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Table 3: Temperature sweep (global medians across chapters). K denotes the number of other
chapters.

Hyorm Horm own_mass own_mass
med-of-med mean-of-med med-of-med mean-of-med
0.010 0.100 0.115 1.000 1.000
0.020 0.314 0.289 1.000 1.000
0.030 0.484 0.464 0.992 0.991
0.050 0.747 0.725 0.844 0.845
0.100 0.933 0.930 0.228 0.242
0.200 0.984 0.984 0.066 0.069
0.300 0.993 0.993 0.044 0.045
0.500 0.998 0.998 0.032 0.033
1.000 0.999 0.999 0.027 0.027
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A.2 SENSITIVITY ANALYSIS

We performed a one-factor-at-a-time sweep over the relevance thresholds to analyze their impact on
two key metrics: end-to-end processing time and answer accuracy.
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Figure 9: Batch processing time (in seconds) to answer a batch of 60 questions, where markers
indicate the mean, error bars represent the standard deviation across hyperparameter variations, and
the dashed red line serves as a trend line.

Impact on Processing Time The processing time was measured until an answer was accepted or
the fallback loop reached its exploration cap, kpyax. At the STU level, tightening the thresholds
(T TS s T cortain) Monotonically increases processing time, with 75, showing the steepest
growth as it governs the most common early-stopping condition. At the BTU level, raising T(ﬁf
removes the fast-exit path, sharply increasing mean runtime and variance by forcing deeper STU
evaluations. The candidate threshold, Tgnd, exhibits a U-shaped effect: a low value expands too
many BTUs (triggering expensive STU ranking), while a high value frequently causes the candidate

set to become empty, activating the computationally intensive root-level fallback loop.

Impact on Answer Accuracy The effects of the thresholds on answer accuracy were also distinct.
For the BTU thresholds, accuracy falls sharply as T(fmd tightens because the STU search is starved
of candidate contexts. Increasing TdBef also eventually degrades accuracy, as overly strict gates can
discard true positives. The STU thresholds have more subtle effects: the impact of T&Sef is largely
flat, 75 _, has a weak concave trend with a mid-range sweet spot, and stricter 75 ... . values
monotonically decrease accuracy by reducing recall of borderline-but-useful STUs. At most extreme

settings, error bars widen, reflecting an increased reliance on the fallback loop.

Recommended Tuning Strategy Taken together, these results inform our final tuning strategy.
We recommend a mid-to-low 7.2, to balance expansion and fallback risk, a moderate 72, to pre-
g aq as the primary speed-quality lever, and a permissive

serve the fast-exit path, a mid-range 7.,
to maintain recall. A mid-to-high TdSef can be used when answer purity is paramount.

S
Tuncertain
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Figure 10: Answer accuracy on a batch of 60 questions, where markers indicate the mean, error bars
represent the standard deviation across hyperparameter variations, and the dashed red line serves as

a trend line.
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A.3 RAGAS METRICS

Context Precision: Context Precision (CP) quantifies the proportion of relevant chunks within the
retrieved contexts. It is computed as the average precision across the top-k ranked chunks. Precision
(P) refers to the ratio of relevant chunks among the retrieved items at rank k.

CP@K — Eiil(l)recision@k X k)
~ Total number of relevant items in the top K results
true positives @k

P@k = 7
true positives @k + false positives @k @

(6)

Where K is the total number of chunks in retrieved contexts and is the relevance indicator at rank k.

Context Recall: Assesses the extent to which relevant documents (or information units) have been
successfully retrieved. Specifically:

_ [Number of relevant contexts retrieved|

CR =

®)

| Total number of reference contexts|

Faithfulness: Evaluates the factual alignment between the response and the retrieved context. This
metric also helps identify the amount of noise present in RAG-generated answers. It is formally

defined as: o
_ |Number of claims in the answer supported by the context|

F= 9)

| Total number of claims in the response|

Answer Relevancy: Evaluates how relevant a model’s response is to the input query. This metric is
calculated by generating a set of artificial questions based on the response. Then compute the cosine
similarity between the embedding of the input query (E,) and the embedding of each generated
question (Eg4,) and take the average of these cosine similarity scores:

N
1
Answer Relevancy = N Z cosine similarity (E,, , E,) (10)
i=1

where NV is the number of generated questions. Higher scores indicate better alignment with the
input query, while lower scores are given if the response is incomplete or includes redundant infor-
mation.

Semantic Similarity: Measures how closely the generated response aligns semantically with the
ground truth answer. This metric computes the cosine similarity between the embedding of the
ground truth answer and the embedding of the generated response. The score ranges from O to 1,
with higher values indicating greater similarity. This metric provides insight into the quality of the
response and is computed using a bi-encoder model that evaluates semantic similarity between the
two texts.
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A.4 GRADING SYSTEM

This scoring system adopts a three-level weight structure (60% for correctness, 20% for complete-
ness, and 20% for usefulness), reflecting the progressive dependence and relative independence of
these three dimensions. The specific scoring rules are as follows:

1. For correct content (6 points), completeness (1-2 points) and usefulness (1-2 points) will
be additionally evaluated, resulting in a total score of 8—10 points.

2. For partially correct content (1-5 points), additional points will be awarded for partial
completeness (0—1 points) and usefulness (0—1 points), resulting in a total score of 1-7
points.

3. For incorrect content (0 points), completeness and usefulness will also score 0, resulting in
a total score of 0.

In addition, due to the rapid pace of medical advancements, answers involving outdated surgical
techniques or the latest innovative technologies will be scored as partially correct at the evaluator’s
discretion.

Where is the starting point
of the staple line during
gastrocolic ligament
division in a sleeve
gastrectomy?

Figure 11: 1rst Answer : total 6 =4 (partial correct)+1 (partial completeness)+1 (partial complete-
ness), 2nd Answer: total 8 =6 (correct)+1 (partial completeness)+1 (partial usefulness), 3rd An-
swer: total 3=2(partial correct)+1 (partial completeness)+0(uselessness)

Where does the myotomy
start in a Heller myotomy?

Figure 12: 1rst : 9=6+2+1 2nd : 9=6+2+1 3rd : 0=0+0+0
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A.5 SEARCH EXAMPLES:

Question : How is the preoperative evaluation of achalasia performed?

Question: What is the reconstruction Extracted Keyphrase: achalasia preoperative evaluation performed
technique performed after a robotic total Q Searching in chapt.er: pancreaticoduodenectomy
unprecise answers [|
gaStFeCtomy? Trying chapter: small bowel resection
Extracted Keyphrase: gastrectomy il
reconstruction robotic total technique Trying chapter: central pancreatectomy
Q Searching in chapter: d2 total ) oo
gastrectomy 2] Trying chapter: ivor-lewis esophagectomy
& Very Precise STU found. §3 Trying chapter: the assistant’s role in robotic surgery
--- Top Answers --- 0
[score 5.78] Intracorporeal antecolic Trying chapter: abd[ominoperineal resection

RouxenY esophagojejunostomy using linear

N ] . Z) Trying chapter: spleen-preserving distal pancreatectom
staplers is routinely performed after robotic I G A € B v

0
total gastrectomy. After the jejunum is brought Trying chapter: left colectomy
up to the transected distal esophagus in a _ 1
loop fashion, an entry hole is created in the AT GESHER €8 e gemiesiamy

antimesenteric border of the expected
anastomosis point of the jejunum. This point is il
15-20 cm distal to the Treitz ligament, where Trying chapter: total mesorectal excision for rectal cancer
no tension is present. A45mm linear stapler
can then be inserted into the holes using the

0
Trying chapter: robotic transversus abdominis release

Trying chapter: radical antegrade modular pancreatosplenectomy

. h I
R2 to create a sidetoside Trying chapter: radical esophagectomy with extended mediastinal lymphadenectomy
esophagojejunostomy. The common entry i
hole is subsequently closed with a 45mm Trying chapter: mux‘ﬁn‘y hepaticojejunostomy

stapler or by suturing. The afferent loop of the

jejunum is then transected using a linear Trying chapter: liver sectionectomies left lateral sectionectomy

stapler. A jejunojejunostomy is finally created Trying chapter: paragsophageal hernia repair
45-60 cm distal to the esophagojejunostomy
using a linear stapler. The entry hole is also Trying chapter: segmenta[]l and atypical liver resections
ANSWER @ E: Trying chapter: right hepatectomy
Intracorporeal antecolic Roux-en-Y
reconstruction with a linear-stapled, Trying chapter: splenectomy

side-to-side esophagojejunostomy, followed
by division of the afferent limb and a stapled
S ) 0
jejunojejunostomy 45-60 cm distal. Trying chapter: left hepatectomy
1

Trying chapter: radical right colectomy with complete mesocolic excision

Trying chapter: heller myotomy with modified dor fundoplication
€8 Very Precise STU found. §3
[6.30] Achalasia is a primary esophageal motility disorder characterized by the absence
of relaxation of the inferior esophageal sphincter and lack of esophageal peristalsis in
response to swallowing. Preoperative evaluation of these patients must include a
highresolution manometry, barium esophagogram, computed tomography scan, and
upper endoscopy. Highresolution manometry confirms the diagnosis of achalasia and
defines its subtype according to the Chicago classification (see suggested reading #1).
Minimally invasive Heller myotomy and pneumatic dilatation are the best treatment
modalities for Chicago type | and Il achalasia, while peroral endoscopic myotomy
(POEM) has shown higher success rates in Chicago type Ill achalasia. POEM is
associated with a high incidence of postoperative gastroesophageal reflux.
Laparoscopic Heller
ANSWER ® H:
- High-resolution esophageal manometry to confirm achalasia and classify the subtype
per the Chicago classification
- Barium esophagogram to assess esophageal emptying, diameter, and morphology
- Upper endoscopy to rule out mechanical obstruction/pseudoachalasia and evaluate
mucosa
- Computed tomography to exclude secondary causes (e.g., malignancy) and assess
surrounding anatomy

Figure 13: Two search examples are shown, left (case 4 in Figurel), where a very precise STU
is found so searching stops and the correct answer can be given immediately; and right (case 1 in
Figurel), where no precise answers are found, so the system iterates through the remaining chapters
(Figure 1).
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Question: What helps to minimize parenchymal injury during traction in living donor hepatectomy?
Extracted Keyphrase: hepatectomy traction donor injury parenchymal living

Searching in chapter: living donor hepatectomy
unprecise answers [
"... Using a sponge with the ProGrasp™ in R3 can help to avoid parenchymal injury during traction...."]]

Trying chapter: roux-en-y hepaticojejunostomy []
Trying chapter: right hepatectomy
[["... asymmetric cutting technique ... low CVP ..."],
["... key aspect is to 'superficialize' the section line ..."]]
Trying chapter: left hepatectomy []

Trying chapter: right adrenalectomy []
Trying chapter: left adrenalectomy []
Trying chapter: small bowel resection []
Trying chapter: renal aneurysm []

Trying chapter: central pancreatectomy []
Trying chapter: left colectomy []

Trying chapter: pancreaticoduodenectomy []

Trying chapter: spleen-preserving distal pancreatectomy []
Trying chapter: the assistant’s role in robotic surgery []
Trying chapter: total mesorectal excision for rectal cancer []
Trying chapter: ivor-lewis esophagectomy []

Trying chapter: bile duct injuries repair []

Trying chapter: segmental and atypical liver resections []
Trying chapter: liver sectionectomies left lateral sectionectomy []
Trying chapter: lung upper lobectomies []

Trying chapter: kidney transplant [|
Trying chapter: lung lower lobectomies
[["... OR setup ... stapler inserted through utility incision ..." ]]
Trying chapter: enucleation of pancreatic tumors []
Trying chapter: d2 total gastrectomy []

Trying chapter: abdominoperineal resection []

Trying chapter: radical right colectomy with complete mesocolic excision []
Trying chapter: splenectomy []

Trying chapter: cholecystectomy []

Trying chapter: management of intrahepatic biliary stones []
Trying chapter: robotic transversus abdominis release []

A\ Inaccurate answers found. Showing uncertain hits.

--- Top Answers ---

[5.46] Extraction incision often Pfannenstiel; GelPort® may help; pre-create site to avoid interrupting final steps.
[3.40] “Using a sponge with the ProGrasp™ in R3 can help to avoid parenchymal injury during traction.”
[3.21] “Superficialize” transection line to expose vessels and facilitate hemostasis (stay sutures, gravity).

[2.96] Mobilization steps; mark left side of right hepatic vein; gradual lifting with ProGrasp™.
[2.89] Lower lobectomy setup/tips on stapler port usage.

RAG ANSWER ® [:
Using a sponge with the ProGrasp™ (in R3) during traction.

Figure 14: Search examples representing case (2) in Figure 1, this is the worst possible case when
the answer is found but not recognized as very precise, therefore the model will search within all the
possible chapters. This highlights the stubbornness parameter (in this case set as 28).
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A.6 SMALL TEXT UNIT DISTRIBUTION

Small Text Unit Distribution
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Figure 15: Histogram of STUs distribution per procedure (all the distributions are shown, but only

)
.

%%%

5

%

|

i

|

™

=
S

a subset of the labels are visible for clarity)

B LLM USAGE

Portions of the manuscript were copy-edited using GPT-5 and Gemini 2.5 for grammar and style
only. These tools were not used to draft content, perform analyses, generate data or figures, or
select references. No confidential or identifiable data were provided to these services. All edits were

reviewed by the authors, who take full responsibility for the final text.
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